
CS 577 - Divide and Conquer
Sort & Search

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin – Madison

Fall 2024

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

It’s all about Reduction
Reduction is the single most common technique used in designing algorithms.

Other Algo Alg. B solves Y
Input Output

Alg. A solves X

Calls

Answers

Reducing one problem X to
another problem Y means :
Writing an algorithm for X that
uses an algorithm for Y as a
black box or subroutine.

1/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

It’s all about Reduction
Reduction is the single most common technique used in designing algorithms.

Other Algo Alg. B solves Y
Input Output

Alg. A solves X

Calls

Answers

Reducing one problem X to
another problem Y means :
Writing an algorithm for X that
uses an algorithm for Y as a
black box or subroutine.

What is an example of an algorithm that uses
reduction, which you learned in high school?

1/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

It’s all about Reduction
Integer Multiplication is reduced to bit multiplication.

Addition
& Shift

Alg. B solves
bit-version

multiplication

Input = 23 * 19 Output = 437

Alg. A solves Integer Multiplication

Calls

Answers

To compute 23 × 19 we need {2 ⋅ 3,2 ⋅ 9,3 ⋅ 1,3 ⋅ 9}

2/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Divide and Conquer

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Divide and Conquer (DC)

Overview
Split problem into smaller sub-problems.
Solve (usually recurse on) the smaller sub-problems.
Use the output from the smaller sub-problems to build the
solution.

3/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Divide and Conquer (DC)
Overview

Split problem into smaller sub-problems.
Solve (usually recurse on) the smaller sub-problems.
Use the output from the smaller sub-problems to build the
solution.

Tendencies of DC
Naturally recursive solutions
Solving complexities often involve recurrences.
Often used to improve efficiency of efficient solutions, e.g.

O(n2)→ O(n logn)

Used in conjunction with other techniques.
3/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Divide and Conquer (DC)
Overview

Split problem into smaller independent sub-problems.
Solve (usually recurse on) the smaller sub-problems.
Use the output from the smaller sub-problems to build the
solution.

Tendencies of DC
Naturally recursive solutions
Solving complexities often involve recurrences.
Often used to improve efficiency of efficient solutions, e.g.

O(n2)→ O(n logn)

Used in conjunction with other techniques.
3/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sort

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force
Test all possible orderings.

Simple Sorts
Insertion Sort, Selection Sort, Bubble Sort

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force
Test all possible orderings.
What is the time complexity?

Simple Sorts
Insertion Sort, Selection Sort, Bubble Sort

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force
Test all possible orderings.
O(n ⋅ n!)

Simple Sorts
Insertion Sort, Selection Sort, Bubble Sort

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force

Test all possible orderings.
O(n ⋅ n!)

Simple Sorts
Insertion Sort, Selection Sort, Bubble Sort

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force

Test all possible orderings.
O(n ⋅ n!)

Simple Sorts
Insertion Sort, Selection Sort, Bubble Sort
What is the time complexity?

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force

Test all possible orderings.
O(n ⋅ n!)

Simple Sorts
Insertion Sort, Selection Sort, Bubble Sort
O(n2)

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force

Test all possible orderings.
O(n ⋅ n!)

Simple Sorts

Insertion Sort, Selection Sort, Bubble Sort
O(n2

)

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force

Test all possible orderings.
O(n ⋅ n!)

Simple Sorts

Insertion Sort, Selection Sort, Bubble Sort
O(n2

)

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort ⋆Merge Sort
What is the time complexity of Quick/Merge Sort?

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.

Brute Force

Test all possible orderings.
O(n ⋅ n!)

Simple Sorts

Insertion Sort, Selection Sort, Bubble Sort
O(n2

)

Efficient Sorts [Today & Next time]
Divide & Conquer:

Quick Sort (O(n2)) ⋆Merge Sort (O(n logn))

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.
Simple Sorts

Insertion Sort, Selection Sort, Bubble Sort
O(n2

)

Efficient Sorts [Today & Next time]

Divide & Conquer:

Quick Sort (O(n2
)) ⋆Merge Sort (O(n logn))

Trick Sorts [Homework]
Radix Sort (O (n⌈log k⌉)), Counting Sort (O (n + k))
k is the maximum key size.

What value of k would make both sorts have time
complexity no better than Merge Sort? Ω(n logn)

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.
Simple Sorts

Insertion Sort, Selection Sort, Bubble Sort
O(n2

)

Efficient Sorts [Today & Next time]

Divide & Conquer:

Quick Sort (O(n2
)) ⋆Merge Sort (O(n logn))

Trick Sorts [Homework]
Radix Sort (O (n⌈log k⌉)), Counting Sort (O (n + k))
k is the maximum key size.
What value of k would make both sorts have time

complexity no better than Merge Sort?

Ω(n logn)

4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Sorting
Ordering some (multi)set of n items.
Simple Sorts

Insertion Sort, Selection Sort, Bubble Sort
O(n2

)

Efficient Sorts [Today & Next time]

Divide & Conquer:

Quick Sort (O(n2
)) ⋆Merge Sort (O(n logn))

Trick Sorts [Homework]
Radix Sort (O (n⌈log k⌉)), Counting Sort (O (n + k))
k is the maximum key size.
What value of k would make both sorts have time

complexity no better than Merge Sort? Ω(n logn)
4/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

5/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and append min{front of A, front of B} to S.
end
return S

What is the complexity of Merge? O(n)

5/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and append min{front of A, front of B} to S.
end
return S

What is the complexity of Merge?

O(n)

5/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Subroutine: Merge

6/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and append min{front of A, front of B} to S.
end
return S

What is the complexity of Merge? O(n)
7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:

1 Soundness:

List A is sorted after call toMergeSort.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness:

List A is sorted after call toMergeSort.
Proof: By strong induction on list length:
Base case: k = 1: List is sorted.
Inductive step: By ind hyp, A1 and A2 are sorted, and,
then, by definition,Mergewill produce a sorted list.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness: List A is sorted after call toMergeSort.

Proof: By strong induction on list length:
Base case: k = 1: List is sorted.
Inductive step: By ind hyp, A1 and A2 are sorted, and,
then, by definition,Mergewill produce a sorted list.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness: List A is sorted after call toMergeSort.

Proof:

By strong induction on list length:
Base case: k = 1: List is sorted.
Inductive step: By ind hyp, A1 and A2 are sorted, and,
then, by definition,Mergewill produce a sorted list.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness: List A is sorted after call toMergeSort.

