CS 577 - Data Structures
&

Amortized Analysis

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin — Madison

Fall 2024

)

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

DATA STRUCTURES

Static problems

Given an input, produce an output.

Examples

Sorting, Compute Fourier Transform, shortest paths, ...

1/9

Data STRUCTURE PROBLEMS

DATA STRUCTURES

Static problems

Given an input, produce an output.

Examples

Sorting, Compute Fourier Transform, shortest paths,

Dynamic problems

| -

Given a sequence of operations (given one at a time), produce a
sequence of outputs.

Examples

Dynamic Median Maintenance of a growing list,
Incremental Convex Hull of a online updated set of points, ...

AMORTIZED ANALYSIS

1/9

Data STRUCTURE PROBLEMS

DATA STRUCTURES

Algorithm Vs Data structure

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.

1/9

Data STRUCTURE PROBLEMS

DATA STRUCTURES

Algorithm Vs Data structure

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.

@What data structures have you learned about in your courses so far?J

1/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

DATA STRUCTURES

1 2 3 4 5 6 7 8

33 22 55 23 16 63 86 9

bl [1]

Ex. Array, linked list, binary search tree, hash table, ...

@What data structures have you learned about in your courses so far?J

1/9

1 2 3 4 5 6 7 8
33 22 55 23 16 63 86 9

b [[

Ex. Array, linked list, binary search tree, hash table, ...

@What data structures have you learned about in your courses so far?J

Let’s see an example of a Data Structure Problem.

1/9

DATA STRUCTURE PROBLEMS

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

APPETIZER.
EFFICIENTLY NULL-INITIALIZED ARRAY

Goal. Design a data structure to support all operations in O(1) time.

@ INIT(n): create and return an initialized array (all zero) of
length n.

e READ(A,i): return element i in array.

o WRITE(A, i, value): set element i in array to value.

Assumptions.

@ Can MALLOC an uninitialized array of length n in O(1) time.
true in C or C++, but not Java

@ Given an array, can read or write element i in O(1) time.

2/9

Data STRUCTURE PROBLEMS

APPETIZER.
EFFICIENTLY NULL-INITIALIZED ARRAY

Goal. Design a data structure to support all operations in O(1) time.

@ INIT(n): create and return an initialized array (all zero) of
length n.

e READ(A,i): return element i in array.
o WRITE(A, i, value): set element i in array to value.

Assumptions.
@ Can MALLOC an uninitialized array of length n in O(1) time.
true in C or C++, but not Java
INIT in ©(n) time
READ and WRITE in ©(1) time

Remark. A standard array does {

2/9

Data STRUCTURE PROBLEMS

APPETIZER.
EFFICIENTLY NULL-INITIALIZED ARRAY

Goal. Design a data structure to support all operations in O(1) time.

@ INIT(n): create and return an initialized array (all zero) of
length n.

e READ(A,i): return element i in array.
o WRITE(A, i, value): set element i in array to value.

@ How can we build such a structure using standard
arrays like Lego blocks?

O 7

true in C or C++, but not Java

INIT in ©(n) time
READ and WRITE in ©(1) time

Remark. A standard array does {

2/9

Data STRUCTURE PROBLEMS

APPETIZER.
EFFICIENTLY NULL-INITIALIZED ARRAY

INIT (A,) READ (4, i) WRITE (4, i, value)

- - >

? ? =

IS-INITIALIZED (A, i)

-

?

2/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

APPETIZER.
EFFICIENTLY NULL-INITIALIZED ARRAY

INIT (A,) READ (4, i) WRITE (4, i, value)

- - >

? ? 2

@ What do we obviously need? J

-

?

2/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

APPETIZER.
EFFICIENTLY NULL-INITIALIZED ARRAY

INIT (A,) READ (4, i) WRITE (4, i, value)

o B |

@ What do we obviously need?

y

An array A of size n where we can write and read.
A mechanism IsValid(i : position) that tells us if A[i] has a
valid value or a dummy one.

‘?"

2/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

APPETIZER.
EFFICIENTLY NULL-INITIALIZED ARRAY

INIT (A,) READ (4, i) WRITE (4, i, value)

=

:‘ ’p‘ ?‘

@ What do we obviously need?
— —

An array A of size n where we can write and read.
A mechanism IsValid(i : position) that tells us if A[i] has a
valid value or a dummy one.

