CS 577 - All Pair Shortest Paths

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin — Madison

Fall 2024

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

DrksTtrRA vs BELLMAN-FORD

e Dijkstra Algorithm is faster but does not work with
negative weights.

e Assumes that distances do not decrease along the shortest
path.

@ Bellman-Ford Algorithm works with negative weights.

e Distances can decrease along the shortest path.
o The "last" vertex can have a shorter distance from the start.

1/16

FW

QUESTIONS - EXERCISES

e Negative weights — add a large number — positive weights
— Dijkstra’s algorithm?

@ Does BFS compute shortest paths when edges have unit
lengths?

@ When there are non-negative weights, can a shortest path
tree and a shortest path graph have no common edge?

o Bottleneck Shortest Paths:

e Path cost c(p) = max,e, w(e)

e Shortest paths with bottleneck cost

e Modified Dijkstra solves Bottleneck Shortest Paths (even
with negative weights):

D[u] = min{D[v], max(D[u],w(v,u))}

2/16

Fw

Froyp-WARSHALL

Fw

ArLL-PAIRS SHORTEST PATHS

e Compute distance d(v,u) and shortest path v — u path for
all pairs (v,u) e Vx V.
e Algorithm for shortest path from a single source for each
seV:
o Negative weights: Bellman-Ford, time ©(n°m).
o Non-negative weights: Dijkstra, time ©(nm + n*logn).
e For negative weights: Floyd-Warshall in time ©(n°).
@ Solution Representation:

e Distances: matrix D[1..n][1..n]
e Shortest paths: predecessor matrices.

3/16

FLoyD-WARSHALL ALGORITHM
INTUITION

The goal of Floyd-Warshall is to eventually
consider going through all possible intermediate
nodes on paths of different lengths.

/@?@\2

)
a———— b

4/16

FLoyD-WARSHALL ALGORITHM

INTUITION

The goal of Floyd-Warshall is to eventually
consider going through all possible intermediate
nodes on paths of different lengths.

/@:@\2

)
a———— b

We need quick access to neighbors

4/16

FW JoHNSON

FLoyD-WARSHALL ALGORITHM

INITIALIZATION

5/16

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?

We request one of the v, .. ., Uk to be an intermediate node.

6/16

FW JoHNSON

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?

We request one of the v, .. ., Uk to be an intermediate node.

6/16

FW JoHNSON

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?

We request one of the v1, ..., v, to be an intermediate node.

6/16

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?
We request one of the vy, ..., v, to be an intermediate node.

6/16

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?
We request one of the v, ..., 7 to be an intermediate node.

6/16

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?
We request one of the v, ..., 7 to be an intermediate node.

6/16

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?
We request one of the v, ..., 7 to be an intermediate node.

6/16

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?
We request one of the v, ..., 7 to be an intermediate node.

6/16

FLoyD-WARSHALL ALGORITHM

INTUITION

In words: We check for every pair (v;,v;) what is the optimal path?
We request one of the v, ..., 7 to be an intermediate node.

\
[}
1
i
i
]
1
1
1]
]
i
]
]

6/16

FLoyD-WARSHALL ALGORITHM

Comprutk FuLL Pata

Retrieving the Paths

Successor Matrix

7/16

FLoyD-WARSHALL ALGORITHM

Comprutk FuLL Pata

Retrieving the Paths

FLoyD-WARSHALL ALGORITHM

NEecaTive CYCLES

Negative Cycles

&)
06‘6 o

the negative cycle can be traversed as many times as
we like, and with each round, we reduce the total cost
on all nodes included in the path

8/16

FLoyD-WARSHALL ALGORITHM

NEecaTive CYCLES

Negative Cycles

ine N e [JOH

8/16

FW JoHNsoN

FLoyD-WARSHALL ALGORITHM

NEecaTive CYCLES

8/16

FLoyD-WARSHALL ALGORITHM

IMPLEMENTATION
e Consider a graph G(V, E,w) with edge weights.
e Graph representation with adjacency matrix:

0 ifov; = vj
w(v;,v5) = w(v;,v;) if (v;,0;) €E
00 otherwise

e Compute distance d(v;,v;) from d(v;,vx),d(vg, v;) for all
keV~{v,v;}:
d(vh U]) = min{w(via vj)a d(via Z71() + d(Uk, U])}
In words: We check for every pair (v;,v;) what is the optimal path?
We request one of the vy, ..., v to be an intermediate node.
e Negative cycle: d(v;,v;) - d(v;, vx)
@ Dynamic Programming: Compute all distances

systematically bottom-up.
9/16

JoHNsON’s ALGORITHM

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

If all weights are positive, then we can run n = |V/| times
Dijkstra’s algorithm! J

Run-Tive(APSPs | n-Dijkstra) = nxO(m+nlogn) = O(mn+n*logn)
e The maximum number of edges is m = (}) = ©(n?).

Run-Time(APSPs | n-Dijkstra) = O(mn) = O(1°)

10/16

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

If all weights are positive, then we can run n = |V/| times
Dijkstra’s algorithm! J

Run-Tive(APSPs | n-Dijkstra) = nxO(m+nlogn) = O(mn+n*logn)
e The maximum number of edges is m = (}) = ©(n?).

Run-Time(APSPs | n-Dijkstra) = O(mn) = O(1°)

o If the number of edges is m = o(n?), then:

Run-Tive(APSPs | n-Dijkstra) = O(mn) = o(n°)

10/16

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

@What can we do for the case of negatively-weighted graphs? J

11/16

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

@What can we do for the case of negatively-weighted graphs? J

@ Check the existence of negative cycles in O(mn) time.
©How?

