
Incorporating Topological Prior Information to

Learn Modular Gene Regulatory Networks

Viswesh Periyasamy

Department of Computer Science

University of Wisconsin-Madison

vperiyasamy@wisc.edu

December 15, 2018

1 Introduction

1.1 Background

Gene regulatory networks are models which depict the interactions between regulating molecules
and their targets (e.g transcription factors and target genes) that drive their expression
patterns. Networks are de�ned by their structure and parameters, where the structure de-
termines which relationships exist between molecules and the parameters de�ne how they
interact. Understanding these components could lead to discoveries that highlight which
molecules play signi�cant roles in certain biological processes. However, accurately recon-
structing these networks, both experimentally and computationally, remains an open prob-
lem.

Although both procedures have seen steady improvement over the years, experimental
and computational approaches still cannot produce a complete picture. Experimental meth-
ods such as ChIP-chip and ChIP-seq are able to recover the structure of the network but
cannot easily capture details about the context such as direct and indirect relationships.
Furthermore, these experiments are expensive so performing them under a variety of condi-
tions to observe these details is not feasible. On the other hand, computational approaches
are inexpensive and di�erent models can capture relationships with higher complexity, but
even the best methods have shown lackluster results when compared to biological literature.
Although the exact reason for this is unclear, it is well known that high-dimensional data
(n � p) is di�cult to work with, so gene expression data alone seems to be insu�cient as
input to these methods.

1

1.2 Network motifs as a prior

One approach to improve the accuracy of inferred networks is to incorporate prior knowledge
from biological sources. These sources might be derived from literature or experimental
networks and can be used during the inference process to guide which edges are learned.
For example, one can use known transcription factor binding locations as a form of weighted
con�dence in edges. However, little work has been done to incorporate priors at a higher
level by examining the network topology as a whole or in part.

Network motifs are subgraphs (formed from a subset of the vertices and edges of a graph)
which are statistically signi�cant and found to be recurring within a single network or set
of networks. One example of a network motif in biology is the Feed-Forward Loop (FFL)
depicted in Figure 1 [1]. This motif is comprised of three nodes and three edges. In the
context of gene networks, it can be interpreted as Gene A regulating Genes B and C, and
Gene B regulating Gene C. By biasing the inference strategy to favor known network motifs
such as a FFL, it may be possible to improve the accuracy of learned networks.

Figure 1: Feed-Forward Loop network motif diagram from [2].

However, directly searching for and enumerating network motifs is computationally ex-
pensive and often infeasible, as enumerating all possible k-vertex subgraphs within a network
is an O(nk) procedure. Instead, it may be more reasonable to build this search directly into
the chosen inference algorithm to amortize its cost. The aim of this study will be to de-
velop an e�cient way to search for network motifs while simultaneously biasing the inference
strategy to favor such motifs. To investigate this problem, this work restricts the space of
in�uential network motifs to FFLs in order to �t the scope of this project.

2

2 Related Work

The literature regarding regulatory network inference using priors is extensive, so this study
highlights work regarding network inference using structural priors and network motifs that
parallel the goals of this work.

One study by Mahajan [3] took a slightly di�erent approach in modifying their inference
approach. They utilize information about known degree distributions in regulatory interac-
tions to enforce a relative sparsity throughout their network. Speci�cally, they acknowledge
that indegree is known to follow a restricted exponential distribution while outdegree fol-
lows a scale-free distribution. They then apply these constraints in three di�erent methods,
and the authors show success in recovering other motifs such as Fan-in and Cascade motifs,
although they concede that they are unable to alleviate error in recovering FFLs.

Another study from Zhang et al. [4] used a variety of machine learning models spanning
from Support Vector Machines to Recurrent Neural Networks in order to predict certain
kinds of network motifs for given transcription factors. Speci�cally, they trained classi�ers
on input network motifs in order to predict when a gene might be important for such a
motif and bias their inference that way. They were able to show a reduced error on test
set data when network motif information was incorporated with gene expression data than
without and especially when considering FFLs. These results motivate further investigation
into network motif-based methods.

