CS 577 - Divide and Conquer. Applications

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

Divide and Conquer

Fast Exp

INT MULI

DIVIDE AND CONQUER

Divide and Conquer (DC)

Overview

- Split problem into smaller sub-problems.
- Solve (usually recurse on) the smaller sub-problems.
- Use the output from the smaller sub-problems to build the solution.

Divide and Conquer (DC)

Overview

- Split problem into smaller sub-problems.
- Solve (usually recurse on) the smaller sub-problems.
- Use the output from the smaller sub-problems to build the solution.

Tendencies of DC

- Naturally recursive solutions
- Solving complexities often involve recurrences.
- Often used to improve efficiency of efficient solutions, e.g. $O(n^2) \rightarrow O(n \log n)$.
- Used in conjunction with other techniques.

FAST EXPONENTIATION

Exponentiation by Squaring

Problem

Compute x^n where x is an integer number and n is a non-negative integer, minimizing the number of multiplications.

Let's assume that multiplication counts per one step*

* Note: In the real world, as numbers grow larger, the cost of multiplication increases significantly. For example, $2 \times 3 = 6$, but $1,234 \times 56,789 \approx 70$ million.

Exponentiation by Squaring

Problem

Compute x^n where x is an integer number and n is a non-negative integer, minimizing the number of multiplications.

Let's assume that multiplication counts per one step*

What is the complexity of the naive method $x^n = \underbrace{x \cdot x \cdots x}_{n \text{ times}}$?

Exponentiation by Squaring

Problem

Compute x^n where x is an integer number and n is a non-negative integer, minimizing the number of multiplications.

Let's assume that multiplication counts per one step*

What is the complexity of the naive method $x^n = \underbrace{x \cdot x \cdots x}_{n \text{ times}}$? O(n).

Discussion: Suggest how to divide the problem.

MATRIX MUL

Divide & Conquer Approach v1

Reducing the problem

Consider the following cases for *n*:

Reducing the problem

Consider the following cases for *n*:

• If *n* is even,
$$x^n = (x^{n/2})^2$$
.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

How many recursive calls?

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

How many recursive calls? 1 for each case.

Reducing the problem

Consider the following cases for *n*:

• If *n* is even, $x^n = (x^{n/2})^2$.

• If *n* is odd,
$$x^n = x \cdot x^{n-1}$$

⁽²⁾How many recursive calls? 1 for each case. Cost per call? O(1) for each multiplication.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

```
• Base Case: If n = 0, return 1.
```

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

- Base Case: If n = 0, return 1.
- Recursive Case:
 - If *n* is even, return $fastExp(x, n/2)^2$.
 - If *n* is odd, return $x \cdot \texttt{fastExp}(x, n-1)$.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

- Base Case: If n = 0, return 1.
- Recursive Case:
 - If *n* is even, return $fastExp(x, n/2)^2$.
 - If *n* is odd, return $x \cdot \texttt{fastExp}(x, n-1)$.
- Combine: The result is computed as the recursion unwinds.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

- Base Case: If n = 0, return 1.
- Recursive Case:
 - If *n* is even, return $fastExp(x, n/2)^2$.
 - If *n* is odd, return $x \cdot \texttt{fastExp}(x, n-1)$.
- Combine: The result is computed as the recursion unwinds.
- Recurrence: $T(n) \le T(n/2) + O(1) = O(\log n)$.

INTEGER MULTIPLICATION

INTEGER MULTIPLICATION Partial Product Method:

	1100
	\times 1101
12	1100
$\times 13$	0000
36	1100
12	1100
156	10011100

Problem

Multiple two *n*-length binary numbers *x* and *y*, counting every bitwise operation.

INTEGER MULTIPLICATION Partial Product Method:

	1100
	\times 1101
12	1100
$\times 13$	0000
36	1100
12	1100
156	10011100

Problem

Multiple two *n*-length binary numbers *x* and *y*, counting every bitwise operation.

What is the complexity of the partial product method?

INTEGER MULTIPLICATION Partial Product Method:

	1100
	\times 1101
12	1100
$\times 13$	0000
36	1100
12	1100
156	10011100

Problem

Multiple two *n*-length binary numbers *x* and *y*, counting every bitwise operation.

What is the complexity of the partial product method? $O(n^2)$.

DIVIDE & CONQUER V1

Discussion : Suggest how to divide the problem.

