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Union-FinD

DisjoIiNT SETS

Imagine you have a set of objects, and you want to group them
based on some criteria.
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DisjoIiNT SETS

Imagine you have a set of objects, and you want to group them
based on some criteria.
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One possible grouping might look like this:
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Union-FinD DemysTiFy BINARY SEARCH TREES

Queries oN DisjoINT SETs

While grouping the objects, you may ask:
e How can I merge more groups?
e How many distinct groups are there?
@ Do two objects belong to the same group?
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Queries oN DisjoINT SETs
While grouping the objects, you may ask:
e How can I merge more groups?

e How many distinct groups are there?
@ Do two objects belong to the same group?

Union-Find Operations

The Union-Find data structure supports three operations:
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Queries oN DisjoINT SETs

While grouping the objects, you may ask:
e How can I merge more groups?
e How many distinct groups are there?
@ Do two objects belong to the same group?

Union-Find Operations

The Union-Find data structure supports three operations:

o Init: Takes a set of elements S = {x1, -+, x/} and constructs ¢
singleton sets S; = {x;} foralli=1,---,¢.
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Queries oN DisjoINT SETs

While grouping the objects, you may ask:
e How can I merge more groups?
e How many distinct groups are there?
@ Do two objects belong to the same group?

Union-Find Operations

The Union-Find data structure supports three operations:

o Init: Takes a set of elements S = {x1, -+, x/} and constructs ¢
singleton sets S; = {x;} foralli=1,---,¢.

@ Union: Takes two elements x and y and merges the groups
containing x and y.
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Queries oN DisjoINT SETs

While grouping the objects, you may ask:
e How can I merge more groups?
e How many distinct groups are there?
@ Do two objects belong to the same group?

Union-Find Operations

The Union-Find data structure supports three operations:
o Init: Takes a set of elements S = {x1, -+, x/} and constructs ¢
singleton sets S; = {x;} foralli=1,---,¢.
@ Union: Takes two elements x and y and merges the groups
containing x and y.
o Finp: Takes an element x and identifies the group
containing x.
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Union-FinD DemysTiFy BINARY SEARCH TREES

UnN1oN-FIND DATA STRUCTURE

INIT-EXAMPLE

‘ ' Init({1,2,3,4}) : I
—_—_—
c P>

Explanation

Initially, each element starts in its own singleton set. This is the
result of calling Init, where we have disjoint sets for each
individual element.
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Union-FinD DemysTiFy BINARY SEARCH TREES

UnN1oN-FIND DATA STRUCTURE

UnioN-ExamMPLE

NoyelY <>
OO... o0
o0 QO

Explanation

For example, initially, 0 and 2 belong to the same group, and 1
and 3 belong to another group. When we call the function
union(0, 1), it merges the groups containing 0 and 1.
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Union-FinD DemysTiFy BINARY SEARCH TREES

UnN1oN-FIND DATA STRUCTURE

FinD-ExampLE

————— Find (2) @

For example, when we call £ind (2), it returns some signal for
the set containing 2.
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Union-FinD DemysTiFy BINARY SEARCH TREES

UnN1oN-FIND DATA STRUCTURE

FinD-ExampLE

———— Find (2) @

“Leader Element”

Each set should have a unique ‘leader” element, which
identifies the set.

Since the sets are always disjoint, the same object cannot be the leader of more than one set.
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Demystiry BiNaRY SEARCH TREES

Union-FinD

UnN1oN-FIND DATA STRUCTURE

HiGH-LEVEL REPRESENTATION
One of the most easiest ways to represent sets is through graphs:

@ Same set=Same connected component. Connect all objects that
belong to the same set with edges, like this:

QO

oo,
0O
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Demystiry BiNaRY SEARCH TREES

Union-FinD

UNION-FIND DATA STRUCTURE
Hicn-LEVEL REPRESENTATION
One of the most easiest ways to represent sets is through graphs:

@ Same set=5Same tree/path:
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Union-FinD DemysTiFy BINARY SEARCH TREES

UnitoN-FiIND DATA STRUCTURE
HicH-LEVEL REPRESENTATION
One of the most easiest ways to represent sets is through graphs:

o To determine the group an element belongs to, we designate a
representative element for each group.
This representative acts as the identifier for the entire group:

-
>
@ @ Fino(0) =0

Fino(1) = 0

Fino(2) =0
Finp(3) =0
Fino(4) = 4
Fino(5) =4

S ON SIS
00O \©O
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UnitoN-FiIND DATA STRUCTURE
HicH-LEVEL REPRESENTATION
One of the most easiest ways to represent sets is through graphs:

Mmoo 1 _. 1 I I P 1

SaMESET(X,y)=True if Finp(x)=FIiND(y) otherwise False J

This representative acts as the identifier for the entire group:

- Find Operations
>

Fino(0) =0
Finp(1) =0
Fino(2) =0
Finp(3) =0
Fino(4) = 4
Fino(5) =4

©
©

5

S ON SIS
00O \©O
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Union-FinD DemystiFy BINARY SEARCH TREES

UnitoN-FiIND DATA STRUCTURE
HicH-LEVEL REPRESENTATION
One of the most easiest ways to represent sets is through graphs:

@What is the worst-case complexity of FinD if sets are represented
by paths/chains 1s for a data structure of n elements?

