
CS 577 - Divide and Conquer.
Applications

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin – Madison

Fall 2024

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide and Conquer

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide and Conquer (DC)

Overview
Split problem into smaller sub-problems.
Solve (usually recurse on) the smaller sub-problems.
Use the output from the smaller sub-problems to build the
solution.

Tendencies of DC
Naturally recursive solutions
Solving complexities often involve recurrences.
Often used to improve efficiency of efficient solutions, e.g.
O(n2) → O(n logn).
Used in conjunction with other techniques.

1/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide and Conquer (DC)

Overview
Split problem into smaller sub-problems.
Solve (usually recurse on) the smaller sub-problems.
Use the output from the smaller sub-problems to build the
solution.

Tendencies of DC
Naturally recursive solutions
Solving complexities often involve recurrences.
Often used to improve efficiency of efficient solutions, e.g.
O(n2) → O(n logn).
Used in conjunction with other techniques.

1/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Fast Exponentiation

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Exponentiation by Squaring

Problem
Compute xn where x is an integer number and n is a
non-negative integer, minimizing the number of
multiplications.

Let’s assume that multiplication counts per one step∗

∗Note: In the real world, as numbers grow larger, the cost of
multiplication increases significantly. For example, 2 × 3 = 6, but

1,234 × 56,789 ≈ 70 million.

What is the complexity of the naive method xn = x ⋅ x⋯x
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
ntimes

?

O(n).

2/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Exponentiation by Squaring

Problem
Compute xn where x is an integer number and n is a
non-negative integer, minimizing the number of
multiplications.

Let’s assume that multiplication counts per one step∗

What is the complexity of the naive method xn = x ⋅ x⋯x
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
ntimes

?

O(n).

2/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Exponentiation by Squaring

Problem
Compute xn where x is an integer number and n is a
non-negative integer, minimizing the number of
multiplications.

Let’s assume that multiplication counts per one step∗

What is the complexity of the naive method xn = x ⋅ x⋯x
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
ntimes

?

O(n).

2/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v1
Discussion: Suggest how to divide the problem.

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v1

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v1

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.

If n is odd, xn = x ⋅ xn−1.

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v1

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v1

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

How many recursive calls?

1 for each case.

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v1

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

How many recursive calls? 1 for each case.

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v1

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

How many recursive calls? 1 for each case. Cost per call?
O(1) for each multiplication.

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v2

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

Example: Fast Exponentiation Algorithm

Base Case: If n = 0, return 1.
Recursive Case:

If n is even, return fastExp(x,n/2)2.
If n is odd, return x ⋅ fastExp(x,n − 1).

Combine: The result is computed as the recursion
unwinds.
Recurrence: T(n) ≤ T(n/2) +O(1) = O(logn).

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v2

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

Example: Fast Exponentiation Algorithm
Base Case: If n = 0, return 1.

Recursive Case:
If n is even, return fastExp(x,n/2)2.
If n is odd, return x ⋅ fastExp(x,n − 1).

Combine: The result is computed as the recursion
unwinds.
Recurrence: T(n) ≤ T(n/2) +O(1) = O(logn).

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v2

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

Example: Fast Exponentiation Algorithm
Base Case: If n = 0, return 1.
Recursive Case:

If n is even, return fastExp(x,n/2)2.
If n is odd, return x ⋅ fastExp(x,n − 1).

Combine: The result is computed as the recursion
unwinds.
Recurrence: T(n) ≤ T(n/2) +O(1) = O(logn).

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v2

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

Example: Fast Exponentiation Algorithm
Base Case: If n = 0, return 1.
Recursive Case:

If n is even, return fastExp(x,n/2)2.
If n is odd, return x ⋅ fastExp(x,n − 1).

Combine: The result is computed as the recursion
unwinds.

Recurrence: T(n) ≤ T(n/2) +O(1) = O(logn).

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer Approach v2

Reducing the problem
Consider the following cases for n:

If n is even, xn = (xn/2)2.
If n is odd, xn = x ⋅ xn−1.

