
A Distributed Query Engine for XML-QL

Paramjit Oberoi and Vishal Kathuria
University of Wisconsin-Madison

{param,vishal}@cs.wisc.edu

Abstract: This paperdescribesa distributedQueryEnginefor executingquerieson XML docu-

ments.It supportscomplex pattern matching and a single pattern can be usedfor not only

expressingselectionsandprojectionbut alsofor a joins of onepart of thedocumentwith another

partsof thesamedocument.Thepatternscancontainpathexpressionsandtag variablesaswell.

It is a multithreadedpipelinedqueryenginewith each operator runningasa separate thread.A

singlequeryenginecanexecutemultiplequeriesat thesametimeandexecutionof a singlequery

canbedistributedacrossdifferentservers.Thedistributedservers are totally symmetricandque-

ries can be submittedto any server. Theserverconformsto XML and proposedXML-QL stan-

dards and all communicationamongservers follow thesespecifications.This makes sure that

even the query engines from other vendors can participate in a distributed query execution.

1 Introduction

XML (eXtensibleMarkup Language)[1] is a subsetof SGML that hasbeenproposedby

W3C.Thegoalof XML is to provide many of theSGML benefitsnot availablein HTML andto

providea languagethatis easierto learnanduse.It is usedto createdatain asemi-structuredfor-

matandit is possibleto domuchmorecomplex queriesonXML documentsthanis it possibleon

HTML. Thesefeaturesmake XML anexcellentlanguagefor storingdata,especiallyon internet.

This paperdescribesa QueryEnginefor XML documentswhich canexecutequeriesspecifiedin

XML-QL, a query language for writing queries for XML documents.

Thepaperis organisedasfollows.Section2 givesa brief descriptionof XML-QL. If you are

familiar with XML-QL then you can skip this section.Section3 describesthe featuresimple-

mentedby our queryengine(hereafterreferredto asQE) thatareusedin extractingthedatafrom

XML documents.Section4 describesthefeaturesthatcanbeusedto createaresultingXML doc-

umentfrom thedataextractedby theengine.Section5 and6 describemotivationandmethodol-

ogy for distributed operation.

2 XML-QL: A Query Language for XML documents

XML-QL uses element patterns to match data in an XML document. an example is

WHERE
<book>

<title> $t </>
</> IN "http://www.a.com/book.xml

This query would match for the given patternin book.xml and return all the book titles.

XML-QL allows theresultto beproducedasyet anotherXML document.It allows theformatof

theresultingXML documentto bespecifiedusingaCONSTRUCT clause.Thereforeaquerylike

WHERE
<book>

<title> $t </>
</> IN "http://www.a.com/book.xml
CONSTRUCT
<mein_book>

$t
</>

would result in an XML document like

<queryresult>
<mein_book>

 Java Programmming Language
</>
<mein_book>

 Linux Kernel Hackers Guide
 </>
</>

3 Data Extraction

3.1 Pattern Matching
TheQE matchesthesimplepatternslike theonedescribedin section2. Suchpatternscanbe

usedto specifyselectionsandprojectionson thedocuments.Patternmatchingprovidesverypow-

erful andflexible semanticsthatallow theuserto expressa wide varietyof queriesin a compact

fashion.

3.2 Self Joins
Supposethereis anXML documentappleton.xmlcontainingthegivenandfamily namesof

the peopleliving in Appleton.The datarequiredis a list of all stringsthat areusedasa given

name and as a family name. This query can be represented by the follwing pattern.

WHERE
<personnel>
 <person>
 <name>
 <given> $g </>
 </>

<person>
 <name>
 <family> $g </>
 </>
 </>
</>
in "http://www.wi.com/appleton.xml"
CONSTRUCT
<name> $g </>

Speakingin relationalterms,thisqueryis aprojectionof appleton.xmlon thefield given (say

resultingin doc1) anda projectionon field family (sayresultingin doc2) andthena join on

doc1 anddoc2. Therearemany complex self join queriespossiblewith thepatterns.Thisquery

wasa verticalsplit of thedocumentandjoin of theresultingparts.Onecouldeasilydo horizontal

split andjoin of theresultingparts.Thequeryenginealsohandlesthecasewherethereis a series

of horizontalandverticalsplitsinto differentpartsandthereis ann-way join betweenthoseparts.

For examplesupposea useris interestedin finding a string which is a manager’s given name,a

workers family name and a child’s name in GE. The query can be expressed as

WHERE
 <personnel>
 <person>
 <name>
 <given> $g </>
 </>
 <position> Manager </>
 </>

<person>
<name>

<family> $g </>
</>
<position> Worker </>

</>

<person>
<child>

<name> $g </>
</>

</>
</>

in "http://www.wi.com/ge.xml"
CONSTRUCT
<name> $g </>

3.3 Path Expressions
The tag insidea specifiedpatterncanalsobe a regular pathexpression.Our queryengine

implements all the path expressions that are specified in the XML-QL specification [2].