Q0O 000

@—@ e FiInD(5) =4 J
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UnitoN-FiIND DATA STRUCTURE
HicH-LEVEL REPRESENTATION
One of the most easiest ways to represent sets is through graphs:

@What is the worst-case complexity of FinD if sets are represented
by paths/chains 1s for a data structure of n elements?

Q0O 000

Traversing the entire chain to find the representative results in
Finp having a worst-case complexity of (1) J

~—"

@QQ{}O

e FinD(5) =4 J
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Union-FinD DemysTiFy BINARY SEARCH TREES

REVERSED TREES
To make paths shorter, it’s beneficial to represent them with trees.

@ Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

while (x # parent(x))
X <« parent(x)
return x

parent(x) <« x

x < FInp(x)
y < Finn(y)
parent(y) <« x

eoInir is trivial. Cost[IniT] = ©(n). J
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Union-FinD DemysTiFy BINARY SEARCH TREES

REVERSED TREES
To make paths shorter, it’s beneficial to represent them with trees.

@ Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

while (x # parent(x))
X <« parent(x)
return x

parent(x) <« x

x < FIND(x)
y < Finn(y)
parent(y) <« x

parent(1) = 1

parent(2) =1 {f" parent(3) = 1
w2 )

1234
parents : [1,1,1,2]

oFIND traverses the tree until the root is found. Worst-case cost equals the height of tree. )
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REVERSED TREES
To make paths shorter, it’s beneficial to represent them with trees.

@ Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

while (x # parent(x))
X <« parent(x)
return x

parent(x) <« x

x < FIND(x)
y < Finn(y)
parent(y) <« x

A 3 %\ Union(Grey,Blue) @
_—

eUNioN just redirects the parent pointer of one leader to the other. Cost[Union] = ©(1). J
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REVERSED TREES
To make paths shorter, it’s beneficial to represent them with trees.

@ Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

while (x # parent(x))
X <« parent(x)
return x

®How do we avoid creating very tall sparse trees?

parent(x) <« x

x < FinD(x)
y < Finp(y)

narent (v) « x

Union is straightforward, but if we're not careful, Find can become costly.

;\/ g Union(Grey,Blue) ;\/
_—

eUNioN just redirects the parent pointer of one leader to the other. Cost[Union] = ©(1). J

5/29



UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

@ If we always attach the taller tree to the shorter one, we
might inadvertently create a long path-tree:

Union(1,2), Unton(1,3), -+, Unton(1, 1) ‘

”@%66

% 5

& &

But what if we apply the inverse rule?

v
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Union-FinD DemysTiFy BINARY SEARCH TREES

UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Whenever we need to merge two trees, we always make the root
of the shallower tree a child of the deeper one. This requires us
to also maintain the depth of each tree, but this is quite easy.

parent(x) <« x while x # parent(x) X « Find(x)
depth(x) « 0O X < parent (x) Y < Find(y)
return x if depth(X) > depth(y)
parent(y) « X
else

parent (¥) <« ¥
if depth(X) = depth(y)
depth(y) <« depth(y) + 1
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UNION BY DEPTH

MakiNG Finp OperaTION EFFICIENT
Whenever we need to merge two trees, we always make the root

of the shallower tree a child of the deeper one. This requires us
to also maintain the depth of each tree, but this is quite easy.

parent(x) « x while x # parent (x) X < Find(x)
depth(x) < 0 X < parent (x) Y < Find(y)
return x if depth(¥) > depth(¥)
parent(y) « X
else
When depth(X) reaches d for the first time, parent(X) « Y
X becomes the leader of two merged sets, if depth(¥) = depth(y)
depth(y) « depth(y) + 1

each with leaders of depth d —1.
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Union-FinD DemysTiFy BINARY SEARCH TREES

UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of x is at least 2depth(z)

Proof by Induction:
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UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of x is at least pdepth(z)

Proof by Induction:

@ Base Case: If depth(X) = 0, then X is the leader of a singleton set, so the size of s
setis20 = 1.
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UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of x is at least pdepth(z)

Proof by Induction:
@ Base Case: If depth(X) = 0, then X is the leader of a singleton set, so the size of s
setis20 = 1.
@ Inductive Step: Assume that for any set leader i with depth d — 1, the size of i’s
set is at least 2471,
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UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of x is at least pdepth(z)