Example: Fast Exponentiation Algorithm
Base Case: If n = 0, return 1.
Recursive Case:

If n is even, return fastExp(x,n/2)2.
If n is odd, return x ⋅ fastExp(x,n − 1).

Combine: The result is computed as the recursion
unwinds.
Recurrence: T(n) ≤ T(n/2) +O(1) = O(logn).

3/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Integer Multiplication

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Integer Multiplication
Partial Product Method:

Problem
Multiple two n-length binary numbers x and y, counting every
bitwise operation.

What is the complexity of the partial product method? O(n2).

4/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Integer Multiplication
Partial Product Method:

Problem
Multiple two n-length binary numbers x and y, counting every
bitwise operation.

What is the complexity of the partial product method?

O(n2).

4/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Integer Multiplication
Partial Product Method:

Problem
Multiple two n-length binary numbers x and y, counting every
bitwise operation.

What is the complexity of the partial product method? O(n2).
4/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1
Discussion : Suggest how to divide the problem.

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

In decimal system:

x = 12 ⋅ 102 + 34 = 1200 + 34 = 1234

y = 56 ⋅ 102 + 78 = 5600 + 78 = 5678

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls?

4.

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4.

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4. Cost per call?

O(n)

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4. Cost per call?

O(n)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,y1 are the n/2 highest digits of x,y
x0,y0 are the n/2 lowest digits of x,y
x1y1,x1y0,x0y1,x0y0 are n-digits numbers
α ⋅ 2k can be done by shifting k digits
Summation of ℓ-digit numbers requires O(ℓ) bit-operations.

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls?

n/2.

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1
High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

What is the recurrence?

T(n) ≤ 4T(n/2) + cn

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1
High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

What is the recurrence?

T(n) ≤ 4T(n/2) + cn
5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1
High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

How many recursive calls? 4. Cost per call? O(n)

What is the size of the subproblem in recursive calls? n/2.

What is the recurrence?

T(n) ≤ 4T(n/2) + cn = O (nlg 4) = O (n2)
5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2
High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

Hint: (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0.

Exercise: Design an algorithm with 3 Recursive Calls

Recursions:
p ∶= intMult(x1 + x0,y1 + y0)
x1y1 ∶= intMult(x1,y1)
x0y0 ∶= intMult(x0,y0)

Combine: Return x1y1 ⋅ 2n + (p − x1y1 − x0y0) ⋅ 2n/2 + x0y0
Recurrence: T(n) ≤ 3T(n/2) +O(n) = O (nlg 3) = O (n1.59)

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2
High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

Hint: (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0.

Exercise: Design an algorithm with 3 Recursive Calls
Recursions:

p ∶= intMult(x1 + x0,y1 + y0)
x1y1 ∶= intMult(x1,y1)
x0y0 ∶= intMult(x0,y0)

Combine: Return x1y1 ⋅ 2n + (p − x1y1 − x0y0) ⋅ 2n/2 + x0y0
Recurrence: T(n) ≤ 3T(n/2) +O(n) = O (nlg 3) = O (n1.59)

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2
High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

Hint: (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0.

Exercise: Design an algorithm with 3 Recursive Calls
Recursions:

p ∶= intMult(x1 + x0,y1 + y0)
x1y1 ∶= intMult(x1,y1)
x0y0 ∶= intMult(x0,y0)

Combine: Return x1y1 ⋅ 2n + (p − x1y1 − x0y0) ⋅ 2n/2 + x0y0

Recurrence: T(n) ≤ 3T(n/2) +O(n) = O (nlg 3) = O (n1.59)

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2
High and low bits
Consider x = x1 ⋅ 2n/2 + x0 and y = y1 ⋅ 2n/2 + y0.

xy = (x1 ⋅ 2n/2 + x0)(y1 ⋅ 2n/2 + y0)
= x1y1 ⋅ 2n + (x1y0 + x0y1) ⋅ 2n/2 + x0y0

Hint: (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0.