@ How can we build this online without taking ©(n) time
from the start?

~—

2/9

Data STRUCTURE PROBLEMS

AMORTIZED ANALYSIS

ErriciENTLY NULL-INITIALIZED ARRAY
IMPLEMENTATION (EFFORT #1)

INITIALIZATION STAMP

WRriTE(A, i, value)

k < 0. If (Is-VaLip(A[i])) If (Is-VaLip(A[il))
A < Marroc(n). Return A[i]. A[i] <« value.
B « MaLrLoc(n). Else Else
Return O. k<« k + 1.
A[i] <« value.
B[i] <« k.

Is-VALID(A, 1)

If (1 < B[i] < k)
Return true.
Else
Return false.

3/9

Data STRUCTURE PROBLEMS

AMORTIZED ANALYSIS

Eprrorms s Rlrorr Taceme s v s Ao
I i. k keeps track of how many cells have been safely modified.
M ii. A[:] is used to store and retrieve the values.

Inm iii. B[i] indicates when A[i] was initially modified.

WRriTE(A, i, value)

k < 0. If (Is-VaLip(A[i])) If (Is-VaLip(A[il))
A < Marroc(n). Return A[i]. A[i] <« value.
B « MaLrLoc(n). Else Else
Return O. k<« k + 1.
A[i] <« value.
B[i] <« k.

Is-VALID(A, 1)

If (1 < B[i] < k)
Return true.
Else
Return false.

3/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

EF.-."-.'ﬁ‘ rras NTorr v Tavemra v vz A v 0o

I i. k keeps track of how many cells have been safely modified.
M ii. A[:] is used to store and retrieve the values.
Inm iii. B[i] indicates when A[i] was initially modified.

ﬁ r Y _
@Write(A,4,99), Write(A,6,33), Write(A,2,22), Write(A,3,55), Read(A,5)

1
) 1 2 3 4 5 6 7 8

I
A[l ? 22 55 99 ? 33 2?2 ?

k=4

B[] ? 3 4

—
~
N
~N
~N

What if 1 <B[5] <4 is true by coincidence?

3/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Er i x keeps track of how many cells have been safely modified.
Im ii. A[:] is used to store and retrieve the values.
iii. B[i] indicates when A[i] was initially modified.

E iv. C[j] = index of j-th initialized element

k < 0. @Write(A4,99), Write(A,6,33), Write(A,2,22), (A[i1)

A < MarL erte(A355) Read(A 5) Lue .
B < MaL 2 3 5 6 7 8

C « MALL
— Al] ? 22 55 99 ? 33 ? ?
lue.

B[] ? 3 4 1 ? 2 ? ?

If1 ¢y 4 6 2 3 ? 2 7 72
Retu

Else k=4
Retu What if 1 <B[5] <4 is true by coincidence?

4/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

ErriciENTLY NULL-INITIALIZED ARRAY
IMPLEMENTATION (EFFORT #2)

If (1 <B[i] < k), then we still can’t have (C[B[i]] = i) because
Cl1..x] # i if A[i] not initialized. (Induction at k ®) h

k < 0. @Write(A4,99), Write(A,6,33), Write(A,2,22), (A[i1)
A < MarL Wr1te(A355) Read(A 5) Lue .
B « MaL 2 3 5 6 7 8

C «»MALL
— Al] ? 22 55 99 ? 33 ? ?
lue.

B[] ? 3 4 1 ? 2 ? ?

If1 ¢y 4 6 2 3 ? 2 7 72
Retu
Else

Retu What if 1 <B[5] <4 is true by coincidence?

k=4

Data STRUCTURE PROBLEMS

AMORTIZED ANALYSIS

ErriciENTLY NULL-INITIALIZED ARRAY
IMPLEMENTATION (EFFORT #2)

k < 0. If (Is-VarLip(A[i]))
A < Mavrroc(n). Return A[i].

B < MarrLoc(n). Else

C < MaLLoc(n). Return O.

