
Parallel Router Design for Content Centric Networks

Sankaralingam Panneerselvam and Vinod Ramachandran
Computer Sciences Department

University of Wisconsin, Madison, WI
{sankarp,vinorama}@cs.wisc.edu

Abstract
Today’s routing infrastructure is built using special pur-
pose hardware due to the demand for very high through-
put. With the growth of hardware techniques, satisfying
this huge demand is made possible. However the down-
side of this hardware based architecture is that upgra-
dation is very rare due to high costs and extensibility
is limited which heavily limits the deployment of addi-
tional features or new routing policies. Recently, Soft-
ware routers have gained more traction due to it exten-
sible nature. Though their performance is still behind
hardware routers, solutions like RouteBricks are trying
to close this gap. In order to scale to higher speeds, a
parallelized architecture has been proposed where a clus-
ter of commodity machines are used to achieve higher
throughput. In this paper, we analyze the generic is-
sues in porting routing policies on to this type of parallel
architecture. We illustrate this by parallelizing Content
Centric Routing using different designs and explain the
key issues with every design and also help in choosing
the optimal design based onthe underlying architecture.

1 Introduction
In modern times a plethora of applications are Web
based applications and depend heavily on the inter-
net. Since the late 90’s we have been seeing many
innovative Web based applications. More recently
social networking websites like facebook , twitter
and streaming websites like youtube have taken the
importance of Web based applications to the next
level. While using the services of these applica-
tions the modern internet user could get impatient
on experiencing any delays while using such appli-
cations. Therefore it is very important to minimize
any latency experienced by the user. Hence it is cru-
cial that routers operate with the greatest efficiency
and employ every optimization necessary inorder to
minimize latency and to provide for high through-
put for all the modern internet applications. They

need to be able to process packets at a high speed
and minimize any delay experienced by the user.

To scale to increasing demand for bandwidth,
early router research emphasized the use of hard-
ware routers. Hardware routers make use of ASIC
components to implement important functions like
packet forwarding. Functions that were imple-
mented once in software were now ported to hard-
ware. More resources were spent on enhancing the
router hardware which led to improved overall sys-
tem performance.

Hardware routers today operate at a very high
rates and provide good throughput. Standard hard-
ware routers start operating from about 1 Tbps and
can scale upto 92 Tbps[1]. They make use of a fast
crossbar switched backplane and make use of tech-
niques like virtual output queueing to obtain such
high operational rates.

Modern Networks are built using special purpose
hardware and software. This philosophy of using
special purpose hardware has one main limitation.
It limits the extent to which one can extend, pro-
gram or experiment with the routing infrastructure.
Any change required to a core router would require
a costly upgrade which forces the network providers
to use a conservative strategy of making minimal
changes. This limitations has forced the researchers
to turn back the focus on software based routers.

Software routers can provide for all the function-
alities of a hardware router like per-packet proto-
col processing, route look up and forwarding. The
use of software routers has its advantages of low
cost, familiar programming environment and large-
volume manufacturing. Innovations in commodity
hardware drive the need to shift hardware oriented
routers to cheaper software routers.

The main challenge with software routers is

1



achieving high scalability. Modern single server
software routers do not scale beyond 1-3 Gbps
which is a stark contrast to carrier grade routers
that start at 40 Gbps and scale as high as 92 Tbps.
This need for increased scalability lead to solu-
tions like RouteBricks[2], a router architecture that
parallelizes router functionality[1] across multiple
servers and across multiple cores within a single
server.

Keeping this requirement of scalability in soft-
ware routers we decided to study the challenges
in achieving thread level parallelism in a software
based router.

The initial internet was designed for host to host
communication like FTP and Telnet. But cost of
the internet applications today works on the basis of
data access and service access. This has motivated
researchers to consider the need for an architecture
focusing primarily on Data. Content Centric Net-
work [3] is one such architecture which motivated
us to implement a parallel software router for Con-
tent Centric Networking.

We begin by motivating the problem in Section 2
and overview of CCN routing in Section 3. We fol-
low with the different design models in Section 4.
We discuss the evaluation results in Section 5, and
finish with related work, future work and conclu-
sions.

