CS200: Programming I Instructor: Sam Vinitsky

P2: Doc Tok’s Clock Shop
(20 points)

Due: Friday, June 28 @ 11:59pm

Part 0: Introduction

father recently retired, and that he has taken over operation of the family clock store. Doc Tok,
who holds a Ph.D. in Clockology' says that he wants to be on the cutting edge of the clock sales
business — as it is a very competitive field. Having heard that you recently enrolled in a computer
science course, he has asked for your help in building state-of-the-art clock store technology.

He needs three programs written to help him run his clock store: (1) a program to help him paint
the store, (2) a program to actually run the clocks, and (3) a program to help him handle his
money. The programs are described in detail below, and each contains multiple functions. For each
function, Doc Tok has given detailed specifications (input types and names, output types, special
requirements, etc.) in a table below the function’s description.

Doc Tok says that his computers are very slow, so you should only write functions that use simple
arithmetic operations. If we have not discussed it in class, his computer cannot run
it.? Specifically, his computers cannot run conditionals (“if” statements), loops (“for” or “while”
statements), String parsing, or built-in Java libraries like Math or Random. If you have questions
about what you are/not allowed to use, please ask him on Piazza.

Tip: Before attempting this homework, work through all of the practice problems from the lectures
on functions (available on Canvas here).

Each program you turn in should include a comment at the top with (1) your full name, (2) your
student ID number, (3) your netID, and (4) the name of anyone you discussed the homework with

(excluding of Sam and Alex).

As always: start early, ask questions, and have fun!

lnot a real field
2how convenient!


https://canvas.wisc.edu/courses/152193/pages/lecture-notes-and-practice-problems

Part 1: Paint the store red [4 points total]

Doc Tok’s first task for you is relatively simple — since his father had terrible taste, the current
design of the clock store is very cliche. To help remedy this, Doc Tok has decided to paint the
entire store with a new, bright color called “red”! But he needs your help figuring out how much
paint to buy.

This seems like a simple task, but there’s a catch — Doc Tok is very poor (as his Ph.D. is Clockology
put him severely in debt). He cannot afford much paint, so he wants to paint as little of the store
as he can. In particular, since the walls are covered in clocks, he can save money by not painting
the parts of the wall that the clocks cover!

Doc Tok has asked you to write a program called Paint. java, and include three functions in it,
which are described below.

You will need to test each function that you write to make sure it works. Follow the
tips given in “Tips for Testing Functions”.

Note: As discussed in class, double’s in Java are weird. Occasionally, you may notice that your
double’s value is off by some small fraction — maybe your answer was supposed to be 26 but your
program returned 26.000000000004. This is due to the way that Java stores doubles internally,
and is completely out of our control. Doc Tok will not care if your results are off by such a small
amount.

a) Area of a clock (1 point)

In order to figure out how much of the wall is covered by clocks, Doc Tok realizes you must first
have a way to find the area of a single clock. Write a function called computeClockArea that, given
the radius of the clock as input, outputs the area of the clock (see the table below for more details).

Make sure to test your function as described in “Tips for Testing Functions”.

Function Name: computeClockArea

Input(s): double radius: the radius of the clock

Return value: A double equal to the area of a clock with a radius of radius
Special requirements: | Pretend that 7 is just 3.14

Hints: What is the formula for the area of a circle?

Example usage: computeClockArea(1.0) should return 3.14

computeClockArea(4.0) should return 50.24



https://canvas.wisc.edu/courses/152193/files/folder/Resources?preview=8666904
https://canvas.wisc.edu/courses/152193/files/folder/Resources?preview=8666904

b) Total wall area (1 point)

Next, Doc Tok needs to know just how big his walls are. Write a function called computeWallArea
which, given the dimensions of a single wall, determines the total area of that wall. Notice that
this function has two inputs!

Make sure to test your function as described in “Tips for Testing Functions”.

Function Name: computeWallArea
Input(s): double width: the width of the wall

double height: the height of the wall
Return value: A double equal to the surface area of the wall
Special requirements: | None
Hints: What is the formula for the area of a rectangle?
Example usage: computeWallArea(2.0, 4.0) should return 8.0

computeWallArea(3.0, 3.0) should return 9.0

c) How much paint? (2 points)

You can now calculate how much paint you actually need to buy by calculating how much of the
wall area is exposed. The key here is that any part of the wall that has a clock hanging on it
doesn’t need to be painted, since most of his customers don’t have x-ray vision.