WRITE(A, i, value)

If (Is-VaLip(A[i]))
A[i] <« value.
Else
k <« k + 1.
A[i] <« value.
B[i] « k.
Clk] « 1.

Is-VALID(A, 1)

If (1 < B[i] < k) and (C[B[i]] = 1)
Return true.

Else
Return false.

4/9

AMORTIZED ANALYSIS

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

DEerINITION

Worst-case analysis

Determine worst-case running time of a data structure
operation as a function of the input size n.

Pessimistic if expensive operations follow many cheap ones.

Amortized analysis

Determine worst-case running time of a sequence of n data
structure operations.

> icry1 actual — cost[move;
Amortized — Cost = i€n] [A

n

5/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Binary COUNTER

Increment # times a k-bit binary counter (mod 2¥) where k is
super-large k = w(2%").

A[j] = j™ least significant bit of the counter.

Table: Binary Counter Table

Counter value

Al6] A[5] A[4] A[3] A[2] A[1] A[9]
0 0

>
coocoocococoocooolyg

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

o0 NOUIEWN RO
cocooococoooo
_mm,R,OoOO0O0O0O0COO
HO R OROROROR

6/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Binary COUNTER

Cost model
Number of bits flipped.

©How many bit flips are needed to increment the counter n
times, starting from zero?

Table: Binary Counter Table

Counter value

—

Al6] A[5] A[4] A[3] A[2] A[1] A[9]

>
cococococococooocooyg

0
0
0
0
0
0
0
0
0
0
0
0

COoO00o0O0OO OO OO

0
0
0
0
0
0
0
0
0
0
0
0

CS0®NGOUE WN RO
—RrR,RrOCOCOC O OO
—HOOR L OOR = OO
OO OMOROR O

6/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Binary COUNTER

Cost model
Number of bits flipped.

@How many bit flips are needed to increment the counter 7
times, starting from zero?

In worst-case, at most k bits flipped per increment. So O(rk). J

RFROOR P, OOR .
RO OROROROE

S S0®NG U WN -
coocococococococo
coocococococococo
cocococococococo
coococococococoo
—RrRrRroO0CcOOCO
coocorrrrOoO

6/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Binary COUNTER

Cost model
Number of bits flipped.

@How many bit flips are needed to increment the counter 7
times, starting from zero?

In worst-case, at most k bits flipped per increment. So O(rk). J
T .

@But k bits together would only flip during the last increment. J

g =SIN-RCORNEEN
cocoocococo
cocoocococo
cococococo
cocoocococo
SN =]
coocomm
_ R, OO R
—omormo

6/9

DatA STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

Measure running time in terms of credits (time = money). \

7/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

Measure running time in terms of credits (time = money).

@ Expensive operations: Prepay for these by storing up credits

during cheaper operations.

@ Cheap operations: Use the already stored credits (no extra cost
at the time).

7/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

Measure running time in terms of credits (time = money).

Key Idea

@ Expensive operations: Prepay for these by storing up credits

during cheaper operations.

@ Cheap operations: Use the already stored credits (no extra cost
at the time).

@ For every operation, we consume one credit.

@ Assign each operation a cost that includes both the actual cost
and some extra "savings."

@ Use these "savings" to cover the cost of future cheap operations.

7/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WorTH A THOUsaND WORDS

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket
Expensive | 5%

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket
Expensive 5% 4%

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket
Expensive 5% 4%
Cheap

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket
Expensive 5% 4%
Cheap 3%

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket

Expensive 5% 4%
Cheap 3%
Cheap

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket

Expensive 5% 4%
Cheap 3%
Cheap 2%

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket
Expensive 5% 4%

Cheap 3%
Cheap 2%
Expensive 50

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket

Expensive 5% 4%
Cheap 3%
Cheap 2%

Expensive | 5%

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

operations = (Dollars we consumed)

actual cost
operations = (Dollars we borrowed) — (Dollars left in our pocket) .

bank cost Potential overcharging

Operation | Bank | Pocket

Expensive 5% 4%
Cheap 3%
Cheap 2%

Expensive | 5% 6$

8/9

DATA STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExampLE 1s WORTH A THOUSAND WORDS
Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

@ For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.