2 Motivation
The main challenge in the internet routing infras-
tructure is implementing any new changes to the
router’ss core networking behavior. Modern routers
provide high throughput in the order of 92Tbps but
it is hard to deploy any additional features in them.
This drawback has led to a keen interest in software
routers. Software routers can run on commodity
machines and one of the benefits of using commod-
ity servers is that they are inexpensive and can be
upgraded regularly with the development of tech-
nology. Developers can pick a language of their
choice and use a familiar programming environment
to implement their router. Such routers can also be
very useful to the research community as they could
deploy such routers in commodity PCs in a Univer-
sity environment in order to conduct their experi-
ments. Researchers could use such a router to im-

plement new protocols and study their behavior with
much less effort then they have to do now.

However there are issues with software routers.
They do not scale as much as modern hardware
routers. This performance limitation has motivated
many researchers to work on the scalability of soft-
ware routers. More thought has been put into
parallelizing the architecture of software routers.
Projects such as RouteBricks focus on converting
a software router from being single server based to
a cluster based software router. They explain that
such an architecture can help improve scalability.
Their cluster architecture revolves around using a
cluster of N servers in which each server represents
an input port. If the individual line rate is R bps then
they aim in scaling this cluster architecture to scale
to the rate of an individual router having a through-
put of O (NR). This interesting idea has received
much attention from the research community and
has pushed the need for more parallelism in soft-
ware router design.

Another important project which has garnered
significant attention in recent times is PacketShader
which is a software router that utilizes the benefits
of GPUs to enhance scalability. They route core
packet processing to GPUs and make I/O optimiza-
tions to obtain maximum parallelism. They state
that GPUs reduced memory latencies and provide
for greater memory bandwidth which provides for
greater throughput. Their router scaled to a through-
put of 40Gbps which is the best achieved by a soft-
ware router so far.

These ideas provide an important motivation for
our work. We feel that utilization of thread level
parallelism in a software router could be an im-
portant design benefit. Many challenges are faced
while moving from single server implementation to
a parallelized design. One challenge is to maintain a
consistent view of routing table entries across mul-
tiple threads. We also need to handle locking issues
and prevent the occurrence of deadlocks between
the threads. One can try many strategies in balanc-
ing load across threads and also partition routing ta-
bles to increase the concurrency of data accessed by
threads for routing purposes. These challenges mo-
tivated us in designing a parallel CCN router with
the objective of getting a high throughput.

2



Content Store
Name Data

/BBC/news ...
/BBC/music ...

Pending Interest Table (PIT)
Prefix Requesting Ports

/BBC/news 0
/BBC/music 1
Forwarding Information Base

Prefix Port List
/BBC/news 2, 3, 4
/BBC/music 0, 2

Table 1: Tables used by CCN Routing

3 Content Centric Networking
3.1 CCN Overview

Content Centric Networking is motivated from the
fact that the modern user of the Internet only cares
about the content he wishes to access and not how
it is accessed. Yet communication in the Internet is
based on ”where” and not ”what”. This aberration
in the Internet model has created a few problems. In
order to provide availability one has to rely on appli-
cation specific mechanisms like CDNs and P2P net-
works, which could lead to greater bandwidth costs.
Security is also an issue as it becomes harder to trust
content causing more reliance on untrustworthy lo-
cation and connection information. Network con-
figuration and implementation of network services
becomes harder due to location dependence which
requires mapping of content to host locations.

Keeping these issues in mind one has to consider
replacing ”where” with ”what”. This thought pro-
cess led to the proposal of Content Centric Network-
ing (CCN)[3]. In CCN one has no notion of a host,
packet address names relate to content and not loca-
tion. One does not have to rely on application spe-
cific mechanisms to provide for availability. The se-
curity mechanism in CCN is based on content based
security. The protection and trust are provided along
with the content itself instead of being a property of
the connections over which it travels. The location
independence provided by CCN also helps in better
network configuration and in the easier deployment
of services.

This approach of redesigning the data access pro-
tocols on the Internet is very interesting and has
become a rapidly evolving line of thought. The

DONA[7] project at UC Berkley and CCNx[4]
project at PARC labs have come out with initial
CCN prototypes. CCNx has made its implementa-
tion open source and has invited researchers to use
it and make extensions to it.