Proof: By strong induction on list length:

Base case: k = 1: List is sorted.
Inductive step: By ind hyp, A1 and A2 are sorted, and,
then, by definition,Mergewill produce a sorted list.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness: List A is sorted after call toMergeSort.

Proof: By strong induction on list length:
Base case: k = 1: List is sorted.

Inductive step: By ind hyp, A1 and A2 are sorted, and,
then, by definition,Mergewill produce a sorted list.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort
Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness: List A is sorted after call toMergeSort.

Proof: By strong induction on list length:
Base case: k = 1: List is sorted.
Inductive step: By ind hyp, A1 and A2 are sorted, and,
then, by definition,Merge will produce a sorted list.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness: List A is sorted after call toMergeSort.

2 Complete: Handles lists of any size, and each recursion
makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Program Correctness:
1 Soundness: List A is sorted after call toMergeSort.
2 Complete: Handles lists of any size, and each recursion

makes progress towards base case by splitting the list in
half.

7/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:

1 Soundness:

By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:

1 Soundness:

By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:

1 Soundness:

By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:

1 Soundness:

By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:

1 Soundness:

By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:
1 Soundness:

By strong induction, after k iterations, the list S is correctly
sorted up to the k-th element.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge
Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:
1 Soundness: By strong induction, after k iterations, the list S is correctly

sorted up to the k-th element.
Base Case: For k = 1, S contains the smallest element from A[1]
and B[1], which is correctly placed.

Inductive Step: Assume the list S is correctly sorted up to k
elements. In the (k + 1)-th iteration,Merge adds the smallest
element from A or B that hasn’t been added yet, ensuring that S
remains sorted.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge
Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:
1 Soundness: By strong induction, after k iterations, the list S is correctly

sorted up to the k-th element.
Base Case: For k = 1, S contains the smallest element from A[1]
and B[1], which is correctly placed.
Inductive Step: Assume the list S is correctly sorted up to k
elements. In the (k + 1)-th iteration, Merge adds the smallest
element from A or B that hasn’t been added yet, ensuring that S
remains sorted.

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge
Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:
1 Soundness: By strong induction, after k iterations, the list S is correctly

sorted up to the k-th element.
Base Case: For k = 1, S contains the smallest element from A[1]
and B[1], which is correctly placed.
Inductive Step: Assume the list S is correctly sorted up to k
elements. In the (k + 1)-th iteration, Merge adds the smallest
element from A or B that hasn’t been added yet, ensuring that S
remains sorted. Why is it sufficient to check the front of A & B?

2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:
1 Soundness: By strong induction, after k iterations, the list S is correctly

sorted up to the k-th element.
2 Completeness:

The process continues until all elements from both A
and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Merge

Algorithm: Merge
Input : Two lists of comparable items: A and B.
Output: A merged list.
Initialize S to an empty list.
while either A or B is not empty do

Pop and appendmin{front of A, front of B} to S.
end
return S

Correctness of Merge:
1 Soundness: By strong induction, after k iterations, the list S is correctly

sorted up to the k-th element.
2 Completeness: The process continues until all elements from both A

and B have been merged into S, ensuring no element is missed.

8/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Run time Considerations:

Cost toMerge: O(n).
Recurrences: 2 calls toMergeSort with lists half the size.

9/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Run time Considerations:
Cost toMerge: O(n).

Recurrences: 2 calls toMergeSort with lists half the size.

9/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort

Algorithm: MergeSort
Input : A list A of n comparable items.
Output: A sorted list A.
if ∣A∣ = 1 then return A
A1 ∶=MergeSort(Front-half of A)
A2 ∶=MergeSort(Back-half of A)
return Merge(A1,A2)

Run time Considerations:
Cost toMerge: O(n).
Recurrences: 2 calls toMergeSort with lists half the size.

9/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort Recurrence

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

Notes
More precise: T(n) ≤ T (⌊n2 ⌋) + T (⌈

n
2 ⌉) + cn

Usually, we can asymptotically ignore floor and ceilings.
Essentially, we are assuming n is a power of 2.
Alternate form: T(n) ≤ 2 ⋅ T (n2) +O(n);T(1) ≤ O(1)

Methods
Unwind / Recurrence Tree
Guess
Master Theorem
Nuclear Bomb Theorem / Master Master Theorem

10/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort Recurrence

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

Notes
More precise: T(n) ≤ T (⌊n2 ⌋) + T (⌈

n
2 ⌉) + cn

Usually, we can asymptotically ignore floor and ceilings.
Essentially, we are assuming n is a power of 2.
Alternate form: T(n) ≤ 2 ⋅ T (n2) +O(n);T(1) ≤ O(1)

Methods
Unwind / Recurrence Tree
Guess
Master Theorem
Nuclear Bomb Theorem / Master Master Theorem

10/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

MergeSort Recurrence

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

Notes
More precise: T(n) ≤ T (⌊n2 ⌋) + T (⌈

n
2 ⌉) + cn

Usually, we can asymptotically ignore floor and ceilings.
Essentially, we are assuming n is a power of 2.
Alternate form: T(n) ≤ 2 ⋅ T (n2) +O(n);T(1) ≤ O(1)

Methods
Unwind / Recurrence Tree
Guess
Master Theorem
Nuclear Bomb Theorem / Master Master Theorem 10/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)
= cn + cn logn
= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)
= cn + cn logn
= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)
= cn + cn logn
= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)
= cn + cn logn
= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)
= cn + cn logn
= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)

= cn + cn logn
= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)
= cn + cn logn

= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Unwind MergeSort Recurrence

T(n) ≤ 2T (n
2
) + cn

≤ 2(2T (n
4
) + cn

2
) + cn

≤ 2(2(2T (n
23
) + c n

22
) + cn

2
) + cn

⋮

≤ 2kT (n
2k
) + kcn

= nT(1) + cn log(n)
= cn + cn logn
= O(n log(n))

1 = n
2k

⇐⇒ 2k = n
⇐⇒ k = log2(n)

11/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Recursion Tree Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

cn

cn
2

cn
22

⋮

cn
2k

cn
2k

⋮

cn
22

⋮ ⋮

cn
2

cn
22

⋮ ⋮

cn
22

⋮ ⋮

cn
2k

cn
2k → cn

⋮

cn

cn

cn

= cn lgn + cn
= O(n ⋅ lgn)

+

+ ++

+ +⋯

(
k
∑
i=0

2i ⋅ cn
2i
)

+

+

+

→

+

→

→

⇓

(k + 1)cn = (tree height + 1) ⋅ cn

+ +

=

⋯

1Based on: http://www.texample.net/tikz/examples/merge-sort-recursion-tree/
12/34

http://www.texample.net/tikz/examples/merge-sort-recursion-tree/

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Guess Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

Procedure
1 Guess: Seems like O(n logn)-ish.

