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Discrete Mathematics

Definition
Rigorous mathematical study of discrete structures.
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Propositions
Definition
A statement that is either true or false.

Example
True proposition:

Empire is the best Star Wars movie

Ottawa is the capital of Canada.
False proposition:

Toronto is the capital of Canada.

Operations

And: ∧, &, &&

Or: ∨, ∣, ∣∣
Negation: ¬, !

Implies: Ô⇒
If and only if (iff): ⇐⇒
P ⇐⇒ Q ≡ P Ô⇒ Q ∧Q Ô⇒ P
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Truth Tables

a b a ∧ b a ∨ b a Ô⇒ b ¬a
F F

F F T T

F T

F T T T

T F

F T F F

T T

T T T F

Logical Equivalence
TopHat 1: Is P Ô⇒ Q equivalent to ¬P Ô⇒ ¬Q?

Exercise: Prove it!
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Predicates

Definition
For an underlying domain D. A predicate is a mapping of D to
propositions.

Quantifiers
For all: ∀. ∀x ∈ Z,Even(x) ⇐⇒ Odd(x + 1)
There exists: ∃. ∃person ∈ This Room,LovesStarWars(x)
Order matters when combining quantifiers!

Logical Equivalence
TopHat 2: What is the logical equivalence of ¬(∀xS(x))?
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Sets
Definition

A well-defined collection of elements from some domain.
Each element in a set is unique.
A multiset may contain duplicates.

Ex: A = {11,12,13}
B = {x ∈ Z ∣ 10 < x ≤ 13}

Basic Notations
A ⊂ B A is a proper subset of B, meaning that A contains

some (or none) of the elements of B but not all.
A ⊆ B A is subset of B and A may contain all of the

elements of B.
∣A∣ The cardinality of A is the number of elements in

the set.
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Set Operations
Union: A ∪ B

A B

Set difference: A ∖ B or A − B

A B

Intersection: A ∩ B

A B

Other Notions
∅ or {} The null or empty

set.
P(A) Power set of A. A

set of all possible
subsets of A
(including ∅).
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TopHats

TopHat 3
What is {a, b, c} ∖ {c,d, e}?

TopHat 4
What is the size of P(A) for some set A?
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Relations
Cartesian Product
For two set A and B, A × B = {(a, b) ∣ a ∈ A ∧ b ∈ B}.

Definition
A relation between sets A and B is a defined subset of A × B.
Ex: R = {(x,y) ∣ x ≠ y}

Properties of Relations
Reflexive If ∀a ∈ A,R(a, a). (antireflexive: ∀a ∈ A,¬R(a, a))

Symmetric If ∀a, b ∈ A,R(a, b) ⇐⇒ R(b, a). (antisymmetric:
∀a, b ∈ A,R(a, b) ∩R(b, a) Ô⇒ a = b)

Transitive If ∀a, b, c ∈ A,R(a, b) ∩R(b, c) Ô⇒ R(a, c).

Types of Relations
Equivalence Relations: reflexive, symmetric, and transitive.
Order Relations: antisymmetric and transitive.
Functions

8/18
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Functions

Definition
f ∶ A→ B is a function from A to B. That is for every a ∈ A there
is at most one b ∈ B.
Ex. f (x) = y + 1 for x,y ∈ R.

Terminology
Domain: The values of A.
Range / Codomain: The values of B

9/18



Logic Sets Relations Induction Proofs Counting Invariants Prog. Correctness Recurrences Graphs

Functions

Definition
f ∶ A→ B is a function from A to B. That is for every a ∈ A there
is at most one b ∈ B.
Ex. f (x) = y + 1 for x,y ∈ R.

Terminology
Domain: The values of A.
Range / Codomain: The values of B

9/18



Logic Sets Relations Induction Proofs Counting Invariants Prog. Correctness Recurrences Graphs

Functions

Types of Functions
one-to-one / injective
onto / surjective
bijection (both onto and one-to-one)
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Proof by Induction

What is induction?
The most important proof technique in discrete math and
CS.
It proves that P(n) holds for every natural number n, i.e.,
n = 0,1,2,3, . . ..

