CS 577 - Discrete Primer

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

DISCRETE MATHEMATICS

Definition

Rigorous mathematical study of discrete structures.

DISCRETE MATHEMATICS

Definition

Rigorous mathematical study of discrete structures.

Key Discrete Concepts for CS 577

Core

- Logic
- Sets
- Recurrences
- Relations and Function
- Graphs and Trees
- Counting

DISCRETE MATHEMATICS

Definition

Rigorous mathematical study of discrete structures.

Key Discrete Concepts for CS 577

Core

- Logic
- Sets
- Recurrences
- Relations and Function
- Graphs and Trees
- Counting

Applied in CS 577

- Proofs esp. Induction
- Invariants
- Program Correctness

Logic

Definition

A statement that is either true or false.

Definition

A statement that is either true or false.

Example

True proposition:

• Empire is the best Star Wars movie

Definition

A statement that is either true or false.

Example

True proposition:

- Empire is the best Star Wars movie
- Ottawa is the capital of Canada.

Definition

A statement that is either true or false.

Example

True proposition:

- Empire is the best Star Wars movie
- Ottawa is the capital of Canada.

False proposition:

• Toronto is the capital of Canada.

Definition

A statement that is either true or false.

Example

True proposition:

- Empire is the best Star Wars movie
- Ottawa is the capital of Canada.

False proposition:

• Toronto is the capital of Canada.

Operations

- And: ^, &, &&
- Or: v, |, ||
- Negation: ¬, !

- Implies: \implies
- If and only if (iff): \iff

$$P \iff Q \equiv P \implies Q \land Q \implies P$$

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F				
F	Т				
Т	F				
Т	Т				

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F			
F	Т				
Т	F				
Т	Т				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F		
F	Т				
Т	F				
Т	Т				

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	Т	
F	Т				
Т	F				
Т	Т				

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	Т	Т
F	Т				
Т	F				
Т	Т				

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	Т	Т
F	Т	F			
Т	F				
Т	Т				

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	$ \neg a$
F	F	F	F	Т	Т
F	Т	F	Т		
Т	F				
Т	Т				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	
Т	F				
Т	Т				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F				
T	Т				

a	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F			
Т	Т				

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т		
T	Т				

a	b	a ^ b	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	
Т	Т				

a	b	a ^ b	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	F
Т	Т				

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	F
Т	Т	Т			

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	F
Т	Т	Т	Т		

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	F
Т	Т	Т	Т	Т	

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	¬a
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	F
Т	Т	Т	Т	Т	F
_					

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	$\neg a$
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	F
Т	Т	Т	Т	Т	F

Logical Equivalence

TopHat 1: Is $P \implies Q$ equivalent to $\neg P \implies \neg Q$?

а	b	$a \wedge b$	$a \lor b$	$a \implies b$	$\neg a$
F	F	F	F	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	F	F
Т	Т	Т	Т	Т	F

Logical Equivalence

TopHat 1: Is $P \implies Q$ equivalent to $\neg P \implies \neg Q$? Exercise: Prove it!

Predicates

Definition

For an underlying domain *D*. A predicate is a mapping of *D* to propositions.

Predicates

Definition

For an underlying domain *D*. A predicate is a mapping of *D* to propositions.

Quantifiers

- For all: \forall . $\forall x \in \mathbb{Z}$, $Even(x) \iff Odd(x+1)$
- There exists: \exists . \exists person \in This Room, LovesStarWars(x)
- Order matters when combining quantifiers!

Predicates

Definition

For an underlying domain *D*. A predicate is a mapping of *D* to propositions.

Quantifiers

- For all: \forall . $\forall x \in \mathbb{Z}$, $Even(x) \iff Odd(x+1)$
- There exists: \exists . \exists person \in This Room, LovesStarWars(x)
- Order matters when combining quantifiers!

Logical Equivalence

TopHat 2: What is the logical equivalence of $\neg(\forall x S(x))$?

Definition

- A well-defined collection of elements from some domain. Each element in a set is unique.
- A <u>multiset</u> may contain duplicates.