3.2 CCN Routing

In this section we give a brief overview of CCN
routing. In CCN there are two main packet types,
namely the CCNINTEREST packet and the CCN-
DATA packet. The CCNINTEREST packet is sent
when the user requests for content he is interested
in. The CCNDATA packet is a response packet
sent by the content provided with the requested con-
tent. Both these packets are sent as broadcast mes-
sages and neither the users ipaddress nor the content
providers ip address is used for the routing of these
packets.

Table 1 shows all the routing tables used in a con-
tent centric router. When the router receives an In-
terest packet from a certain input port it does longest
prefix match for the content path with the entries
of the Forwarding Information Block Table. It then
forwards the Interest along these ports. After for-
warding the Interest it adds an entry in the Pending
Interest Table for the given interest at the given in-
put port. Once the router receives a data packet for
the given interest, it forwards the data packet to the
input ports present in the Pending Interest Table en-
try for the given Interest and removes the Pending
Interest Entry. It then caches the data packet in the
Content Store. In the future if the router receives
a request for the given Interest it serves the request
from its content store and does not forward the In-
terest.

4 CCN Parallelized
We came up with three designs of parallel CCN
router. The first and second design focuses on ex-
ploiting the parallelism in a single multi-core ma-
chine whereas the third design targets NUMA ar-
chitecture and can also be extended to a cluster of
machines. In the following subsections, we explain
each of the designs in detail focusing on choices
made for each model like locality, data partitioning,
locking mechanisms etc.

3



…

Thread 1

…

T1

T2

TN

Thread 2 … Thread N

Content Store

Forward Information Base

Pending Interest Table

Forward to output port(s)

Figure 1: Parallelized CCN router architecture opt-
mized for single multi-core machine.

4.1 Lock based Parallel CCN router

As discussed in the previous section on CCN, the
router maintains global structures such as Pend-
ing Interest table, Forwarding table and content
store which act as the cache. The parallelization is
brought in by introducing number of threads which
are mapped on to the different cores in the system.
This is commonly referred as Thread Level Paral-
lelism. Since the router machine accommodates
multiple NICs, worker threads are mapped onto sep-
arate network cards. If the input arrival rate is higher
than the processing capability of each worker thread
then multiple threads can be mapped to the same
NIC.

Figure 1 represents design of this model. Each
worker thread now acts as a separate CCN router by
itself. They receive the packets from the network
ports and perform routing based on CCN policy. It
is to be noted that the structures are present in the
shared memory and can be accessed by all worker
threads. However these concurrent accesses to the
global tables are not thread safe since both the read
and write operations are frequent.

The consistency of the global tables is to be en-
sured through the use of locks. The challenge here
lies in choosing the granularity of locks. A single
lock to preserve the entire structures would make
things easy for the developer but the scalability of
the system would be drastically reduced. To enable
concurrent access to the tables and also to ensure
consistency, we logically divide the tables into mul-

tiple partitions. The packets are mapped onto dif-
ferent partition through a simple hash function. The
intuition behind the choice of partitioning is that the
incoming packets will map onto different partitions
with fairly equal probability.

Other techniques like dynamic partitioning [13]
can also be employed if load imbalance occurs. It
is also to be noted that since the global tables are
accessed by all the threads in the system and no lo-
cality in the data accessed from the tables, cache
conflicts can reduce the scalability of the system.
Ensuring locality will limit threads generality in that
they can access only certain partitions.

4.2 Transaction based Parallel CCN router

In the world of parallel programming, Transactional
Memory has gained much importance due to the
combined properties of simple programming style
and concurrency benefits of that of fine grained
locks. Transactional memory are similar to trans-
actions in Databases where in Atomic, Isolation
and Consistency properties are ensured to all the
transactions running in the system. All transactions
can run Concurrently unless they conflict which is
the simultaneous access to same memory location
where at least one of the access is a write.

There have been several works on Transactional
memory like Intel STM[9], Tiny STM[10] etc.
which are software based solutions (STM) and
LogTM[11], TCC[12] etc. which are hardware
based solutions (HTM). Software solutions are cur-
rently available in the market whereas the hardware
solutions are not. Though HTM offers significant
performance than their counterpart STM, they are
not available in the market since they require addi-
tional hardware logic or change in coherence pro-
tocols. There still has been interest in TM based
systems [14, 15] and recent works also shows ef-
forts in getting Transactional memory on commod-
ity systems [14]. This makes us believe that hard-
ware based transactional memory solutions will be-
come prevalent in the near future.

