
CS 839 Project Stage 4:
Integrating and Performing Analysis

Aishwarya Ganesan
ag@cs.wisc.edu

David Liang
david.liang@wisc.edu

Viswesh Periyasamy
vperiyasamy@wisc.edu

1. Merging Schemas
We ran the entity matcher we developed in stage-3 on all the tuple pairs that

survived the blocking step. Let M be the output of the entity matcher; it contains
two columns namely, a_id and w_id, which identify products from Amazon and
Walmart respectively. Let A and B be the tables that store Amazon and Walmart
products respectively. A and B have identical schemas. Hence the schema E ob-
tained by merging the two tables is identical except for the following difference:
E has id and price columns for both Amazon and Walmart (as shown in the next
section).

We merged the tuples as follows: we always select the value of the tuple as the
one from Table A, unless this value is missing; in case the value from Table A is
missing, we select the value from the tuple in Table B. We chose the above merging
rule because we found the data in the Amazon products table to be cleaner and
more complete. We append the code of the Python script (that merges the tables)
to the end of this document as an Appendix.

However, once we performed the merging, we had to perform further steps to
obtain clean data to perform analysis on.
Clean numeric values. For attributes with string values like hard_disk_size, ram_size,
cpu_speed, etc., we had to clean the values so that the values are in the same unit.
For example, the values of hard_disk_size were in GB, TB, KB, and MB in the data
set. We cleaned the data so that all values are in GB uniformly. We also removed
values that were extraneous or anamolies. For example, we removed those tuples
that had processor_speeds lesser than 100 Mhz or values greater than 5 Ghz.

1

Clean string values. For attributes with string values like brand, operating_system,
cpu_manufacturer, etc., we performed clustering to obtain a representative name.
For example, for the attribute brand, we clustered similar values like Dell Com-
mercial, Dell Computers, Dell Consumer, Dell USA, etc., and gave a representative
name for the cluster (Dell in case of the above example).

2. Merged schema statistics
The merged table E has a schema with the following attributes:

a_id
w_id
amazon_price
walmart_price
brand
hard_disk_size
OS
cpu_manufacturer
processor_count
processor_speed
ram_size
screen_size

In total there are 4,173 tuples in the merged table. Below are a few examples
of tuples (product title excluded):

a_id w_id amazon_price walmart_price brand hard disk size OS \
a0 w2300 1099.0 1136.09 Acer 256.0 Windows 10
a102 w1746 199.99 244.0 Asus 16.0 Chrome
a1113 w3534 699.0 579.99 Apple 128.0 Mac OS X
a0 w2596 1099.0 997.49 Acer 256. Windows 10
a1002 w2733 1297.5 1358.27 HP 256.0 Windows 7
cpu processor count processor speed ram size screen size
Intel 4 3.8 16.0 15.6
Intel 2 1.6 4.0 13.3
Intel 1 1.8 4.0 13.3
Intel 4 3.8 16.0 15.6
Intel 2 2.3 8.0 14.0

2

3. Frequent Item Sets
The first analysis we perform on the above data is to mine the frequent item sets

and mine the association rules. association_rule_mining.py has the corresponding
code.

Following are the frequent item sets that have a minimum support of 0.3 and
with set sizes of one and two. More frequent item sets can be found in data/frequent_item_sets
in stage-4 of our repository.

Table: Frequent Item Sets

Support Size Frequent Item Set
0.58 1 brand: Lenovo
0.35 1 hard_disk_size: 512.0 GB
0.88 1 operating_system: Windows 10
0.96 1 cpu_manufacturer: Intel
0.7 1 processor_count: 2

0.31 1 ram_size: 16.0 GB
0.56 1 screen_size: 14.0 in
0.31 1 screen_size: 15.6 in
0.32 2 brand: Lenovo, hard_disk_size: 512.0 GB
0.52 2 brand: Lenovo, operating_system: Windows 10
0.58 2 brand: Lenovo, cpu_manufacturer: Intel
0.53 2 brand: Lenovo, processor_count: 2
0.52 2 brand: Lenovo, screen_size: 14.0 in
0.31 2 hard_disk_size: 512.0 GB, operating_system: Windows 10
0.34 2 hard_disk_size: 512.0 GB, cpu_manufacturer: Intel
0.32 2 hard_disk_size: 512.0 GB, processor_count: 2
0.32 2 hard_disk_size: 512.0 GB, screen_size: 14.0 in
0.84 2 operating_system: Windows 10, cpu_manufacturer: Intel
0.62 2 operating_system: Windows 10, processor_count: 2
0.31 2 operating_system: Windows 10, ram_size: 16.0 GB
0.51 2 operating_system: Windows 10, screen_size: 14.0 in
0.69 2 cpu_manufacturer: Intel, processor_count: 2
0.56 2 cpu_manufacturer: Intel, screen_size: 14.0 in
0.54 2 processor_count: 2, screen_size: 14.0 in

Using the frequent item sets with a minimum support of 0.4, we performed
some correlation analysis. We can make some of the following conclusions from

3

the above analysis. Assuming a minimum support of 0.4, the brand Lenovo is
associated with the Windows 10 operating_system with a confidence of 0.9. As-
suming a minimum support of 0.4, laptops of Lenovo brand with the Windows 10
operating_system with screen_size of 14.0 inches are most likely to br associated
with a processor_count of 2 with a confidence of 0.99. More such association rules
we mined can be found in data/association_rules in our repository.