@ For cheap operations, we borrow only $1 if our pocket is empty.
At the end,

Operation | Bank | Pocket
Expensive | 5% 4%

Cheap 3%
Cheap 2%
Expensive | 5% 6%

operations = (Dollars we borrowed) — (Dollars left in our pocket) = 4.

10% 6%

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

AMORTIZED ANALYSIS: ACCOUNTING METHOD

AN ExamrLE 1s WorTH A THoUusaND WoORDSs
Every operation costs $1 to execute. If we don’t have money in our

A

A.e.sdp’s Moral

e Bank: Our worst-case outlook on expensive operations.
@ Pocket: Our amortized hope that costly operations are rare.
At the end,

Operation | Bank | Pocket
Expensive | 5% 4%

Cheap 3%
Cheap 2%
Expensive | 5% 6%

operations = (Dollars we borrowed) — (Dollars left in our pocket) = 4.

10% 6%

8/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1
3 2% 13
2 0 0 0 1 0

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1
3 2% 13
2 0 0 0 1 0
; 2% 2%
3 0 0 0 1 1

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1
3 2% 13
2 0 0 0 1 0
; 2% 2%
3 0 0 0 1 1
! 2% 1%
4 0 0 1 0 0

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1
3 2% 13
2 0 0 0 1 0
; 2% 2%
3 0 0 0 1 1
! 2% 1%
4 0 0 1 0 0
{ 2% 2%
5 0 0 1 0 1

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1
3 2% 13
2 0 0 0 1 0
; 2% 2%
3 0 0 0 1 1
! 2% 1%
4 0 0 1 0 0
{ 2% 2%
5 0 0 1 0 1
i 2% 2%
6 0 0 1 1 0

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 o 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1
3 2% 13
2 0 0 0 1 0
; 2% 2%
3 0 0 0 1 1
! 2% 1%
4 0 0 1 0 0
{ 2% 2%
5 0 0 1 0 1
i 2% 2%
6 0 0 1 1 0
{ 2% 3%
7 0 0 1 1 1

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
@ Any leftover money stays in our pocket for future use.

Increment | .- A[4] A[3] A[2] A[1] A[0] | Bank | Pocket
0 o 0 0 0 0 0
i 2% 1$
1 0 0 0 0 1
3 2% 13
2 0 0 0 1 0
; 2% 2%
3 0 0 0 1 1
! 2% 1%
4 0 0 1 0 0
{ 2% 2%
5 0 0 1 0 1
i 2% 2%
6 0 0 1 1 0
{ 2% 3%
7 0 0 1 1 1
i 2% 13
8 0 1 0 0 0

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.

Observations

@ #1 Pocket dollars = Aces on the counter register
e #2 Bank loan of 2% is always sufficient.

(Proof by induction ©)

v 2% ol
3 0 0 0 1 1
| 2% 1%
4 0 0 1 0 0
| 2% 2%
5 0 0 1 0 1
| 2% 2%
6 0 0 1 1 0
| 2% 3%
7 0 0 1 1 1
| 2% 1$
8 0 1 0 0 0

9/9

Data STRUCTURE PROBLEMS AMORTIZED ANALYSIS

Back to Binary COUNTER

AMORTIZED ANALYSIS
Rules: The cost of any flip is $1. We always borrow $2 from the bank.
@ If we don’t have enough money in our pocket, we borrow $1 per necessary flip.

Observations

@ #1 Pocket dollars = Aces on the counter register
e #2 Bank loan of 2% is always sufficient.

Proof by induction ®

Amortized Analysis

operations = (Dollars we borrowed) — (Dollars left in our pocket)

bank cost Potential overcharging

operations = 2n — (Dollars left in our pocket) < 2n

Potential overcharging

[0 1 0 0 0 y

.

APPENDIX

REFERENCES

APPENDI REFERENCES

IMAGE SoURcEs 1

WISCONSIN https://brand.wisc.edu/web/logos/

https://en.wikipedia.org/wiki/Bijection

10/9

https://brand.wisc.edu/web/logos/
https://en.wikipedia.org/wiki/Bijection

	Data Structure Problems
	Amortized Analysis
	Appendix
	Appendix
	References