Our second design is based on the transactional
memory. It follows the same thread level paral-
lelism based approach as the previous design. The
global tables need not be partitioned since transac-
tional memory can allow concurrency at the same
level as that of locks on each entry of the tables.

4



Partition 1

Partition 2

Partition 3

Partition 4
Partition 5

Figure 2: Partition based CCN router architecture
suitable for NUMA or cluster of machines

However the property of the TM solution like gran-
ularity of concurrency (word level granularity or
cache line based granularity) has to be considered
when designing the global data structures.

4.3 Partition based Parallel CCN router

The above two models are designed for a router that
runs on a single multi-core machine with uniform
memory access. It is hard to extend them to NUMA
based machines or a router formed with cluster of
machines. The Forwarding table, Pending Interest
table and the content store which can be globally
accessed in the previous models cannot suit these
types of architectures. It is hard or not possible to
maintain the consistency of the structures without
any high latency solutions.

The consistent structures were possible in pre-
vious designs mainly due to the cache coherence
in the underlying hardware architecture. Though
cache coherence is present in NUMA type of ar-
chitecture, the overhead of accessing cache blocks
or table entries from memory present in other nodes
is really high. For cluster of machines, virtualiz-
ing the tables to provide a global view is really hard
or close to not possible since the consistency of the
structures has to be ensured manually through soft-
ware solutions.

We employ a partition based solution to over-
come the consistency issue similar to consistency
hashing [reference]. Each node in the cluster or in
the NUMA is made the owner of a one or more par-
tition and they will be responsible to forward any

packets belonging to that partition. Each node uses
the same hash function to map the packets onto the
partition. Simple version of this model is shown in
figure 2. The ownership table is maintained by each
node carrying the same mapping between the parti-
tions and its respective owner. Since this mapping
is not going to be changed frequently, maintaining
their consistency does not incur high overhead.

The packets can flow from one node to another
since they are to be forwarded to their owners.
Though this can be a overhead, the overhead is
lesser than trying to provide global view of struc-
tures where any node in the system can forward any
packets. We can employ optimization like batching
in RouteBricks . instead of forwarding the packets
immediately to its owners, wait till a batch of pack-
ets gets accumulated to be forwarded to the des-
tination - to reduce contention in the intra cluster
network and also to improve effective usage band-
width. Load imbalance can be overcome by dy-
namic partitioning techniques thereby shifting some
load to other nodes.

5 Evaluation
All the experiments were run on a machine with In-
tel Xeon X5550 processors, memory capacity of 24
GB and Linux OS with kernel version 2.6.18.

We developed our own application framework
to simulate the functionality of CCN router. The
framework consists of a packet generator which is
reposnsible for generating CCN packet and forward
them to the core CCN router. The packet genera-
tion is completely randomized that it generates both
types of CCN packets - Forward and Interest and
also takes care of generating appropriate input ports.
Another property of the generator is that the packets
are equally distributed in count among the different
partitions in the system.

The main router functionality is implemented as
a separate pluggable component. Separate routers
were implemented for each design model. The
router tables - Forwarding Information Base, Pend-
ing Interest table, Content Store - were implemented
as static arrays indexed through packet ID. The
router tables are part of the core routers since the
structure of these tables can vary for different design
models. In order to avoid the tables getting stored in
the L3 cache, each table used was configured with

5



Figure 3: Speedup of the router with the number of
threads in the lock based parallel router

minimum size of 32 MB. The core routers were con-
figured with different number of threads upto eight
threads to measure the speedup.

5.1 Lock based Parallel CCN router

The lock based design made use of spin locks avail-
able with the pthread library. We wanted to evalu-
ate two key factors - speedup achieved by the router
and the amount of concurrency exploited with the
number of partitions. The partitions referred in this
design determines the granularity of locking.

Figure 3 shows the speedup that we obtain with
the number of threads. The number of partitions
were fixed to 1024 for this experiment. The graph
shows that our model was able to achieve good
speedup but it is not close to linear. Load imbalance
is not a concern here because we observed that the
randomly generated packets were mapped across
different partitions and not skewed to any particu-
lar partition. Since all threads can access the global
structures, cache conflicts among different cores are
possible. This might result in reduced scalability
and thus eventually affect the speedup.