DIVIDE & CONQUER V1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

In decimal system:

$$x = 12 \cdot 10^2 + 34 = 1200 + 34 = 1234$$
$$y = 56 \cdot 10^2 + 78 = 5600 + 78 = 5678$$

Divide & Conquer V1

High and low bits

Consider $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls?

MATRIX MULT

DIVIDE & CONQUER V1

High and low bits

Consider $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4.

Divide & Conquer v1

High and low bits

Consider $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4. Cost per call?

Divide & Conouer v1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4. Cost per call?

 $(x_1, y_1 \text{ are the } n/2 \text{ highest digits of } x, y)$

 x_0, y_0 are the n/2 lowest digits of x, y

- $x_1y_1, x_1y_0, x_0y_1, x_0y_0$ are *n*-digits numbers $\alpha \cdot 2^k$ can be done by shifting *k* digits

Summation of ℓ -digit numbers requires $O(\ell)$ bit-operations.

Divide & Conquer v1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls?

Divide & Conquer v1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

Divide & Conquer V1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Whow many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

What is the recurrence?

Divide & Conquer V1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Whow many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

What is the recurrence?

 $T(n) \leq 4T(n/2) + cn$

Divide & Conquer v1

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Whow many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

What is the recurrence?

$$T(n) \leq 4T(n/2) + cn = O\left(n^{\lg 4}\right) = O\left(n^2\right)$$

Divide & Conquer v2

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls
High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls

- Recursions:
 - $p \coloneqq \texttt{intMult}(x_1 + x_0, y_1 + y_0)$
 - $x_1y_1 \coloneqq \texttt{intMult}(x_1, y_1)$
 - $x_0y_0 \coloneqq \texttt{intMult}(x_0, y_0)$

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls

- Recursions:
 - $p := intMult(x_1 + x_0, y_1 + y_0)$
 - $x_1y_1 \coloneqq \texttt{intMult}(x_1, y_1)$
 - $x_0y_0 \coloneqq \texttt{intMult}(x_0, y_0)$
- Combine: Return $x_1y_1 \cdot 2^n + (p x_1y_1 x_0y_0) \cdot 2^{n/2} + x_0y_0$

High and low bits

Consider
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls

- Recursions:
 - $p := intMult(x_1 + x_0, y_1 + y_0)$
 - $x_1y_1 \coloneqq \texttt{intMult}(x_1, y_1)$
 - $x_0y_0 \coloneqq \texttt{intMult}(x_0, y_0)$
- Combine: Return $x_1y_1 \cdot 2^n + (p x_1y_1 x_0y_0) \cdot 2^{n/2} + x_0y_0$
- Recurrence: $T(n) \le 3T(n/2) + O(n) = O(n^{\lg 3}) = O(n^{1.59})$

Divide and Conquer Fast Exp Int Mult **Matrix Mult** Closest Pairs Max Subarray

MATRIX MULTIPLICATION

MATRIX MULTIPLICATION

Problem

Multiple two nxn matrices, A and B. Let C = AB.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}$$

MATRIX MULTIPLICATION

Problem

Multiple two nxn matrices, A and B. Let C = AB.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}$$

Algorithm: Naïve Method

What is the complexity of the Naïve Method?

MATRIX MULTIPLICATION

Problem

Multiple two nxn matrices, A and B. Let C = AB.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}$$

Algorithm: Naïve Method

What is the complexity of the Naïve Method? $O(n^3)$.

Discussion !!!: Suggest how to divide the problem.

Discussion !!!: Suggest how to divide the problem.

$$\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]$$

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

©Our standard D&C questions:

• 🕄 How many recursive calls?

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

©Our standard D&C questions:

• How many recursive calls? 8.

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

- How many recursive calls? 8.
- Cost per call?

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- 🖗 What is the size of the recursive calls?

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? *n*/2.

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? n/2.
- 🕄 What is the recurrence?

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

Our standard D&C questions:

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? n/2.
- What is the recurrence?

