CS 577 - All Pair Shortest Paths

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

DIJKSTRA VS BELLMAN-FORD

- **Dijkstra Algorithm** is faster but does not work with negative weights.
 - Assumes that distances do not decrease along the shortest path.
- Bellman-Ford Algorithm works with negative weights.
 - Distances can decrease along the shortest path.
 - The "last" vertex can have a shorter distance from the start.

QUESTIONS - EXERCISES

- Negative weights → add a large number → positive weights
 → Dijkstra's algorithm?
- Does BFS compute shortest paths when edges have unit lengths?
- When there are non-negative weights, can a shortest path tree and a shortest path graph have no common edge?
- Bottleneck Shortest Paths:
 - Path cost $c(p) = \max_{e \in p} w(e)$
 - Shortest paths with bottleneck cost
 - Modified Dijkstra solves Bottleneck Shortest Paths (even with negative weights):

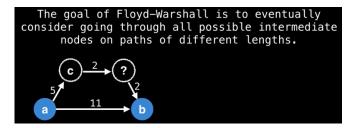
 $D[u] = \min\{D[v], \max(D[u], w(v, u))\}$

FLOYD-WARSHALL

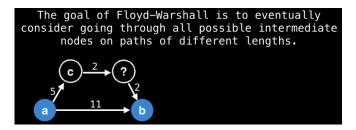
All-Pairs Shortest Paths

- Compute distance d(v, u) and shortest path v u path for all pairs $(v, u) \in V \times V$.
- Algorithm for shortest path from a single source for each *s* ∈ *V*:
 - Negative weights: Bellman-Ford, time $\Theta(n^2m)$.
 - Non-negative weights: Dijkstra, time $\Theta(nm + n^2 \log n)$.
- For negative weights: Floyd-Warshall in time $\Theta(n^3)$.
- Solution Representation:
 - Distances: matrix *D*[1..*n*][1..*n*]
 - Shortest paths: predecessor matrices.