2 Prove by induction! Not valid without proof!

13/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Guess Method

T(n) ≤ 2 ⋅ T (n
2
) + cn;T(1) ≤ c

Procedure
1 Guess: Seems like O(n logn)-ish.
2 Prove by induction! Not valid without proof!

13/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Prove Recurrence by Strong Induction

T(n) ≤ 2 ⋅ T (n
2
) + cn ≤ cn lgn + cn;T(1) ≤ c

Base Case: n = 2.
T(2) = 2 ⋅ T(1) + 2c ≤ 4c

= c ⋅ 2 lg 2 + 2c
Inductive step:

T(k) = 2 ⋅ T(k/2) + ck

≤ 2(ck
2
lg

k
2
+ ck

2
) + ck

= ck lg(k/2) + 2ck
= ck lg k − ck + 2ck
= ck lg k + ck

∴O(n logn)

14/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Prove Recurrence by Strong Induction

T(n) ≤ 2 ⋅ T (n
2
) + cn ≤ cn lgn + cn;T(1) ≤ c

Base Case: n = 2.
T(2) = 2 ⋅ T(1) + 2c ≤ 4c

= c ⋅ 2 lg 2 + 2c

Inductive step:
T(k) = 2 ⋅ T(k/2) + ck

≤ 2(ck
2
lg

k
2
+ ck

2
) + ck

= ck lg(k/2) + 2ck
= ck lg k − ck + 2ck
= ck lg k + ck

∴O(n logn)

14/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Prove Recurrence by Strong Induction

T(n) ≤ 2 ⋅ T (n
2
) + cn ≤ cn lgn + cn;T(1) ≤ c

Base Case: n = 2.
T(2) = 2 ⋅ T(1) + 2c ≤ 4c

= c ⋅ 2 lg 2 + 2c
Inductive step:

T(k) = 2 ⋅ T(k/2) + ck

≤ 2(ck
2
lg

k
2
+ ck

2
) + ck

= ck lg(k/2) + 2ck
= ck lg k − ck + 2ck
= ck lg k + ck

∴O(n logn)

14/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Prove Recurrence by Strong Induction

T(n) ≤ 2 ⋅ T (n
2
) + cn ≤ cn lgn + cn;T(1) ≤ c

Base Case: n = 2.
T(2) = 2 ⋅ T(1) + 2c ≤ 4c

= c ⋅ 2 lg 2 + 2c
Inductive step:

T(k) = 2 ⋅ T(k/2) + ck

≤ 2(ck
2
lg

k
2
+ ck

2
) + ck

= ck lg(k/2) + 2ck
= ck lg k − ck + 2ck
= ck lg k + ck

∴O(n logn)
14/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Generalized Recurrence

T(n) ≤ q ⋅ T (n
2
) + cn;T(1) ≤ c

Case q > 2
O (nlg q)

Case q = 2
O (n logn)

Case q = 1
O (n)

15/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Generalized Recurrence

T(n) ≤ q ⋅ T (n
2
) + cn;T(1) ≤ c

Case q > 2

O (nlg q)

Case q = 2
O (n logn)

Case q = 1
O (n)

15/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Generalized Recurrence

T(n) ≤ q ⋅ T (n
2
) + cn;T(1) ≤ c

Case q > 2
O (nlg q)

Case q = 2
O (n logn)

Case q = 1
O (n)

15/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Generalized Recurrence

T(n) ≤ q ⋅ T (n
2
) + cn;T(1) ≤ c

Case q > 2
O (nlg q)

Case q = 2
O (n logn)

Case q = 1
O (n)

15/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Generalized Recurrence

T(n) ≤ q ⋅ T (n
2
) + cn;T(1) ≤ c

Case q > 2
O (nlg q)

Case q = 2
O (n logn)

Case q = 1

O (n)

15/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Generalized Recurrence

T(n) ≤ q ⋅ T (n
2
) + cn;T(1) ≤ c

Case q > 2
O (nlg q)

Case q = 2
O (n logn)

Case q = 1
O (n)

15/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Master Theorem
Cookbook Recurrence Solving

16/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Master Theorem
Cookbook Recurrence Solving

Theorem 1
Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T(n)
be defined on the non-negative integers by the recurrence

T(n) = aT(n/b) + f (n) ,

where we interpret n/b to mean either ⌊n/b⌋ or ⌈n/b⌉. Then T(n) has
the following asymptotic bounds:

1 If f (n) = O (nlogb a−ε) for some constant ε > 0, then
T(n) = Θ (nlogba).

2 If f (n) = Θ (nlogb a), then T(n) = Θ (nlogba logn).
3 If Ω (nlogb a+ε) for some constant ε > 0, and if a ⋅ f (n/b) ≤ c ⋅ f (n)

for some constant c < 1 and all sufficiently large n, then
T(n) = Θ(f (n)).

16/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Nuclear Bomb / Master Master Theorem
Akra and Bazzi, 1998

Theorem 2
Given a recurrence of the form:

T(n) =
k
∑
i=1

aiT(n/bi) + f (n) ,

where k is a constant, ai > 0 and bi > 1 are constants for all i, and
f (n) = Ω (nc) and f (n) = O (nd) for some constants 0 < c ≤ d. Then,

T(n) = Θ(nρ (1 + ∫
n

1

f (u)
uρ+1

du)) ,

where ρ is the unique real solution to the equation
k
∑
i=1

ai
bρi
= 1 .

17/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Search

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Unsorted Array

Linear Search
Brute force approach: check every item in order.

Algorithm 31: Linear Search
Input : A list of items A[1 . . .n] and a target element x.
Output: The index i such that A[i] = x, or −1 if x is not found.
for i ← 1 to n do

if A[i] = x then
return i // Return the index if x is found

end
end
return −1 // Return -1 if x is not found in the list

18/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Unsorted Array

Linear Search
Brute force approach: check every item in order.
What is the time complexity to search through n items?

