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IT’s ALL ABOUT REDUCTION

REDUCTION 1S THE SINGLE MOST COMMON TECHNIQUE USED IN DESIGNING ALGORITHMS.

Output
—

I
nput Calls

Answers

Alg. A solves X

Reducing one problem X to
another problem Y means :

Writing an algorithm for X that

uses an algorithm for Y as a
black box or subroutine.

1/34



Divipe > Cong SoR DEecisioN — OPTIMIZATIO

IT’s ALL ABOUT REDUCTION

REDUCTION 1S THE SINGLE MOST COMMON TECHNIQUE USED IN DESIGNING ALGORITHMS.

Tamamaat I I MNotes

@ What is an example of an algorithm that uses
reduction, which you learned in high school?

Alg. A solves X

Reducing one problem X to
another problem Y means :

Writing an algorithm for X that

uses an algorithm for Y as a
black box or subroutine.
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IT’s ALL ABOUT REDUCTION

INTEGER MULTIPLICATION IS REDUCED TO BIT MULTIPLICATION.

Input =23*19
—_—

Output = 437
—

Answers

Alg. A solves Integer Multiplication

To compute 23 x 19 we need {2-3,2-9,3-1,3-9}

2/34



Divibe AND CONQUER



Divipe AND CONQUER OW 30UNDS DEecisioN — OPTIMIZATION

Divipe anp Conguer (DC)

e Split problem into smaller sub-problems.

@ Solve (usually recurse on) the smaller sub-problems.

@ Use the output from the smaller sub-problems to build the
solution.
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Divipe anp ConQuer (DC)

@ Split problem into smaller sub-problems.
@ Solve (usually recurse on) the smaller sub-problems.

e Use the output from the smaller sub-problems to build the
solution.

.

Tendencies of DC
@ Naturally recursive solutions

@ Solving complexities often involve recurrences.

e Often used to improve efficiency of efficient solutions, e.g.

O(n*) - O(nlogn)

@ Used in conjunction with other techniques.
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Divipe anp ConQuer (DC)

@ Split problem into smaller independent sub-problems.
@ Solve (usually recurse on) the smaller sub-problems.

@ Use the output from the smaller sub-problems to build the
solution.

A

Tendencies of DC

o Naturally recursive solutions

@ Solving complexities often involve recurrences.

e Often used to improve efficiency of efficient solutions, e.g.

O(n*) - O(nlogn)

@ Used in conjunction with other techniques.
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SORTING

Ordering some (multi)set of n items.

Brute Force
@ Test all possible orderings.
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o @What is the time complexity?
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@ Test all possible orderings.
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SORTING

Ordering some (multi)set of # items.

@ Test all possible orderings.
@ O(n-n!)

.

Simple Sorts

@ Insertion Sort, Selection Sort, Bubble Sort
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SORTING

Ordering some (multi)set of n items.

@ Test all possible orderings.
@ O(n-n!)

@ Insertion Sort, Selection Sort, Bubble Sort
e O(n?)

.

.

Efficient Sorts [ Today & Next time|

e Divide & Conquer:

Quick Sort * Merge Sort
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Divipe anp Cone

SORTING
Ordering some (multi)set of # items.

Brute Force

@ Test all possible orderings.
@ O(n-n!)

@ Insertion Sort, Selection Sort, Bubble Sort
e O(n?)

A

Efficient Sorts [ Today & Next time|

e Divide & Conquer:
Quick Sort * Merge Sort

o @What is the time complexity of Quick/Merge Sort?

.
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SORTING

Ordering some (multi)set of n items.

Brute Force

@ Test all possible orderings.
@ O(n-n!)

@ Insertion Sort, Selection Sort, Bubble Sort
e O(n?)

.

.

Efficient Sorts [ Today & Next time|

e Divide & Conquer:
Quick Sort (O(n?)) » Merge Sort (O(nlogn))
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SORTING
Ordering some (multi)set of # items.

@ Insertion Sort, Selection Sort, Bubble Sort
® O(n?)

\.

Efficient Sorts [Today & Next time]

@ Divide & Conquer:
Quick Sort (O(nz)) * Merge Sort (O(nlogn))

.

Trick Sorts [ Homework |
@ Radix Sort (O (n[logk])), Counting Sort (O (n +k))

@ kis the maximum key size.

< 434




D1vipe AND CONQUER DecisioN — OPTIMIZATION

SORTING
Ordering some (multi)set of # items.

@ Insertion Sort, Selection Sort, Bubble Sort
® O(n?)

.

Efficient Sorts [Today & Next time]

@ Divide & Conquer:
Quick Sort (O(nz)) * Merge Sort (O(nlogn))

.

Trick Sorts [ Homework |
@ Radix Sort (O (n[logk])), Counting Sort (O (n +k))

@ kis the maximum key size.

o ®What value of k would make both sorts have time
complexity no better than Merge Sort?
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SORTING
Ordering some (multi)set of # items.

@ Insertion Sort, Selection Sort, Bubble Sort
® O(n?)

.

Efficient Sorts [Today & Next time]

@ Divide & Conquer:
Quick Sort (O(nz)) * Merge Sort (O(nlogn))

.