Proof by Induction:
@ Base Case: If depth(X) = 0, then X is the leader of a singleton set, so the size of s
setis20 = 1.
@ Inductive Step: Assume that for any set leader i with depth d — 1, the size of i’s
set is at least 2471,

@ When depth(¥) becomes d for the first time, ¥ is the leader of the union of
two sets, both of whose leaders had depth d — 1.
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UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of x is at least pdepth(z)

Proof by Induction:
@ Base Case: If depth(X) = 0, then X is the leader of a singleton set, so the size of s
setis 20 = 1.
@ Inductive Step: Assume that for any set leader i with depth d — 1, the size of i’s
set is at least 2471,
@ When depth(¥) becomes d for the first time, ¥ is the leader of the union of
two sets, both of whose leaders had depth d — 1.
@ By the inductive hypothesis, both component sets had at least 241
elements.
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UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of x is at least pdepth(z)

Proof by Induction:

@ Base Case: If depth(X) = 0, then X is the leader of a singleton set, so the size of s
setis 20 = 1.
@ Inductive Step: Assume that for any set leader i with depth d — 1, the size of i’s
set is at least 2471,
@ When depth(¥) becomes d for the first time, ¥ is the leader of the union of
two sets, both of whose leaders had depth d — 1.

@ By the inductive hypothesis, both component sets had at least 241
elements.
@ Therefore, the new set has at least 27 elements.
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Union-FinD DemysTiFy BINARY SEARCH TREES

UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of ¥ is at least 24¢Pth(*).

Proof by Induction:
@ Base Case: If depth(X) = 0, then ¥ is the leader of a singleton set, so the size of X's
setis20 = 1.
@ Inductive Step: Assume that for any set leader i with depth d — 1, the size of /’s
set is at least 2471,

@ When depth(X) becomes d for the first time, ¥ is the leader of the union of
two sets, both of whose leaders had depth d — 1.

@ By the inductive hypothesis, both component sets had at least 24!
elements.

@ Therefore, the new set has at least 24 elements. )

Contrapositive Trick: If A = B, then -B = -A.

For any leader %, if the size of the tree of ¥ is strictly less than 2%, then depth(%) < k.

Explanation: If depth(%) > k, then by above theorem, the tree would have more than 2¥ nodes.

Contradiction. )
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UNION BY DEPTH

MakiING FIND OPERATION EFFICIENT

Theorem. For any leader ¥, the size of the tree of ¥ is at least 24¢Pth(®).

Proof by Induction:

@ Base Case: If depth(X) = 0, then X is the leader of a singleton set, so the size of X's
setis 20 = 1.
@ Inductive Step: Assume that for any set leader i with depth d — 1, the size of ’s
set is at least 271,
@ When depth(X) becomes d for the first time, ¥ is the leader of the union of
two sets, both of whose leaders had depth d — 1.

@ By the inductive hypothesis, both component sets had at least 24!
elements.

@ Therefore, the new set has at least 24 elements. )

Since there are at most n elements in total, the maximum depth of any set is log .

Therefore, both Finp and Union run in © (logn) time in the worst case.
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Union-FinD TIFY BINARY SEARCH TREES

PatH COMPRESSION

OprtiMIZING FIND OPERATION

@ Path compression flattens the structure, making future
FiND operations quicker.

@ Path compression makes every node on the Finp path from
x to the root point directly to the root.

if x # parent(x)
parent (x) <«

Finp(parent (x))

return parent (x)
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PatH COMPRESSION

OprtiMIZING FIND OPERATION

@ Path compression flattens the structure, making future
FiND operations quicker.

@ Path compression makes every node on the Finp path from if x # parent(x)
x to the root point directly to the root. parent (x) <«
Finp(parent (x))

return parent (x)

Nodes on the Finp path (highlighted in orange) are directly attached to the root. )
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Union-FinD TIFY BINARY SEARCH TREES

PatH COMPRESSION

OprtiMIZING FIND OPERATION

@ Path compression flattens the structure, making future
FiND operations quicker.

@ Path compression makes every node on the Finp path from if x # parent(x)
x to the root point directly to the root. parent (x) <«
Finp(parent (x))

return parent (x)

Teaser for Discussion Section - A log* (1) Analysis

We will perform an amortized analysis showing how path compression can provide a
super-exponential improvement, making the Finp operation almost constant time.
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Union-FinD DemysTiFy BINARY SEARCH TREES

UnioN-FIND

A FINAL THOUGHT ON ARRAY REPRESENTATION

@ Union-Find can be viewed as a reversed search tree.

e Efficiency comes from the simplicity of tracking roots with
only parent pointers.

o Use an array parent [] of length n.
e parent[i] = j means the parent of element i is element j.

0 1 2 4 5 6 7 8 9

|7|5|7|'|8|7|5|7|8|8|
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DemystiFy BINARY SEARCH TREES

INTRODUCTION TO BINARY SEARCH TREES
Wy BavLaNceDp TREES?
@ We can construct any tree we want, but in this course, our
focus is on efficiency.
e From the union-find example, we learned that it’s better to
have a balanced tree rather than a skewed one.