Definition

- A well-defined collection of elements from some domain. Each element in a set is unique.
- A <u>multiset</u> may contain duplicates.

Ex: $A = \{11, 12, 13\}$ $B = \{x \in \mathbb{Z} \mid 10 < x \le 13\}$

Definition

- A well-defined collection of elements from some domain. Each element in a set is unique.
- A <u>multiset</u> may contain duplicates.

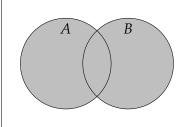
Ex: $A = \{11, 12, 13\}$ $B = \{x \in \mathbb{Z} \mid 10 < x \le 13\}$

Basic Notations

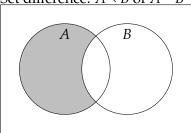
- $A \subset B$ A is a proper subset of *B*, meaning that A contains some (or none) of the elements of *B* but not all.
- $A \subseteq B$ A is subset of B and A may contain all of the elements of B.
 - |A| The cardinality of A is the number of elements in the set.

Set Operations

Union: $A \cup B$



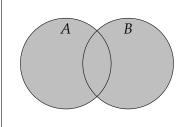
Set difference: $A \times B$ or A - B



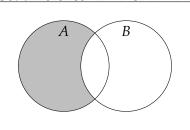
Intersection: $A \cap B$

Set Operations

Union: $A \cup B$



Set difference: $A \times B$ or A - B



Other Notions

- Ø or {} The null or empty set.
 - $\mathcal{P}(A)$ Power set of *A*. A set of all possible subsets of *A* (including \emptyset).

TopHats

TopHat 3

What is $\{a, b, c\} \setminus \{c, d, e\}$?

TopHats

TopHat 3

What is $\{a, b, c\} \setminus \{c, d, e\}$?

TopHat 4

What is the size of $\mathcal{P}(A)$ for some set *A*?

Relations and Functions

Cartesian Product

For two set *A* and *B*, $A \times B = \{(a, b) | a \in A \land b \in B\}$.

Cartesian Product

For two set *A* and *B*, $A \times B = \{(a, b) \mid a \in A \land b \in B\}$.

Definition

A relation between sets *A* and *B* is a defined subset of $A \times B$. Ex: $R = \{(x, y) \mid x \neq y\}$

Definition

A relation between sets *A* and *B* is a defined subset of $A \times B$. Ex: $R = \{(x, y) \mid x \neq y\}$

Properties of Relations

Reflexive If $\forall a \in A, R(a, a)$. (antireflexive: $\forall a \in A, \neg R(a, a)$) **Symmetric** If $\forall a, b \in A, R(a, b) \iff R(b, a)$. (antisymmetric: $\forall a, b \in A, R(a, b) \cap R(b, a) \implies a = b$) **Transitive** If $\forall a, b, c \in A, R(a, b) \cap R(b, c) \implies R(a, c)$.

Definition

A relation between sets *A* and *B* is a defined subset of $A \times B$. Ex: $R = \{(x, y) \mid x \neq y\}$

Properties of Relations

Reflexive If $\forall a \in A, R(a, a)$. (antireflexive: $\forall a \in A, \neg R(a, a)$) **Symmetric** If $\forall a, b \in A, R(a, b) \iff R(b, a)$. (antisymmetric: $\forall a, b \in A, R(a, b) \cap R(b, a) \implies a = b$) **Transitive** If $\forall a, b, c \in A, R(a, b) \cap R(b, c) \implies R(a, c)$.

Types of Relations

- Equivalence Relations: reflexive, symmetric, and transitive.
- Order Relations: antisymmetric and transitive.
- Functions

Functions

Definition

 $f : A \rightarrow B$ is a function from A to B. That is for every $a \in A$ there is at most one $b \in B$. Ex. f(x) = y + 1 for $x, y \in \mathbb{R}$.