Trick Sorts [ Homework |
@ Radix Sort (O (n[logk])), Counting Sort (O (n +k))

@ kis the maximum key size.

o @What value of k would make both sorts have time
complexity no better than Merge Sort? €2(nlogn)

< 434
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MERGESORT

Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.

if |A| = 1 then return A

A1 := MEerGeSort (Front-half of A)

A = MEerGeSort(Back-half of A)
return MerGe(A1,A2)
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MERGESORT
Algorithm: MERGESORT
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Ay := MerGeSort (Front-half of A)

Aj := MEerGeSort (Back-half of A)
return MerGe(A1,A2)

Algorithm: MErGe

Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

5/34



Divipe AND CONQUER SoRT Lower Bounps DEcisioN — OPTIMIZATION

MERGESORT
Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.

if |A| = 1 then return A

Ay := MerGeSort (Front-half of A)

Aj := MEerGeSort (Back-half of A)
return MerGe(A1,A2)

Algorithm: MErGe

Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

@What is the complexity of MErGE?
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SUBROUTINE: MERGE

a 18 b 20 23

2 3 7 10 11
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MERGESORT
Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.

if |A| = 1 then return A

Ay := MerGeSort (Front-half of A)

Aj := MEerGeSort (Back-half of A)
return MerGe(A1,A2)

Algorithm: MErGe

Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

@What is the complexity of Merce? O(n)
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Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.
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Ay := MerGeSort (Front-half of A)
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return MerGe(A1,A2)
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Program Correctness:

@ Soundness: List A is sorted after call to MERGESORT.
Proof: By strong induction on list length:
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7/34



Divipe AND CONQUER SoRT Lower Bounps DEcisioN — OPTIMIZATION

MERGESORT
Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.

if |A| = 1 then return A

Ay := MerGeSort (Front-half of A)

Aj := MEerGeSort (Back-half of A)
return MerGe(A1,A2)

Program Correctness:

@ Soundness: List A is sorted after call to MERGESORT.
Proof: By strong induction on list length:
Base case: k = 1: List is sorted.
Inductive step: By ind hyp, A1 and A; are sorted, and,
then, by definition, MerGe will produce a sorted list.
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MERGESORT

Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.

if |A| = 1 then return A

A1 := MEerGeSort (Front-half of A)

Aj = MEerGeSort(Back-half of A)
return MerGe(A1,A2)

Program Correctness:

@ Soundness: List A is sorted after call to MERGESORT.

@ Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.
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MERGE

Algorithm: MEerGe

Input :Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

Correctness of MERGE:
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MERGE
Algorithm: MErGE

Input :Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

Correctness of MERGE:

@ Soundness: By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

e Base Case: For k = 1, S contains the smallest element from A[1]
and B[1], which is correctly placed.
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MERGE
Algorithm: MErGE

Input :Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

Correctness of MERGE:

@ Soundness: By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

e Base Case: For k = 1, S contains the smallest element from A[1]
and B[1], which is correctly placed.

o Inductive Step: Assume the list S is correctly sorted up to k
elements. In the (k + 1)-th iteration, MerGe adds the smallest
element from A or B that hasn’t been added yet, ensuring that S
remains sorted.
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MERGE
Algorithm: MErGE

Input :Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

Correctness of MERGE:

@ Soundness: By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

e Base Case: For k = 1, S contains the smallest element from A[1]
and B[1], which is correctly placed.

o Inductive Step: Assume the list S is correctly sorted up to k
elements. In the (k + 1)-th iteration, MerGe adds the smallest
element from A or B that hasn’t been added yet, ensuring that S
remains sorted. Why is it sufficient to check the front of A & B?
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MERGE

Algorithm: MErGE

Input :Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

Correctness of MERGE:

@ Soundness: By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

© Completeness:
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MERGE

Algorithm: MErGE

Input :Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

| Pop and append min{front of A, front of B} to S.
end
return S

Correctness of MERGE:

@ Soundness: By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

© Completeness: The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34
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MERGESORT

Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.

if |A| = 1 then return A

A1 := MEerGeSort (Front-half of A)

A = MEerGeSort(Back-half of A)
return MerGe(A1,4;)

Run time Considerations:
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MERGESORT

Algorithm: MERGESORT

Input : A list A of n comparable items.
Output: A sorted list A.

if |A| = 1 then return A

A1 := MEerGeSort (Front-half of A)

A = MEerGeSort(Back-half of A)
return MerGe(A1,4;)

Run time Considerations:

e Cost to MerGe: O(n).
@ Recurrences: 2 calls to MErGeSorT with lists half the size.
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MERGESORT RECURRENCE

T(n)sZ-T(g)+cn;T(1)sc
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MERGESORT RECURRENCE

T(n)sZ-T(g)+cn;T(1)sc

@ More precise: T(n) <T (|%]) + T ([%]) +cn
@ Usually, we can asymptotically ignore floor and ceilings.
@ Essentially, we are assuming n is a power of 2.

e Alternate form: T(n)<2-T (%) +0(n);T(1) <0O(1)
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MERGESORT RECURRENCE

T(n)sZ-T(g)+cn;T(1)sc

@ More precise: T(n) <T ([gJ) +T ([g]) +cn

@ Usually, we can asymptotically ignore floor and ceilings.
@ Essentially, we are assuming n is a power of 2.

e Alternate form: T(n)<2-T (g) +0(n);T(1) <0O(1)

v

o Unwind / Recurrence Tree

o Guess

@ Master Theorem

@ Nuclear Bomb Theorem / Master Master Theorem 10/34
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UNWIND MERGESORT RECURRENCE