Exercise: Design an algorithm with 3 Recursive Calls
Recursions:

p ∶= intMult(x1 + x0,y1 + y0)
x1y1 ∶= intMult(x1,y1)
x0y0 ∶= intMult(x0,y0)

Combine: Return x1y1 ⋅ 2n + (p − x1y1 − x0y0) ⋅ 2n/2 + x0y0
Recurrence: T(n) ≤ 3T(n/2) +O(n) = O (nlg 3) = O (n1.59)

5/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Matrix Multiplication

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Matrix Multiplication
Problem
Multiple two nxn matrices, A and B. Let C = AB.

[1 2
3 4] [

4 3
2 1] = [

1 ⋅ 4 + 2 ⋅ 2 1 ⋅ 3 + 2 ⋅ 1
3 ⋅ 4 + 4 ⋅ 2 3 ⋅ 3 + 4 ⋅ 1] = [

8 5
20 13]

Algorithm: Naïve Method
for i ← 1 to n do

for j ← 1 to n do
for k ← 1 to n do

C[i][j]+ = A[i][k] ⋅ B[k][j]
end

end
end

What is the complexity of the Naïve Method? O(n3).

6/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Matrix Multiplication
Problem
Multiple two nxn matrices, A and B. Let C = AB.

[1 2
3 4] [

4 3
2 1] = [

1 ⋅ 4 + 2 ⋅ 2 1 ⋅ 3 + 2 ⋅ 1
3 ⋅ 4 + 4 ⋅ 2 3 ⋅ 3 + 4 ⋅ 1] = [

8 5
20 13]

Algorithm: Naïve Method
for i ← 1 to n do

for j ← 1 to n do
for k ← 1 to n do

C[i][j]+ = A[i][k] ⋅ B[k][j]
end

end
end

What is the complexity of the Naïve Method?

O(n3).

6/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Matrix Multiplication
Problem
Multiple two nxn matrices, A and B. Let C = AB.

[1 2
3 4] [

4 3
2 1] = [

1 ⋅ 4 + 2 ⋅ 2 1 ⋅ 3 + 2 ⋅ 1
3 ⋅ 4 + 4 ⋅ 2 3 ⋅ 3 + 4 ⋅ 1] = [

8 5
20 13]

Algorithm: Naïve Method
for i ← 1 to n do

for j ← 1 to n do
for k ← 1 to n do

C[i][j]+ = A[i][k] ⋅ B[k][j]
end

end
end

What is the complexity of the Naïve Method? O(n3). 6/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1
Discussion !!!: Suggest how to divide the problem.

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:

How many recursive calls?

8.

Cost per call?

O(n2) time per addition

What is the size of the recursive calls?

n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1
Discussion !!!: Suggest how to divide the problem.

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:

How many recursive calls?

8.

Cost per call?

O(n2) time per addition

What is the size of the recursive calls?

n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls?

8.
Cost per call?

O(n2) time per addition

What is the size of the recursive calls?

n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.

Cost per call?

O(n2) time per addition

What is the size of the recursive calls?

n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.
Cost per call?

O(n2) time per addition
What is the size of the recursive calls?

n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.
Cost per call? O(n2) time per addition

What is the size of the recursive calls?

n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.
Cost per call? O(n2) time per addition

What is the size of the recursive calls?

n/2.
What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.
Cost per call? O(n2) time per addition
What is the size of the recursive calls? n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.
Cost per call? O(n2) time per addition
What is the size of the recursive calls? n/2.

What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.
Cost per call? O(n2) time per addition
What is the size of the recursive calls? n/2.
What is the recurrence?

T(n) ≤ 8T(n/2) + cn2

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v1

[a b
c d] [

e f
g h] = [

ae + bg af + bh
ce + dg cf + dh]

Our standard D&C questions:
How many recursive calls? 8.
Cost per call? O(n2) time per addition
What is the size of the recursive calls? n/2.
What is the recurrence?

