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Dijkstra vs Bellman-Ford

Dijkstra Algorithm is faster but does not work with
negative weights.

Assumes that distances do not decrease along the shortest
path.

Bellman-Ford Algorithm works with negative weights.
Distances can decrease along the shortest path.
The "last" vertex can have a shorter distance from the start.
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Questions - Exercises

Negative weights→ add a large number→ positive weights
→ Dijkstra’s algorithm?
Does BFS compute shortest paths when edges have unit
lengths?
When there are non-negative weights, can a shortest path
tree and a shortest path graph have no common edge?
Bottleneck Shortest Paths:

Path cost c(p) =maxe∈pw(e)
Shortest paths with bottleneck cost
Modified Dijkstra solves Bottleneck Shortest Paths (even
with negative weights):

D[u] =min{D[v],max(D[u],w(v,u))}

2/16



FW Johnson

Floyd-Warshall
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All-Pairs Shortest Paths

Compute distance d(v,u) and shortest path v − u path for
all pairs (v,u) ∈ V ×V.
Algorithm for shortest path from a single source for each
s ∈ V:

Negative weights: Bellman-Ford, time Θ(n2m).
Non-negative weights: Dijkstra, time Θ(nm + n2 logn).

For negative weights: Floyd-Warshall in time Θ(n3).
Solution Representation:

Distances: matrix D[1..n][1..n]
Shortest paths: predecessor matrices.
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Floyd-Warshall Algorithm
Intuition

We need quick access to neighbors
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Floyd-Warshall Algorithm
Initialization
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Floyd-Warshall Algorithm
Intuition

In words: We check for every pair (vi, vj)what is the optimal path?
We request one of the v1, . . . , vk to be an intermediate node.
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Floyd-Warshall Algorithm
Compute Full Path
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Floyd-Warshall Algorithm
Negative Cycles
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Floyd-Warshall Algorithm
Implementation

Consider a graph G(V,E,w)with edge weights.
Graph representation with adjacency matrix:

w(vi,vj) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0 if vi = vj
w(vi,vj) if (vi,vj) ∈ E
∞ otherwise

Compute distance d(vi,vj) from d(vi,vk),d(vk,vj) for all
k ∈ V ∖ {vi,vj}:

d(vi,vj) =min{w(vi,vj),d(vi,vk) + d(vk,vj)}
In words: We check for every pair (vi, vj)what is the optimal path?

We request one of the v1, . . . , vk to be an intermediate node.
Negative cycle: d(vi,vj)→ d(vi,vk)
Dynamic Programming: Compute all distances
systematically bottom-up.
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Faster than Floyd-Warshall
Is it possible?

If all weights are positive, then we can run n = ∣V∣ times
Dijkstra’s algorithm!

Run-Time(APSPs ∣ n-Dijkstra) = n×O(m+n logn) = O(mn+n2 logn)

The maximum number of edges is m = (n2) = Θ(n
2
).

Run-Time(APSPs ∣ n-Dijkstra) = O(mn) = O(n3)

If the number of edges is m = o(n2), then:

Run-Time(APSPs ∣ n-Dijkstra) = O(mn) = o(n3)

10/16



FW Johnson

Faster than Floyd-Warshall
Is it possible?

If all weights are positive, then we can run n = ∣V∣ times
Dijkstra’s algorithm!

Run-Time(APSPs ∣ n-Dijkstra) = n×O(m+n logn) = O(mn+n2 logn)

The maximum number of edges is m = (n2) = Θ(n
2
).

Run-Time(APSPs ∣ n-Dijkstra) = O(mn) = O(n3)

If the number of edges is m = o(n2), then:

Run-Time(APSPs ∣ n-Dijkstra) = O(mn) = o(n3)
10/16



FW Johnson

Faster than Floyd-Warshall
Is it possible?

What can we do for the case of negatively-weighted graphs?

Check the existence of negative cycles in O(mn) time.
How? Using the Bellman-Ford algorithm.
Can we adjust the weight of every edge to run Dijkstra’s

algorithm n times? No.
Any extra ideas??
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Johnson’s Algorithm

All-pairs shortest paths for all vertex pairs in sparse graphs
with negative weights:

Transform negative weights to non-negative without
changing shortest paths.

Algorithm for graph G(V,E,w):
Add a new vertex s connected to each u ∈ V with
zero-weight edges.
Bellman-Ford for G′ with s as the source.
If no negative cycle, compute new (non-negative) weights:

ŵ(u,v) = w(v,u) + h(v) − h(u)

Use Dijkstra on G(V,E, ŵ) for each starting vertex u.
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Summary

Single-source shortest paths from an initial vertex s:
Negative weights: Bellman-Ford in time Θ(nm).
DAGs with negative weights in time Θ(m + n).
Non-negative weights: Dijkstra in time Θ(m + n logn).

All-pairs shortest paths:
Negative weights: Floyd-Warshall in time Θ(n3).
Sparse graphs with (possibly) negative weights m = o(n2):

n applications of Dijkstra in time Θ(nm + n2 logn).
With negative weights, Johnson’s algorithm for non-negative
transformation.
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Image Sources I

https://medium.com/neurosapiens/
2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/
08/biografia-de-lester-randolph-ford-jr/

http://www.sequence-alignment.com/

https://medium.com/koderunners/
genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6

https://brand.wisc.edu/web/logos/
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Image Sources II

https://www.pngfind.com/mpng/mTJmbx_
spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/

https://www.pngfind.com/mpng/xhJRmT_
cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/
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