T(n) < ZT(g) +cn
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UNWIND MERGESORT RECURRENCE

T(n) < ZT(g) +cn
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< 2kT(%) + ken

=nT (1) + cnlog(n)
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k n
<2 T(?)+kcn

=nT (1) + cnlog(n)
=cn+cnlogn
= O(nlog(n))
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RecursioN TREE METHOD

T(n)sZ-T(g)+cn;T(1)£c

@

Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
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RecursioN TREE METHOD

T(n)sZ-T(g)+cn;T(1)£c

cn

Y

k
(Zzi . %1) = (k+1)cn = (tree height + 1) - cn
i=0
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RecursioN TREE METHOD

T(n)sZ-T(g)+cn;T(1)£c

cn

+ + + @@ - c:
y

k
(221%1) = (k+1)cn = (tree height + 1) - cn =cnlgn+cn
=0 =0(n-1gn)

Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/ 12/34
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> OPTIMIZATIO!

GUEss METHOD

T(n)sZ-T(g)+cn;T(1)£C

Procedure
@ Guess: Seems like O(nlogn)-ish.
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GUEss METHOD

T(n)sZ-T(g)+cn;T(1)£C

Procedure

@ Guess: Seems like O(nlogn)-ish.
@ Prove by induction! Not valid without proof!
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T(n) sZ-T(g)+cn£cnlgn+cn;T(1) <c
Base Case: n =2.
T(2)=2-T(1)+2c<4c
=c-21g2+2c
Inductive step:
T(k)=2-T(k/2) +ck
(ck k ¢k

Elg§+7)+Ck

=cklg(k/2) + 2ck
=cklgk — ck + 2ck
=cklgk + ck
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T(n) sZ-T(g)+cn£cnlgn+cn;T(1) <c
Base Case: n =2.
T(2)=2-T(1)+2c<4c
=c-21g2+2c
Inductive step:
T(k)=2-T(k/2) +ck
(ck k ¢k

Elg§+7)+Ck

=cklg(k/2) + 2ck
=cklgk — ck + 2ck
=cklgk + ck

<2

~.O(nlogn)
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MAsTER THEOREM

CookBOOK RECURRENCE SOLVING

fn) f(n)
/qb‘\
Fn/b) Fn/b) R ——y
LA AN
f/b?) f(n/b?)-f (n/b?)  f(n/b*) f(n/b*)-f(n/b?) S(n/b?) £ (n/b?)-f (n/b*) e a? f(n/b%)

e kel gl el )

o) B(1) (1) (1) 8() B(1) O() O) O() B1) .- ) O(l) O(1) wim O

plogsa
logp n—1

Total: O %) + Y a’ fn/b’)
Jj=0
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MAsTER THEOREM

CookBOOK RECURRENCE SOLVING

Let a>1and b > 1 be constants, let f (n) be a function, and let T (n)
be defined on the non-negative integers by the recurrence

T(n) =aT(n/b) +f(n) ,

where we interpret n/b to mean either [n/b| or [n/b]. Then T (n) has
the following asymptotic bounds:

Q Iff(n)=O(n'°8") for some constant ¢ > 0, then
T(n)=0 (nl"gb”).
@ Iff(n) = © (n'°8"), then T(n) = © (n'8»"logn).

© IfQ(n'°89%¢) for some constant € > 0, and ifa-f(n/b) < c-f(n)
for some constant ¢ < 1 and all sufficiently large n, then

T(n) = O(f (1n)).

DUNT
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NucLeEar BomB / MASTER MASTER THEOREM

AxRra aND Bazzi, 1998

Given a recurrence of the form:
k
T(n) = > aiT(n/bi) +f(n),
i=1

where k is a constant, a; > 0 and b; > 1 are constants for all i, and
f(n) =Q(n°) and f(n) = O (n?) for some constants 0 < ¢ < d. Then,

u
woofef 184)
where p is the unique real solution to the equation
k

a.
S =1,

=1

v
17/34
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Divipe AND CONQUER OR SEARCH DEecisioN — OPTIMIZATION

SEARCHING FOR AN ELEMENT

UNSORTED ARRAY

Linear Search

@ Brute force approach: check every item in order.

Algorithm 31: LINEAR SEARCH

Input : A list of items A[1...n] and a target element x.
Output: The index i such that A[i] = x, or -1 if x is not found.
fori < 1tondo
if A[i] = x then
| returni // Return the index if x is found
end -

end
return -1 // Return -1 if x is not found in the list
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SEARCHING FOR AN ELEMENT

UNSORTED ARRAY

Linear Search

@ Brute force approach: check every item in order.

o @What is the time complexity to search through 7 items?

Algorithm 32: LINEAR SEARCH

Input : A list of items A[1...n] and a target element x.
Output: The index i such that A[7] = x, or —1 if x is not found.
fori < 1tondo
if A[i] = x then
| returni // Return the index if x is found
end -

end
return;l // Return -1 if X is not found in the list
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SEARCHING FOR AN ELEMENT

UNSORTED ARRAY

Linear Search
@ Brute force approach: check every item in order.

o @What is the time complexity to search through n items?