FANMOD from Wernicke and Florian [5] is a well known tool for fast network motif
detection and naturally a good candidate when considering potential approaches. Although
it works well, it uses a sampling based approach to enumerate network motifs (since it is
computationally intractable to exactly enumerate) and thus was disregarded in this study
for two reasons. The �rst is that its stochastic nature does not lend itself to actually favor
FFLs or any network motifs of any kind, and the second is that it operates on a network
level meaning it would be di�cult to incorporate into the inference problem.

These methods all show promise in the area of network motifs, however none of them
are able to incorporate that information at the edge level of network inference. For these
reasons, this work extends the existing algorithm of MERLIN+Prior [6] to further study
the problem. MERLIN+Prior is an iterative, greedy network inference algorithm which
learns modular regulatory networks using gene expression data and di�erent kinds of prior
information. Because it already incorporate priors at the edge level, it lends itself nicely to
extension of other forms of priors.

3 Approach

At a high level, the goal of this approach is to favor a network with more FFLs as opposed
to less. In the context of the MERLIN+Prior, this equates to favoring one regulator-target
relationship over another regulator for that same target if the former relationship contributes
to more FFLs. To be as explicit as possible, this approach increases the probability of an
edge u → v proportionally by the number of FFLs that are created by its presence. This

3

measure is calculated with respect to the neighborhood of nodes u and v.

3.1 De�ning edge probability

MERLIN+Prior uses probabilistic graphical models in the form of dependency networks
to represent its internal structures. Additionally, it incorporates prior information about
the network structure from multiple sources. The inference problem then boils down to
maximizing the quantity P (G,Θ|D), where G represents the graph structure, Θ represents
the parameters, and D is the given expression data. Using Bayes rule, this quantity can be
decomposed to a di�erent but proportional product as given by the following equation:

P (G,Θ|D) ∝ P (D|G,Θ)P (Θ|G)P (G) (1)

where P (D|G,Θ) is the data likelihood, P (Θ|G) is the prior distribution of the parame-
ters, and P (G) is the prior distribution of the graph.

To calculate the prior probability of the network structure, MERLIN+Prior uses the
following equation:

P (G) =
∏

Xj→Xi∈G
P (Xj → Xi)

∏
Xj→Xi /∈G

1− P (Xj → Xi) (2)

which can be interpreted as the product of the probability of all existing edges and 1
minus the probability of all absent edges. Thus the problem can be further decomposed to
de�ning the probability of an edge as follows:

P (Xj → Xi) =
1

1 + exp(−(p+ βRfj,i +
∑

k β
k × wk

j,i))
(3)

Multiple priors are encoded by their parameters and accompanying hyperparameters in
this logistic function, so this study seeks to extend this approach by de�ning a new quantity
within the denominator to represent the number of FFLs that an edge will contribute to.

3.2 Tracking potential Feed-Forward Loops

In order to keep track of potential FFLs that would be created, three relationships are
maintained between triads of nodes:

1. Two nodes are considered to be co-parents if they share a common child node.

2. Two nodes are considered to be co-siblings if they share a common parent node.

3. Two nodes are considered to be in a grandparent relationship if the �rst regulates
some other node and that other node regulates the second.

4

Figure 2: Relationships capturing two-node components of Feed-Forward Loops.

Note that these relationships (depicted in Figure 2) enumerate the pairs of edges which
comprise a potential FFL. When adding an edge between any nodes u and v, three situations
are considered. First, all parents of v are now said to be maintaining a co-parent relationship
with u. Second, all children of u are said to maintain a co-sibling relationship with v. Lastly,
all parents of u are said to maintain a grandparent relationship with v.

When actually scoring an edge u→ v, the number of FFLs that will be created, call this
quantity Z, is the sum result of three scenarios, where A, B, and C here refer to the labels
in Figure 1.