Since Doc Tok is very particular, all of the clocks are the exact same size, as are all the walls.
To calculate how much of the walls are actually visible, you need to consider: (1) the number of
clocks, (2) the radius of the clocks, (3) the height of the walls, (4) the width of the walls, and (5)
the number of walls,

Write a function computeExposedWallArea that will return amount of paint that Doc Tok will
need. Since your answer depends on five variables, your function will need five inputs. Some of
these will need to be double’s, and some will need to be int’s. Check the table below for the
order of inputs, and their types.

To write this function, you can (and should) use the functions you have written in parts a and b!

Make sure to test your function as described in “Tips for Testing Functions”.


https://canvas.wisc.edu/courses/152193/files/folder/Resources?preview=8666904
https://canvas.wisc.edu/courses/152193/files/folder/Resources?preview=8666904

Function Name: computeExposedWallArea

Input(s): double radius: the radius of each clock

int numClocks: the number of clocks

double width: the width of each wall

double height: the height of each wall

int numWalls: the number of walls

Return value: A double equal to the exposed surface area of walls when
numClocks clocks (each with a radius of radius) are hung on
numWalls walls (each with a height of height and width of width)

Special requirements: | Call the functions you have written...
Hints: Use variables to store intermediary values

Example usage: computeExposedWallArea(1.0, 2, 4.0, 4.0, 2) returns 25.72

Part 2: Making a clock [5 points total]

Doc Tok is sick of his father’s old, antiquated clocks. He wants to bring in some fancy new electronic
clocks, but needs your help writing the code to run them! Specifically, your job will be to write
code to determine the angle of the hands of the clock. If you don’t know how to read an analog
clock (or just need a refresher) check out this page. Doc Tok uses military time, so his hours go
from 0 to 23.

In a real clock, the hour hand is dependant on the current hour, minute, and second (since when
it’s 11:59:59, the hour hand should be almost at the 12). Similarly, the minute hand is dependent
on the current second. Doc Tok knows you are just learning how to program, so he does not expect
you to implement those interactions.

Hours 1: Minutes: so/2 Seconds: Bo| 2
Time: 11:59:59

Figure 1: Clocks at 11:59:59 (left) and 12:00:00 (right)

Instead, the hour hand of your clock will be dependent only on the current hour. At 11:59:59,
your hour hand (the short green one) should still be at 11. Then at 12:00:00, it should jump to


https://www.wyzant.com/resources/lessons/math/elementary_math/telling_time
http://spacearchive.info/military.htm

the 12 (see Figure 1). Similarly, the minute hand (the medium length blue one) should show the
current minute, without regard to how many seconds have passed. At 4:30:59, it should still be at
the “30 minute mark” (which is pointing directly down, at the 6). At 4:31:00, it should move to
the tick immediately following the 6 (not the 7) (see Figure 2). This simplification does not affect
the seconds hand (the long red one).

Hours i Minutes: 30 2 Seconds: Bl ¢ Hours i Minutes: 312 Seconds: o2
Time: 4:30:59 Time: 4:31:00

Figure 2: Clocks at 4:30:59 (left) and 4:31:00 (right)

Write a program called Clock. java with the following functions:

int computeSecondHandAngle(int seconds)
int computeMinuteHandAngle(int minutes)
int computeHourHandAngle(int hours)

See the tables below for a more detailed description of the functions.

Framework

Doc Tok has written a program called ClockFramework. java that will display a clock by running
your functions to calculate the angles of the hands. This means that if there are errors in your
code, they will be reflected in the operation of this clock.

In order to run the framework, make sure it is in the same folder as Clock.java. Open up
ClockFramework. java in Visual Studio Code, and run it (using the “run” button in the top-right,
as usual). If you have written your functions in Clock. java (and named them correctly!), it should
display a clock that you can fiddle with to test your code.

You can adjust the time displayed on the clock by using the selectors at the top of the inter-
face. For more information about how to use this, read the long comment at the beginning of
ClockFramework. java.