T(n) ≤ 8T(n/2) + cn2 = O (nlg 8) = O (n3)

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2

[a b
c d] [

e f
g h] = [

p5 + p4 − p2 + p6 p1 + p2
p3 + p4 p1 + p5 − p3 − p7

]

Strassen’s Method (1969)
p1 ∶= a(f − h)
p2 ∶= (a + b)h
p3 ∶= (c + d)e
p4 ∶= d(g − e)

p5 ∶= (a + d)(e + h)
p6 ∶= (b − d)(g + h)
p7 ∶= (a − c)(e + f)

What is the recurrence?

T(n) ≤ 7T(n/2) + cn2 = O (nlg 7) = O (n2.8074)

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2

[a b
c d] [

e f
g h] = [

p5 + p4 − p2 + p6 p1 + p2
p3 + p4 p1 + p5 − p3 − p7

]

Strassen’s Method (1969)
p1 ∶= a(f − h)
p2 ∶= (a + b)h
p3 ∶= (c + d)e
p4 ∶= d(g − e)

p5 ∶= (a + d)(e + h)
p6 ∶= (b − d)(g + h)
p7 ∶= (a − c)(e + f)

What is the recurrence?

T(n) ≤ 7T(n/2) + cn2 = O (nlg 7) = O (n2.8074)

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2

[a b
c d] [

e f
g h] = [

p5 + p4 − p2 + p6 p1 + p2
p3 + p4 p1 + p5 − p3 − p7

]

Strassen’s Method (1969)
p1 ∶= a(f − h)
p2 ∶= (a + b)h
p3 ∶= (c + d)e
p4 ∶= d(g − e)

p5 ∶= (a + d)(e + h)
p6 ∶= (b − d)(g + h)
p7 ∶= (a − c)(e + f)

What is the recurrence?

T(n) ≤ 7T(n/2) + cn2 = O (nlg 7) = O (n2.8074)

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Divide & Conquer v2

[a b
c d] [

e f
g h] = [

p5 + p4 − p2 + p6 p1 + p2
p3 + p4 p1 + p5 − p3 − p7

]

Current Champ: O(n2.373)

Virginia Vassilevska Williams,
MIT

7/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Closest Pairs

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Finding the Closes Pair of Points

Problem
Given a set of n points, P = {p1,p2, . . . ,pn}, in the plane. Find
the closest pair. That is, solve argmin(pi,pj)∈P{d(pi,pj)}, where
d(⋅, ⋅) is the Euclidean distance.

What is the O(n2) solution?

8/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Finding the Closes Pair of Points

Problem
Given a set of n points, P = {p1,p2, . . . ,pn}, in the plane. Find
the closest pair. That is, solve argmin(pi,pj)∈P{d(pi,pj)}, where
d(⋅, ⋅) is the Euclidean distance.

What is the O(n2) solution? 8/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1-d Version

1-d Closest Pair

The points are on the line.

O(n logn) for 1-d Closest Pair
Sort the points (O(n logn)).
Walk through sorted points and find minimum pair
(O(n)).

9/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1-d Version

1-d Closest Pair
The points are on the line.

O(n logn) for 1-d Closest Pair
Sort the points (O(n logn)).
Walk through sorted points and find minimum pair
(O(n)).

9/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1-d Version

1-d Closest Pair
The points are on the line.

O(n logn) for 1-d Closest Pair

Sort the points (O(n logn)).
Walk through sorted points and find minimum pair
(O(n)).

9/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1-d Version

1-d Closest Pair
The points are on the line.

O(n logn) for 1-d Closest Pair
Sort the points

(O(n logn)).
Walk through sorted points and find minimum pair
(O(n)).

9/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1-d Version

1-d Closest Pair
The points are on the line.

O(n logn) for 1-d Closest Pair
Sort the points (O(n logn)).

Walk through sorted points and find minimum pair
(O(n)).

9/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1-d Version

1-d Closest Pair
The points are on the line.

O(n logn) for 1-d Closest Pair
Sort the points (O(n logn)).
Walk through sorted points and find minimum pair

(O(n)).

9/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1-d Version

1-d Closest Pair
The points are on the line.

O(n logn) for 1-d Closest Pair
Sort the points (O(n logn)).
Walk through sorted points and find minimum pair
(O(n)).

