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Disjoint Sets

Imagine you have a set of objects, and you want to group them
based on some criteria.

One possible grouping might look like this:
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Queries on Disjoint Sets
While grouping the objects, you may ask:

How can I merge more groups?
How many distinct groups are there?
Do two objects belong to the same group?

Union-Find Operations
The Union-Find data structure supports three operations:

Init: Takes a set of elements S = {x1,⋯,xℓ} and constructs ℓ
singleton sets Si = {xi} for all i = 1,⋯, ℓ.
Union: Takes two elements x and y and merges the groups
containing x and y.
Find: Takes an element x and identifies the group
containing x.
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Union-Find Data Structure
Init-Example

1

32

0
Init({1,2,3,4})ÐÐÐÐÐÐÐ→

1

32

0

A
B

C D

Explanation
Initially, each element starts in its own singleton set. This is the
result of calling Init, where we have disjoint sets for each
individual element.
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Union-Find Data Structure
Union-Example

1 3

20

20

1 3

Union (0,1)
ÐÐÐÐÐ→

A

B
A′

Explanation
For example, initially, 0 and 2 belong to the same group, and 1
and 3 belong to another group. When we call the function
union(0, 1), it merges the groups containing 0 and 1.
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Union-Find Data Structure
Find-Example

1 3

20

Find (2)
ÐÐÐÐÐ→

A

B

A

Explanation
For example, when we call find(2), it returns some signal for
the set containing 2.
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Union-Find Data Structure
Find-Example

1 3

20

Find (2)
ÐÐÐÐÐ→

A

B

A

“Leader Element”
Each set should have a unique ‘leader’ element, which
identifies the set.
Since the sets are always disjoint, the same object cannot be the leader of more than one set.
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Union-Find Data Structure
High-Level Representation

One of the most easiest ways to represent sets is through graphs:

Same set=Same connected component. Connect all objects that
belong to the same set with edges, like this:

20

1 3

20

1 3

4 5

4 5
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Union-Find Data Structure
High-Level Representation

One of the most easiest ways to represent sets is through graphs:

Same set=Same tree/path:

20

1 3

20

1 3

4 5

4 5
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Union-Find Data Structure
High-Level Representation

One of the most easiest ways to represent sets is through graphs:

To determine the group an element belongs to, we designate a
representative element for each group.
This representative acts as the identifier for the entire group:

20

1 3

20

1 3

4 5

4 5

Find Operations
Find(0) = 0

Find(1) = 0

Find(2) = 0

Find(3) = 0

Find(4) = 4

Find(5) = 4
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1 3

20

1 3

4 5

4 5

Find Operations
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SameSet(x,y)=True if Find(x)=Find(y) otherwise False
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What is the worst-case complexity of Find if sets are represented
by paths/chains for a data structure of n elements?

A

B

C

⋯

⋯
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What is the worst-case complexity of Find if sets are represented
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A

B

C

⋯

⋯

Traversing the entire chain to find the representative results in
Find having a worst-case complexity of Ω(n)
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Reversed Trees
To make paths shorter, it’s beneficial to represent them with trees.

Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

Init(x)
parent(x) ← x

Find(x)
while (x ≠ parent(x))
x ← parent(x)

return x

Union(x, y)
x ← Find(x)
y ← Find(y)
parent(y) ← x

●Init is trivial. Cost[Init] = Θ(n).
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Reversed Trees
To make paths shorter, it’s beneficial to represent them with trees.

Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

Init(x)
parent(x) ← x

Find(x)
while (x ≠ parent(x))
x ← parent(x)

return x

Union(x, y)
x ← Find(x)
y ← Find(y)
parent(y) ← x

parents : [1,1,1,2]
1 2 3 4

1

2 3

4

parent(4) = 2

parent(2) = 1 parent(3) = 1

parent(1) = 1

●Find traverses the tree until the root is found. Worst-case cost equals the height of tree.
5/29



Union-Find Demystify Binary Search Trees Binary Heaps

Reversed Trees
To make paths shorter, it’s beneficial to represent them with trees.

Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

Init(x)
parent(x) ← x

Find(x)
while (x ≠ parent(x))
x ← parent(x)

return x

Union(x, y)
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y ← Find(y)
parent(y) ← x

Union(Grey,Blue)
ÐÐÐÐÐÐÐÐ→

●Union just redirects the parent pointer of one leader to the other. Cost[Union] = Θ(1).
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Reversed Trees
To make paths shorter, it’s beneficial to represent them with trees.

Each node points to another node, called its parent, except for the leader
of each set, which points to itself and thus is the root of the tree.

Init(x)
parent(x) ← x

Find(x)
while (x ≠ parent(x))
x ← parent(x)

return x

Union(x, y)
x ← Find(x)
y ← Find(y)
parent(y) ← x

Union(Grey,Blue)
ÐÐÐÐÐÐÐÐ→

●Union just redirects the parent pointer of one leader to the other. Cost[Union] = Θ(1).

How dowe avoid creating very tall sparse trees?

Union is straightforward, but if we’re not careful, Find can become costly.
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Union by Depth
Making Find Operation Efficient

If we always attach the taller tree to the shorter one, we
might inadvertently create a long path-tree:

Union(1,2),Union(1,3),⋯,Union(1,n)

⇒ ⇒

⇒ ⋯ ⇒

But what if we apply the inverse rule?
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Union by Depth
Making Find Operation Efficient

Whenever we need to merge two trees, we always make the root
of the shallower tree a child of the deeper one. This requires us
to also maintain the depth of each tree, but this is quite easy.

MakeSet(x)
parent(x) ← x
depth(x) ← 0

Find(x)
while x ≠ parent(x)
x ← parent(x)

return x

Union(x,y)
x ← Find(x)
y ← Find(y)
if depth(x) > depth(y)
parent(y) ← x

else
parent(x) ← y
if depth(x) = depth(y)
depth(y) ← depth(y) + 1
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Union by Depth
Making Find Operation Efficient

Whenever we need to merge two trees, we always make the root
of the shallower tree a child of the deeper one. This requires us
to also maintain the depth of each tree, but this is quite easy.

MakeSet(x)
parent(x) ← x
depth(x) ← 0

Find(x)
while x ≠ parent(x)
x ← parent(x)

return x

Union(x,y)
x ← Find(x)
y ← Find(y)
if depth(x) > depth(y)
parent(y) ← x

else
parent(x) ← y
if depth(x) = depth(y)
depth(y) ← depth(y) + 1

When depth(x) reaches d for the first time,
x becomes the leader of two merged sets,
each with leaders of depth d − 1.
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Union by Depth
Making Find Operation Efficient

Theorem. For any leader x, the size of the tree of x is at least 2depth(x).
Proof by Induction:

Base Case: If depth(x) = 0, then x is the leader of a singleton set, so the size of x’s
set is 20 = 1.

Inductive Step: Assume that for any set leader y with depth d − 1, the size of y’s
set is at least 2d−1.

When depth(x) becomes d for the first time, x is the leader of the union of
two sets, both of whose leaders had depth d − 1.
By the inductive hypothesis, both component sets had at least 2d−1
elements.
Therefore, the new set has at least 2d elements.
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set is 20 = 1.

Inductive Step: Assume that for any set leader y with depth d − 1, the size of y’s
set is at least 2d−1.

When depth(x) becomes d for the first time, x is the leader of the union of
two sets, both of whose leaders had depth d − 1.
By the inductive hypothesis, both component sets had at least 2d−1
elements.
Therefore, the new set has at least 2d elements.

Contrapositive Trick: If A⇒ B, then ¬B⇒ ¬A.
For any leader x, if the size of the tree of x is strictly less than 2k , then depth(x) < k.
Explanation: If depth(x) ≥ k, then by above theorem, the tree would have more than 2k nodes.

Contradiction.
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Union by Depth
Making Find Operation Efficient

Theorem. For any leader x, the size of the tree of x is at least 2depth(x).
Proof by Induction:

Base Case: If depth(x) = 0, then x is the leader of a singleton set, so the size of x’s
set is 20 = 1.