Algorithm 32: Linear Search
Input : A list of items A[1 . . .n] and a target element x.
Output: The index i such that A[i] = x, or −1 if x is not found.
for i ← 1 to n do

if A[i] = x then
return i // Return the index if x is found

end
end
return −1 // Return -1 if x is not found in the list

18/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Unsorted Array

Linear Search
Brute force approach: check every item in order.
What is the time complexity to search through n items?

Algorithm 33: Linear Search
Input : A list of items A[1 . . .n] and a target element x.
Output: The index i such that A[i] = x, or −1 if x is not found.
for i ← 1 to n do

if A[i] = x then
return i // Return the index if x is found

end
end
return −1 // Return -1 if x is not found in the list

Time complexity:

T(n) = T(n − 1) +Θ(1)
18/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Unsorted Array

Linear Search
Brute force approach: check every item in order.
Time complexity: O(n)

Algorithm 34: Linear Search
Input : A list of items A[1 . . .n] and a target element x.
Output: The index i such that A[i] = x, or −1 if x is not found.
for i ← 1 to n do

if A[i] = x then
return i // Return the index if x is found

end
end
return −1 // Return -1 if x is not found in the list

Time complexity:

T(n) = T(n − 1) +Θ(1)
18/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

Divide and Conquer Approach
Start by dividing the array in half and compare the target
element with the middle element.

If the target is less than the middle element, search the left
half; otherwise, search the right half.

19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

Divide and Conquer Approach
Start by dividing the array in half and compare the target
element with the middle element.
If the target is less than the middle element, search the left
half; otherwise, search the right half.

19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

Divide and Conquer Approach
Start by dividing the array in half and compare the target
element with the middle element.
If the target is less than the middle element, search the left
half; otherwise, search the right half.
What is the time complexity of searching through n

sorted items?

19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

What is the time complexity of searching through n
sorted items?

Algorithm 35: Binary Search
Input : A sorted list of items A[1 . . .n] and a target element x.
Output: The index i such that A[i] = x, or −1 if x is not found.
while low ≤ high do

mid← ⌊ low+high2 ⌋

if A[mid] = x then
return mid // Return the index if x is found

else
if A[mid] < x then

low←mid + 1
else

high←mid − 1
end

end
end
return −1 // Return -1 if x is not found in the list 19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

Divide and Conquer Approach
Start by dividing the array in half and compare the target
element with the middle element.
If the target is less than the middle element, search the left
half; otherwise, search the right half.
What is the time complexity of searching through n

sorted items?

Time complexity:

T(n) = T (n
2
) +Θ(1)

19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

Divide and Conquer Approach
Start by dividing the array in half and compare the target
element with the middle element.
If the target is less than the middle element, search the left
half; otherwise, search the right half.
What is the time complexity of searching through n

sorted items?

Time complexity:

T(n) = T (n
4
) +Θ(1) +Θ(1)

19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

Divide and Conquer Approach
Start by dividing the array in half and compare the target
element with the middle element.
If the target is less than the middle element, search the left
half; otherwise, search the right half.
What is the time complexity of searching through n

sorted items?

Time complexity:

T(n) = T (n
4
) +Θ(1) +Θ(1) = ⋯ = T (n

2k
) + k ×Θ(1)

19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Searching for an element
Sorted Array

Divide and Conquer Approach
Start by dividing the array in half and compare the target
element with the middle element.
If the target is less than the middle element, search the left
half; otherwise, search the right half.
What is the time complexity of searching through n

sorted items?Time complexity: O(logn)

Time complexity:

T(n) = T
⎛
⎜⎜⎜⎜
⎝
�
��
n
2k
= 1

´¹¹¹¹¸¹¹¹¹¹¶
k=log n

⎞
⎟⎟⎟⎟
⎠
+ logn ×Θ(1) = Θ(logn)

19/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Can we do better than
this?

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Lower bounds are used:
To determine the minimum amount of work any algorithm
must do to solve a problem.

To recognize when further improvement is futile.

20/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Lower bounds are used:
To determine the minimum amount of work any algorithm
must do to solve a problem.
To recognize when further improvement is futile.

20/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Reminder: Worst-case Complexity

Worst-case Complexity
Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

Provides an absolute guarantee on performance.
Based on the single most challenging input.

TA
worst(n) = max

i∈I,∣i∣=n
TA(i)

What does the worst-case complexity of a problem mean?

TΠ
worst(n) = min

A solves Π
TA
worst(n)

21/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Reminder: Worst-case Complexity

Worst-case Complexity
Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

Provides an absolute guarantee on performance.
Based on the single most challenging input.

TA
worst(n) = max

i∈I,∣i∣=n
TA(i)

What does the worst-case complexity of a problem mean?

TΠ
worst(n) = min

A solves Π
TA
worst(n)

TΠ
worst(n) ≤ TA

worst(n) for any algorithm A that solves Π

21/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Reminder: Worst-case Complexity
Worst-case Complexity
Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

Provides an absolute guarantee on performance.
Based on the single most challenging input.

TA
worst(n) = max

i∈I,∣i∣=n
TA(i)

What does the worst-case complexity of a problem mean?

TΠ
worst(n) = min

A solves Π
TA
worst(n)

TΠ
worst(n) ≤ TA

worst(n) for any algorithm A that solves Π

An algorithm upper-bounds the complexity of a problem.
21/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Reminder: Worst-case Complexity
Worst-case Complexity
Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

Provides an absolute guarantee on performance.
Based on the single most challenging input.

TA
worst(n) = max

i∈I,∣i∣=n
TA(i)

What does the worst-case complexity of a problem mean?

TΠ
worst(n) = min

A solves Π
TA
worst(n)

TΠ
worst(n) ≤ TA

worst(n) for any algorithm A that solves Π

How do we show a lower bound in complexity?
21/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Reminder: Worst-case Complexity
Worst-case Complexity
Definition: Considering all possible inputs, what is the worst possible
performance of the algorithm?

Provides an absolute guarantee on performance.
Based on the single most challenging input.

TA
worst(n) = max

i∈I,∣i∣=n
TA(i)

What does the worst-case complexity of a problem mean?