 $T(n) \le 8T(n/2) + cn^2$

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} -e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} -ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{bmatrix}$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? *n*/2.
- What is the recurrence?

$$T(n) \le 8T(n/2) + cn^2 = O(n^{\log 8}) = O(n^3)$$

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

Strassen's Method (1969)

• $p_1 := a(f - h)$

•
$$p_2 := (a+b)h$$

•
$$p_3 := (c+d)e$$

•
$$p_4 \coloneqq d(g - e)$$

•
$$p_5 := (a+d)(e+h)$$

•
$$p_6 \coloneqq (b-d)(g+h)$$

•
$$p_7 := (a - c)(e + f)$$

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

Strassen's Method (1969)

• $p_1 := a(f - h)$

•
$$p_2 := (a+b)h$$

•
$$p_3 := (c+d)e$$

•
$$p_4 \coloneqq d(g - e)$$

p₅ := (a + d)(e + h) p₆ := (b - d)(g + h)

•
$$p_7 := (a - c)(e + f)$$

What is the recurrence?

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

Strassen's Method (1969)

• $p_1 := a(f - h)$

•
$$p_2 := (a+b)h$$

•
$$p_3 := (c+d)e$$

•
$$p_4 \coloneqq d(g - e)$$

•
$$p_5 := (a+d)(e+h)$$

• $p_6 := (b-d)(g+h)$

1

•
$$p_7 := (a - c)(e + f)$$

What is the recurrence?

$$T(n) \le 7T(n/2) + cn^2 = O\left(n^{\lg 7}\right) = O\left(n^{2.8074}\right)$$

$$\begin{bmatrix} a & b \\ \hline c & d \end{bmatrix} \begin{bmatrix} e & f \\ \hline g & h \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

Current Champ: $O(n^{2.373})$

Virginia Vassilevska Williams, MIT

т Ехр

INT MULT

CLOSEST PAIRS

FINDING THE CLOSES PAIR OF POINTS

Problem

Given a set of *n* points, $\mathcal{P} = \{p_1, p_2, ..., p_n\}$, in the plane. Find the closest pair. That is, solve $\arg \min_{(p_i, p_j) \in \mathcal{P}} \{d(p_i, p_j)\}$, where $d(\cdot, \cdot)$ is the Euclidean distance.

FINDING THE CLOSES PAIR OF POINTS

Problem

Given a set of *n* points, $\mathcal{P} = \{p_1, p_2, ..., p_n\}$, in the plane. Find the closest pair. That is, solve $\arg \min_{(p_i, p_j) \in \mathcal{P}} \{d(p_i, p_j)\}$, where $d(\cdot, \cdot)$ is the Euclidean distance.

What is the $O(n^2)$ solution?

1-d Closest Pair

1-d Closest Pair

The points are on the line.

9/19

1-d Closest Pair

The points are on the line.

 $O(n \log n)$ for 1-d Closest Pair

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

• Sort the points

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

• Sort the points $(O(n \log n))$.

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

- Sort the points $(O(n \log n))$.
- Walk through sorted points and find minimum pair

1-d Closest Pair

The points are on the line.

$O(n \log n)$ for 1-d Closest Pair

- Sort the points $(O(n \log n))$.
- Walk through sorted points and find minimum pair (*O*(*n*)).

2-D CLOSEST PAIR

DIVIDE AND CONQUER

• Divide: Split point set (in half?).

2-D CLOSEST PAIR

DIVIDE AND CONQUER

- Divide: Split point set (in half?).
- Ocnquer: Find closest pair in each partition.

2-D CLOSEST PAIR

DIVIDE AND CONQUER

- Divide: Split point set (in half?).
- Ocnquer: Find closest pair in each partition.
- Combine: Merge the solutions.

1. Divide: Split the Points

Divide and Conquer Fast Exp Int Mult Matrix Mult **Closest Pairs** Max Subarray

1. Divide: Split the Points

Divide and Conquer Fast Exp Int Mult Matrix Mult **Closest Pairs** Max Subarray

1. DIVIDE: SPLIT THE POINTS

1. Divide: Split the Points

Definitions

- \mathcal{P}_x : Points sorted by *x*-coordinate.
- \mathcal{P}_y : Points sorted by *y*-coordinate.
- Q (resp. R) is left (resp. right) half of \mathcal{P}_x .

Divide and Conquer

2. Conquer: Find the min in Q and R

Key Observations

• From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_y without resorting.

Divide and Conquer

2. Conquer: Find the min in Q and R

Key Observations

- From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_y without resorting.
- Running time for this:

Divide and Conquer

2. Conquer: Find the min in Q and R

Key Observations

- From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_y without resorting.
- Running time for this: O(n).
- Let (q_0^*, q_1^*) and (r_0^*, r_1^*) be closest pairs in Q and R.