Inductive Step: Assume that for any set leader y with depth d − 1, the size of y’s
set is at least 2d−1.

When depth(x) becomes d for the first time, x is the leader of the union of
two sets, both of whose leaders had depth d − 1.
By the inductive hypothesis, both component sets had at least 2d−1
elements.
Therefore, the new set has at least 2d elements.

Conclusion
Since there are at most n elements in total, the maximum depth of any set is log n.
Therefore, both Find and Union run in Θ(log n) time in the worst case.
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Path Compression
Optimizing Find Operation

Path compression flattens the structure, making future
Find operations quicker.
Path compression makes every node on the Find path from
x to the root point directly to the root.

Find(x)
if x ≠ parent(x)
parent(x) ←

Find(parent(x))
return parent(x)

1

12

3

4

5
6

7 8

9

10

112

1

12

3 4

5

67

8

9

10

112

Find(7)
ÐÐÐÐ→

Nodes on the Find path (highlighted in orange) are directly attached to the root.
Teaser for Discussion Section - A log∗(n) Analysis
We will perform an amortized analysis showing how path compression can provide a
super-exponential improvement, making the Find operation almost constant time.
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Union-Find
A Final Thought on Array Representation

Union-Find can be viewed as a reversed search tree.
Efficiency comes from the simplicity of tracking roots with
only parent pointers.

Use an array parent[] of length n.
parent[i] = jmeans the parent of element i is element j.

7 5 7 8 8 7 5 7 8 8
1 2 3 4 5 6 7 8 90

8

4

9 3

7

0

5

1 6

2

parent of 3 is 8

8/29



Union-Find Demystify Binary Search Trees Binary Heaps

Demystify Binary Search
Trees
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Introduction to Binary Search Trees
Why Balanced Trees?

We can construct any tree we want, but in this course, our
focus is on efficiency.
From the union-find example, we learned that it’s better to
have a balanced tree rather than a skewed one.

Can you find the number 7 if you start searching from the
root of the tree?

71

2

3

4

5

6

5 4 3 2 1

7

6

Skewed Tree

Balanced Tree
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Introduction to Binary Search Trees
Why Balanced Trees?

We can construct any tree we want, but in this course, our
focus is on efficiency.
From the union-find example, we learned that it’s better to
have a balanced tree rather than a skewed one.

Why do we prefer balanced trees over skewed ones?

71

2

3

4

5

6

5 4 3 2 1

7

6

Skewed Tree

Balanced Tree

The complexity of an efficient traversal is proportional to
the height!
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Binary Balanced Tree

Definition
A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.
Imagine that in place of any missing nodes, we insert a dummy value, such as +∞ or −∞.
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A Note for Coders
Constructing trees in programming often requires
manipulating pointers and structures.

For balanced trees, we can represent them simply using an
array:

The children of node i are at positions 2i + 1 and 2i + 2.
The parent of node i is at position (i − 1) ÷ 2.
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Example of Array Representation
Rule of Thumb

The children of node i are at positions 2i + 1 and 2i + 2.
The parent of node i is at position (i − 1) ÷ 2.

0 1 2

⋆ C C

The root is at position 0, with children at positions 1 and 2.

1 = 2 ∗ 0 + 1 2 = 2 ∗ 0 + 2 No parent since (0 − 1) ÷ 2 < 0

The node at position 1 has its parent at position 0 and
children at positions 3 and 4.

3 = 2 ∗ 1 + 1 4 = 2 ∗ 1 + 2 Parent is (1 − 1) ÷ 2 = 0
The node at position 2 has its parent at position 0 and
children at positions 5 and 6.

5 = 2 ∗ 2 + 1 6 = 2 ∗ 2 + 2 Parent is (2 − 1) ÷ 2 = 0
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Example of Array Representation
Rule of Thumb

The children of node i are at positions 2i + 1 and 2i + 2.
The parent of node i is at position (i − 1) ÷ 2.