Algorithm 33: LINEAR SEARCH

Input : A list of items A[1...n] and a target element x.
Output: The index i such that A[i] = x, or -1 if x is not found.
fori < 1tondo

if A[i] = x then

‘ return i // Return the index if x is found
end

end
return -1 // Return -1 if x is not found in the list

Time complexity:

T(n)=T(n-1)+0(1)
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SEARCHING FOR AN ELEMENT

UNSORTED ARRAY

@ Brute force approach: check every item in order.
e Time complexity: O(n)

Algorithm 34: LINEAR SEARCH

Input : A list of items A[1...n] and a target element x.
Output: The index i such that A[i] = x, or -1 if x is not found.
fori < 1tondo
if A[i] = x then
| returni // Return the index if x is found
end

end
return -1 // Return -1 if x is not found in the list

Time complexity:

T(n)=T(n-1)+06(1)

18/34
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SEARCHING FOR AN ELEMENT

SORTED ARRAY

Divide and Conquer Approach

e Start by dividing the array in half and compare the target
element with the middle element.
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SEARCHING FOR AN ELEMENT

SORTED ARRAY

o @What is the time complexity of searching through n
sorted items?

Algorithm 35: BINARY SEARCH

Input : A sorted list of items A[1...#n] and a target element x.
Output: The index i such that A[{] = x, or -1 if x is not found.
while low < high do
. Tow+high
mid «~ lfJ
if A[mid] = x then
| return mid // Return the index if x is found
else
if A[mid] < x then
| low < mid+1
else
| high < mid -1
end
end

end
return -1 // Return -1 if x is not found in the list 19/34
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SEARCHING FOR AN ELEMENT

SORTED ARRAY

Divide and Conquer Approach

e Start by dividing the array in half and compare the target
element with the middle element.

o If the target is less than the middle element, search the left
half; otherwise, search the right half.

o @What is the time complexity of searching through n
sorted items?

Time complexity:

T(n) =T(g)+6(l)

19/34



Divipe AND CONQUER OR SEARCH Lower Bounps DEecisioN — OPTIMIZATION

SEARCHING FOR AN ELEMENT

SORTED ARRAY

Divide and Conquer Approach

e Start by dividing the array in half and compare the target
element with the middle element.

o If the target is less than the middle element, search the left
half; otherwise, search the right half.

o @What is the time complexity of searching through n
sorted items?

Time complexity:

T(n) = T(Z) +O(1)+0(1)
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SEARCHING FOR AN ELEMENT

SORTED ARRAY

Divide and Conquer Approach

e Start by dividing the array in half and compare the target
element with the middle element.

o If the target is less than the middle element, search the left
half; otherwise, search the right half.

o @What is the time complexity of searching through n
sorted items?

Time complexity:

n

T(n)=T (Z) +O(1)+0(1)=-=T (?) TkxO(1)
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SEARCHING FOR AN ELEMENT

SORTED ARRAY

Divide and Conquer Approach

e Start by dividing the array in half and compare the target
element with the middle element.

o If the target is less than the middle element, search the left
half; otherwise, search the right half.

o @What is the time complexity of searching through n
sorted items?Time complexity: O(logn)

Time complexity:

T(n)=T Z’% ~ 1] +1logn x O(1) = ©(log 1)

—
k=logn

19/34
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TecuNIQUES TO PrROVE LOWER BOUNDS

Lower bounds are used:

@ To determine the minimum amount of work any algorithm
must do to solve a problem.
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TecuNIQUES TO PrROVE LOWER BOUNDS

Lower bounds are used:

@ To determine the minimum amount of work any algorithm
must do to solve a problem.

e To recognize when further improvement is futile.
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REMINDER: WORsT-CASE COMPLEXITY

Worst-case Complexity

Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

@ Provides an absolute guarantee on performance.

@ Based on the single most challenging input.

A 9
Tworst(n) = Inax TA(Z)
iel,|i|=n

What does the worst-case complexity of a problem mean?

11 . A
Tworst ( n) = A slg}\}g o Tworst (I’l)
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REMINDER: WORsT-CASE COMPLEXITY

Worst-case Complexity

Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

@ Provides an absolute guarantee on performance.

@ Based on the single most challenging input.

A 5
Tworst(n) = ,ma“x TA(Z)
iel,|i|l=n

What does the worst-case complexity of a problem mean?

11 . A
Tworst ( I’l) = A Slgll\}g o Tworst (I’l)

TI (n) < TA, «(n) for any algorithm A that solves II

An algorithm upper-bounds the complexity of a problem.
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REMINDER: WORsT-CASE COMPLEXITY

Worst-case Complexity

Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

@ Provides an absolute guarantee on performance.

@ Based on the single most challenging input.

A 5
Tworst(n) = ,ma“x TA(Z)
iel,|i|l=n

What does the worst-case complexity of a problem mean?

11 . A
Tworst ( I’l) = A Slgll\}g o Tworst (I’l)

TI (n) < TA, «(n) for any algorithm A that solves II

@How do we show a lower bound in complexity?
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REMINDER: WORsT-CASE COMPLEXITY

Worst-case Complexity

Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

@ Provides an absolute guarantee on performance.

@ Based on the single most challenging input.

A 0
Toorst(n) = max Ta ()
iel,|i|l=n

What does the worst-case complexity of a problem mean?

11 . A
Tworst ( n ) = A sIgllx}g i Tworst (1’1 )

TI () < T, «(n) for any algorithm A that solves TT

We must prove that certain steps are necessary for any algorithm ©!!! J

21/34
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TecuNIQUES TO PrROVE LOWER BOUNDS

Main Ideas (Proof by Contradiction):

1. Adversary Argument

@ Imagine an adversary making the problem as hard as possible for the
algorithm.
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Divipe anp Cone

TecuNIQUES TO PrROVE LOWER BOUNDS

Main Ideas (Proof by Contradiction):

1. Adversary Argument

@ Imagine an adversary making the problem as hard as possible for the
algorithm.