9/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

2-d Closest Pair
Divide and Conquer

1 Divide: Split point set (in half?).

2 Conquer: Find closest pair in each partition.
3 Combine: Merge the solutions.

10/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

2-d Closest Pair
Divide and Conquer

1 Divide: Split point set (in half?).
2 Conquer: Find closest pair in each partition.

3 Combine: Merge the solutions.

10/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

2-d Closest Pair
Divide and Conquer

1 Divide: Split point set (in half?).
2 Conquer: Find closest pair in each partition.
3 Combine: Merge the solutions.

10/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1. Divide: Split the Points

Definitions
Px: Points sorted by x-coordinate.
Py: Points sorted by y-coordinate.
Q (resp. R) is left (resp. right) half of Px.

11/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1. Divide: Split the Points

Definitions
Px: Points sorted by x-coordinate.
Py: Points sorted by y-coordinate.
Q (resp. R) is left (resp. right) half of Px.

11/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1. Divide: Split the Points

Definitions
Px: Points sorted by x-coordinate.
Py: Points sorted by y-coordinate.
Q (resp. R) is left (resp. right) half of Px.

11/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

1. Divide: Split the Points

Definitions
Px: Points sorted by x-coordinate.
Py: Points sorted by y-coordinate.
Q (resp. R) is left (resp. right) half of Px.

11/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

2. Conquer: Find the min in Q and R

Key Observations
From Px and Py: We can create Qx,Qy,Rx,Ry without
resorting.

Running time for this:

O(n).

Let (q∗0 , q∗1) and (r∗0 , r∗1) be closest pairs in Q and R.

12/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

2. Conquer: Find the min in Q and R

Key Observations
From Px and Py: We can create Qx,Qy,Rx,Ry without
resorting.
Running time for this:

O(n).
Let (q∗0 , q∗1) and (r∗0 , r∗1) be closest pairs in Q and R.

12/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

2. Conquer: Find the min in Q and R

Key Observations
From Px and Py: We can create Qx,Qy,Rx,Ry without
resorting.
Running time for this: O(n).
Let (q∗0 , q∗1) and (r∗0 , r∗1) be closest pairs in Q and R.

12/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Are one of these always
the minimum of P?

Key Observations
From Px and Py: We can create Qx,Qy,Rx,Ry without
resorting.
Running time for this:

O(n).

Let (q∗0 , q∗1) and (r∗0 , r∗1) be closest pairs in Q and R.
13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Are one of these always
the minimum of P?

L

Claim 1
Let δ ∶=min{d(q∗0 , q∗1),d(r∗0 , r∗1)}. If there exists a q ∈ Q and an

r ∈ R for which d(q, r) < δ, then each of q and r are within 2 of L.
13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Are one of these always
the minimum of P?

L

Claim 1
Let δ ∶=min{d(q∗0 , q∗1),d(r∗0 , r∗1)}. If there exists a q ∈ Q and an r ∈ R
for which d(q, r) < δ, then each of q and r are within δ of L.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Are one of these always
the minimum of P?

L

Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.
Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Proof.

Partition δ-space around L into
δ/2 squares.

At most 1 point per square else
contradicts definition of δ.
By way of contradiction, say
d(s, s′) < δ and s and s′ separated
by 16 positions.
By counting argument, s and s′
are separated by 3 rows which is
at least 3δ/2.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.
Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Proof.

Partition δ-space around L into
δ/2 squares.

At most 1 point per square else
contradicts definition of δ.
By way of contradiction, say
d(s, s′) < δ and s and s′ separated
by 16 positions.
By counting argument, s and s′
are separated by 3 rows which is
at least 3δ/2.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.
Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Proof.
Partition δ-space around L into
δ/2 squares.

At most 1 point per square else
contradicts definition of δ.
By way of contradiction, say
d(s, s′) < δ and s and s′ separated
by 16 positions.
By counting argument, s and s′
are separated by 3 rows which is
at least 3δ/2.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.
Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Proof.
Partition δ-space around L into
δ/2 squares.
At most 1 point per square else
contradicts definition of δ.