4. OLAP style analysis
We now perform some olap-style analysis on the merged table described previ-

ously. We have a fact table of laptops that gives the product prices in Amazon and
Walmart. Some dimensions in this table are brand, operating system, processor
(cpu) manufacturer etc. We perform different aggregate queries on the merged
table where we group by based on different dimensions like brand, ram_size etc.
The notebook olap.ipynb in our repository has the scripts used in this analysis.

4.1. Walmart vs. Amazon Pricing:

Observation 1: In general, prices are more expensive in Walmart than in Ama-
zon.

amazon_price walmart_price
Mean 1385.5805966930266 1571.5141073568175

Observation 2: But if we drill down on the prices, using a particular brand,
then we find that for a few brands like Apple, Alienware, Asus, Dell, etc., Ama-
zon is pricier.

Drilling down by brand:

amazon_price walmart_price
brand
AORUS 2299.000000 2199.000000
Acer 487.122361 509.250694
Alienware 1785.146316 1714.692632
Aorus 2199.000000 2099.000000
Apple 1118.584123 729.805614
Asus 994.911304 864.117681
Bit 214.990000 179.000000
CTL 292.970000 264.810000
Dell 740.719229 692.582207

4

HP 928.033926 1066.269453
Huawei 689.280000 662.200000
LG 1247.030500 894.477000
Lenovo 1672.351025 2018.848058
MSI 1363.211951 1352.693659
Microsoft 2542.027500 2071.745000
OMEN 3599.000000 3563.950000
Panasonic 1224.791250 728.715000
Prostar 1318.549763 1217.438270
Razer 1604.247500 1790.990000
SLIDE 224.990000 224.990000
Samsung 972.627778 780.921111
Toshiba 1322.960000 1319.400000
VIZIO 979.990000 364.495000

4.2. Analysis by Brand:

We obtain average price by taking a mean of price of the product in Amazon
and Walmart. Observation 3: If we look at the average price range, Lenevo has
a lot of products whose price > $1500

brand average_price_range count
Acer 0-500 87

1000-1500 8
1500-2000 2
500-1000 47

Apple 0-500 1
1000-1500 27
1500-2000 6
2000-2500 2
500-1000 78

Dell 0-500 71
1000-1500 52
1500-2000 8
2000-2500 2
500-1000 243

HP 0-500 89
1000-1500 248
1500-2000 46
2000-2500 4

5

500-1000 125
Lenovo 0-500 39

1000-1500 66
1500-2000 1592
2000-2500 478
2500-3000 133
3000-3500 2
500-1000 100

Prostar 1000-1500 259
1500-2000 91
500-1000 72

There a lot of Lenevo products in our database.

brand count
Acer 144
Alienware 19
Apple 114
Asus 69
Dell 376
HP 512
LG 20
Lenovo 2410
MSI 41
Prostar 422
Samsung 18

Observation 4: Most of the Lenevo products in our database have Windows
10 as their operating systems

OS count
Chrome 26
WINDOWS 10 1
Windows 10 2163
Windows 7 215
Windows 8 5

4.3. Analysis by RAM size:

Observation 5: RAM sizes of 8GB and 16GB are most popular.

6

Observation 6: As the RAM size increases, the average price of a laptop in-
creases.

4.4. Analysis by Hard disk size:

Observation 7: Hard disk sizes of 256GB, 512GB, and 1TB are most popular.

7

Observation 8: There is no obvious trend in the price of a laptop with the
increase in hard disk size. A peak at 512GB could be due to the 512GB hard
disks being SSDs instead of HDDs.

8

4.5. Analysis by Processor counts and speed:

Observation 9: Dual core processors are most popular.

Observation 10: There is an increase in the price of a laptop with the increase
in the processor speed.

5. Price prediction analysis
Having matched entities between Walmart and Amazon, one task we wanted

to investigate is whether we could predict the Amazon price and the Walmart

9

price (multi-label classification) for the same entity given all of the other attributes.
Originally we framed this as a regression task, however the data was too sparse
and noisy to get price predictions that were remotely close to the actual prices.
Specifically, the mean squared error was skyrocketing and upon inspection the
predicted prices were several hundreds of dollars off, so we decided to reframe
it for classification using price buckets. For example, whether or not the price is
between $0 and $500, or between $2500 and $3000. We then used two classifica-
tion algorithms well suited for multi-labeled, multi-class data sets: Decision Trees
and Random Forests. Overall the process involved three steps: Data Cleaning,
Vectorizing Features, and Classification. All code for this section can be found in
predict_prices.py.