TΠ
worst(n) = min

A solves Π
TA
worst(n)

TΠ
worst(n) ≤ TA

worst(n) for any algorithm A that solves Π

We must prove that certain steps are necessary for any algorithm ,!!!
21/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Main Ideas (Proof by Contradiction):

1. Adversary Argument
Imagine an adversary making the problem as hard as possible for the
algorithm.

The adversary strategically forces the algorithm to take the maximum
number of steps.
This approach proves that any algorithm must take a certain number of
steps to guarantee correctness.

22/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Main Ideas (Proof by Contradiction):

1. Adversary Argument
Imagine an adversary making the problem as hard as possible for the
algorithm.
The adversary strategically forces the algorithm to take the maximum
number of steps.

This approach proves that any algorithm must take a certain number of
steps to guarantee correctness.

22/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Main Ideas (Proof by Contradiction):

1. Adversary Argument
Imagine an adversary making the problem as hard as possible for the
algorithm.
The adversary strategically forces the algorithm to take the maximum
number of steps.
This approach proves that any algorithm must take a certain number of
steps to guarantee correctness.

22/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Main Ideas (Proof by Contradiction):

2. Decision Tree Model & Pigeonhole Principle
Decision Tree Model: Visualizes the algorithm’s decision-making
process, where each node is a query, and each leaf is an outcome.

Pigeonhole Principle: More outcomes than execution paths mean some
paths must produce multiple outputs violating the correctness.
The height of the decision tree represents the worst-case number of steps the
algorithm takes.

22/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Main Ideas (Proof by Contradiction):

2. Decision Tree Model & Pigeonhole Principle
Decision Tree Model: Visualizes the algorithm’s decision-making
process, where each node is a query, and each leaf is an outcome.
Pigeonhole Principle: More outcomes than execution paths mean some
paths must produce multiple outputs violating the correctness.

The height of the decision tree represents the worst-case number of steps the
algorithm takes.

22/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Techniques to Prove Lower Bounds

Main Ideas (Proof by Contradiction):

2. Decision Tree Model & Pigeonhole Principle
Decision Tree Model: Visualizes the algorithm’s decision-making
process, where each node is a query, and each leaf is an outcome.
Pigeonhole Principle: More outcomes than execution paths mean some
paths must produce multiple outputs violating the correctness.
The height of the decision tree represents the worst-case number of steps the
algorithm takes.

22/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most n − 2 steps:
Adversary’s Strategy:

The adversary knows your search strategy and aims to
make it as difficult as possible.
Initially, the adversary has not committed to where x is
located in the array.

Your Search Process:
You examine elements one by one, starting from any element.
If you recheck, you don’t gain any new information about the rest
of the array.
For each element A[i] you check, the adversary can respond with
any value not equal to x.

Worst-Case Scenario: Knowing x is in the array, the adversary can
place it in the last unchecked position,

23/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most n − 2 steps:

Adversary’s Strategy:
The adversary knows your search strategy and aims to
make it as difficult as possible.
Initially, the adversary has not committed to where x is
located in the array.

Your Search Process:
You examine elements one by one, starting from any element.
If you recheck, you don’t gain any new information about the rest
of the array.
For each element A[i] you check, the adversary can respond with
any value not equal to x.

Worst-Case Scenario: Knowing x is in the array, the adversary can
place it in the last unchecked position,

23/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most n − 2 steps:
Adversary’s Strategy:

The adversary knows your search strategy and aims to
make it as difficult as possible.

Initially, the adversary has not committed to where x is
located in the array.

Your Search Process:
You examine elements one by one, starting from any element.
If you recheck, you don’t gain any new information about the rest
of the array.
For each element A[i] you check, the adversary can respond with
any value not equal to x.

Worst-Case Scenario: Knowing x is in the array, the adversary can
place it in the last unchecked position,

23/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most n − 2 steps:
Adversary’s Strategy:

The adversary knows your search strategy and aims to
make it as difficult as possible.
Initially, the adversary has not committed to where x is
located in the array.

Your Search Process:
You examine elements one by one, starting from any element.
If you recheck, you don’t gain any new information about the rest
of the array.
For each element A[i] you check, the adversary can respond with
any value not equal to x.

Worst-Case Scenario: Knowing x is in the array, the adversary can
place it in the last unchecked position,

23/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most n − 2 steps:
Adversary’s Strategy:

The adversary knows your search strategy and aims to
make it as difficult as possible.
Initially, the adversary has not committed to where x is
located in the array.

Your Search Process:
You examine elements one by one, starting from any element.
If you recheck, you don’t gain any new information about the rest
of the array.

For each element A[i] you check, the adversary can respond with
any value not equal to x.

Worst-Case Scenario: Knowing x is in the array, the adversary can
place it in the last unchecked position,

23/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most n − 2 steps:
Adversary’s Strategy:

The adversary knows your search strategy and aims to
make it as difficult as possible.
Initially, the adversary has not committed to where x is
located in the array.

Your Search Process:
You examine elements one by one, starting from any element.
If you recheck, you don’t gain any new information about the rest
of the array.
For each element A[i] you check, the adversary can respond with
any value not equal to x.

Worst-Case Scenario: Knowing x is in the array, the adversary can
place it in the last unchecked position,

23/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Can we search for an element x in an unsorted array A without
scanning the entire array?

For contradiction, assume it is possible with at most n − 2 steps:
Adversary’s Strategy:

The adversary knows your search strategy and aims to
make it as difficult as possible.
Initially, the adversary has not committed to where x is
located in the array.

Your Search Process:
You examine elements one by one, starting from any element.
If you recheck, you don’t gain any new information about the rest
of the array.
For each element A[i] you check, the adversary can respond with
any value not equal to x.

Worst-Case Scenario: Knowing x is in the array, the adversary can
place it in the last unchecked position,

23/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X

Adversary: -No ,

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X X

Adversary: -No ,

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X X

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X X X

Adversary: -No ,

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X X X

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X X X X

Adversary: -No ,

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Adversary Argument for Ω(n) Linear Search
Illustration

We: - Is it here?

X X X X

Adversary: -No ,

If we use n − 2 queries, at the end adversary can hide x to the
unchecked one.

24/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array

Assume that your algorithm can only ask comparison questions
of the form x >=

<
k?.

What is the worst-case performance of the FindAnimal?

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array

Worst-Case Performance
The worst-case performance of our algorithm is determined by
the height of the decision tree.

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array

Worst-Case Performance
The worst-case performance of our algorithm is determined by
the height of the decision tree.

Payattention
toargument
phrasing!!!