Functions

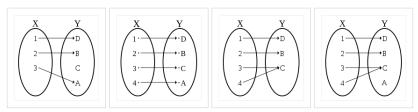
Definition

 $f : A \rightarrow B$ is a function from A to B. That is for every $a \in A$ there is at most one $b \in B$. Ex. f(x) = y + 1 for $x, y \in \mathbb{R}$.

Terminology

- **Domain**: The values of *A*.
- Range / Codomain: The values of *B*

Functions



An injective non-surjective function (injection, not a **bijection**) An injective surjective function (bijection) A non-injective surjective function (surjection, not a bijection) A non-injective non-surjective function (also not a **bijection**)

Types of Functions

- one-to-one / injective
- onto / surjective
- bijection (both onto and one-to-one)

INDUCTION

What is induction?

- The most important proof technique in discrete math and CS.
- It proves that P(n) holds for every natural number n, i.e., n = 0, 1, 2, 3, ...

What is induction?

- The most important proof technique in discrete math and CS.
- It proves that P(n) holds for every natural number n, i.e., n = 0, 1, 2, 3, ...

Induction Formula

- Step 1 State the induction hypothesis.
- **Step 2** Show that the induction hypothesis holds for the base case(s).
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Induction Formula

- Step 1 State the induction hypothesis.
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Special Types of Induction

- Strong induction: we assume true for 1 to *k* instead of just *k*.
- Structural induction: we are reasoning about a structure that we map to the natural numbers.

Induction Formula

- Step 1 State the induction hypothesis.
- **Step 2** Show that the induction hypothesis holds for the base case(s).
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Induction Exercises

• Show
$$\sum_{1}^{n} 2^{n} = 2^{n+1} - 2$$
.

Induction Formula

- Step 1 State the induction hypothesis.
- Step 2 Show that the induction hypothesis holds for the base case(s).
- **Step 3** Assume hypothesis is true for k, show that it holds for k + 1.

Induction Exercises

- Show $\sum_{1}^{n} 2^{n} = 2^{n+1} 2$.
- Show, for $n \ge 5$, $4n < 2^n$.

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Types (other than induction)

Proof by Picture Actually not valid!

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

If and only if $P \iff Q$ means proving $P \implies Q$ and $Q \implies P$.

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

If and only if $P \iff Q$ means proving $P \implies Q$ and $Q \implies P$.

Proof by Contradiction Assume claim is not true, and derive a contradiction.

Definition

A proof of a proposition P is a chain of logical deductions ending in P and starting from some set of axioms.

Types (other than induction)

Direct Proof Series of implications.

Indirect Proof (Contrapositive) To show $P \implies Q$, we show that $\neg Q \implies \neg P$.

If and only if $P \iff Q$ means proving $P \implies Q$ and $Q \implies P$.

Proof by Contradiction Assume claim is not true, and derive a contradiction.

Proof by Cases (Brute Force / Exhaustion) Split into cases and prove separately for each case.

Basic Techniques

- *k*-to-1 Rule: Is there a *k* to 1 ratio between 2 sets?
- Sum Rule: Combine disjoint sets; add cardinality.
- Product Rule: Cartesian product of sets; multiply cardinality.

Basic Techniques

- *k*-to-1 Rule: Is there a *k* to 1 ratio between 2 sets?
- Sum Rule: Combine disjoint sets; add cardinality.
- Product Rule: Cartesian product of sets; multiply cardinality.

Perms and Comb

- *k*-Permutation: *k*!
- *r*-Permutation of *n* items: ${}_{n}P_{r} = P(n,r) = \frac{n!}{(n-r)!}$
- *r*-Combination of *n* items: ${}_{n}C_{r} = C(n,r) = \frac{n!}{r!(n-r)!}$

Basic Techniques

- *k*-to-1 Rule: Is there a *k* to 1 ratio between 2 sets?
- Sum Rule: Combine disjoint sets; add cardinality.
- Product Rule: Cartesian product of sets; multiply cardinality.