@Can you find the number 7 if you start searching from the
root of the tree?

Balanced Tree
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INTRODUCTION TO BINARY SEARCH TREES

WHhy BALANCED TREES?

@ We can construct any tree we want, but in this course, our
focus is on efficiency.

e From the union-find example, we learned that it’s better to
have a balanced tree rather than a skewed one.

® Why do we prefer balanced trees over skewed ones?

Balanced Tree
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DemystiFy BINARY SEARCH TREES

INTRODUCTION TO BINARY SEARCH TREES
Wy BavLaNceDp TREES?
@ We can construct any tree we want, but in this course, our
focus is on efficiencv.
The complexity of an efficient traversal is proportional to
the height! J

@ Why do we prefer balanced trees over skewed ones?

Balanced Tree
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DemystiFy BINARY SEARCH TREES

BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oco.
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo.

V.

@Which level is not completely filled in this tree?
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo.

Which level is not completely filled in this tree?
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo.
I i, L )

@Which rule did we violate when filling the last level of this
tree?
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo.

Which rule did we violate when filling the last level of this tree?
0

o e

s O O Ul
o000 o0
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DemystiFy BINARY SEARCH TREES

A Note For CODERS

e Constructing trees in programming often requires
manipulating pointers and structures.

typedef struct treenode { /* tree node struct */
int data; /* integer field */
struct treenode *left; /* pointer to the left child */
struct treenode *right; /* pointer to the right child */
} node;
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A Note For CODERS

e Constructing trees in programming often requires
manipulating pointers and structures.

typedef struct treenode { /* tree node struct */
int data; /* integer field */
struct treenode *left; /* pointer to the left child */
struct treenode *right; /* pointer to the right child */
} node;

@ For balanced trees, we can represent them simply using an
array:

o The children of node i are at positions 2i + 1 and 2i + 2.
o The parent of node i is at position (i - 1) + 2.

Right ehild 6./"" T~
o s oo
o0 ®® OO0

N 419 Rl 8 |7 11415 REIEY 11 ] 9 |
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DemystiFy BINARY SEARCH TREES

ExaMPLE OF ARRAY REPRESENTATION

@ The children of node i are at positions 2i + 1 and 2i + 2.
@ The parent of node i is at position (i - 1) + 2.

0 1 2
*x | C C

@ The root is at position 0, with children at positions 1 and 2.

1=2%x0+1 2=2%0+2 No parentsince (0-1)+2<0
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DemystiFy BINARY SEARCH TREES

ExaMPLE OF ARRAY REPRESENTATION

@ The children of node i are at positions 2i + 1 and 2i + 2.
@ The parent of node i is at position (i - 1) + 2.

@ The node at position 1 has its parent at position 0 and
children at positions 3 and 4.
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ExaMPLE OF ARRAY REPRESENTATION

@ The children of node i are at positions 2i + 1 and 2i + 2.
@ The parent of node i is at position (i - 1) + 2.
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DemystiFy BINARY SEARCH TREES

A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Height — Size

Question 1: If I give you a complete tree of height &, how many
nodes does it have?

Definition of Height

@ The height of a tree is the length of the path from the root
to its farthest leaf node.

@ A tree with only a root node has a height of 0, while an
empty tree has a height of -1.
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DemystiFy BINARY SEARCH TREES

A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Height — Size

Question 1: If I give you a complete tree of height &, how many
nodes does it have?

® 0O 60
The total number of nodes is:

1+2+4+--+2" =211
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DemystiFy BINARY SEARCH TREES

A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

13/29



DemystiFy BINARY SEARCH TREES

A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

@ Reverse engineering the previous equation from bottom to

top:
1+2+4+--+2" 1420l g

@ Remark: 50% of nodes are leaves ©®
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A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

14 ® : 8] (ﬁ ; (\3
@ Reverse engineering the previous equation from bottom to
top:
1+2+4++2M 1400 2ol _q
—
n-1

@ Remark: 50% of nodes are leaves ©®

v,
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A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

D O ) O ©

@ Reverse engineering the previous equation from bottom to
top:

14244+ 4281 oh _ okl 4
. N———
z n-1

@ Remark: 50% of nodes are leaves ®

N
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A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

D O ) O ©

@ Reverse engineering the previous equation from bottom to
top:
14244+ 4 21 4ol 2ol _q

@ Remark: 50% of nodes are leaves ©®

v
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DemystiFy BINARY SEARCH TREES

A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

D O D QO O
@ Reverse engineering the previous equation from bottom to
top:
142+ 4 44 201 400 S04l g
— —_—  —
zhL—l 2 z n-1

@ Remark: 50% of nodes are leaves ©®
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A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

top:
1+ 2+ 4 4o 201 o0 o+l 4
—— —~— — N~——
n n n n
oh oh-1 1 2 n-1

@ Remark: 50% of nodes are leaves ©®
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A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Number of Nodes Per Level

Question 2: If I give you a complete tree with n — 1 total nodes,
how many nodes are at each level?