By way of contradiction, say
d(s, s′) < δ and s and s′ separated
by 16 positions.
By counting argument, s and s′
are separated by 3 rows which is
at least 3δ/2.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.
Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Proof.
Partition δ-space around L into
δ/2 squares.
At most 1 point per square else
contradicts definition of δ.
By way of contradiction, say
d(s, s′) < δ and s and s′ separated
by 16 positions.

By counting argument, s and s′
are separated by 3 rows which is
at least 3δ/2.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.
Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Proof.
Partition δ-space around L into
δ/2 squares.
At most 1 point per square else
contradicts definition of δ.
By way of contradiction, say
d(s, s′) < δ and s and s′ separated
by 16 positions.
By counting argument, s and s′
are separated by 3 rows which is
at least 3δ/2.

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Completing the Algorithm

Find the min pair (s, s′) in S.

For each p ∈ S, check the distance to each of next 15 points
in Sy.

If d(s, s′) < δ, return (s, s′)
else return min of (q∗0 , q∗1) and (r∗0 , r∗1).

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Completing the Algorithm
Find the min pair (s, s′) in S.

For each p ∈ S, check the distance to each of next 15 points
in Sy.

If d(s, s′) < δ, return (s, s′)
else return min of (q∗0 , q∗1) and (r∗0 , r∗1).

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Completing the Algorithm
Find the min pair (s, s′) in S.

For each p ∈ S, check the distance to each of next 15 points
in Sy.

If d(s, s′) < δ, return (s, s′)
else return min of (q∗0 , q∗1) and (r∗0 , r∗1).

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

3. Combine the Solutions.

Lemma 1
Let S be the set of points within δ of L. If there exists a s, s′ ∈ S and
d(s, s′) < δ, then s and s′ are within 15 positions of each other in Sy.

Completing the Algorithm
Find the min pair (s, s′) in S.

For each p ∈ S, check the distance to each of next 15 points
in Sy.

If d(s, s′) < δ, return (s, s′)
else return min of (q∗0 , q∗1) and (r∗0 , r∗1).

13/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Is 15 elements optimal?
Geometry Fun Question

14/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm

Sorting by x and by y

(O(n logn)).

How many recursive calls?

2.

What is the size of the recursive calls?

n/2.

Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm

Sorting by x and by y

(O(n logn)).

How many recursive calls?

2.

What is the size of the recursive calls?

n/2.

Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm

Sorting by x and by y

(O(n logn)).

How many recursive calls?

2.

What is the size of the recursive calls?

n/2.

Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y

(O(n logn)).
How many recursive calls?

2.

What is the size of the recursive calls?

n/2.

Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).

How many recursive calls?

2.
What is the size of the recursive calls?

n/2.

Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).
How many recursive calls? 2.

What is the size of the recursive calls?

n/2.

Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).
How many recursive calls? 2.

What is the size of the recursive calls?

n/2.
Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).
How many recursive calls? 2.
What is the size of the recursive calls? n/2.

Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).
How many recursive calls? 2.
What is the size of the recursive calls? n/2.
Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).
What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).
How many recursive calls? 2.
What is the size of the recursive calls? n/2.
Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).

What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).
How many recursive calls? 2.
What is the size of the recursive calls? n/2.
Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).
What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Completing the Analysis
Correctness of the Algorithm

By induction on the number of points.
Use the definition of the algorithm and the claims establish
in Step 3.

Runtime of the Algorithm
Sorting by x and by y (O(n logn)).
How many recursive calls? 2.
What is the size of the recursive calls? n/2.
Work per call: check points in S.

15 ⋅ ∣S∣ = O(n).
What is the recurrence?

T(n) ≤ 2T(n/2) + cn = O(n logn) .

15/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Closest Pair Problem (Divide & Conquer)

16/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Closest Pair Problem (Divide & Conquer)

16/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Max Subarray

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Max Subarray

Problem
Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.

Exercise – Teams of 3 or so
Solve the problem in Θ(n2).
Solve the problem in O(n logn).
Prove correctness and complexity.

17/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Max Subarray

Problem
Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.

Exercise – Teams of 3 or so
Solve the problem in Θ(n2).
Solve the problem in O(n logn).
Prove correctness and complexity.