 OVIDE AND CONQUER
 FAST EXP
 INT MULT
 CLOSEST PAIRS
 MAX SUBARAY

 3. COMBINE THE SOLUTIONS.
 R
 Image: Solution of the second of the

Key Observations

• From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_y without resorting.

0

- Running time for this:
- Let (q_0^*, q_1^*) and (r_0^*, r_1^*) be closest pairs in Q and R.

 Divide and Conquer
 Fast Exp
 Int Mult
 Matrix Mult
 Closest Pairs
 Max Subarray

 3. COMBINE THE SOLUTIONS.

Claim 1

(i) Let $\delta := \min\{d(q_0^*, q_1^*), d(r_0^*, r_1^*)\}$. If there exists a $q \in Q$ and an $r \in R$ for which $d(q, r) < \delta$, then each of q and r are within \Box of L.

Divide and Conquer Fast Exp Int Mult Matrix Mult **Closest Pairs** Max Subarray

3. Combine the Solutions.

Claim 1

Let $\delta := \min\{d(q_0^*, q_1^*), d(r_0^*, r_1^*)\}$. If there exists a $q \in Q$ and an $r \in R$ for which $d(q, r) < \delta$, then each of q and r are within δ of L.

Divide and Conquer Fast Exp Int Mult Matrix Mult **Closest Pairs** Max Subarray

3. Combine the Solutions.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a $s, s' \in S$ and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a *s*, *s'* \in *S* and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a *s*, *s'* \in *S* and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a *s*, *s'* \in *S* and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

Proof.

• Partition δ -space around *L* into $\delta/2$ squares.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a *s*, *s'* \in *S* and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

- Partition δ -space around *L* into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a *s*, *s'* \in *S* and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

- Partition δ -space around *L* into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ.
- By way of contradiction, say d(s,s') < δ and s and s' separated by 16 positions.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a *s*, *s'* \in *S* and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

- Partition δ -space around *L* into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ.
- By way of contradiction, say d(s,s') < δ and s and s' separated by 16 positions.
- By counting argument, *s* and *s'* are separated by 3 rows which is at least 3δ/2.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a $s, s' \in S$ and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in S_y .

Completing the Algorithm

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a $s, s' \in S$ and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in S_y .

Completing the Algorithm

• Find the min pair (*s*,*s*[']) in *S*.

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a $s, s' \in S$ and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in *S*_y.

Completing the Algorithm

- Find the min pair (*s*,*s*[']) in *S*.
 - For each $p \in S$, check the distance to each of next 15 points in S_y .

Lemma 1

Let *S* be the set of points within δ of *L*. If there exists a $s, s' \in S$ and $d(s,s') < \delta$, then *s* and *s'* are within 15 positions of each other in S_y .

Completing the Algorithm

- Find the min pair (*s*,*s*[']) in *S*.
 - For each $p \in S$, check the distance to each of next 15 points in S_y .
- If $d(s,s') < \delta$, return (s,s')
- else return min of (q_0^*, q_1^*) and (r_0^*, r_1^*) .

Correctness of the Algorithm

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

• Sorting by *x* and by *y*

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by *x* and by $y(O(n \log n))$.
- 🕄 How many recursive calls?

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by *x* and by $y(O(n \log n))$.
- How many recursive calls? 2.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by *x* and by $y(O(n \log n))$.
- How many recursive calls? 2.
- 🕄 What is the size of the recursive calls?
Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by $y(O(n \log n))$.
- How many recursive calls? 2.
- What is the size of the recursive calls? n/2.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by $y(O(n \log n))$.
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by $y(O(n \log n))$.
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.
 - $15 \cdot |S| = O(n)$.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by $y(O(n \log n))$.
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.

• $15 \cdot |S| = O(n)$.

• 🕄 What is the recurrence?

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by $y(O(n \log n))$.
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.

• $15 \cdot |S| = O(n)$.

• What is the recurrence?