@ Reverse engineering the previous equation from bottom to

top:
1 +2+ 4 4ood 201 0B ool _q
—~ —~ — —— = ~——
n n n n n
T+l ok gh1 1 2 n-1

@ Remark: 50% of nodes are leaves ©®

4 13/29




DemystiFy BINARY SEARCH TREES

A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Size - Height

Question 3: If I give you a complete tree with n nodes, what is
its height?
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DemystiFy BINARY SEARCH TREES

A Note FOR MATH ENTHUSIASTS

Binary Balanced Trees: Size — Height

Question 3: If I give you a complete tree with n nodes, what is
its height?

o We know that a tree of height / has 2"*! — 1 nodes.

@ Therefore:

n=2"1_1 = h=logyn-1=0(logn)
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A Note FOR MATH ENTHUSIASTS

Search Efficiency in a Balanced Binary Search Tree

Question 4: In a well-balanced and sorted binary search tree,
how efficient is your algorithm in finding a number?

Balanced Tree

@ Given the logarithmic height of the tree, the search
operation will take ©(logn) time.

v
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EARLIEST DEADLINE FIRST

A CrassicAL PROBLEM FROM OPERATING SYSTEMS
@ Imagine you have multiple processes to be executed.
@ Each process comes with a deadline.

@ New processes keep arriving at the operating system.
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EARLIEST DEADLINE FIRST

A CrassicAL PROBLEM FROM OPERATING SYSTEMS
@ Imagine you have multiple processes to be executed.
@ Each process comes with a deadline.

@ New processes keep arriving at the operating system.

The CPU or server always executes the process with the earliest
deadline.

Deadline

‘8 g
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EARLIEST DEADLINE FIRST

TRANSFORMING A DYNAMIC PROBLEM INTO A DATA STRUCTURE PROBLEM

Intuitive Goal

@ We need to efficiently manage processes as they arrive and
meet their deadlines.

@ The challenge is to design a data structure that supports all
required operations in the best possible time.
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EARLIEST DEADLINE FIRST

TRANSFORMING A DYNAMIC PROBLEM INTO A DATA STRUCTURE PROBLEM

@ We need to efficiently manage processes as they arrive and meet their deadlines.

@ The challenge is to design a data structure that supports all required operations
in the best possible time.

Objective. Design an efficient data structure for managing processes.

Let’s consider a set of processes P := {p | set of n processes}.
@ FINDMIN(P): Identify the process with the earliest deadline.

@ DEeLeTeMIN(P): Remove the process with the earliest deadline.
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EARLIEST DEADLINE FIRST

TRANSFORMING A DYNAMIC PROBLEM INTO A DATA STRUCTURE PROBLEM

@ We need to efficiently manage processes as they arrive and meet their deadlines.

@ The challenge is to design a data structure that supports all required operations
in the best possible time.

Objective. Design an efficient data structure for managing processes.

Let’s consider a set of processes P := {p | set of n processes}.
@ FINDMIN(P): Identify the process with the earliest deadline.
@ DEeLeTeMIN(P): Remove the process with the earliest deadline.

@ DeLeTEPROCESS (P, p): Remove a specific process p.
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EARLIEST DEADLINE FIRST

TRANSFORMING A DYNAMIC PROBLEM INTO A DATA STRUCTURE PROBLEM

@ We need to efficiently manage processes as they arrive and meet their deadlines.

@ The challenge is to design a data structure that supports all required operations
in the best possible time.

Objective. Design an efficient data structure for managing processes.

Let’s consider a set of processes P := {p | set of n processes}.
@ FINDMIN(P): Identify the process with the earliest deadline.
@ DEeLeTeMIN(P): Remove the process with the earliest deadline.
@ DeLeTEPROCESS (P, p): Remove a specific process p.

@ Urpate(P,p, NewDeadline): Update the deadline of process p to a
new value.

15/29
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EARLIEST DEADLINE FIRST

TRANSFORMING A DYNAMIC PROBLEM INTO A DATA STRUCTURE PROBLEM

@ We need to efficiently manage processes as they arrive and meet their deadlines.

@ The challenge is to design a data structure that supports all required operations
in the best possible time.

Objective. Design an efficient data structure for managing processes.

Let’s consider a set of processes P := {p | set of n processes}.
@ FINDMIN(P): Identify the process with the earliest deadline.
@ DEeLeTeMIN(P): Remove the process with the earliest deadline.
@ DeLeTEPROCESS (P, p): Remove a specific process p.
°

UrpaTE(P, p, NewDeadline): Update the deadline of process p to a
new value.