@ The adversary strategically forces the algorithm to take the maximum
number of steps.

@ This approach proves that any algorithm must take a certain number of
steps to guarantee correctness.

V.
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Main Ideas (Proof by Contradiction):

2. Decision Tree Model & Pigeonhole Principle

@ Decision Tree Model: Visualizes the algorithm’s decision-making
process, where each node is a query, and each leaf is an outcome.
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Divipe anp Cone

TecuNIQUES TO PrROVE LOWER BOUNDS

Main Ideas (Proof by Contradiction):

2. Decision Tree Model & Pigeonhole Principle

@ Decision Tree Model: Visualizes the algorithm’s decision-making
process, where each node is a query, and each leaf is an outcome.

@ Pigeonhole Principle: More outcomes than execution paths mean some
paths must produce multiple outputs violating the correctness.

@ The height of the decision tree represents the worst-case number of steps the
algorithm takes.

22/34
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ADVERSARY ARGUMENT FOR (1) LINEAR SEARCH

Can we search for an element x in an unsorted array A without
scanning the entire array? J
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Can we search for an element x in an unsorted array A without
scanning the entire array? J

For contradiction, assume it is possible with at most 1 - 2 steps:
@ Adversary’s Strategy:
o The adversary knows your search strategy and aims to
make it as difficult as possible.
o Initially, the adversary has not committed to where x is
located in the array.
@ Your Search Process:

@ You examine elements one by one, starting from any element.
o If you recheck, you don’t gain any new information about the rest
of the array.
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ADVERSARY ARGUMENT FOR (1) LINEAR SEARCH

Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most 1 - 2 steps:
@ Adversary’s Strategy:
o The adversary knows your search strategy and aims to
make it as difficult as possible.
o Initially, the adversary has not committed to where x is
located in the array.
@ Your Search Process:

@ You examine elements one by one, starting from any element.

o If you recheck, you don’t gain any new information about the rest
of the array.

e For each element A[i] you check, the adversary can respond with
any value not equal to x.
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ADVERSARY ARGUMENT FOR (1) LINEAR SEARCH

Can we search for an element x in an unsorted array A without
scanning the entire array? J

For contradiction, assume it is possible with at most 1 - 2 steps:
@ Adversary’s Strategy:
o The adversary knows your search strategy and aims to
make it as difficult as possible.
o Initially, the adversary has not committed to where x is
located in the array.
@ Your Search Process:

@ You examine elements one by one, starting from any element.

o If you recheck, you don’t gain any new information about the rest
of the array.

e For each element A[i] you check, the adversary can respond with
any value not equal to x.

@ Worst-Case Scenario: Knowing x is in the array, the adversary can

place it in the last unchecked position®
23/34
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ADVERSARY ARGUMENT FOR (1) LINEAR SEARCH

ILLusTRATION

We: - Is it here?
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ADVERSARY ARGUMENT FOR (1) LINEAR SEARCH

ILLusTRATION

We: - Is it here? Adversary: -No ©

X | X X X

(A (A

If we use n — 2 queries, at the end adversary can hide x to the J

unchecked one.

24/34
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Q(logn) SEARCH BAsED oN COMPARISONS

SORTED ARRAY

Assume that your algorithm can only ask comparison questions

of the form x = k?.

1A%

©What is the worst-case performance of the FINDANIMAL? J

Does it live in the water?
4@5 Yo

(Does it have scales? ) (Does it have more than four legs? )

fro:

fish Does it have wings? Does it have wings?
A

spider | gnu | eagle

A decision tree to choose one of six animals.
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY
Worst-Case Performance

The worst-case performance of our algorithm is determined by
the height of the decision tree.
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Q(logn) SEARCH BAsED oN COMPARISONS

SORTED ARRAY

Worst-Case Performance

The worst-case performance of our algorithm is determined by
the height of the decision tree.

Pay attention
- to argument

X
9e

-phrasing!!!

DUNT
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Q(logn) SEARCH BAsED oN COMPARISONS

SORTED ARRAY

@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.
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Q(logn) SEARCH BAsED oN COMPARISONS

SORTED ARRAY

@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

@ There are arrays where the answer could be at the first
position, the second position, ..., the last position, or the
element may not be present at all.

25/34
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY [2,3,5,7,11,13,17,19]
@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.
e Since the algorithm relies on binary comparisons (with 2
possible outcomes), it essentially constructs a binary
decision tree.

x= =57 } (x=7? ) (x=11?) (x=13?) (x=177)

éf\a L é/\a it éf\a é/\a af\a 4

@Why does the algorithm construct a binary decision tree? J
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Q(logn) SEARCH BAsED oN COMPARISONS

SORTED ARRAY [2,3,5,7,11,13,17,19]

@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

(x=2? ) (x=3? ) (x=5? ) (x=7? ) (x=11?) (x=13?) (x=17?) (x=19?)
dbdbdbdbdhdb 44t
8]

©@Why does the algorithm construct a binary decision tree? J
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY [2,3,5,7,11,13,17,19]
@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