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.
There are arrays where the answer could be at the first
position, the second position, ..., the last position, or the
element may not be present at all.

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.
Since the algorithm relies on binary comparisons (with 2
possible outcomes), it essentially constructs a binary
decision tree.

Why does the algorithm construct a binary decision tree?

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Why does the algorithm construct a binary decision tree?

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Because each query/decision provides a "Yes" or "No" answer,
which naturally forms a binary structure.

If the algorithm could ask questions with 3, 4, or k outcomes, it
would form a ternary, quaternary, or k-ary tree instead.

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Because each query/decision provides a "Yes" or "No" answer,
which naturally forms a binary structure.

If the algorithm could ask questions with 3, 4, or k outcomes, it
would form a ternary, quaternary, or k-ary tree instead.

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Why is the algorithm modeled by a tree?

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Why is the algorithm modeled by a tree?

Since the input data doesn’t change, there’s no need to ask the
same question twice. Hence, the algorithm doesn’t form cycles,
but rather a tree.

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Why is the algorithm modeled by a tree?

How many different answers can the algorithm give?

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Why is the algorithm modeled by a tree?

How many different answers can the algorithm give?

As many as the number of leaves in the tree.
25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Ω(logn) Search Based on Comparisons
Sorted Array [2,3,5,7,11,13,17,19]

Suppose we have an algorithm that uses comparisons to
correctly solve the search problem for any given array.

Why is the algorithm modeled by a tree?

How many different answers can the algorithm give?

As many as the number of leaves in the tree.

Any algorithm/tree with k comparisons can have at most 2k
leaves. If M answers are needed, then 2k ≥M, which implies
k ≥ log2M.

25/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bound in Comparison Sorting Algorithms
Let’s see what we’ve learned...

If you need to sort an array and only perform comparisons,
how many comparisons are necessary to account for all
possible orderings?

For an array of 3 elements, consider all possible permutations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A[1] < A[2] < A[3],
A[2] < A[1] < A[3],
A[1] < A[3] < A[2],
A[2] < A[3] < A[1],
A[3] < A[1] < A[3],
A[3] < A[2] < A[1]

Every comparison-based algorithm after k comparisons must
produce a decision tree with at least N! leaves. Therefore, it
needs at least:

2k ≥ N!⇒ k ≥ log2N! = Ω(N logN)

comparisons.

26/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bound in Comparison Sorting Algorithms
Let’s see what we’ve learned...

If you need to sort an array and only perform comparisons,
how many comparisons are necessary to account for all
possible orderings?

For an array of 3 elements, consider all possible permutations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A[1] < A[2] < A[3],
A[2] < A[1] < A[3],
A[1] < A[3] < A[2],
A[2] < A[3] < A[1],
A[3] < A[1] < A[3],
A[3] < A[2] < A[1]

Every comparison-based algorithm after k comparisons must
produce a decision tree with at least N! leaves. Therefore, it
needs at least:

2k ≥ N!⇒ k ≥ log2N! = Ω(N logN)

comparisons.

26/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bound in Comparison Sorting Algorithms
Let’s see what we’ve learned...

If you need to sort an array and only perform comparisons,
how many comparisons are necessary to account for all
possible orderings?

For an array of 3 elements, consider all possible permutations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A[1] < A[2] < A[3],
A[2] < A[1] < A[3],
A[1] < A[3] < A[2],
A[2] < A[3] < A[1],
A[3] < A[1] < A[3],
A[3] < A[2] < A[1]

Every comparison-based algorithm after k comparisons must
produce a decision tree with at least N! leaves. Therefore, it
needs at least:

2k ≥ N!⇒ k ≥ log2N! = Ω(N logN)

comparisons.

26/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that you have an algorithm A (comparison-based) that sorts a
sequence that is almost correct except for the last two elements:

Input: {ai}ni=1 Ô⇒ Output: {aπ(i1) < aπ(i2) < ⋯ < aπ(in−2)}

But you do not know the order of the last two elements. Why does Algo A
have a lower bound of Ω(n logn)?

Consider both cases: with and without counting.

27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that you have an algorithm A (comparison-based) that sorts a
sequence that is almost correct except for the last two elements:

Input: {ai}ni=1 Ô⇒ Output: {aπ(i1) < aπ(i2) < ⋯ < aπ(in−2)}

But you do not know the order of the last two elements. Why does Algo A
have a lower bound of Ω(n logn)?

Consider both cases: with and without counting.

With Counting: The number of possible outputs is n!/2!,
because the algorithm is indifferent regarding the last two
positions. Therefore, the time complexity is Ω(log(n!/2)).

27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that you have an algorithm A (comparison-based) that sorts a
sequence that is almost correct except for the last two elements:

Input: {ai}ni=1 Ô⇒ Output: {aπ(i1) < aπ(i2) < ⋯ < aπ(in−2)}

But you do not know the order of the last two elements. Why does Algo A
have a lower bound of Ω(n logn)?

Consider both cases: with and without counting.

Without Counting: Assume that A has a complexity of
o(n logn). Then, I can create an algorithm B as follows:

Algorithm B ∶ {Apply A;Compare the last two elements}

This algorithm B sorts an arbitrary array in
o(n logn) +Θ(1) = o(n logn) using only comparisons 27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

The higher lower bound reflects the complexity better. Can
you suggest a trivial lower bound of Ω(1)?

27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

Lower Bound: Consider the case where the array has n − 1
ones and 1 zero. In this case, the complexity is
log(n!/(n − 1)!) = logn.
The adversary argument gives a higher lower bound since
the zero is the minimum element.

27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

More Interesting Case: If the zeros and ones are split
evenly, the complexity is:

log (2n!
n!n!
) = log (2n

n
) = log(2n!) − 2 log(n!)

Using Stirling’s approximation, we get:

2n log(2n)− 2n+O(log 2n)− 2n logn+ 2n− 2O(logn) = Ω(n)

27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Lower Bounds
Reductions to other problems

Assume that your array contains only ones and zeros. What
is the lower bound? What is the upper bound?

Upper Bound: A linear-time comparison-based algorithm
via Partition (Teaser for QuickSort).

27/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search:
From Decision to Optimization

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search in the Solution Space
High-level Technique

Perhaps one of the most fundamental techniques in solving difficult
problems—and one of the key tricks in computer science interviews.

Binary search is not only applicable to sorted arrays but also to
the solution space.