1. Node u is A, node v is B, #FFLs = |{c ∈ C : c = coparents(u, v)}|

2. Node u is B, node v is C, #FFLs = |{a ∈ A : a = cosiblings(u, v)}|

3. Node u is A, node v is C, #FFLs = |{b ∈ B : b = grandparents(u, v)}|

3.3 Normalizing potential Feed-Forward Loops

While Z now gives us the number of FFLs this edge will create, one concern is to ensure
that the logistic function in Equation 3 is not saturated by dominating the other prior terms
when the number of FFLs created gets too large. In order to combat this, a normalization
scheme is proposed by counting the total number of potential FFLs that could be created. In
other words, this is the maximum value that Z can take on given the current neighborhood
of the nodes in the proposed edge. This can again be decomposed into three situations for
edge u→ v, where the desired quantity is the maximum intersection of either the parent or

5

child set of each node under each situation. A maximum intersection can be thought of as
the largest possible intersection between two sets, whose size is simply the cardinality of the
smaller set (in which case the smaller set is a complete subset of the other). Given these
conditions, the following cases can be summed up to get the normalization constant:

1. Node u is A, node v is B, #FFLs = min(|targets(A), targets(B)|)

2. Node u is B, node v is C, #FFLs = min(|regulators(B), regulators(C)|)

3. Node u is A, node v is C, #FFLs = min(|targets(A), regulators(C)|)

By normalizing Z with this sum, the logistic function in Equation 3 is updated with a
new normalized term z:

P (Xj → Xi) =
1

1 + exp(−(p+ βRfj,i +
∑

k β
k × wk

j,i + βF zj,i))
(4)

where βF is a new hyperparameter controlling the strength of this scheme.

4 Results

To analyze the e�cacy of this approach, the FFL-enriched MERLIN+Prior algorithm was
applied to the Natural Variation (NatVar) dataset used in the original MERLIN+Prior paper
[6]. The NatVar dataset is collected from a multitude of sources and is comprised of gene
expression data in Yeast. Experiments were �rst conducted on a subset of the data to show
preliminary results before normalization, where the subset was de�ned by the intersection
of genes present among gold standard networks from MacIsaac et al. [7] and Hu et al. [8].
These results are summarized by Table 1.

Settings # FFLs # Edges Iterations Recall Precision F-score
βF = 0 763 1,994 24 0.379121 0.034604 0.063419
βF = 0.1 26,007 5,564 46 0.807692 0.026420 0.051166
βF = 1 32,985 6,806 42 0.961538 0.025713 0.050086
βF = 5 33,395 6,883 42 0.972527 0.025716 0.050106

Table 1: Performance of inferred networks without normalization.

After implementing normalization, the algorithm was run again on the full NatVar set
with the MacIsaac network used as the sole gold standard. A hyperparameter value of
βF = 5 was used in similarity to other default hyperparameters in MERLIN+Prior and was
compared against one run with βF = 0 as a control. Furthermore, 100 runs were performed
on randomly generated subsamples of the data to build a consensus network. The consensus
network was then thresholded to accept only edges present in at least 50 percent of inferred
networks. Results are depicted below in Table 2.

6

Settings # FFLs # Edges Iterations Recall Precision F-score
βF = 0 271,138 144,911 50 0.219621 0.005762 0.011230
βF = 5 173,145 67,857 21 0.101262 0.005674 0.010745

Consensus βF = 5 N/A 14,540 N/A 0.0341925 0.008941 0.014175

Table 2: Performance of inferred networks with normalization on NatVar dataset.

Precision-Recall curves were also generated for the three methods for comparison as
shown in Figure 3, with accompanying AUPR and AUROC values listed in Table 3.

Figure 3: Precision-recall curves for each method as compared to MacIsaac gold standard.

Settings AUPR AUROC
βF = 0 0.031304 0.574581
βF = 5 0.026905 0.536632

Consensus βF = 5 0.029804 0.528984

Table 3: AUPR and AUROC values for each method as compared to MacIsaac gold standard.

7

5 Discussion

5.1 Inferred network results

Initial analysis of the inferred networks across di�erent conditions presents some surprising
results. As the numbers show, the approach without normalization clearly favors FFLs but
performance was lacking. This leads to the conclusion that the approach was likely learning
several meaningless FFLs which polluted the network with false edges. After implementing
normalization and enforcing some sparsity, the results still show that the control performed
better. While the consensus network outperformed the full run in terms of absolute precision
and recall, the curves in Figure 3 show that the consensus network matched even worse than
the full run, and both methods paled in comparison to the control run. One reason for
this could be that the FFL enriched methods stopped much earlier at around 20 iterations
instead of the full 50 iterations that the control run. The default convergence criteria may
have caused this, leading to less opportunities to infer the correct edges. That being said,
the measures are all still relatively close across methods meaning that the FFL approach
isn't far behind the control even in these circumstances.