Note: You are welcome to read the code of ClockFramework. java, but I would recommend against
it, as it contains complicated graphics functions and is far beyond the scope of anything we have
done so far, and it would probably just scare you at this point.

a) Second Hand (2 points)

Function Name:

computeSecondHandAngle

Input(s):

int seconds: between 0 and 59 (inclusive)

Return value:

int representing the angle (in degrees) of the second hand when the
current time has seconds seconds passed

Special requirements:

0 degrees is straight up (12 o’clock)

Degrees increase counterclockwise (3 o’clock is 90 degrees)
You may not use “if” statements.

The angle returned must be between 0 and 360

Hints:

Remember int division...
Percentages

Example usage:

computeSecondHandAngle (0) should return 0
computeSecondHandAngle (1) should return 6
computeSecondHandAngle (10) should return 60
computeSecondHandAngle (30) should return 180

b) Minute Hand (1 point)

Function Name:

computeMinuteHandAngle

Input(s):

int minutes: between 0 and 59 (inclusive)

Return value:

int representing the angle (in degrees) of the minute hand when
the current time as minutes minutes, ignoring the contributions
from the seconds

Special requirements:

0 degrees is straight up (12 o’clock)

Degrees increase counterclockwise (3 o’clock is 90 degrees)
You may not use “if” statements.

The angle returned must be between 0 and 360

Hints:

This should look familiar...

Example usage:

computeMinuteHandAngle (0) should return O
computeMinuteHandAngle (1) should return 6
computeMinuteHandAngle (10) should return 60
computeMinuteHandAngle (30) should return 180




¢) Hour Hand (2 points)

Function Name: computeHourHandAngle
Input(s): int hours: between 0 and 23 (inclusive)
Return value: int representing the angle (in degrees) of the hour hand when the

current time has hours hours ignoring the contributions from
minutes and seconds

Special requirements: | 0 degrees is straight up (12 o’clock)

Degrees increase counterclockwise (3 o’clock is 90 degrees)

You may not use “if” statements.

The angle returned must be between 0 and 360

Hints: A clock only goes up to 12, but military time foes from 0 to 23...

Example usage: computeHourHandAngle (0) should return 0
computeHourHandAngle(2) should return 60
computeHourHandAngle (6) should return 180
computeHourHandAngle (18) should return 180

Part 3: Money money money... [8 points total]

As mentioned before, Doc Tok is quite frugal. He has asked that you write him a program called
Money. java to help him make sure he isn’t making any mistakes in his financial transactions.

This program will include three functions, specified below.

a) Paying employees (2 points)

Doc Tok’s father was over-paying his employees for years, since he was didn’t know how to read or
write, and didn’t believe in taxes. Doc Tok hopes to remedy this oversight by using computers to
pay his employees!

Each employee makes a certain amount of money per hour, and works a certain number of hours
per pay period. Additionally, some percentage of their paycheck gets taken out for taxes. Write a
function called computeEmployeePaycheck to help figure out how much Doc Tok needs to actually
pay his employees (details in the table below).

For example, suppose an employee works 10 hours at a salary of 5.00 dollars an hours and a tax
rate of 7%. The total amount they make (before tax) is 10*5.00, which is equal to 50.00 dollars.
Then 7% of this is removed for tax — i.e. the amount removed for tax is 0.07 * 50.00, which is
equal to 3.5. So the amount the employee actually gets paid is 50.00-3.50 which is 46.50 dollars.



Make sure to test your function as described in “Tips for Testing Functions”.

Function Name: computeEmployeePaycheck

Input(s): int numHours: number of hours they should be paid for

double salary: amount to pay per hour (in dollars)

int tax: percentage of their salary that goes to tax

Return value: A double equal to amount the employee should be paid based on
the inputs.

Special requirements: | None

Hints: tax is a whole number, but you need it as a decimal...
Do you remember how to convert from an int to a double?

Example usage: computeEmployeePaycheck (10, 10.0, 4) should return 96.0
computeEmployeePaycheck(20, 8.5, 8) should return 156.4

b) Making change (4 points)

When making change for a customer, Doc Tok likes to use as few coins as possible (since Clockology
believes that all circles are precious, as they closely resemble clocks). Doc Tok would like you to
write a function that will make change for a given amount of money in as few coins as possible.
He wants the function to both (a) print out the number of coins he will be needing of each type,
and (b) return the total number of coins he will need. The input to this function will be an int
representing the number of cents to make change for. (see the table below for more details)

What you print should follow this format:

Total: 15
Quarters: 3
Dimes: O
Nickels: 10

Pennies: 2

He will only give change in basic American coins, which are the quarter (worth 25 cents), the dime
(worth 10 cents), the nickel (worth 5 cents) and the penny (worth 1 cent).