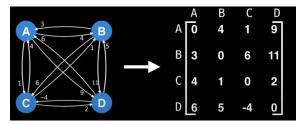
INTUITION



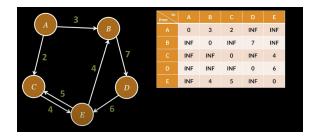
INTUITION



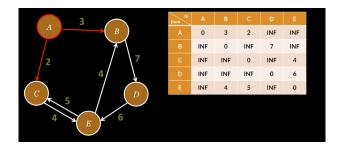
We need quick access to neighbors



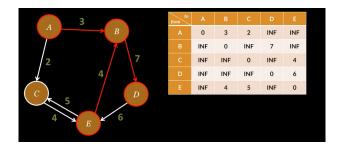
INITIALIZATION



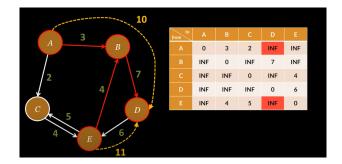
INTUITION



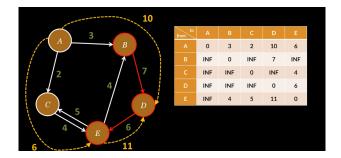
INTUITION



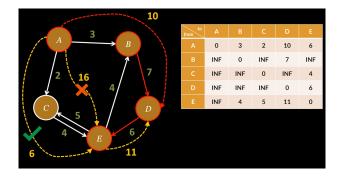
INTUITION



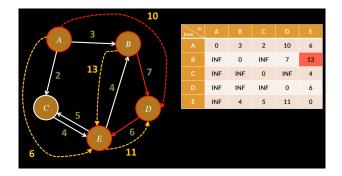
INTUITION



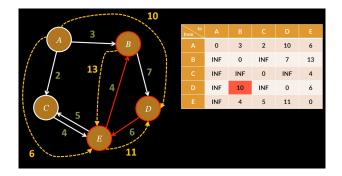
INTUITION



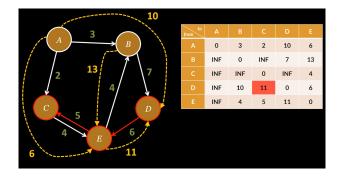
INTUITION



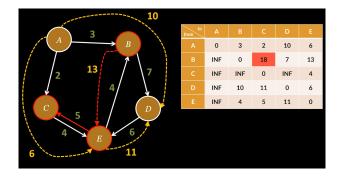
INTUITION



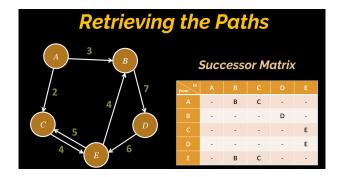
INTUITION



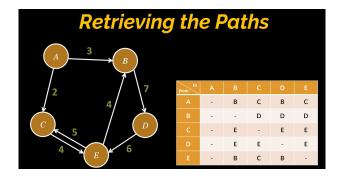
INTUITION



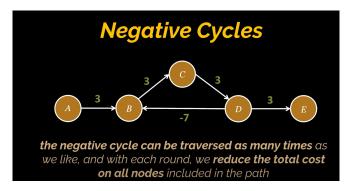
Compute Full Path



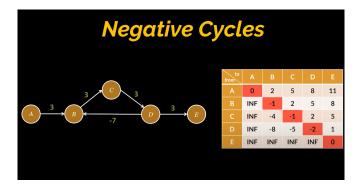
Compute Full Path



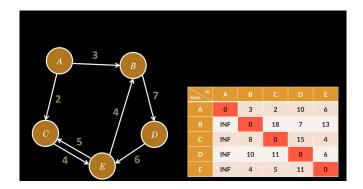
NEGATIVE CYCLES



NEGATIVE CYCLES



NEGATIVE CYCLES



Implementation

- Consider a graph G(V, E, w) with edge weights.
- Graph representation with adjacency matrix:

$$w(v_i, v_j) = \begin{cases} 0 & \text{if } v_i = v_j \\ w(v_i, v_j) & \text{if } (v_i, v_j) \in E \\ \infty & \text{otherwise} \end{cases}$$

Compute distance *d*(*v_i*, *v_j*) from *d*(*v_i*, *v_k*), *d*(*v_k*, *v_j*) for all *k* ∈ *V* \ {*v_i*, *v_j*}:

$$d(v_i, v_j) = \min\{w(v_i, v_j), d(v_i, v_k) + d(v_k, v_j)\}$$

- Negative cycle: $d(v_i, v_j) \rightarrow d(v_i, v_k)$
- Dynamic Programming: Compute all distances systematically bottom-up.

Is it possible?

If all weights are positive, then we can run n = |V| times Dijkstra's algorithm!

RUN-TIME(APSPs | *n*-Dijkstra) = $n \times O(m+n \log n) = O(mn+n^2 \log n)$

• The maximum number of edges is $m = \binom{n}{2} = \Theta(n^2)$.

RUN-TIME(APSPs | n-Dijkstra) = $O(mn) = O(n^3)$

Is it possible?

If all weights are positive, then we can run n = |V| times Dijkstra's algorithm!

RUN-TIME(APSPs | *n*-Dijkstra) = $n \times O(m+n \log n) = O(mn+n^2 \log n)$

• The maximum number of edges is $m = \binom{n}{2} = \Theta(n^2)$.

RUN-TIME(APSPs | n-Dijkstra) = $O(mn) = O(n^3)$

• If the number of edges is $m = o(n^2)$, then:

RUN-TIME(APSPs | n-Dijkstra) = $O(mn) = o(n^3)$

FASTER THAN FLOYD-WARSHALL

Is it possible?

FASTER THAN FLOYD-WARSHALL

Is it possible?

What can we do for the case of negatively-weighted graphs?

• Check the existence of negative cycles in *O*(*mn*) time. **Phow**?

FASTER THAN FLOYD-WARSHALL

Is it possible?

What can we do for the case of negatively-weighted graphs?

Check the existence of negative cycles in O(mn) time.
 How? Using the Bellman-Ford algorithm.

Is it possible?