The concurrency obtained with number of parti-
tions is shown in Figure 4. The graph shown here
was obtained for four threads. But we observed sim-
ilar results for other thread count. The idea of this
experiment is to illustrate the effect of the granular-
ity of locks on the amount of speedup exhibited by
the router. It can be clearly seen that coarse grained
locking affects the speedup since it reduces the num-
ber of logical partition and thereby increasing the

Figure 4: Concurrency in router with number of log-
ical partititions in the locak based system

Figure 5: Speedup of the router with the number of
threads in the transaction based parallel router

contention and the execution time. But the effect of
partitioning does not extend till finest locking gran-
ularity. This is because the effect of contention is
not really high to see any improvement with more
partitions and so the concurrency obtained reaches
maximum with certain number of partitions after
which the graph flattens.

5.2 Transaction based Parallel CCN router

Transactional memory can ideally obtain perfor-
mance of the finest grained locking mechanism. We
used Intel STM which is a software based transac-
tional memory for this experiment. Intel STM oper-
ates on cache line granularity - independent threads
can access different cache lines without generating
any conflicts. Access to the same cache line will

6



Figure 6: Speedup of the router with the number of
threads in the partition based parallel router

trigger conflict and one of the transaction has to be
restarted based on the policy implemented in the
system. There are systems like Tiny STM which
can achieve word level granularity.

Figure 5 shows that the speedup obtained is
worse than the single thread performance. Since the
implementation was very basic, running the exper-
iments with multiple threads ended up with multi-
ple conflicts. The global structures were not opti-
mized to avoid or reduce the conflicts among multi-
ple transactions. The number of conflicts increased
with the number of threads which was reflected in
the statistics logged by the STM framework. We
ran simple microbenchmark to analyze the effect
of this optimization. The sample application basi-
cally spawned multiple threads and they were made
to access different logical partitions of a global ar-
ray. It was noticed that the number of conflicts were
reduced if the size of the logical partition was in-
creased.

5.3 Partition based Parallel CCN router

The partitions referred in this model should not be
confused with the logical partitions referred in the
previous models. The global tables are physically
partitioned and any node in the system will be able
to see only the partition that is assigned to it. We
implemented a very simple consistency hashing like
technique to partition the global structure and dis-
tribute the ownership among multiple nodes. We
treated different threads as different nodes for this
simulation. Two sets of threads are considered (i)

Distributor threads which sends the packet to the
appropriate owner based on the packet ID (ii) Clas-
sifier threads which performs the actual routing and
forwarding based on the partitioned structure local
to itself.

Since this was simulated on a shared memory ma-
chine, classifier thread in each node maintains sepa-
rate queues for every distributor queue to avoid any
contention while forwarding. The speedup of this
model is shown in Figure 6. It achieves a good
speedup but not comparable to the lock based de-
sign. It is to be noted that the implementation of this
model is very primitive and not much optimizations
were done to improve the speedup.

6 Related Work
Software routing has been around for quiet a while
now. Vyatta[8] is a company which provides open
source software routers that can run on x86 hard-
ware as well as virtualization and cloud platforms.
However there is a key difference between their
product and the work we do in this project. Their
router design does not explore the benefits of paral-
lelism that be used in a software router architecture.
Likewise the thought of focusing on Content based
data transfer has been tried in content based pub-
lish and subcribe projects like Sienna[5] and Her-
mes[6]. Sienna differs from CCN as its aim is to
have fixed number of subscribers and many notifica-
tions from content providers. Similarly Hermes fo-
cusses on creating matchmaking rendezvous nodes
between a publisher and subscriber, which is again
different than CCN. CCN in contrast aims at focus-
ing on Content based networks which can scale to
many subscribers. This makes CCN stand out in
solving the problem of content based routing.

7 Future Work
There is are a lot of interesting challenges in-
volved in implementing a multi-threaded software
router for Content Centric Networking. The ex-
periments on a simple Lock based multi-threaded
CCN router implementation reveals that we can get
linear speedup. However we have conducted our
experiments upto 8 threads, we would like to try
the same with larger thread pool sizes going upto
1000 threads. Our partitioning strategies suggest
that there is potential for speedup on applying parti-

7



tion techinques on routing tables, we would like to
explore this further and analyze more trends based
on varied partition sizes.