 $T(n) \leq 2T(n/2) + cn = O(n \log n) .$

CLOSEST PAIR PROBLEM (DIVIDE & CONQUER)

```
def dist(p1, p2):
    return ((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5
def brute_force(P):
    return min[(dist(P[1], P[j]) for i in range(len(P)) for j in range(i + 1, len(P))], default=float('inf'))
def closest_split_pair(Px, Py, delta, best_pair):
    middle = Px[len(Px) // 2][0]
    S = [p for p in Py if middle - delta <= p[0] <= middle + delta]
    best = delta
    for i in range(len(S) - 1):
        min_dist, j_best = min((dist(S[1], S[j]), j) for j in range(i + 1, min(i + 7, len(S))))
        best, best_pair = (min_dist, (i, j_best)) if min_dist <= best else (best, best_pair)
    return best, best_pair
```

CLOSEST PAIR PROBLEM (DIVIDE & CONQUER)

```
def closest_pair_rec(Px, Py):
   if len(Px) \le 3:
        return brute force(Px)
    mid = len(Px) // 2
    Qx = Px[:mid]
    Rx = Px[mid:]
    midpoint = Px[mid][0]
    Qy = [point for point in Py if point[0] <= midpoint]
    Ry = [point for point in Py if point[0] > midpoint]
    (d1, pair1) = closest_pair_rec(Qx, Qy)
    (d2, pair2) = closest pair rec(Rx, Ry)
    d, best_pair = (d1, pair1) if d1 <= d2 else (d2, pair2)
    (d3, pair3) = closest_split_pair(Px, Py, d, best_pair)
    return (d, best_pair) if d <= d3 else (d3, pair3)
def closest_pair(points):
    Px = sorted(points, key=lambda x: x[0])
    Py = sorted(points, key=lambda x: x[1])
    return closest pair rec(Px, Pv)
```

Max Subarray

Max Subarray

Problem

Given an array *A* of integers, find the (non-empty) contiguous subarray of *A* of maximum sum.

Max Subarray

Problem

Given an array *A* of integers, find the (non-empty) contiguous subarray of *A* of maximum sum.

Exercise – Teams of 3 or so

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.

Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRAYS
Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
       if sum(A[i..j]) > sum(M) then
         M \coloneqq A[i..j]
       end
   end
end
return M
```

Part 1: Give a $\Theta(n^2)$ solution.

Part 1: Give a $\Theta(n^2)$ solution.

Algorithm: CheckAllSubarra Analysis	
Input : Array A of n ints.Output: Max subarray in A.Let M be an empty arrayfor $i := 1$ to $len(A)$ do $for j := i$ to $len(A)$ do $ for j := i$ to $len(A)$ do $ M := A[ij] > sum(M)$ $ M := A[ij]$ endendreturn M	 Correct: Checks all possible contiguous subarrays. Complexity: Re-calculating the sum will make it O(n³). Key is to calculate the sum as you iterate. For each <i>i</i>, check n - i + 1 ends. Overall: ∑ⁿ i = n(n+1)/2 = Θ(n²).
	$\sum_{i=1}^{2}$ 2

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MAXSUBARRAYInput: Array A of n ints.Output: Max subarray in A.if |A| = 1 then return A[1]

$$A_1 := MaxSubarray(Front-half of A)$$

$$A_2 := MaxSubarray(Back-half of A)$$

M := MidMaxSubarray(A)

return <u>Array with max sum of</u> $\{A_1, A_2, M\}$

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MAXSUBARRAY

Input : Array *A* of *n* ints.

Output: Max subarray in *A*.

if |A| = 1 then return A[1]

 $A_1 := MaxSubarray(Front-half of A)$

 $A_2 := MaxSubarray(Back-half of A)$

M := MidMaxSubarray(A)

return <u>Array with max sum of</u> $\{A_1, A_2, M\}$

Algorithm: MIDMAxSUBARRAY

Input : Array *A* of *n* ints.

Output: Max subarray that crosses midpoint *A*.

 $m \coloneqq \text{mid-point of } A$

L := max subarray in A[i, m-1] for $i = m - 1 \rightarrow 1$

R := max subarray in A[m, j] for $j = m \rightarrow n$

return $L \cup R$ // subarray formed by combining L and R.

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSUBARRAYInput: Array A of n ints.Output: Max subarray in A.if |A| = 1 then return A[1] $A_1 := MaxSUBARRAY$ (Front-half of A) $A_2 := MaxSUBARRAY$ (Back-half of A)M := MIDMaxSUBARRAY(A)return Array with max sum of $\{A_1, A_2, M\}$

Analysis

- Correctness: By induction, *A*₁ and *A*₂ are max for subarray and *M* is max mid-crossing array.
- Complexity: Same recurrence as MergeSort.

Appendix

References

Image Sources I