17/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Part 1: Give a Θ(n2) solution.

Algorithm: CheckAllSubarrays
Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i ∶= 1 to len(A) do

for j ∶= i to len(A) do
if sum(A[i..j]) > sum(M) then

M ∶= A[i..j]
end

end
end
return M

Analysis
Correct: Checks all
possible contiguous
subarrays.
Complexity:

Re-calculating the sum
will make it O(n3). Key
is to calculate the sum
as you iterate.
For each i, check
n − i + 1 ends. Overall:
n
∑
i=1

i = n(n + 1)
2

= Θ(n2) .

18/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Part 1: Give a Θ(n2) solution.

Algorithm: CheckAllSubarrays
Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i ∶= 1 to len(A) do

for j ∶= i to len(A) do
if sum(A[i..j]) > sum(M) then

M ∶= A[i..j]
end

end
end
return M

Analysis
Correct: Checks all
possible contiguous
subarrays.

Complexity:
Re-calculating the sum
will make it O(n3). Key
is to calculate the sum
as you iterate.
For each i, check
n − i + 1 ends. Overall:
n
∑
i=1

i = n(n + 1)
2

= Θ(n2) .

18/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Part 1: Give a Θ(n2) solution.

Algorithm: CheckAllSubarrays
Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i ∶= 1 to len(A) do

for j ∶= i to len(A) do
if sum(A[i..j]) > sum(M) then

M ∶= A[i..j]
end

end
end
return M

Analysis
Correct: Checks all
possible contiguous
subarrays.
Complexity:

Re-calculating the sum
will make it O(n3). Key
is to calculate the sum
as you iterate.
For each i, check
n − i + 1 ends. Overall:
n
∑
i=1

i = n(n + 1)
2

= Θ(n2) .

18/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Part 2: Give an O(n logn) solution.

Algorithm: MaxSubarray
Input : Array A of n ints.
Output: Max subarray in A.
if ∣A∣ = 1 then return A[1]
A1 ∶=MaxSubarray(Front-half of A)
A2 ∶=MaxSubarray(Back-half of A)
M ∶=MidMaxSubarray(A)
return Array with max sum of {A1,A2,M}

19/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Part 2: Give an O(n logn) solution.
Algorithm: MaxSubarray
Input : Array A of n ints.
Output: Max subarray in A.
if ∣A∣ = 1 then return A[1]
A1 ∶=MaxSubarray(Front-half of A)
A2 ∶=MaxSubarray(Back-half of A)
M ∶=MidMaxSubarray(A)
return Array with max sum of {A1,A2,M}

Algorithm: MidMaxSubarray
Input : Array A of n ints.
Output: Max subarray that crosses midpoint A.
m ∶=mid-point of A
L ∶=max subarray in A[i,m − 1] for i = m − 1→ 1
R ∶=max subarray in A[m, j] for j = m→ n
return L ∪R // subarray formed by combining L and R.

19/19

Divide and Conquer Fast Exp Int Mult Matrix Mult Closest Pairs Max Subarray

Part 2: Give an O(n logn) solution.
Algorithm: MaxSubarray
Input : Array A of n ints.
Output: Max subarray in A.
if ∣A∣ = 1 then return A[1]
A1 ∶=MaxSubarray(Front-half of A)
A2 ∶=MaxSubarray(Back-half of A)
M ∶=MidMaxSubarray(A)
return Array with max sum of {A1,A2,M}

Analysis
Correctness: By induction, A1 and A2 are max for subarray
andM is max mid-crossing array.
Complexity: Same recurrence as MergeSort.

19/19

Appendix References

Appendix

Appendix References

References

Appendix References

Image Sources I

https://brand.wisc.edu/web/logos/

https://people.csail.mit.edu/virgi/

20/19

https://brand.wisc.edu/web/logos/
https://people.csail.mit.edu/virgi/

	Divide and Conquer
	Fast Exponentiation
	Integer Multiplication
	Matrix Multiplication
	Closest Pairs
	Max Subarray
	Appendix
	Appendix
	References