@ INSERT(P, pnew, Deadline): Insert a new process with a specified
deadline.

@ Buip(P): Construct the data structure with the set of processes P.
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EARLIEST DEADLINE FIRST

BAD SoLuTioN #1

@If we store processes in an unsorted array, what is the cost of J

FINDMIN(P)?

1214l [
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EARLIEST DEADLINE FIRST

BAD SoLuTioN #1

@If we store processes in an unsorted array, what is the cost of J

FINDMIN(P)?

121l [17]5

Computing the minimum in an unsorted array costs (7). J
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EARLIEST DEADLINE FIRST

BAD SoLuTiON #2

@If we store processes in a sorted array, what is the cost of
FiINDMIN(P)?

—

B80D00

!
\
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EARLIEST DEADLINE FIRST

BAD SoLuTiON #2

FINDMIN(P)?

B80D00

Computing the minimum in a sorted array costs ©(1). J

@If we store processes in a sorted array, what is the cost of J
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EARLIEST DEADLINE FIRST

BAD SoLuTiON #2

@If we store processes in a sorted array, what is the cost of
INSERT (P, Pnew, Deadline)?

= 1 =
= =
==

a 12[14]17

d|
0T
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EARLIEST DEADLINE FIRST

BAD SoLuTiON #2

@If we store processes in a sorted array, what is the cost of
INSERT (P, Pnew, Deadline)?

BB80D00

Inserting into and expanding a sorted array costs (7). J

Remember: Insertion Sort
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EARLIEST DEADLINE FIRST

®Does anyone have an idea for a better solution? J
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EARLIEST DEADLINE FIRST

PrioriTy QUEUE As A TREE

®Does anyone have an idea for a better solution? J

Eureka: What if we use a tree structure with the
minimum element at the root?
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EARLIEST DEADLINE FIRST

PrioriTy QUEUE As A TREE

®Does anyone have an idea for a better solution? J

Eureka: What if we use a tree structure with the
minimum element at the root?

@How should we order the remaining elements? J

18/29



DemystiFy BINARY SEARCH TREES Binary Hears

EARLIEST DEADLINE FIRST

PrioriTy QUEUE As A TREE

®Does anyone have an idea for a better solution? J

Eureka: What if we use a tree structure with the
minimum element at the root?

@How should we order the remaining elements? J

1) Divide in the middle to create a balanced tree.
2) Apply the same logic recursively to each partition. J
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oco.
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to

right.
Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo. )
@Which level is not completely filled in this tree?
o e
o o 0
OO0 OO
4
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to

right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo. )

Which level is not completely filled in this tree?

0
o o
o o o0 O
o060 00

4
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BinaARY BALANCED TREE

Definition
A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.
Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo. )
@Which rule did we violate when filling the last level of this
tree?
o e
o e o o
© 0600 @
V.
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BinaARY BALANCED TREE

Definition

A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.

Imagine that in place of any missing nodes, we insert a dummy value, such as +oo or —oo.

V.

Which rule did we violate when filling the last level of this tree?
0

o e

s O O Ul
o000 o0
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A Note For CODERS

e Constructing trees in programming often requires
manipulating pointers and structures.

typedef struct treenode { /* tree node struct */
int data; /* integer field */
struct treenode *left; /* pointer to the left child */
struct treenode *right; /* pointer to the right child */
} node;
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A Note For CODERS

e Constructing trees in programming often requires
manipulating pointers and structures.

typedef struct treenode { /* tree node struct */
int data; /* integer field */
struct treenode *left; /* pointer to the left child */
struct treenode *right; /* pointer to the right child */
} node;

@ For balanced trees, we can represent them simply using an
array:
o The children of node i are at positions 2i + 1 and 2i + 2.
o The parent of node i is at position (i - 1) + 2.

o
Right child 67/"/ T~
e \12 P\/a\e
\
/N \
0O®® O 0

N 419 Rl 8 |7 11415 REIEY 11 ] 9 |
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Binary HEAP

A Picture 1s WortH A THousaND WORDS

Definition of a Binary Heap

A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

Rooti

the smallest element
!
'
'
]
1
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Binary HEAP

A Picture 1s WortH A THousaND WORDS

Definition of a Binary Heap
A binary heap is a balanced binary tree where the root of every
Child [4] is the root

(sub)tree is its minimum element.
of a sub-heap

’
1}
|
H
Child [6] is the root L -
4 v

of a sub-heap

21/29




Binary Hears

Binary HEAP

A Picture 1s WortH A THousaND WORDS

Definition of a Binary Heap

A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.
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Binary HEAP

A Picture 1s WortH A THousaND WORDS

Definition of a Binary Heap

A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

@How do we store such a tree efficiently? J
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Binary HEAP

A Picture 1s WortH A THOUSAND WORDs

Definition of a Binary Heap

A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

@How do we store such a tree efficiently? J

Since it is a balanced binary tree, we can use an array representation.

