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Data Structure Problems Amortized Analysis

Data structures

Static problems
Given an input, produce an output.

Examples
Sorting, Compute Fourier Transform, shortest paths, . . .
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Data structures
Static problems
Given an input, produce an output.

Examples
Sorting, Compute Fourier Transform, shortest paths, . . .

Dynamic problems
Given a sequence of operations (given one at a time), produce a
sequence of outputs.

Examples
Dynamic Median Maintenance of a growing list,
Incremental Convex Hull of a online updated set of points, . . .
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Data structures

Algorithm Vs Data structure
Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
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Data structures

Algorithm Vs Data structure
Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.

What data structures have you learned about in your courses so far?

Ex. Array, linked list, binary search tree, hash table, . . .

Let’s see an example of a Data Structure Problem.
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Data Structure Problems Amortized Analysis

Appetizer.
Efficiently null-initialized array

Goal. Design a data structure to support all operations in O(1) time.
INIT(n): create and return an initialized array (all zero) of
length n.
READ(A, i): return element i in array.
WRITE(A, i,value): set element i in array to value.

Assumptions.

Can MALLOC an uninitialized array of length n in O(1) time.
true in C or C++, but not Java

Given an array, can read or write element i in O(1) time.
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Appetizer.
Efficiently null-initialized array

Goal. Design a data structure to support all operations in O(1) time.
INIT(n): create and return an initialized array (all zero) of
length n.
READ(A, i): return element i in array.
WRITE(A, i,value): set element i in array to value.

Assumptions.
Can MALLOC an uninitialized array of length n in O(1) time.
true in C or C++, but not Java
Given an array, can read or write element i in O(1) time.

Remark. A standard array does
⎧⎪⎪⎨⎪⎪⎩

INIT in Θ(n) time
READ andWRITE in Θ(1) time

How can we build such a structure using standard
arrays like Lego blocks?
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Appetizer.
Efficiently null-initialized array

What do we obviously need?

An array A of size n where we can write and read.
A mechanism IsValid(i ∶ position) that tells us if A[i] has a
valid value or a dummy one.
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Appetizer.
Efficiently null-initialized array

What do we obviously need?

An array A of size n where we can write and read.
A mechanism IsValid(i ∶ position) that tells us if A[i] has a
valid value or a dummy one.

How can we build this online without taking Θ(n) time
from the start?

2/9
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Efficiently Null-Initialized Array
Implementation (Effort #1)
Initialization Stamp

Init(A, n)
k ← 0.
A ← Malloc(n).
B ← Malloc(n).

Read(A, i)
If (Is-Valid(A[i]))
Return A[i].

Else
Return 0.

Write(A, i, value)
If (Is-Valid(A[i]))
A[i] ← value.

Else
k ← k + 1.
A[i] ← value.
B[i] ← k.

Is-Valid(A, i)
If (1 ≤ B[i] ≤ k)
Return true.

Else
Return false.
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ii. A[:] is used to store and retrieve the values.

iii. B[i] indicates when A[i]was initially modified.
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Init(A, n)
k ← 0.
A ← Malloc(n).
B ← Malloc(n).

Read(A, i)
If (Is-Valid(A[i]))
Return A[i].

Else
Return 0.

Write(A, i, value)
If (Is-Valid(A[i]))
A[i] ← value.

Else
k ← k + 1.
A[i] ← value.
B[i] ← k.

Is-Valid(A, i)
If (1 ≤ B[i] ≤ k)
Return true.

Else
Return false.

i. k keeps track of how many cells have been safely modified.
ii. A[:] is used to store and retrieve the values.

iii. B[i] indicates when A[i]was initially modified.

Write(A,4,99), Write(A,6,33), Write(A,2,22), Write(A,3,55), Read(A,5)

What if 1 ≤ B[5] ≤ 4 is true by coincidence?
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Efficiently Null-Initialized Array
Implementation (Effort #2)

Init(A, n)
k ← 0.
A ← Malloc(n).
B ← Malloc(n).
C ← Malloc(n).

Read(A, i)
If (Is-Valid(A[i]))
Return A[i].

Else
Return 0.

Write(A, i, value)
If (Is-Valid(A[i]))
A[i] ← value.

Else
k ← k + 1.
A[i] ← value.
B[i] ← k.
C[k] ← i.

Is-Valid(A, i)
If (1 ≤ B[i] ≤ k) and (C[B[i]] = i)
Return true.