11/16

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

@What can we do for the case of negatively-weighted graphs? J

@ Check the existence of negative cycles in O(mn) time.
@How? Using the Bellman-Ford algorithm.

11/16

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

@What can we do for the case of negatively-weighted graphs? J

@ Check the existence of negative cycles in O(mn) time.
©How? Using the Bellman-Ford algorithm.

o @Can we adjust the weight of every edge to run Dijkstra’s
algorithm n times?

11/16

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

@What can we do for the case of negatively-weighted graphs? J

@ Check the existence of negative cycles in O(mn) time.
©How? Using the Bellman-Ford algorithm.

o @Can we adjust the weight of every edge to run Dijkstra’s
algorithm n times? No.

11/16

FW JoHnsoN

FasTER THAN FLOYD-WARSHALL

Is 1T POSSIBLE?

@What can we do for the case of negatively-weighted graphs? J

@ Check the existence of negative cycles in O(mn) time.
©How? Using the Bellman-Ford algorithm.

o @Can we adjust the weight of every edge to run Dijkstra’s
algorithm n times? No.

° @Any extra ideas??

11/16

FW

JoHNSON’s ALGORITHM

-—————1\ 0. The graph where we want all

Let the edge weights be w(u —

12/16

FW JoHnsoN

JoHNSON’s ALGORITHM

/1—\ 0. The graph where we want all-to-all minweights
Let the edge weights be w(u — v)
6
0 0
o 4 O 1. The augmented graph
Add a new vertex s, and run Bellman-Ford
o to compute minimum weights from s,
(\\./ C d,, = minweight(s to v)
2 \
o./ e

12/16

FW JoHnsoN

JoHNSON’s ALGORITHM

/1—\ 0. The graph where we want all-to-all minweights
Let the edge weights be w(u — v)

1. The augmented graph
Add a new vertex s, and run Bellman-Ford
to compute minimum weights from s,

g d,, = minweight(s to v)

12/16

FW JoHnsoN

JoHNSON’s ALGORITHM

3
e 3 0 ® 2. The helper graph
e y Define a new graph with modified
¢ o A7 edge weights

w'u-v)=d,+wlu-v)—-d,

Witk (D7

12/16

JoHNSON’s ALGORITHM

2. The helper graph

Define a new graph with modified

edge weights
wu-v)=dy,+wlu-v)—d,

3. Run Dijkstra to get all-to-all distances in
the helper graph, distance’(u to

V)

JornNson

12/16

JoHNSON’s ALGORITHM

Lemma. The edge weights in the helper graph are all > 0

(5]
0 0
3 0 o O 3
1 . — s "
2 [} . [;).'/'/77 2 0
Y VYA
° ° ¢ o

edge weights w(u — v) d, = minweight(stov) w'(u—-v)=d,+wlu->v)-—d,

Pf/oi The mﬁmwa‘b‘m@ fn Ha mjwa(?’\/o\f/b\ it 5%/\56
G

K doc dy+ wlu—rv)

v

™o

@ =

Q

13/16

JoHNSON’s ALGORITHM

edge weights w(u — v) w'(u—=v)=d,+wlu-v)—d,

14/16

FW JoHnsoN

JoHNSON’s ALGORITHM

o All-pairs shortest paths for all vertex pairs in sparse graphs
with negative weights:
e Transform negative weights to non-negative without
changing shortest paths.
e Algorithm for graph G(V,E,w):
e Add a new vertex s connected to each u € V with
zero-weight edges.
o Bellman-Ford for G’ with s as the source.
e If no negative cycle, compute new (non-negative) weights:

w(u,v) =w(v,u) +h(v) —h(u)

o Use Dijkstra on G(V, E, @) for each starting vertex u.

15/16

FW JoHnsoN

SUMMARY

e Single-source shortest paths from an initial vertex s:
o Negative weights: Bellman-Ford in time ©(nm).
e DAGs with negative weights in time ©(m + n).
e Non-negative weights: Dijkstra in time ©(m + nlogn).
@ All-pairs shortest paths:
o Negative weights: Floyd-Warshall in time ©(n?).
e Sparse graphs with (possibly) negative weights m = o(n?):
o n applications of Dijkstra in time © (nm + n*logn).

o With negative weights, Johnson’s algorithm for non-negative
transformation.

16/16

APPENDIX

REFERENCES

APPENDIX REFERENCES

IMAGE SoURcEs 1

c ’ -
;?éﬁﬁ https://medium.com/neurosapiens/
2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/
08/biografia-de-lester-randolph-ford-jr/

¢ http://wwuw.sequence-alignment.com/

rrZ https://medium.com/koderunners/
genetic-algorithm-part-3-knapsack-problem-b5903E

WISCONSIN https://brand.wisc.edu/web/logos/

17/16

https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
http://www.sequence-alignment.com/
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://brand.wisc.edu/web/logos/

APPENDIX REFERENCES

IMmAGE Sources 11

P 10cY

< < https://www.pngfind.com/mpng/mTJmbx_
spongebob-squarepants-png-image-spongebob-cartoc

e

https://wuw.pngfind. com/mpng/xhJRmT_
cheshire-cat-vintage-drawing-alice-in-wonderlanc

18/16

https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/

	Floyd-Warshall
	Johnson's Algorithm
	Appendix
	Appendix
	References