For example, consider making change for 144 cents. First, we want to try to use as many quarters
as possible, each of which are worth 25 cents. How many times does 25 go into 1447 We can
cleanly subtract it 5 times, which amounts to 125 cents (so the number of quarters we give is 5).
The remainder is 19 cents. Now we move to the next largest coin, the dime (worth 10 cents). We
can only subtract out 1 dime, which gives a remainder of 9 cents. Then we can subtract out a
single nickel (worth 5), giving a remainder of 4 cents. We then give out 4 pennies, since this is the
smallest coin. The total number of coins we need is 5+1+1+4, which is equal to 14.

We would then print:


https://canvas.wisc.edu/courses/152193/files/folder/Resources?preview=8666904

Total: 11
Quarters: 5
Dimes: 1
Nickels: 1
Pennies: 4

Make sure to test your function as described in “Tips for Testing Functions”.

Function Name:

computeChangeWithFewestCoins

Input(s):

int amount: amount of money to make change for (in cents)

Return value:

int number of coins needed

Print out:

The number of each coin type needed to make change for amount
using the fewest number of coins possible (following the format
mentioned above)

Special requirements:

Coins are:
Quarter (25 cents), dime (10 cents), nickel (5 cents), penny (1 cent)

Hints:

- Make an int variable called amountLeftToMakeChangeFor or

something like that, and update it as you go...
- Might want variables numQuarters, numNickels, etc...

- We need to compute the number of times that a value can be

cleanly subtracted from an amount, and then the remainder...
- What do % and / do?

Example usage:

computeChangeWithFewestCoins(51) should return 3
computeChangeWithFewestCoins(141) should return 8
computeChangeWithFewestCoins (408) should return 20
computeChangeWithFewestCoins(4) should return 4

c) Clock sales (2 points)

When a customer comes in and makes a purchase, they buy a bunch of the same type of clock,
and pay him in a pile of assorted coins. (Doc Tok has a very particular clientele). Doc Tok then
needs to compute the amount they over-paid by, make change for it, then give that amount back
to them. As discussed above, Doc Tok enjoys doing this with as few coins as possible. Using the
change-making function you just wrote, write a function to compute how much change Doc Tok
needs to give a customer. (see the table below for more details)

Make sure to test your function as described in “Tips for Testing Functions”.



https://canvas.wisc.edu/courses/152193/files/folder/Resources?preview=8666904
https://canvas.wisc.edu/courses/152193/files/folder/Resources?preview=8666904

Function Name: computeChangeFromSale

Input(s): int numClocks: number of clocks sold
int clockPrice: price of each clock (in cents)
int amountPaid: amount of money the customer paid (in cents)

Return value: int number of coins needed

Print out: The coins to give for the customer’s change from the sale.
Special requirements: | Use the function computeChangeWithFewestCoins in your code.
Hints: Which amount are you making change for here?

Example usage: computeChangeFromSale(2, 250, 600) should return 4

computeChangeFromSale (2, 250, 500) should return 0
computeChangeFromSale (3, 210, 1000) should return 16

Part oo: Feedback Form [3 points]

Fill out this feedback form after you submit this assignment. Completion of this will count
towards your grade, but your responses themselves will not affect your grade in any way (so be
honest!).

What to turn in

On Canvas, turn in a zip folder named <your_net_id>_P2.zip containing the files:

e Paint.java [4 points]
e Clock.java [5 points]
e Money.java [8 points]

It is fine if you also include your .class files and ClockFramework. java, but this is not required
(it may just be easier to include them than to delete the files in order to zip up your folder).

Make sure to complete the feedback form as well! [3 points]

10


https://forms.gle/T6G1MVXWeaFPSRhj7
https://canvas.wisc.edu/courses/152193/assignments/567281
https://forms.gle/T6G1MVXWeaFPSRhj7