3.4 Predicates
Eachclausein thequeryhasapatternaswell asapredicateassociatedwith it. A predicateis

anarbitrarybooleanexpressioninvolving variablesaswell asconstants.Thestandardcompari-

sonoperators<,>,=,!=,<=,>=aresupportedfor bothnumbersaswell asstrings. In addition,the

booleanoperatorsAND, ORandNOT canalsobeused.Thepredicateis evaluatedfor eachsetof

valuesof thevariablesin thequerythatthepatternmatcherproduces.If thepredicateevaluatesis

true, that set is sent to the next operator in the query; otherwise it is rejected.

4 The CONSTRUCT clause

This clauseis thefinal stepin theexecutionof any query. Theconstructclauseconsistsof a

template(which is very similar to a pattern)that specifieshow the result is to be formatted.

Although XML-QL doesnot requirethe result to be a valid XML document,the parserwe use

enforcesthis restriction. Theconstructclauseusuallyinvolvesbothtext aswell asvariables.The

variablesmaybeboundto strings,numbers,individual elementnodesin thedocumentor setsof

elementnodes. As eachtuple is receivedby theCONSTRUCT operator, it builds an in-memory

representationon theXML document.Thedocumentis formattedto make it easilyreadableand

is finally written out to disk.

Usuallytheresulttemplatehasstatictext asthenamesof thevarioustagsandvariablesasthe

contentenclosedby tags. However, XML alsosupportstag variables:theseallow the namesof

thetagsto bevariables.Our implementationhaslimited supportfor tagvariables.We allow the

tagnameto beavariable,but wedonotallow thetagnameto beanexpressioninvolving bothtext

and variables.

4.1 Skolem Functions
Skolem functionsare analogousto the group by clausein SQL. Skolem functionsallow

groupingof multiple related“tuples” underthe sametag. However, due the flexible natureof

XML, thefunctionscansometimesleadto inconsistencies.Our implementationchecksfor these

inconsistenciesasit is producingtheresultandignorestheskolemfunctionswhenthey areincon-

sistent.As theresultsof thequeryarereceivedby theconstructoperator, in additionto construct-

ing the in-memoryXML representation,it alsoconstructsa hashtableof nodeID’s that involve

skolem functions. Whenever a tag with a skolem function is encountered,this hashtable is

searched to find the correct nodes.

Skolemfunctionsmake it impossibleto startwriting out theresultuntill theentiredocument

hasbeenprocessed.Thiscanbeamajorproblemwhenasinglequeryis distributedacrossmulti-

ple servers.

5 Architecture

TheQE follows a client-server architecture.Theserver waitson a particularport for requests

from clients.Theclientsandserverscommunicateusingsockets.Themomenta requestcomesto

a server, it spawnsa separatethreadto servicethat request.A singleserver canexecutemultiple

queriesconcurrentlyand is always available to acceptmore requestsif there are sufficient

resources on the machine it is running on.

6 Distributed Operation

6. 1 Why Distributed Operation?

6.1.1 Performance
Querieslikesearchingfor thecheapestcarof agivenspecificationon theinternettakequitea

bit of time to executebecuaseof thesheervolumeof datathatneedsto bescannedfor finding the

result.This might increasetheresponsetime to theuserbeyondacceptablelimits. Sincedataon

internet is distributed acrossa hugenumberof servers, this distribution could be exploited to

achieve parallelismin queryexecutionandreducetheresponsetime to theuser. Onecanexpecta

reasonable speedup because of the following reasons:

• Each machine has limited computational resources. Distributing the query makes more com-

putational power available for the execution of the query

• A singleserverhaslimited bandwidth.Thisbandwidthcouldbecomeabottleneckif thequery

involves a large number of big documents. If the query is running on different servers on dif-

ferent parts of the internet, the cumulative bandwidth of the servers can be utilized

Superlinear Speedup
Theabove reasonscanleadto linearspeedupat best.Anotherreality aboutthe internetthat

can make the superlinear speeduppossibleis the fact that internet is not symmetricallycon-

nected.Thereare clustersof high connectivity connectedwith eachother with relatively low

bandwidthavailablebetweentheclusters.For exampleif mostof thedataoneis interestedin is in

LondonandBerlin. Onecanrun thequeryon oneserver in Madisonor shippartof thequeryto

anotherserver in Chicago,gaininga speedupof two (if lucky). If thesubqueriesareshippedto a

server in London and anotherin Berlin and just ship the resultsover the trans-atlanticline, a

speedup of more than two is very likely.