Else
Return false.

i. k keeps track of how many cells have been safely modified.
ii. A[:] is used to store and retrieve the values.

iii. B[i] indicates when A[i]was initially modified.
iv. C[j] = index of j-th initialized element

Write(A,4,99), Write(A,6,33), Write(A,2,22),
Write(A,3,55), Read(A,5)

What if 1 ≤ B[5] ≤ 4 is true by coincidence?
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A[i] ← value.
B[i] ← k.
C[k] ← i.

Is-Valid(A, i)
If (1 ≤ B[i] ≤ k) and (C[B[i]] = i)
Return true.

Else
Return false.

If (1 ≤ B[i] ≤ k), then we still can’t have (C[B[i]] = i) because
C[1..k] ≠ i if A[i] not initialized. (Induction at k ,)

Write(A,4,99), Write(A,6,33), Write(A,2,22),
Write(A,3,55), Read(A,5)

What if 1 ≤ B[5] ≤ 4 is true by coincidence?
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Data Structure Problems Amortized Analysis

Definition

Worst-case analysis
Determine worst-case running time of a data structure
operation as a function of the input size n.
Pessimistic if expensive operations follow many cheap ones.

Amortized analysis
Determine worst-case running time of a sequence of n data
structure operations.

Amortized −Cost =
∑i∈[n] actual − cost[movei]

n
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Binary Counter

Goal
Increment n times a k-bit binary counter (mod 2k)where k is
super-large k = ω(22n).
A[j] = jth least significant bit of the counter.

Table: Binary Counter Table
Counter value A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 1 1
4 0 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0 1
6 0 0 0 0 0 1 1 0
7 0 0 0 0 0 1 1 1
8 0 0 0 0 1 0 0 0
9 0 0 0 0 1 0 0 1
10 0 0 0 0 1 0 1 0
11 0 0 0 0 1 0 1 1
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Binary Counter
Cost model
Number of bits flipped.

How many bit flips are needed to increment the counter n
times, starting from zero?

Table: Binary Counter Table
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In worst-case, at most k bits flipped per increment. So O(nk̇).
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Binary Counter

Cost model
Number of bits flipped.

How many bit flips are needed to increment the counter n
times, starting from zero?

Counter value A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 1 1
4 0 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0 1
6 0 0 0 0 0 1 1 0
7 0 0 0 0 0 1 1 1
8 0 0 0 0 1 0 0 0
9 0 0 0 0 1 0 0 1
10 0 0 0 0 1 0 1 0
11 0 0 0 0 1 0 1 1

In worst-case, at most k bits flipped per increment. So O(nk̇).

But k bits together would only flip during the last increment.
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Amortized Analysis: Accounting Method
Intuition
Measure running time in terms of credits (time = money).

Key Idea
Expensive operations: Prepay for these by storing up credits
during cheaper operations.

Cheap operations: Use the already stored credits (no extra cost
at the time).

How It Works
For every operation, we consume one credit.

Assign each operation a cost that includes both the actual cost
and some extra "savings."

Use these "savings" to cover the cost of future cheap operations.
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Amortized Analysis: Accounting Method
An Example is Worth a Thousand Words

Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.
For cheap operations, we borrow only $1 if our pocket is empty.

At the end,
# operations = (Dollars we consumed)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
actual cost

# operations = (Dollars we borrowed)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bank cost

− (Dollars left in our pocket)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Potential overcharging

.

Operation Bank Pocket
0$
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Amortized Analysis: Accounting Method
An Example is Worth a Thousand Words

Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.
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At the end,
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Potential overcharging

.

Operation Bank Pocket
Expensive 5$
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Amortized Analysis: Accounting Method
An Example is Worth a Thousand Words

Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.
For cheap operations, we borrow only $1 if our pocket is empty.

At the end,
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Amortized Analysis: Accounting Method
An Example is Worth a Thousand Words

Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

For expensive operations, we borrow $5. The leftover money
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Amortized Analysis: Accounting Method
An Example is Worth a Thousand Words

Every operation costs $1 to execute. If we don’t have money in our
pocket, we borrow from the bank.

For expensive operations, we borrow $5. The leftover money
stays in our pocket for future use.
For cheap operations, we borrow only $1 if our pocket is empty.

At the end,
# operations = (Dollars we consumed)
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Aesop’s Moral
Bank: Our worst-case outlook on expensive operations.
Pocket: Our amortized hope that costly operations are rare.
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Back to Binary Counter
Amortized Analysis

Rules: The cost of any flip is $1. We always borrow $2 from the bank.
If we don’t have enough money in our pocket, we borrow $1 per necessary flip.
Any leftover money stays in our pocket for future use.

Increment ⋯ A[4] A[3] A[2] A[1] A[0] Bank Pocket
0 ⋯ 0 0 0 0 0
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≤ 2n
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