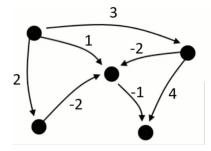
- Check the existence of negative cycles in O(mn) time.
 How? Using the Bellman-Ford algorithm.
- Can we adjust the weight of every edge to run Dijkstra's algorithm *n* times?

Is it possible?

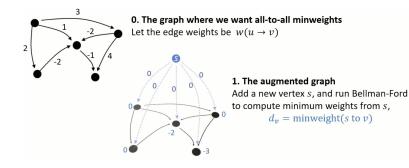
- Check the existence of negative cycles in O(mn) time.
 How? Using the Bellman-Ford algorithm.
- Can we adjust the weight of every edge to run Dijkstra's algorithm *n* times? No.

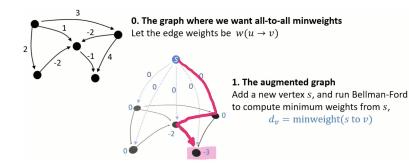
Is it possible?

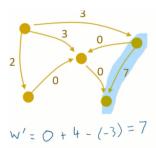
- Check the existence of negative cycles in O(mn) time.
 How? Using the Bellman-Ford algorithm.
- Can we adjust the weight of every edge to run Dijkstra's algorithm *n* times? No.
- DAny extra ideas??



0. The graph where we want all Let the edge weights be $w(u \rightarrow u)$



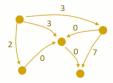




2. The helper graph

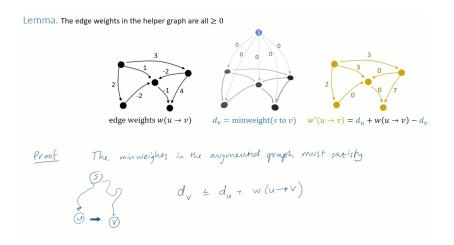
Define a new graph with modified edge weights

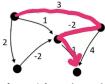
$$w'(u \to v) = d_u + w(u \to v) - d_v$$



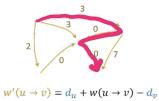
2. The helper graph Define a new graph with modified edge weights $w'(u \rightarrow v) = d_v + w(u \rightarrow v) - d_v$

3. Run Dijkstra to get all-to-all distances in the helper graph, distance'(u to v)





edge weights $w(u \rightarrow v)$



- All-pairs shortest paths for all vertex pairs in sparse graphs with negative weights:
 - Transform negative weights to non-negative without changing shortest paths.
- Algorithm for graph G(V, E, w):
 - Add a new vertex *s* connected to each $u \in V$ with zero-weight edges.
 - Bellman-Ford for *G*′ with *s* as the source.
 - If no negative cycle, compute new (non-negative) weights:

$$\hat{w}(u,v) = w(v,u) + h(v) - h(u)$$

• Use Dijkstra on $G(V, E, \hat{w})$ for each starting vertex u.

Summary

- Single-source shortest paths from an initial vertex *s*:
 - Negative weights: Bellman-Ford in time $\Theta(nm)$.
 - DAGs with negative weights in time $\Theta(m + n)$.
 - Non-negative weights: Dijkstra in time $\Theta(m + n \log n)$.
- All-pairs shortest paths:
 - Negative weights: Floyd-Warshall in time $\Theta(n^3)$.
 - Sparse graphs with (possibly) negative weights $m = o(n^2)$:
 - *n* applications of Dijkstra in time $\Theta(nm + n^2 \log n)$.
 - With negative weights, Johnson's algorithm for non-negative transformation.

Appendix

References

Image Sources I

https://medium.com/neurosapiens/ 2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/ 08/biografia-de-lester-randolph-ford-jr/

https://medium.com/koderunners/ genetic-algorithm-part-3-knapsack-problem-b59035

ONSIN https://brand.wisc.edu/web/logos/

Image Sources II

https://www.pngfind.com/mpng/mTJmbx_ spongebob-squarepants-png-image-spongebob-cartoo

https://www.pngfind.com/mpng/xhJRmT_ cheshire-cat-vintage-drawing-alice-in-wonderland