We considered using transactional memory with
our implementation but found that with the cur-
rent implementation we get a negative speedup, we
would like to explore the necessary optimizations
required for a transactional memory implementa-
tion as transactional memory performs poorly in the
cases of routing entry conflicts for the same cache
line entry.

Finally the CCN router implementation needs to
be integrated with RouteBricks, this would require
porting to Click infrastructure.

8 Conclusion
Hardware routers are very efficient and operate at
very high rates. These routers make use of spe-
cial purpose hardware and software inorder to pro-
vide high throughput. The main limitation of us-
ing such routers is that they cannot be modified that
easily. This led to the development of the need for
software routers. Modern Software routers cannot
provide for high data rates provided by hardware
routers. But efforts are being made to parallelize
software routing inorder to get higher speedup. We
have thought along these lines and implemented a
primitive parallel Content Centric Router and have
analyzed its performance for a few workloads. We
believe combining parallelism with data partition-
ing in software could lead to greater througput in
software routing and think that the study provided
in this implementation could be a ’food for thought’
for more experimentation with software routers on
these lines.

References
[1] Mihai Dobrescu et al., “Route Bricks: Exploit-

ing Parallelism to Scale Software Routers”
22nd ACM Symposium on Operating Systems
Principles (SOSP),October 2009.

[2] Katerina Argyraki et al, “Can Software
Routers Scale? ,” ACM Sigcomm Workshop -
PRESTO, August 2008.

[3] V. Jacobson et al, “Networking Named Con-
tent ,” CoNEXT 2009, Rome, December, 2009.

[4] “What is Project CCNx?”,retrieved from
http://www.ccnx.org/content/welcome

[5] Carzaniga,A.,”Siena-Software”,
http://www.inf.unisi.ch/carzaniga/siena/software/
index.html

[6] Peter R. Pietzuch and Jean M. Bacon.” Her-
mes: A Distributed Event-Based Middleware
Architecture”. Proceedings of the 22nd Inter-
national Conference on Distributed Comput-
ing Systems Workshops, p.611-618, July 02-
05, 2002

[7] T. Koponen (ICSI/HIIT) et al, ”A Data-
Oriented (and Beyond) Network Architec-
ture”.Proceedings of Sigcomm ,2007

[8] http://www.vyatta.com/

[9] http://software.intel.com/en-us/articles/intel-
c-stm-compiler-prototype-edition/

[10] http://www.tmware.org/tinystm

[11] Kevin E. Moore, Jayaram Bobba, Michelle
J. Moravan, Mark D. Hill, David A. Wood:
”LogTM: Log-Based Transactional Memory”,
Proc. Symposium on High-Performance Com-
puter Architecture, February 2006

[12] Transactional Memory Coherence and Consis-
tency Lance Hammond, Vicky Wong, Mike
Chen, Ben Hertzberg, Brian D. Carlstrom,
John D. Davis, Manohar K. Prabhu, Honggo
Wijaya, Christos Kozyrakis, and Kunle Oluko-
tun Proceedings of the 31st Annual Interna-
tional Symposium on Computer Architecture,
M, Germany, June 19-23, 2004.

[13] Karger, D.; Sherman, A.; Berkheimer, A.;
Bogstad, B.; Dhanidina, R.; Iwamoto, K.;
Kim, B.; Matkins, L.; Yerushalmi, Y. (1999).
”Web caching with consistent hashing”. Com-
puter Networks 31 (11): 1203.1213

[14] Hardware Acceleration of Transactional
Memory on Commodity Systems Jared
Casper, Tayo Oguntebi, Sungpack Hong,
Nathan Bronson, Christos Kozyrakis, Kunle
Olukotun, ASPLOS 2011

8



[15] Hybrid NOrec: A Case Study in the Ef-
fectiveness of Best Effort Hardware Transac-
tional Memory Luke Dalessandro, Fraincois
Carouge, Sean White, Yossi Lev, Mark Moir,
Michael Scott, Michael Spear, ASPLOS 2011

9


	Introduction
	Motivation
	Content Centric Networking
	CCN Overview
	CCN Routing

	CCN Parallelized
	 Lock based Parallel CCN router 
	 Transaction based Parallel CCN router 
	 Partition based Parallel CCN router 

	Evaluation
	 Lock based Parallel CCN router 
	 Transaction based Parallel CCN router 
	 Partition based Parallel CCN router 

	Related Work
	Future Work
	Conclusion