[4Ts 6 1512 7ol 15113 s [ ]
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Binary HEAP

A Picture 1s WortH A THOUSAND WORDs

Definition of a Binary Heap

A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

@But inserting into an array always costs at least (1), right?U

Since it is a balanced binary tree, we can use an array representation.

[4Ts 6 1512 7ol 15113 s [ ]
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Binary HEAP

A Picture 1s WortH A THOUSAND WORDs

Definition of a Binary Heap

A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

We can always insert an element at the end of array at ©(1). JJ

Remember Rearroc in C, C++, etc.

Since it is a balanced binary tree, we can use an array representation.

[4Ts 6 1512 7ol 15113 s [ ]
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Binary HEAP

A Picture 1s WortH A THOUSAND WORDs

Definition of a Binary Heap

A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

@How do we maintain the tree as a binary heap? U

Since it is a balanced binary tree, we can use an array representation.

— ~—
— ~———_

o e

000 O
[4Ts s |5 ]12] 7 o513 s [ 5 I8
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

4 T8 6| 9120 7 [10] 14151318 1 .
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Rule of Thumb

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

/e\\

e,

-ﬂﬂﬂ----ﬂ 5

@What operation do we perform after adding a new element to
maintain the heap property?
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

418 16]ol12]7 Qfialis[13l18 1119 |8

We perform a "shift up" operation to place the new element and
correct the subtree [10,5,null]. J
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you InserT or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

@
0 (6]
® [12) @ 5
P00 000
[4]816]9]12]7 JGfl4l15 13118111 [ 9 10

@Should we continue? - Do we need to check the entire heap? J
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Rule of Thumb

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

e o
©0 000
NOABEE s DEEENEn

Yes! - All the subtrees that do not include the new element are
already correct. J
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

(4]
(s ) 5
@ (12) @ (¢ ]
QO ®0 O 00
4] c Wl 9]12]7]6[14]15]13]18] 1] 9 [10]
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Rule of Thumb

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

7
&
0 O}
©®© [12) 0 Lo
0060 OO0
s Bl o 121 ¢ l0l14]15 1311811 9]

@If we change an element in the min-heap (w.l.0.g., increase),
what do we have to do?
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

o
(s ) 7
C) ® 0o [10)
OO0 OO O 0
1o 5 112 6 110 1 115113 115 | 1115 |

Shift down until the heap property is restored. |
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

— ~——_

~——

| -
/Q>K A e
©00®©0 00

N ' BE - DNEEDDE

Shift down until the heap property is restored. |

22/29



DemysTiFY BINARY SEARCH TREES Binary Hears

Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

o
o ®
© o . ®
Q000 OO0
IOnaE - DHNEEDmE

Shift down until the heap property is restored. |

22/29



DemysTiFY BINARY SEARCH TREES Binary Hears

Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Rule of Thumb

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

@ (15 @ 1 0 (9
[ 4]8]6]9li2]7]10/14]15[13]18[11]9]

@ * What is the complexity of any shift up & shift down?
* Can the update process create a cycle?
x What if we change an element in the middle?
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Rule of Thumb

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

[ 241861911217 110014115 113118 ] 11 ]9
Shift-Up | Shift-Down
O(logn) O(logn)

* In the worst case, we move from the root to the leaf.
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Rule of Thumb

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

41816191217 ]10014115]13 18119 |
Rule of Thumb:
If priority 1= Shift down

If priority |= Shift up
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Rule of Thumb

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

o [12) / 0 [10)
O0O®O0 OO0
4 o [l o [12[ 6101415131181 11 9

The subtree structure remains valid except for the affected
branch after an update. J
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

@How do we know the parent & children indices are in O(1)? J
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Surrr Up & SHirT DownN

IT’s ALL ABOUT SWAPS

Whether you Insert or Urpate in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

Node: i

Left child: 2i + 1
Right child: 2i + 2
Parent: (i — 1)/2

@-1)/2 i 2041242
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DEeLETE FROM HEAP

Swapr witH LAast ELEMENT

@Deleting an element from an array typically costs at least
Q(n), right?
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DEeLETE FROM HEAP

Swapr witH LAast ELEMENT

@Deleting an element from an array typically costs at least
Q(n), right?

We can delete the last element of the array in ©(1) time.

Remember Rearroc in C, C++, etc. J
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DEeLETE FROM HEAP

Swapr witH LAast ELEMENT

@Deleting an element from an array typically costs at least
Q(n), right?

We can delete the last element of the array in ©(1) time.

Remember Rearroc in C, C++, etc.

Deletion Strategy

@ Swap the element to be deleted with the last element in the
heap.

@ Remove the last element from the array (reallocate).

© Perform a shift down to restore the heap property.
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DEeLETE FROM HEAP

ExamMPLE

Short Strategy
© Swap the element to be deleted with the last element in the heap.
© Remove the last element from the array (reallocate).
© Perform a shift down to restore the heap property.