X X X XCost:

1 2 3 4 ⋯ ⋯ k∗ − 1

X

k∗

� � � � � � � �

k

´¹¹¸¹¹¹¶ ´¹¹¹¸¹¹¹¶

⋯

It is impossible to satisfy the constraints It is possible to satisfy the constraints

28/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search in the Solution Space
High-level Technique

Binary search is not only applicable to sorted arrays but also to
the solution space.

For example:
Compute the minimum cost in a Constraint-Satisfaction
problem (CSP) with n constraints.
Define a cost function and query: "Is there a solution with
cost at most k?"
If yes, check for a solution with cost ≤ k − 1, and so on.
⋮
If no, find the optimal solution.

X X X XCost:

1 2 3 4 ⋯ ⋯ k∗ − 1

X

k∗

� � � � � � � �

k

´¹¹¸¹¹¹¶ ´¹¹¹¸¹¹¹¶

⋯

It is impossible to satisfy the constraints It is possible to satisfy the constraints

28/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search in the Solution Space
High-level Technique

Binary search is not only applicable to sorted arrays but also to
the solution space.

For example:
Compute the minimum cost in a Constraint-Satisfaction
problem (CSP) with n constraints.
Define a cost function and query: "Is there a solution with
cost at most k?"
If yes, check for a solution with cost ≤ k − 1, and so on.
⋮
If no, find the optimal solution.

Do you need to go step-by-step, or can you apply binary
search to find the optimal solution?

X X X XCost:

1 2 3 4 ⋯ ⋯ k∗ − 1

X

k∗

� � � � � � � �

k

´¹¹¸¹¹¹¶ ´¹¹¹¸¹¹¹¶

⋯

It is impossible to satisfy the constraints It is possible to satisfy the constraints 28/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search in the Solution Space
Example

Problem Definition
You’re planning a long trip with k ≥ 2 (e.g. 10) days and need to visit
n > k locations (e.g. Big cities of USA).
The distances between consecutive stops are d1, d2, . . . , dn where d1 is the
distance from the start, d2 is the distance from the first to the second
stop, etc.
To avoid fatigue, you want to minimize the maximum distance traveled
in a single day. You can stop for an overnight rest only at selected stops.

min cost(Separation{d1, . . . ,dn ∣ k}) = min
Separation{d1,...,dn∣k}

max
day∈[k]

∑d[day]i

29/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search in the Solution Space
Example

Problem Definition
You’re planning a long trip with k ≥ 2 (e.g. 10) days and need to visit
n > k locations (e.g. Big cities of USA).
The distances between consecutive stops are d1, d2, . . . , dn where d1 is the
distance from the start, d2 is the distance from the first to the second
stop, etc.
To avoid fatigue, you want to minimize the maximum distance traveled
in a single day. You can stop for an overnight rest only at selected stops.

min cost(Separation{d1, . . . ,dn ∣ k}) = min
Separation{d1,...,dn∣k}

max
day∈[k]

∑d[day]i

29/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search for the Optimal Solution
Step-by-Step Approach

We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.

Using binary search, we iteratively narrow down the range by checking
whether a given midpoint value can be a valid solution
(i.e., if it is possible to split the journey into k days where no day
exceeds this distance).
The optimal solution is found when the range converges, providing the
minimal maximum distance that allows the trip to be completed in k
days.

Computational Complexity
The binary search operates on the solution space, which has a
logarithmic range (based on the total distance of the trip).
For each midpoint value tested, a linear scan of the array d1, d2, . . . , dn is
performed to check feasibility.
Therefore, the overall complexity is O(n logD), where D is the range of
possible maximum distances.

30/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search for the Optimal Solution
Step-by-Step Approach

We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.
Using binary search, we iteratively narrow down the range by checking
whether a given midpoint value can be a valid solution
(i.e., if it is possible to split the journey into k days where no day
exceeds this distance).

The optimal solution is found when the range converges, providing the
minimal maximum distance that allows the trip to be completed in k
days.

Computational Complexity
The binary search operates on the solution space, which has a
logarithmic range (based on the total distance of the trip).
For each midpoint value tested, a linear scan of the array d1, d2, . . . , dn is
performed to check feasibility.
Therefore, the overall complexity is O(n logD), where D is the range of
possible maximum distances.

30/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search for the Optimal Solution
Step-by-Step Approach

We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.
Using binary search, we iteratively narrow down the range by checking
whether a given midpoint value can be a valid solution
(i.e., if it is possible to split the journey into k days where no day
exceeds this distance).
The optimal solution is found when the range converges, providing the
minimal maximum distance that allows the trip to be completed in k
days.

Computational Complexity
The binary search operates on the solution space, which has a
logarithmic range (based on the total distance of the trip).
For each midpoint value tested, a linear scan of the array d1, d2, . . . , dn is
performed to check feasibility.
Therefore, the overall complexity is O(n logD), where D is the range of
possible maximum distances.

30/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Binary Search for the Optimal Solution
Step-by-Step Approach

We start by defining the feasible region: the minimum possible value
and the maximum possible value for the longest single-day distance.
Using binary search, we iteratively narrow down the range by checking
whether a given midpoint value can be a valid solution
(i.e., if it is possible to split the journey into k days where no day
exceeds this distance).
The optimal solution is found when the range converges, providing the
minimal maximum distance that allows the trip to be completed in k
days.

Computational Complexity
The binary search operates on the solution space, which has a
logarithmic range (based on the total distance of the trip).
For each midpoint value tested, a linear scan of the array d1, d2, . . . , dn is
performed to check feasibility.
Therefore, the overall complexity is O(n logD), where D is the range of
possible maximum distances.

30/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Inversion Count

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Counting Inversions

Inversion
Given a list A of comparable items. An inversion is a pair of
items (ai, aj) such that ai > aj and i < j, where i and j are the
index of the items in A.

Inversion Count
Count the number of inversions in a list A, containing n
comparable items.

31/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Counting Inversions

Inversion
Given a list A of comparable items. An inversion is a pair of
items (ai, aj) such that ai > aj and i < j, where i and j are the
index of the items in A.

Inversion Count
Count the number of inversions in a list A, containing n
comparable items.