0 2 5 6

P ⋆ C C

The root is at position 0, with children at positions 1 and 2.

1 = 2 ∗ 0 + 1 2 = 2 ∗ 0 + 2 No parent since (0 − 1) ÷ 2 < 0
The node at position 1 has its parent at position 0 and
children at positions 3 and 4.

3 = 2 ∗ 1 + 1 4 = 2 ∗ 1 + 2 Parent is (1 − 1) ÷ 2 = 0

The node at position 2 has its parent at position 0 and
children at positions 5 and 6.

5 = 2 ∗ 2 + 1 6 = 2 ∗ 2 + 2 Parent is (2 − 1) ÷ 2 = 0
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A Note for Math Enthusiasts

Binary Balanced Trees: Height → Size
Question 1: If I give you a complete tree of height h, how many
nodes does it have?

Definition of Height
The height of a tree is the length of the path from the root
to its farthest leaf node.
A tree with only a root node has a height of 0, while an
empty tree has a height of -1.
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A Note for Math Enthusiasts

Binary Balanced Trees: Height → Size
Question 1: If I give you a complete tree of height h, how many
nodes does it have?

The total number of nodes is:

1 + 2 + 4 +⋯ + 2h = 2h+1 − 1
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A Note for Math Enthusiasts

Binary Balanced Trees: Number of Nodes Per Level
Question 2: If I give you a complete tree with n − 1 total nodes,
how many nodes are at each level?

13/29



Union-Find Demystify Binary Search Trees Binary Heaps

A Note for Math Enthusiasts
Binary Balanced Trees: Number of Nodes Per Level
Question 2: If I give you a complete tree with n − 1 total nodes,
how many nodes are at each level?

Reverse engineering the previous equation from bottom to
top:

1 + 2 + 4 +⋯ + 2h−1 + 2h = 2h+1 − 1

Remark: 50% of nodes are leaves ,
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A Note for Math Enthusiasts

Binary Balanced Trees: Size → Height
Question 3: If I give you a complete tree with n nodes, what is
its height?

13/29



Union-Find Demystify Binary Search Trees Binary Heaps

A Note for Math Enthusiasts

Binary Balanced Trees: Size → Height
Question 3: If I give you a complete tree with n nodes, what is
its height?

We know that a tree of height h has 2h+1 − 1 nodes.
Therefore:

n = 2h+1 − 1 ⇒ h = log2 n − 1 = Θ(logn)
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A Note for Math Enthusiasts
Search Efficiency in a Balanced Binary Search Tree
Question 4: In a well-balanced and sorted binary search tree,
how efficient is your algorithm in finding a number?

71

2

3

4

5

6

Balanced Tree

Given the logarithmic height of the tree, the search
operation will take Θ(logn) time.
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Earliest Deadline First
A Classical Problem from Operating Systems

Imagine you have multiple processes to be executed.

Each process comes with a deadline.

New processes keep arriving at the operating system.

EDF Task
The CPU or server always executes the process with the earliest
deadline.
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Earliest Deadline First
Transforming a Dynamic Problem into a Data Structure Problem

Intuitive Goal
We need to efficiently manage processes as they arrive and
meet their deadlines.
The challenge is to design a data structure that supports all
required operations in the best possible time.
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Earliest Deadline First
Transforming a Dynamic Problem into a Data Structure Problem

Intuitive Goal
We need to efficiently manage processes as they arrive and meet their deadlines.
The challenge is to design a data structure that supports all required operations
in the best possible time.

Objective. Design an efficient data structure for managing processes.

Let’s consider a set of processes P ∶= {p ∣ set of n processes}.
FindMin(P): Identify the process with the earliest deadline.
DeleteMin(P): Remove the process with the earliest deadline.

DeleteProcess(P , p): Remove a specific process p.
Update(P, p,NewDeadline): Update the deadline of process p to a
new value.
Insert(P, pnew,Deadline): Insert a new process with a specified
deadline.
Build(P): Construct the data structure with the set of processes P .
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Earliest Deadline First
Bad Solution #1

If we store processes in an unsorted array, what is the cost of
FindMin(P)?