Perms and Comb

- *k*-Permutation: *k*!
- *r*-Permutation of *n* items: ${}_{n}P_{r} = P(n,r) = \frac{n!}{(n-r)!}$
- *r*-Combination of *n* items: ${}_{n}C_{r} = C(n,r) = \frac{n!}{r!(n-r)!}$

Pigeonhole Principal

If *n* pigeons are placed into *m* holes, and n > m, then at least one hole has more than one pigeon.

Definition

• A property of a system that holds after every step.

Definition

- A property of a system that holds after every step.
- Often critical to showing program correctness.

Definition

- A property of a system that holds after every step.
- Often critical to showing program correctness.

Robot Exercise

Suppose we have a robot which walks on a 2-dimensional grid. The rows and columns of the grid are labelled by integers. Our robot starts at position (0,0), and can only move diagonally, one square at a time. Can we get to (8,9)? Why or why not?

PROGRAM CORRECTNESS

PROGRAM CORRECTNESS

Definition

A program/algorithm is correct if it is:

- **Partial correctness/correct/sound** (any returned value is true), and
- **Termination/complete** (returns a value for all valid inputs).

PROGRAM CORRECTNESS

Definition

A program/algorithm is correct if it is:

- **Partial correctness/correct/sound** (any returned value is true), and
- **Termination/complete** (returns a value for all valid inputs).

Proving correctness

- Requires 2 proofs (one for soundness and one for completeness).
- Often requires identifying invariants and induction.

Definition

An inductive (or recursive) definition of a sequence.

Definition

An inductive (or recursive) definition of a sequence.

Methods for Solving Recurrences

- Guess Method / Recurrence Tree
- Unwind
- Master Theorem

Definition

An inductive (or recursive) definition of a sequence.

Methods for Solving Recurrences

- Guess Method / Recurrence Tree
- Unwind
- Master Theorem

Exercises

Assume T(1) = 1 for all.

- T(n) = T(n/2) + 1
- T(n) = T(n/2) + n
- T(n) = 3T(n/3) + n

GRAPHS AND TREES

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

• Complete graph (*K*₄)

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (*P*₄)

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (*P*₄)
- Trees

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (*P*₄)
- Trees

Digraph

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (P_4)
- Trees

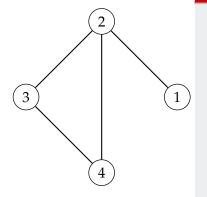
- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite

Definition

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

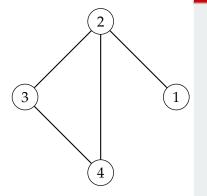
- Complete graph (*K*₄)
- Cycle (C_4)
- Path (P_4)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite
- Forests



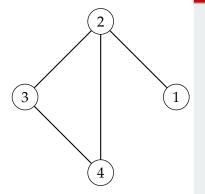
Representations

• Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.



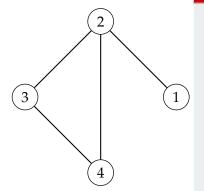
Representations

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.



Representations

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges.



Representations

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges.
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

Trees

Definition

- A connected graph without cycles.
- A single node may be designated as the <u>root</u> of the tree.
- Any node with degree 1 that is not the root is a <u>leaf</u>.

Trees

Definition

- A connected graph without cycles.
- A single node may be designated as the root of the tree.
- Any node with degree 1 that is not the root is a <u>leaf</u>.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) *T* has at least 2 leaves.
- For all nodes *u* and *v*, there exists one path between them in *T*.

●
$$|V| = |E| + 1$$
 for $|V| \ge 1$.

Trees

Definition

- A connected graph without cycles.
- A single node may be designated as the root of the tree.
- Any node with degree 1 that is not the root is a <u>leaf</u>.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) *T* has at least 2 leaves.
- For all nodes *u* and *v*, there exists one path between them in *T*.

●
$$|V| = |E| + 1$$
 for $|V| \ge 1$.

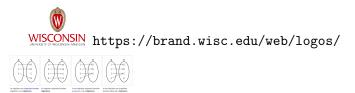
TopHat 6

Is P_{10} a tree?

Appendix

References

Image Sources I



https://en.wikipedia.org/wiki/Bijection