(x=11?7 ) (x=13?) (x=177)
FLabdLdbdbdt bt
e Because each query/decision provides a "Yes" or "No" answer,
which naturally forms a binary structure.
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY [2,3,5,7,11,13,17,19]
@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

(x=11?7 ) (x=13?) (x=177)
FLabdLdbdbdt bt
e Because each query/decision provides a "Yes" or "No" answer,
which naturally forms a binary structure.

o If the algorithm could ask questions with 3, 4, or k outcomes, it
would form a ternary, quaternary, or k-ary tree instead.
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Q(logn) SEARCH BAsED oN COMPARISONS

SORTED ARRAY [2,3,5,7,11,13,17,19]

@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

(x=2? ) (x=3? ) (x=5? ) (x=7? ) (x=11?) (x=13?) (x=17?) (x=19?)
dbdbdbdbdhdb dbd
8]

@Why is the algorithm modeled by a tree? J
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY [2,3,5,7,11,13,17,19]
@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

x

=27 ) ((x=3? (x=57) (x=77) (x=117) =137 ) (x=177)

G197
éf\ééf\ééf%@/\ééf\;@“ AL
©Why is the algorithm modeled by a tree? J

Since the input data doesn’t change, there’s no need to ask the
same question twice. Hence, the algorithm doesn’t form cycles,
but rather a tree.
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY [2,3,5,7,11,13,17,19]
@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

&
(x=2? ) (x=3?) (x=5? ) (x=7? ) (x=11?) (x=13?) (x=17?) x=19?
9% 9% Yo ¢d% Yo e e Y%
dbdhdbdbdbdbdbdh
©Why is the algorithm modeled by a tree? J

@How many different answers can the algorithm give? J
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY [2,3,5,7,11,13,17,19]
@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

x

=27 ) ((x=3? (x=57) (x=77) (x=117) =137 ) (x=177) 19?]

57‘5%\35%@/\35%@“

@Why is the algorithm modeled by a tree? J
@How many different answers can the algorithm give? J

As many as the number of leaves in the tree. J
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Q(logn) SEARCH BAsED oN COMPARISONS
SORTED ARRAY [2,3,5,7,11,13,17,19]
@ Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

(x=27 ) (x=37? ) (x=57) (x=77) (x=117) (x=13?) (x=177) (x=197)

& \o g% @ \o g % & \o g% %

Any algorithm/tree with k comparisons can have at most 2
leaves. If M answers are needed, then 2X > M, which implies
k >log, M.

@How many different answers can the algorithm give? J

As many as the number of leaves in the tree. J
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Lower BounD IN COMPARISON SORTING ALGORITHMS
Let’s see what we’ve learned...

@If you need to sort an array and only perform comparisons,
how many comparisons are necessary to account for all
possible orderings?
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Inv Count

Lower BounD IN COMPARISON SORTING ALGORITHMS
Let’s see what we’ve learned...

@If you need to sort an array and only perform comparisons,
how many comparisons are necessary to account for all
possible orderings?

For an array of 3 elements, consider all possible permutations:

A[1] < A[2] < A[3],
A[2] < A[1] < A[3],
A[1] < A[3] < A[2],
A[2] < A[3] < A[1],
A[3] < A[1] < A[3],
A[3] < A[2] < A[1]
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Lower BounD IN COMPARISON SORTING ALGORITHMS
Let’s see what we’ve learned...

@If you need to sort an array and only perform comparisons,
how many comparisons are necessary to account for all
possible orderings?

Every comparison-based algorithm after k comparisons must
produce a decision tree with at least N! leaves. Therefore, it
needs at least:

2K > NI = k > log, N! = (N log N)

comparisons.

ASTTALITAST;
A[3] < A[2] < A[1]

N—
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@ Assume that you have an algorithm A (comparison-based) that sorts a
sequence that is almost correct except for the last two elements:

Input: {a;}i.; == Output: {ar(i) < an(iy) < < ln(iyy) )}

But you do not know the order of the last two elements. Why does Algo A
have a lower bound of Q(nlogn)?

Consider both cases: with and without counting.
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@ Assume that you have an algorithm A (comparison-based) that sorts a
sequence that is almost correct except for the last two elements:

Input: {@;}/.; == Output: {a¢) <n(ip) < <)}

But you do not know the order of the last two elements. Why does Algo A
have a lower bound of Q(nlogn)?

Consider both cases: with and without counting.

e With Counting: The number of possible outputs is n!/2!,
because the algorithm is indifferent regarding the last two
positions. Therefore, the time complexity is Q(log(n!/2)).
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@ Assume that you have an algorithm A (comparison-based) that sorts a
sequence that is almost correct except for the last two elements:

Input: {@;};.; == Output: {a) <n(ip) < <, }

But you do not know the order of the last two elements. Why does Algo A
have a lower bound of Q(nlogn)?

Consider both cases: with and without counting.

e Without Counting: Assume that A has a complexity of
o(nlogn). Then, I can create an algorithm B as follows:

Algorithm B : { Apply A; Compare the last two elements}

This algorithm B sorts an arbitrary array in
o(nlogn) + ©(1) = o(nlogn) using only comparisons
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@ Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

@ The higher lower bound reflects the complexity better. Can
you suggest a trivial lower bound of ©(1)?

4
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

e Lower Bound: Consider the case where the array hasn -1
ones and 1 zero. In this case, the complexity is
log(n!/(n-1)!) =logn.