Computing the minimum in an unsorted array costs Ω(n).
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Earliest Deadline First
Bad Solution #2

If we store processes in a sorted array, what is the cost of
FindMin(P)?
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Earliest Deadline First
Bad Solution #2

If we store processes in a sorted array, what is the cost of
FindMin(P)?

Computing the minimum in a sorted array costs Θ(1).
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Earliest Deadline First
Bad Solution #2

If we store processes in a sorted array, what is the cost of
Insert(P,pnew,Deadline)?
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Earliest Deadline First
Bad Solution #2

If we store processes in a sorted array, what is the cost of
Insert(P,pnew,Deadline)?

Inserting into and expanding a sorted array costs Ω(n).
Remember: Insertion Sort
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Earliest Deadline First

Does anyone have an idea for a better solution?

Eureka: What if we use a tree structure with the
minimum element at the root?

How should we order the remaining elements?

1) Divide in the middle to create a balanced tree.
2) Apply the same logic recursively to each partition.
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Binary Balanced Tree

Definition
A binary tree is fully balanced if and only if all levels, except
possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.
Imagine that in place of any missing nodes, we insert a dummy value, such as +∞ or −∞.
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possibly the last, are completely filled from left to right.
Convention: The last level is filled with priority from left to
right.
Imagine that in place of any missing nodes, we insert a dummy value, such as +∞ or −∞.

Which rule did we violate when filling the last level of this
tree?
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A Note for Coders
Constructing trees in programming often requires
manipulating pointers and structures.

For balanced trees, we can represent them simply using an
array:

The children of node i are at positions 2i + 1 and 2i + 2.
The parent of node i is at position (i − 1) ÷ 2.
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Binary Heap
A Picture is Worth a Thousand Words

Definition of a Binary Heap
A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.
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Binary Heap
A Picture is Worth a Thousand Words

Definition of a Binary Heap
A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

How do we store such a tree efficiently?

Since it is a balanced binary tree, we can use an array representation.

But inserting into an array always costs at least Ω(n), right?
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Binary Heap
A Picture is Worth a Thousand Words

Definition of a Binary Heap
A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

How do we store such a tree efficiently?

Since it is a balanced binary tree, we can use an array representation.

We can always insert an element at the end of array at Θ(1).
Remember Realloc in C, C++, etc.
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Binary Heap
A Picture is Worth a Thousand Words

Definition of a Binary Heap
A binary heap is a balanced binary tree where the root of every
(sub)tree is its minimum element.

How do we store such a tree efficiently?

Since it is a balanced binary tree, we can use an array representation.

How do we maintain the tree as a binary heap?
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

What operation do we perform after adding a new element to
maintain the heap property?
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

We perform a "shift up" operation to place the new element and
correct the subtree [10,5,null].
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

Should we continue? ⋅ Do we need to check the entire heap?
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

Yes! ⋅ All the subtrees that do not include the new element are
already correct.
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It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

If we change an element in the min-heap (w.l.o.g., increase),
what do we have to do?
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

Shift down until the heap property is restored.
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

⋆ What is the complexity of any shift up & shift down?
⋆ Can the update process create a cycle?
⋆ What if we change an element in the middle?
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

Shift-Up Shift-Down
O(logn) O(logn)

⋆ In the worst case, we move from the root to the leaf.
22/29
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

Rule of Thumb: ⎧⎪⎪⎨⎪⎪⎩

If priority ↑⇒ Shift down
If priority ↓⇒ Shift up
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

The subtree structure remains valid except for the affected
branch after an update.
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”

How do we know the parent & children indices are in O(1)?
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Shift Up & Shift Down
It’s all about swaps

Rule of Thumb
Whether you Insert or Update in the heap, always perform swaps to maintain:
The heap rule: “In a binary heap, the root of every (sub)tree is its minimum element.”
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Delete from Heap
Swap with Last Element

Deleting an element from an array typically costs at least
Ω(n), right?