Induction Formula
Step 1 State the induction hypothesis.
Step 2 Show that the induction hypothesis holds for the

base case(s).
Step 3 Assume hypothesis is true for k, show that it holds

for k + 1.
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Proof by Induction

Induction Formula
Step 1 State the induction hypothesis.
Step 2 Show that the induction hypothesis holds for the

base case(s).
Step 3 Assume hypothesis is true for k, show that it holds

for k + 1.

Special Types of Induction
Strong induction: we assume true for 1 to k instead of just k.
Structural induction: we are reasoning about a structure
that we map to the natural numbers.
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Proof by Induction

Induction Formula
Step 1 State the induction hypothesis.
Step 2 Show that the induction hypothesis holds for the

base case(s).
Step 3 Assume hypothesis is true for k, show that it holds

for k + 1.

Induction Exercises
Show ∑n

1 2n = 2n+1 − 2.

Show, for n ≥ 5, 4n < 2n.
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Proofs

Definition
A proof of a proposition P is a chain of logical deductions
ending in P and starting from some set of axioms.

Types (other than induction)

Indirect Proof (Contrapositive) To show P Ô⇒ Q, we show
that ¬Q Ô⇒ ¬P.

If and only if P ⇐⇒ Qmeans proving P Ô⇒ Q and
Q Ô⇒ P.

Proof by Contradiction Assume claim is not true, and derive a
contradiction.

Proof by Cases (Brute Force / Exhaustion) Split into cases and
prove separately for each case.
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Counting
Basic Techniques

k-to-1 Rule: Is there a k to 1 ratio between 2 sets?
Sum Rule: Combine disjoint sets; add cardinality.
Product Rule: Cartesian product of sets; multiply
cardinality.

Perms and Comb
k-Permutation: k!
r-Permutation of n items: nPr = P(n, r) = n!

(n−r)!
r-Combination of n items: nCr = C(n, r) = n!

r!(n−r)!

Pigeonhole Principal
If n pigeons are placed into m holes, and n > m, then at least one
hole has more than one pigeon.
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Invariants

Definition
A property of a system that holds after every step.

Often critical to showing program correctness.

Robot Exercise
Suppose we have a robot which walks on a 2-dimensional grid.
The rows and columns of the grid are labelled by integers. Our
robot starts at position (0,0), and can only move diagonally,
one square at a time. Can we get to (8,9)? Why or why not?
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Program Correctness

Definition
A program/algorithm is correct if it is:

Partial correctness/correct/sound (any returned value is
true), and
Termination/complete (returns a value for all valid
inputs).

Proving correctness
Requires 2 proofs (one for soundness and one for
completeness).
Often requires identifying invariants and induction.
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Recurrences
Definition
An inductive (or recursive) definition of a sequence.

Methods for Solving Recurrences
Guess Method / Recurrence Tree
Unwind
Master Theorem

Exercises
Assume T(1) = 1 for all.

T(n) = T(n/2) + 1
T(n) = T(n/2) + n
T(n) = 3T(n/3) + n
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Graphs

Definition
A graph G is a pair G = (V,E), where V is a set of
vertices/nodes and E is a set of edges/arcs connecting a pair of
vertices. That is, E ∈ V ×V.

Some Special Graphs

Complete graph (K4)
Cycle (C4)
Path (P4)
Trees

Digraph
Directed Acyclic Graph
(DAG)
Bipartite
Forests
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Graph Encodings

1

2

3

4

Representations
Adjacency matrix: ∣V∣ by
∣V∣matrix with a 1 if nodes
are adjacent.

Adjacency list: For each
node, list adjacent nodes.
Edge list: List of all node
pairs representing the
edges.
Incidence matrix: ∣V∣ by
∣E∣matrix with a 1 if node
is incident to the edge.
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Trees
Definition

A connected graph without cycles.
A single node may be designated as the root of the tree.
Any node with degree 1 that is not the root is a leaf.

Properties of a tree T
1 If ∣V∣ ≥ 2, (unrooted) T has at least 2 leaves.
2 For all nodes u and v, there exists one path between them

in T.
3 ∣V∣ = ∣E∣ + 1 for ∣V∣ ≥ 1.

TopHat 6
Is P10 a tree?
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