The adversary argument gives a higher lower bound since
the zero is the minimum element.
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

@ More Interesting Case: If the zeros and ones are split
evenly, the complexity is:

2n! 2n
log (@) = log( Y ) =log(2n!) — 2log(n!)

Using Stirling’s approximation, we get:

2nlog(2n) - 2n + O(log2n) - 2nlogn +2n —20(logn) = Q(n))
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Lower BounDs

REDUCTIONS TO OTHER PROBLEMS

@Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

e Upper Bound: A linear-time comparison-based algorithm
via PartiTiOoN (Teaser for QUICKSORT). J
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BINARY SEARCH IN THE SOLUTION SPACE

HicH-LEVEL TECHNIQUE

Perhaps one of the most fundamental techniques in solving difficult
problems—and one of the key tricks in computer science interviews. J

Binary search is not only applicable to sorted arrays but also to
the solution space.

12 3 4 7 ko1 k k
Cost: |X |X |X |X | | | |X |/|/|/|/|/|/|/|/|“'
It is impossible to satisfy the constraints It is possible to satisfy the constraints
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BINARY SEARCH IN THE SOLUTION SPACE

HicH-LEVEL TECHNIQUE

Binary search is not only applicable to sorted arrays but also to
the solution space.

For example:
e Compute the minimum cost in a Constraint-Satisfaction
problem (CSP) with n constraints.

@ Define a cost function and query: "Is there a solution with
cost at most k?"

e If yes, check for a solution with cost <k -1, and so on.
9 :
@ If no, find the optimal solution.

1 2 3 4 Tk -1k k

Cost: |X |X |X |X | | | |X | /| /| /| /| /| /| /| /|

It is impossible to satisfy the constraints It is possible to satisfy the constraints

28/34



Divipe AND CONQUER Sor Lower Bounps DecisioNn — OPTIMIZATION

BINARY SEARCH IN THE SOLUTION SPACE

HicH-LEVEL TECHNIQUE

Binary search is not only applicable to sorted arrays but also to
the solution space.

For example:
e Compute the minimum cost in a Constraint-Satisfaction
problem (CSP) with n constraints.
@ Define a cost function and query: "Is there a solution with
cost at most k?"
@ If yes, check for a solution with cost < k — 1, and so on.
o
@ If no, find the optimal solution.
Do you need to go step-by-step, or can you apply binary
search to find the optimal solution?

1 2 3 4 ok -1k k

Cost: |x |X |x |x | | | |X | /l /l /l ¢| /l /l ¢| /|

It is impossible to satisfy the constraints It is possible to satisfy the constraints 28/34
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BINARY SEARCH IN THE SOLUTION SPACE

ExampLE

Problem Definition

@ You're planning a long trip with k > 2 (e.g. 10) days and need to visit
n > k locations (e.g. Big cities of USA).

@ The distances between consecutive stops are d1,d, . . . ,d, where d; is the
distance from the start, d; is the distance from the first to the second
stop, etc.

@ To avoid fatigue, you want to minimize the maximum distance traveled
in a single day. You can stop for an overnight rest only at selected stops.
v
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BINARY SEARCH IN THE SOLUTION SPACE

ExampLE

Problem Definition

@ You're planning a long trip with k > 2 (e.g. 10) days and need to visit
n > k locations (e.g. Big cities of USA).

@ The distances between consecutive stops are d1,d, . . . ,d, where d; is the
distance from the start, d; is the distance from the first to the second
stop, etc.

@ To avoid fatigue, you want to minimize the maximum distance traveled
in a single day. You can stop for an overnight rest only at selected stops.
v

x > d [day]

min cost(Separation{dy,...,d, | k}) = min m
( P { ! nl }) Separation{dy,...,dn |k} daye[k] !
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BiNARY SEARCH FOR THE OPTIMAL SOLUTION
Step-by-Step Approach

@ We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.
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BiNARY SEARCH FOR THE OPTIMAL SOLUTION
Step-by-Step Approach

@ We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.

@ Using binary search, we iteratively narrow down the range by checking
whether a given midpoint value can be a valid solution
(i.e., if it is possible to split the journey into k days where no day
exceeds this distance).
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BiNARY SEARCH FOR THE OPTIMAL SOLUTION
Step-by-Step Approach

@ We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.

@ Using binary search, we iteratively narrow down the range by checking
whether a given midpoint value can be a valid solution
(i.e., if it is possible to split the journey into k days where no day
exceeds this distance).

@ The optimal solution is found when the range converges, providing the
minimal maximum distance that allows the trip to be completed in k
days.

30/34
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BiNARY SEARCH FOR THE OPTIMAL SOLUTION
Step-by-Step Approach

@ We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.

@ Using binary search, we iteratively narrow down the range by checking
whether a given midpoint value can be a valid solution
(i.e., if it is possible to split the journey into k days where no day
exceeds this distance).

@ The optimal solution is found when the range converges, providing the
minimal maximum distance that allows the trip to be completed in k
days.

.

Computational Complexity

@ The binary search operates on the solution space, which has a
logarithmic range (based on the total distance of the trip).