6.1.2 Economic Factors
A large numberof internetbusinessesmake money out of the datathey own. They either

charge money on per query basis(micro money) or throughadvertising.Suchbusinesseswill

neverpartwith theirwholedatabasestoredin theirXML files.Very likely, they wouldrunaquery

engineon their machineand make it available to usersto sendrequeststo. They would either

chargemoney for eachqueryor embedadvertisingin theresultXML documents.If a userwants

a searchon all sitesthatkeeptheold carsalesdata,theonly way a queryenginecanexecutethis

query is by distributing sub queries to each of these sites

6.1.3 Technical Factors
It might be impossiblefor a query engineto fetch a document(say www.amazon.com/

book_data.xml)becauseAmazondoesn’t have any suchXML document.They might be just

usingthis nameto representa tablebook_datain their RDBMS.They, however, maymake avail-

ablea frontendthattakeXML queriesonwww.amazon.com/book_data.xmlandtranslateit into a

SQL queryon the tablebook_dataandexecuteit on their RDBMS andthenpackagethe result

tablein anXML format.As in theprevioscase,thequerieson www.amazon.com/book_data.xml

can be executed only by Amazon query engine and none else.

6.2 Cost Model
We useda simplecostmodelto decidewhich sub-queriesto ship.Eachqueryenginehasa

static tablecalled locationtable.For eachXML document,it storesthe hostnameof the server

which is bestsuitedfor executingquerieson that document.eg an entry looks like www.ama-

zon.com/book_data.xmlengine.amazon.com.This tabledoesnot storethe informationaboutall

theXML documentsbut only thosewhich arereally hugeor which cannotbefetchedbecauseof

economicor technicalfactors.Accordingto our costmodel,shippingXML documentslisted in

the locationtable is expensive andshippingotherdocumentsdoesn’t costanything. Our model

alsoignoresthecostof shippingintermediateresultsandtheoverheadcostof startingup a large

number of servers.

6.3 How a Query is Distributed
Sincetheserversaresymmetrictheserver thatfirst receivesthequeryactsasa querycoordi-

nator. Theclient server architectureallows thequerycoordinatorto actlike a clientandsendsub-

queriesto the otherservers.The protocol is that whenever a server receivesa query, it doesnot

sendtheresultof thequerydirectly but returnsa URL whereit is goingto placetheresults.The

coordinatorparsesthe queryandlooks at the namesof XML documentsthat areneededin this

query.

Case 1. If noneof theneededdocumentsarein thelocationtable,this server goesaheadand

fetches these documents and executes the query itself.

Case 2. If therearesomedocumentsin thelocationtableandthis itself is theserver for those

documents then it behaves like in case 1.

Case 3. If therearesomedocumentsin the locationtableandthepreferredserver for those

documentsis not the coordinatingserver then the coordinatorpushesthe patternmatchingfor

each of the documents to their respective servers.

The coordinatordoesnot pushthe CONSTRUCT clauseto any of the servers.All the final

datacomesback to the coordinatorwhich then assemblesthe resultingXML doucument.The

coordinatordoesnot receive any intermediateresults--itonly receivesthefinal results.Theinter-

mediate results are directly transferred among servers.

Dueto compatibilityreasons,serverscommunicateamongeachotheronly usingthestandard

XML andXML-QL andall documents,includingintermediateresults,areaccessedonly through

URL’s. The intermediateresultsare recastinto XML format andshipped.The receiving server

parses the document and continues its part of the query.

Our queryengineis ableto handlethe caseswhenmultiple documentsin a singleinClause

belong to different hosts and when documents of different inClauses belong to different hosts.

7 Conclusions

In this paper, we describethe implementationof a distributedqueryenginefor XML-QL. It

includesa brief descriptionof the featuresimplemented.We talked aboutthe motivation behind

implementingadistributedqueryengineandourcostmodel.Theprocessof distributingsub-que-

ries and deciding which sub-query to send where was breifly described.

8 References

[1] Tim Bray (Textuality and Netscape) Jean Paoli (Microsoft) C. M. Sperberg-McQueen

 (University of Illinois at Chicago), Extensible Markup Language (XML) 1.0.

 W3C Recommentdation.

[2] Alin Deutsch (University of Pennsylvania), Mary Fernandez (AT&T Labs), Daniela Florescu

(INRIA), Alon Levy (Universityof Washington),DanSuciu(AT&T Labs),XML-QL. QL’98.

[3] Document Object Model (DOM) Level 1 Specification, Version 1.0 W3C Recommendation,

 1 October, 1998

[4] Jon Bosak. XML, Java, and the Future of the Web. Mar 1997.

[5] Sun Microsystems. Java Project X: Java Services for XML Technology.

[6] IBM Alphaworks. XML Parser for Java.