We can delete the last element of the array in Θ(1) time.
Remember Realloc in C, C++, etc.

Deletion Strategy
1 Swap the element to be deleted with the last element in the

heap.
2 Remove the last element from the array (reallocate).
3 Perform a shift down to restore the heap property.
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Delete from Heap
Example

Short Strategy
1 Swap the element to be deleted with the last element in the heap.
2 Remove the last element from the array (reallocate).
3 Perform a shift down to restore the heap property.

24/29



Union-Find Demystify Binary Search Trees Binary Heaps

Delete from Heap
Example

Short Strategy
1 Swap the element to be deleted with the last element in the heap.
2 Remove the last element from the array (reallocate).
3 Perform a shift down to restore the heap property.

24/29



Union-Find Demystify Binary Search Trees Binary Heaps

Delete from Heap
Example

Short Strategy
1 Swap the element to be deleted with the last element in the heap.
2 Remove the last element from the array (reallocate).
3 Perform a shift down to restore the heap property.

24/29



Union-Find Demystify Binary Search Trees Binary Heaps

Delete from Heap
Example

Short Strategy
1 Swap the element to be deleted with the last element in the heap.
2 Remove the last element from the array (reallocate).
3 Perform a shift down to restore the heap property.

24/29



Union-Find Demystify Binary Search Trees Binary Heaps

Delete from Heap
Example

Short Strategy
1 Swap the element to be deleted with the last element in the heap.
2 Remove the last element from the array (reallocate).
3 Perform a shift down to restore the heap property.

24/29



Union-Find Demystify Binary Search Trees Binary Heaps

Building a Heap

Build(P):Trivial Way
Assume you have a set of processes P = {p1,⋯,pn}with
priorities/deadlines (v1,⋯,vn).

Start with an empty heap H = ∅ and insert each element
one by one using Insert(H,pi,vi).

Runtime: n ×O(logn) = O(n logn)
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Building a Heap
Clever Way

Build(P): Heapify Method
Instead of inserting elements one by one, we can take the entire array
and turn it into a heap in a more efficient way.
This process is called heapify.

Start by treating the array as a binary tree.

Begin from the last non-leaf node, and perform a "shift down"
operation to ensure each subtree satisfies the heap property.

Continue this process moving upward to the root.
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Build(P): Heapify Method
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Worst-case Scenario

Every correction takes a shift-down O(logn) ⇒
Runtime:O(n logn).

But...

Optimistic Observation

Expensive corrections are rare & cheap corrections are frequent⋆
⋆ Remember: 50% of nodes are leaves and 25% of nodes are parents of leaves.

What does this remind us of?

Amortized Analysis - The Binary Counter
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Total Swaps
Proof Sketch

Observation: Every level has different height. Shift-down costs
actually O(height of subtree).

n
2 ∶ (the leaves) × 0

+
n
4 ∶ (parents of leaves) × 1

+
n
8 ∶ (grandparents of leaves) × 2

+
⋯+

1 ∶ root ×O(logn)

= O(n)
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HeapSort
How to Sort an Array Using a Heap

How we can sort an array using a min-heap?

Heapsort Explained
First, build a max heap from the array using heapify.
Then, repeatedly remove the root (the minimum element)
and place it at the end of the array.
After each removal, perform a "shift down" to restore the
heap property.

Runtime: heapify
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
O(n)

+n × delete
´¹¹¹¹¸¹¹¹¹¹¶
O(log n)

+n × swaps
´¹¹¹¹¹¸¹¹¹¹¹¹¶
O(1)
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Find k-th element
How to Sort an Array Using a Heap

How we can compute the k-th smallest element of an array
using a min-heap?

Two solutions ( I will give you the complexity-describe the
algorithm & application)

1 Θ(n) +O(k logn)
2 Θ(k) +O(n log k)

Application: First version is offline. The second is online.
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Image Sources I

https://brand.wisc.edu/web/logos/

https://en.wikipedia.org/wiki/Bijection
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