O G (1 o Y 10)

A 5 |48 ]12]7 61415 [13]18] 1119 [10]
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DEeLETE FROM HEAP

ExamMPLE

Short Strategy
© Swap the element to be deleted with the last element in the heap.
© Remove the last element from the array (reallocate).
© Perform a shift down to restore the heap property.

' HENREADEEENE 2
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DEeLETE FROM HEAP

ExamMPLE

Short Strategy

© Swap the element to be deleted with the last element in the heap.
© Remove the last element from the array (reallocate).
© Perform a shift down to restore the heap property.

o &

TN Ny
e o 0 o
Q000 OO
XY 5 B8 s 12| 7 | 6 141513 18] 0 9|
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DEeLETE FROM HEAP

ExamMPLE

Short Strategy

© Swap the element to be deleted with the last element in the heap.
© Remove the last element from the array (reallocate).
© Perform a shift down to restore the heap property.

(4]
(5 ) 10
@ ® @ @
Q0 OO0 O 0

& 8 1217 ¢ J1415]13 18] 1119 ]
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DEeLETE FROM HEAP

ExamMPLE

Short Strategy

© Swap the element to be deleted with the last element in the heap.
© Remove the last element from the array (reallocate).
© Perform a shift down to restore the heap property.

o
o Aa
_ N y .
o ©o - C
Q000 OO0

nH - 0EH - DEE0HG
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BuiLbinGg A Heapr

BuiLp (P):Trivial Way

e Assume you have a set of processes P = {p1,---,pn} with
priorities/deadlines (vy, -+, vy).
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BuiLbinGg A Heapr

BuiLp (P):Trivial Way

e Assume you have a set of processes P = {p1,---,pn} with
priorities/deadlines (vy, -+, vy).

e Start with an empty heap H = @ and insert each element
one by one using INserT(H, p;, v;).

Runtime: n x O(logn) = O(nlogn)
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BuiLbing A Hear
CLEVER WaY
BuiLp(P): Heapify Method

Instead of inserting elements one by one, we can take the entire array
and turn it into a heap in a more efficient way.
This process is called heapify.

@ Start by treating the array as a binary tree.

o 0 0
) 26/29
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BuiLbinGg A Heapr

CLEVER WAy

BuiLp(P): Heapify Method

@ Begin from the last non-leaf node, and perform a "shift down"
operation to ensure each subtree satisfies the heap property.

6 o ¢ o :
(5 {18131 141 7 [ [12]10] 4 |6 |
AN
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BuiLbinGg A Heapr

CLEVER WAy

BuiLp(P): Heapify Method

@ Begin from the last non-leaf node, and perform a "shift down"
operation to ensure each subtree satisfies the heap property.

@ Continue this process moving upward to the root.

© o0
5 T 1813115141 7 [ 8 | 121100 4 A 5
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BuiLbinGg A Heapr

CLEVER WAy

BuiLp(P): Heapify Method

@ Begin from the last non-leaf node, and perform a "shift down"
operation to ensure each subtree satisfies the heap property.

@ Continue this process moving upward to the root.

|
ﬁe 2@ .

9|11 [18]13]15]14] 7 [ 8 11210 [ H-
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.

Every correction takes a shift-down O(logn) =
Runtime:O(nlogn).

.

But...

Optimistic Observation

Expensive corrections are rare & cheap corrections are frequent”

* Remember: 50% of nodes are leaves and 25% of nodes are parents of leaves.
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ToraL Swaprs

Proor SkercH

Observation: Every level has different height. Shift-down costs
actually O(height of subtree).

5 : (the leaves) x0

+
7 (parents of leaves) x 1
+
g (grandparents of leaves) x 2

+
et

1: root x O(logn)

=0(n)
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HEeAPSORT

How 10 SorT AN ARRAY UsING A HEAP

©How we can sort an array using a min-heap? |

Heapsort Explained
@ First, build a max heap from the array using heapify.

@ Then, repeatedly remove the root (the minimum element)
and place it at the end of the array.

e After each removal, perform a "shift down" to restore the
heap property.

Runtime: heapify +n x delete +n x swaps
—

o) O(logn) o(1)
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How 10 SorT AN ARRAY UsING A HEAP

How we can compute the k-th smallest element of an array
using a min-heap?

Two solutions ( I will give you the complexity-describe the
algorithm & application)

Q@ O(n) +O(klogn)
@ O(k) + O(nlogk)
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FIND K-TH ELEMENT

How 10 SorT AN ARRAY UsING A HEAP

How we can compute the k-th smallest element of an array
using a min-heap?

Two solutions ( I will give you the complexity-describe the
algorithm & application)

Q@ O(n) +O(klogn)
@ O(k) + O(nlogk)

Application: First version is offline. The second is online.
v
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