@ For each midpoint value tested, a linear scan of the array di,d>, .. .,d, is
performed to check feasibility.

o Therfff)re, th? overalil' C'omplexity is O(nlog D), where D is the range of 205
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CoUNTING INVERSIONS

Given a list A of comparable items. An inversion is a pair of
items (a;,a;) such that a; > a; and i < j, where i and j are the
index of the items in A.
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CoUNTING INVERSIONS

Given a list A of comparable items. An inversion is a pair of
items (a;,a;) such that a; > a; and i < j, where i and j are the
index of the items in A.

.

Inversion Count

Count the number of inversions in a list A, containing n
comparable items.

.
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Part 1: GIVE A ©(1?) SOLUTION.
Algorithm: CHECKALLPAIRsS

Input : A list A of n comparable items.
Output: Number of inversions in A.
Letc:=0
fori:=1tolen(A)-1do
forj:=itolen(A) do
if A[i] > A[j] then
‘ c=c+1
end
end
end
return ¢
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Part 1: GIVE A ©(1?) SOLUTION.
Algorithm: CHECKALLPAIRsS

Input : A list A of n comparable items.

Output: Number of inversions in A.

Letc:=0

fori:=1tolen(A)-1do
forj:=itolen(A) do

if ATl Al then @ Correct: Checks all pairs
Al > Alj) and counts the inversions.

‘ c:=c+1
end
end
end
return ¢

Teaser for Homework ©
Idea...In order to sort an array, you have to fix all the inversions




DEcisioN — OPTIMIZATION Inv Count

Divibe AND CONQUER

Part 1: GIVE A ©(1?) SOLUTION.
Algorithm: CHECKALLPAIRsS

Input : A list A of n comparable items.
Output: Number of inversions in A.
Letc:=0

fori:=1tolen(A)-1do

forj:=itolen(A) do . ) Eihedes alll et
if Alil> A[7] then o Correct: Checks all pairs
‘ C[]:QML] and counts the inversions.
end e Complexity: For each i,
end check n —i pairs. Overall:
end
-1
return ¢ nz n(n D) =0(n?) .

Teaser for Homework ®

Idea...In order to sort an array, you have to fix all the inversions
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Divibe AND CONQUER

Part 1: GIVE A ©(1?) SOLUTION.
Algorithm: CHECKALLPAIRsS

Input : A list A of n comparable items.
Output: Number of inversions in A.
Letc:=0

fori:=1tolen(A)-1do

forj:=itolen(A) do . ) Eihedes alll et
if Alil> A[7] then o Correct: Checks all pairs
‘ C[]:QML] and counts the inversions.
end e Complexity: For each i,
end check n —i pairs. Overall:
end
-1
return ¢ nz n(n D) =0(n?) .

Teaser for Homework ®

Idea...In order to sort an array, you have to fix all the inversions
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ParT 2: GIVE A ©(#INVERSIONS) SOLUTION.

Observation: Inversions

@ An inversion in an array A[1...n] is a pair of indices i < j
such that A[i] > A[f].

@ The number of inversions indicates how far the array is
from being sorted.
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ParT 2: GIVE A ©(#INVERSIONS) SOLUTION.

Observation: Inversions

@ An inversion in an array A[1...n] is a pair of indices i < j
such that A[i] > A[f].

@ The number of inversions indicates how far the array is
from being sorted.

Insertion Sort:

@ Insertion Sort corrects each inversion one by one.
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ParT 2: GIVE A ©(#INVERSIONS) SOLUTION.

Observation: Inversions

@ An inversion in an array A[1...n] is a pair of indices i < j
such that A[i] > A[f].

@ The number of inversions indicates how far the array is
from being sorted.

Insertion Sort:
@ Insertion Sort corrects each inversion one by one.

@ The total number of swaps made by Insertion Sort equals
the number of inversions in the array.

@ Time complexity of Insertion Sort in this context is
O(#Inversions).
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Inv Count

Part 3: Give aN O(nlog 1) SOLUTION.

e Can we count the inversions using faster sorting
algorithms?
e Modify the merge step in Merge Sort to count inversions.
o While merging two sorted halves, every time an element
from the right half is placed before an element from the left
half, it contributes to inversions.

2 3 4 5 6 7 8
£ O
‘TITELLL
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Lower Bounps DEcisioN — OPTIMIZATION Inv Count

Part 3: Give aN O(nlog 1) SOLUTION.

Algorithm: CountSORT

Input : A list A of n comparable items.

Output: A sorted array and the number of inversions.
if |A| = 1 then return (A,0)

(A1, 1) := CountSort(Front-half of A)

(Az,¢2) := CountSort(Back-half of A)

(A, c) :=MerGeCount(A1,A2)

return (A,c+c1+¢p)
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Part 3: Give aN O(nlog 1) SOLUTION.

Algorithm: MerGeCouNT

Input : Two lists of comparable items: A and B.
Output: A merged list and the count of inversions.
Initialize S to an empty list and c := 0.
while either A or B is not empty do

Pop and append min{front of A, front of B} to S.

if Appended item is from B then

| c:=c+]A|

end
end
return (S,c)
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Part 3: Give aN O(nlog 1) SOLUTION.

Algorithm: MerGeCouNT

Input : Two lists of comparable items: A and B.
Output: A merged list and the count of inversions.
Initialize S to an empty list and c := 0.
while either A or B is not empty do

Pop and append min{front of A, front of B} to S.
if Appended item is from B then

| c:=c+]A|

end

@ Correctness: Need to show that the inversions are correctly
counted.

o Complexity: Same recurrence as MERGESORT, leading to
O(nlogn).
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