5.2 Analysis of learned Feed-Forward Loops

The control network performed better in every aspect, but the most striking result is that the
control actually inferred many more FFLs as compared to the FFL-enriched networks. This
can again be attributed to the much smaller networks due to early-stopping. Investigating
the gold network (total of 3,802 edges) shows that while the control recovered 144,911 edges,
it missed 2,967 of the gold standard edges. If these had been recovered, it would have resulted
in 27,346 more FFLs.

On the other hand, the FFL enriched algorithm only recovered 67,857 edges and missed
3,417 gold edges. However, if it had recovered those, it would've resulted in 10,567 extra
FFLs. One conclusion to draw from this is that even though the FFL enriched method
recovered about a third of the number of edges as the control, it was able to infer more of
the correct FFLs than the control method, since it missed even more gold edges but missed
less than half of the amount of FFLs that the control did from gold edges. Normalizing the
number of FFLs learned compared to number of inferred shows that the enriched method
learned about 2.5 FFLs per edge, as opposed to 1.8 for the control. Thus, although the
network inference may have been stopped early, it was still able to favor FFLs during its
procedure as well as choose more of the actual FFLs from the gold standard than the control
was.

6 Future Work

As this study has depicted, this approach shows promise but needs some �ne tuning to be
able to draw concrete conclusions. The �rst concern to investigate is the early stopping. At

8

the time of submission, the convergence criteria has been relaxed and runs are ongoing to
collect more accurate results on the NatVar dataset. This will allow a more fair analysis of
learned FFLs compared to the gold standard and overall accuracy of inferred networks.

Additionally, more experiments which vary both the hyperparameters and datasets are
necessary to gauge the robustness of the system. RNA-Seq data, both bulk and single-cell,
has been increasingly replacing microarray expression data as the norm and would provide
a good reference point against other algorithms. To determine a good hyperparameter, grid
search may be performed although the author is looking into Markov chain Monte Carlo
based approaches to learn hyperparameters during inference.

Lastly, the current system is written only in the context of FFLs. A necessary extension
will be to generalize the framework to other motifs, such as Fan-in modules, Single-input
modules, and Dense overlapping regulons among others. One approach to this might be to
read in all of the edge relationships that make up a network motif, and record relationships
which agree with the input. Further results will con�rm whether these motifs will help
improve the accuracy of inferred regulatory networks.

9

References

[1] Uri Alon. Network motifs: theory and experimental approaches. Nature Reviews Genet-
ics, 8(6):450�461, 2007.

[2] Network motif, Nov 2018.

[3] Tarun Mahajan. Gene regulatory network inference using structural prior on the distri-

bution of edges. PhD thesis, 2017.

[4] Yuji Zhang, Jianhua Xuan, Benildo G De Los Reyes, Robert Clarke, and Habtom W Res-
som. Network motif-based identi�cation of transcription factor-target gene relationships
by integrating multi-source biological data. BMC Bioinformatics, 9(1):203, 2008.

[5] S. Wernicke and F. Rasche. Fanmod: a tool for fast network motif detection. Bioinfor-
matics, 22(9):1152�1153, Feb 2006.

[6] Alireza F. Siahpirani and Sushmita Roy. A prior-based integrative framework for func-
tional transcriptional regulatory network inference. Nucleic Acids Res, 45(4):2221�2221,
Feb 2017. gkw1160[PII].

[7] K D MacIsaac, D B Gordon, D Gi�ord, G Stormo, and E Fraenkel. An improved map
of conserved regulatory sites for saccharomyces cerevisiae. BMC Bioinformatics, 7(113),
Mar 2006.

[8] Zhanzhi Hu, Patrick J Killion, and Vishwanath R Iyer. Genetic reconstruction of a
functional transcriptional regulatory network. Nature Genetics, 39(5):683�687, Aug 2007.

10

	Introduction
	Background
	Network motifs as a prior

	Related Work
	Approach
	Defining edge probability
	Tracking potential Feed-Forward Loops
	Normalizing potential Feed-Forward Loops

	Results
	Discussion
	Inferred network results
	Analysis of learned Feed-Forward Loops

	Future Work