31/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 1: Give a Θ(n2) solution.
Algorithm: CheckAllPairs
Input : A list A of n comparable items.
Output: Number of inversions in A.
Let c ∶= 0
for i ∶= 1 to len(A) − 1 do

for j ∶= i to len(A) do
if A[i] > A[j] then

c ∶= c + 1
end

end
end
return c

Analysis
Correct: Checks all pairs
and counts the inversions.
Complexity: For each i,
check n − i pairs. Overall:

n−1
∑
i=1

i = n(n − 1)
2

= Θ(n2) .

Teaser for Homework ,
Idea...In order to sort an array, you have to fix all the inversions

Exercise
Solve the problem in Θ(Inversions).
Solve the problem in O(n logn).
Prove correctness and complexity.

32/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 1: Give a Θ(n2) solution.
Algorithm: CheckAllPairs
Input : A list A of n comparable items.
Output: Number of inversions in A.
Let c ∶= 0
for i ∶= 1 to len(A) − 1 do

for j ∶= i to len(A) do
if A[i] > A[j] then

c ∶= c + 1
end

end
end
return c

Analysis
Correct: Checks all pairs
and counts the inversions.

Complexity: For each i,
check n − i pairs. Overall:

n−1
∑
i=1

i = n(n − 1)
2

= Θ(n2) .

Teaser for Homework ,
Idea...In order to sort an array, you have to fix all the inversions

Exercise
Solve the problem in Θ(Inversions).
Solve the problem in O(n logn).
Prove correctness and complexity.

32/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 1: Give a Θ(n2) solution.
Algorithm: CheckAllPairs
Input : A list A of n comparable items.
Output: Number of inversions in A.
Let c ∶= 0
for i ∶= 1 to len(A) − 1 do

for j ∶= i to len(A) do
if A[i] > A[j] then

c ∶= c + 1
end

end
end
return c

Analysis
Correct: Checks all pairs
and counts the inversions.
Complexity: For each i,
check n − i pairs. Overall:

n−1
∑
i=1

i = n(n − 1)
2

= Θ(n2) .

Teaser for Homework ,
Idea...In order to sort an array, you have to fix all the inversions

Exercise
Solve the problem in Θ(Inversions).
Solve the problem in O(n logn).
Prove correctness and complexity.

32/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 1: Give a Θ(n2) solution.
Algorithm: CheckAllPairs
Input : A list A of n comparable items.
Output: Number of inversions in A.
Let c ∶= 0
for i ∶= 1 to len(A) − 1 do

for j ∶= i to len(A) do
if A[i] > A[j] then

c ∶= c + 1
end

end
end
return c

Analysis
Correct: Checks all pairs
and counts the inversions.
Complexity: For each i,
check n − i pairs. Overall:

n−1
∑
i=1

i = n(n − 1)
2

= Θ(n2) .

Teaser for Homework ,
Idea...In order to sort an array, you have to fix all the inversions

Exercise
Solve the problem in Θ(Inversions).
Solve the problem in O(n logn).
Prove correctness and complexity.

32/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 2: Give a Θ(#Inversions) solution.

Observation: Inversions
An inversion in an array A[1 . . .n] is a pair of indices i < j
such that A[i] > A[j].
The number of inversions indicates how far the array is
from being sorted.

Insertion Sort:
Insertion Sort corrects each inversion one by one.
The total number of swaps made by Insertion Sort equals
the number of inversions in the array.
Time complexity of Insertion Sort in this context is
Θ(#Inversions).

33/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 2: Give a Θ(#Inversions) solution.

Observation: Inversions
An inversion in an array A[1 . . .n] is a pair of indices i < j
such that A[i] > A[j].
The number of inversions indicates how far the array is
from being sorted.

Insertion Sort:
Insertion Sort corrects each inversion one by one.

The total number of swaps made by Insertion Sort equals
the number of inversions in the array.
Time complexity of Insertion Sort in this context is
Θ(#Inversions).

33/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 2: Give a Θ(#Inversions) solution.

Observation: Inversions
An inversion in an array A[1 . . .n] is a pair of indices i < j
such that A[i] > A[j].
The number of inversions indicates how far the array is
from being sorted.

Insertion Sort:
Insertion Sort corrects each inversion one by one.
The total number of swaps made by Insertion Sort equals
the number of inversions in the array.
Time complexity of Insertion Sort in this context is
Θ(#Inversions).

33/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 3: Give an O(n logn) solution.
Can we count the inversions using faster sorting
algorithms?

Modify the merge step in Merge Sort to count inversions.
While merging two sorted halves, every time an element
from the right half is placed before an element from the left
half, it contributes to inversions.

34/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 3: Give an O(n logn) solution.

Algorithm: CountSort
Input : A list A of n comparable items.
Output: A sorted array and the number of inversions.
if ∣A∣ = 1 then return (A,0)
(A1, c1) ∶= CountSort(Front-half of A)
(A2, c2) ∶= CountSort(Back-half of A)
(A, c) ∶=MergeCount(A1,A2)
return (A, c + c1 + c2)

34/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 3: Give an O(n logn) solution.
Algorithm: MergeCount
Input : Two lists of comparable items: A and B.
Output: A merged list and the count of inversions.
Initialize S to an empty list and c ∶= 0.
while either A or B is not empty do

Pop and append min{front of A, front of B} to S.
if Appended item is from B then

c ∶= c + ∣A∣.
end

end
return (S, c)

Analysis
Correctness: Need to show that the inversions are correctly
counted.
Complexity: Same recurrence asMergeSort, leading to
O(n logn).

34/34

Divide and Conquer Sort Search Lower Bounds Decision→ Optimization Inv Count

Part 3: Give an O(n logn) solution.
Algorithm: MergeCount
Input : Two lists of comparable items: A and B.
Output: A merged list and the count of inversions.
Initialize S to an empty list and c ∶= 0.
while either A or B is not empty do

Pop and append min{front of A, front of B} to S.
if Appended item is from B then

c ∶= c + ∣A∣.
end

end
return (S, c)
Analysis

Correctness: Need to show that the inversions are correctly
counted.
Complexity: Same recurrence asMergeSort, leading to
O(n logn).

34/34

Appendix References

Appendix

Appendix References

References

Appendix References

Image Sources I

https://brand.wisc.edu/web/logos/

https://people.csail.mit.edu/virgi/

35/34

https://brand.wisc.edu/web/logos/
https://people.csail.mit.edu/virgi/

	Divide and Conquer
	Sort
	MergeSort

	Search
	Lower Bounds Can we do better than this?
	Binary Search: From Decision to Optimization
	Inversion Count
	Appendix
	Appendix
	References