5.1. Data Cleaning

The data cleaning process has been described in 1. This data cleaning was es-
pecially important for String/categorical attributes which needed to be converted
to one-hot encoding for feature vectors as every additional possible value added
further and unnecessary dimensionality to our feature vectors.

5.2. Vectorizing Features

After cleaning the data thoroughly and manually inspecting it using table view-
ers such as Excel, we then converted each tuple into a feature vector. We ignored
attributes like w_id (Walmart ID), a_id (Amazon ID), and product title (a large
string representing the entire product title) as these were non-informative for the
classification task. We then converted all String/categorical attributes to a one-
hot binary encoding so that we could input them to the sci-kit learn models. This
increased the dimensionality of each feature vector greatly but it was necessary in
order to include these features for analysis.

Additionally, we converted the Amazon and Walmart price labels into buckets.
We did this using an equal-width binning strategy where each price was digitized
into a possible bucket or range of values that it fell into. This turned our regres-
sion task into a classification task as we now only had to predict which bucket a
product fell into. This completed our conversion of each tuple into a feature vec-
tor with only numeric attributes.

10

5.3. Classification

To perform the multi-label multi-classification task, we attempted two binning
strategies: even increments of $200 and even increments of $500. We created bins
from $0 all the way to the maximum price rounded off evenly ($6500), resulting
in 33 bins for the first strategy and only 13 bins for the second strategy. We then
performed 5-fold cross validation using our set of tuples (shuffled) and reported
accuracy metrics for each classifier (Decision Tree and Random Forest). The re-
sults are displayed in the tables below.

Table 1: Using a binning strategy with bin-width of $200

Classifier Retailer Accuracy Precision Recall F-1

Decision Tree Amazon 0.872029 0.881569 0.872029 0.876770
Decision Tree Walmart 0.329978 0.288899 0.329978 0.307264

Random Forest Amazon 0.873708 0.884511 0.873708 0.879072
Random Forest Walmart 0.336927 0.264181 0.336927 0.304575

Table 2: Using a binning strategy with bin-width of $500

Classifier Retailer Accuracy Precision Recall F-1

Decision Tree Amazon 0.942730 0.946339 0.942730 0.944529
Decision Tree Walmart 0.537027 0.528575 0.537027 0.526495

Random Forest Amazon 0.943449 0.946596 0.943449 0.945019
Random Forest Walmart 0.542057 0.531078 0.542057 0.531475

Looking at Table 1, we can see that our classifiers’ predictions of Amazon’s
prices are vastly closer to the actual than compared to Walmart’s prices. One
reason for this is that when we were consolidating attributes between merged
tuples, we tended to prefer Amazon’s attribute values as they were much cleaner
than Walmart’s values - it’s possible that these are more indicative of Amazon’s
pricing as well. If we look at Table 2 where our binning strategy was much more
broad, we see a sharp spike of improvement in all metrics for both Walmart and
Amazon. However, we still see the lag in predicting Walmart’s prices as compared
to Amazon’s prices.

11

6. Conclusions
With our analysis of Walmart and Amazon prices, we were able to see that Ama-

zon prices were much easier to predict than Walmart prices. This could be a factor
of us preferring Amazon attribute values when consolidating matched tuples, or
it could be that the laptop prices were less varied on Amazon and therefore much
easier to place into bins. As Walmart was much more difficult to predict, it is also
possible that their laptop pricing is somewhat non-representative of the product
(i.e. they do not price the laptop proportionately based on its attributes but rather
to keep in line with their business goals).

If we performed further analysis, one thing we would have to refine is the data
cleaning stage. Much of the data was extremely dirty and required several passes
of manual rules and replacements, and due to our labor constraints we often had
to consolidate a variety of values into one central value. This caused us to lose a
lot of valuable details and information that some attributes had to offer. Further-
more, we encountered a lot of missing values which forced us to lose information
about those tuples. With more time, we might have used tactics such as Informa-
tion Extraction to fill in missing values (e.g. if the operating system is missing, go
to the product title and extract it from there).

Coupled with these issues is the size of the dataset - it is much too small, and
to draw more meaningful conclusions we would need a much larger set to train
and test on. Given more time, we would crawl several more products (say tens of
thousands) from each website so that we would have an ample supply to sample
from.

12

Appendix: Code for Merging
The following is code of the Python script that merges the tables.

for match in matches:
if match[0] in amazon_products and match[1] in walmart_products:

merged_tuple = match[0] + ',' + match[1]
for i in range(1, len(metadata)):

meta = metadata[i]
if meta == 'price':

merged_tuple += ',' + amazon_products[match[0]][meta]
merged_tuple += ',' + walmart_products[match[1]][meta]

else:
if amazon_products[match[0]][meta] != '':

merged_tuple += ',' + amazon_products[match[0]][meta]
else:

merged_tuple += ',' + walmart_products[match[1]][meta]

However, we had to perform more steps after merging. The steps and the corre-
sponding script files are as follows : i) clean numeric values (clean_numeric.py),ii)
Clean string values (clean_strings.py)

13

