CS 577 - Divide and Conquer.

Applications

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin — Madison

Fall 2024

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON



Divibe AND CONQUER



Divipe AND CONQUER XP MATRIX MULT

Divipe anp ConQuer (DC)

e Split problem into smaller sub-problems.
@ Solve (usually recurse on) the smaller sub-problems.

e Use the output from the smaller sub-problems to build the
solution.

1/19



Divipe AND CONQUER INT MULT MATRIX MULT

Divipe anp ConQuer (DC)

e Split problem into smaller sub-problems.
@ Solve (usually recurse on) the smaller sub-problems.

e Use the output from the smaller sub-problems to build the
solution.

Tendencies of DC

e Naturally recursive solutions

e Solving complexities often involve recurrences.
e Often used to improve efficiency of efficient solutions, e.g.
O(n?) - O(nlogn).

@ Used in conjunction with other techniques.

1/19



FasT EXPONENTIATION



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

EXPONENTIATION BY SQUARING

Compute x" where x is an integer number and 7 is a
non-negative integer, minimizing the number of
multiplications.

Let’s assume that multiplication counts per one step*

*Note: In the real world, as numbers grow larger, the cost of
multiplication increases significantly. For example, 2 x 3 = 6, but
1,234 x 56,789 ~ 70 million.

2/19



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

EXPONENTIATION BY SQUARING

Compute x" where x is an integer number and 7 is a
non-negative integer, minimizing the number of
multiplications.

Let’s assume that multiplication counts per one step*

©What is the complexity of the naive method x" = x - x---x?
—

ntimes

2/19



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

EXPONENTIATION BY SQUARING

Compute x" where x is an integer number and 7 is a
non-negative integer, minimizing the number of
multiplications.

Let’s assume that multiplication counts per one step*

©What is the complexity of the naive method x" = x - x---x?
—

ntimes

O(n).

2/19



Fast Exp

Divipe & CONQUER APPROACH V1

@Discussion: Suggest how to divide the problem. J

3/19



Divipe > CoNQt Fast Exp INT MULT MaTrIx MULT

Divipe & CONQUER APPROACH V1

Reducing the problem

Consider the following cases for n:

3/19



Divipe > CoNQt Fast Exp INT MULT MaTrIx MULT

Divipe & CONQUER APPROACH V1

Reducing the problem

Consider the following cases for n:

o If nis even, x" = (x"/?)2.

3/19



Divipe > CoNQt Fast Exp INT MULT MaTrIx MULT

Divipe & CONQUER APPROACH V1

Reducing the problem

Consider the following cases for n:
o If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

3/19



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

Divipe & CONQUER APPROACH V1

Reducing the problem

Consider the following cases for n:

e If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

©How many recursive calls? J

3/19



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

Divipe & CONQUER APPROACH V1

Reducing the problem

Consider the following cases for n:

e If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

@How many recursive calls? 1 for each case. J

3/19



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

Divipe & CONQUER APPROACH V1

Reducing the problem

Consider the following cases for n:

o If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x"1.

©How many recursive calls? 1 for each case. Cost per call?
O(1) for each multiplication.

3/19



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

Divipe & CONQUER APPROACH V2

Reducing the problem

Consider the following cases for n:
o If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

Example: Fast Exponentiation Algorithm

3/19



Divipe AND CONQUER Fast Exp INT MULT MaTrix MuLT

Divipe & CONQUER APPROACH V2

Reducing the problem

Consider the following cases for n:
o If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

Example: Fast Exponentiation Algorithm

@ Base Case: If n =0, return 1.

3/19



Divipe AND CONQUER Fast Exp INT MuLt MaTrix MuLT

Divipe & CONQUER APPROACH V2

Reducing the problem

Consider the following cases for n:
o If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

Example: Fast Exponentiation Algorithm

@ Base Case: If n =0, return 1.
@ Recursive Case:

o If nis even, return fastExp(x,7n/2)%.
e If nis odd, return x - fastExp(x,n - 1).

3/19



Divipe AND CONQUER Fast Exp INT MuLt MaTrix MuLT

Divipe & CONQUER APPROACH V2

Reducing the problem

Consider the following cases for n:
o If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

Example: Fast Exponentiation Algorithm

@ Base Case: If n =0, return 1.
@ Recursive Case:

o If nis even, return fastExp(x,7n/2)%.
e If nis odd, return x - fastExp(x,n - 1).

e Combine: The result is computed as the recursion
unwinds.

3/19



Divipe AND CONQUER Fast Exp INT MuLt MaTrix MuLT

Divipe & CONQUER APPROACH V2

Reducing the problem

Consider the following cases for n:
o If nis even, x" = (x"/?)2.

e Ifnisodd, x" = x-x" 1.

Example: Fast Exponentiation Algorithm

@ Base Case: If n =0, return 1.
@ Recursive Case:

o If nis even, return fastExp(x,7n/2)%.
e If nis odd, return x - fastExp(x,n - 1).

e Combine: The result is computed as the recursion
unwinds.

@ Recurrence: T(n) < T(n/2) + O(1) = O(logn).

3/19



INTEGER M ULTIPLICATION



INT Murt

INTEGER MULTIPLICATION

Partial Product Method:

1100
x 1101
12 1100
x13 0000

36 1100

12 1100
156 10011100

Multiple two n-length binary numbers x and y, counting every
bitwise operation.

4/19



INT Murt

INTEGER MULTIPLICATION

Partial Product Method:

1100
x 1101
12 1100
x13 0000

36 1100

12 1100
156 10011100

Multiple two n-length binary numbers x and y, counting every
bitwise operation.

@What is the complexity of the partial product method? J

4/19




INT Murt

INTEGER MULTIPLICATION

Partial Product Method:

1100
x 1101
12 1100
x13 0000

36 1100

12 1100
156 10011100

Multiple two n-length binary numbers x and y, counting every
bitwise operation.

@What is the complexity of the partial product method? O(nz).J

4/19




INT Murt

Divipe & CONQUER V1

@Discussion : Suggest how to divide the problem. J

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER V1

High and low bits

Consider x = x; - 22 + xy and y=1 .on/2 Yo.
xy = (x1-2" + x0) (y1 - 2" + yo)
=x1y1 - 2" + (X1y0 + XoY1) M2 X0Y0
In decimal system:

x=12-10% + 34 = 1200 + 34 = 1234

v =56-10% + 78 = 5600 + 78 = 5678

5/19



INT Murt MaTrix MuLT

Divipe & CONQUER V1

High and low bits

Consider x = x; - 22 + xg and y =y - 2"/ + y.

xy = (x1- 2% + x0) (y1 - 2" + o)

= x1y1 - 2" + (x1Y0 + X0Y1) et X0Yo

@How many recursive calls? J

5/19



INT Murt MaTrix MuLT

Divipe & CONQUER V1

High and low bits

Consider x = x; - 22 + xg and y =y - 2"/ + y.

xy = (x1- 2% + x0) (y1 - 2" + o)

= x1y1 - 2" + (x1Y0 + X0Y1) et X0Yo

@How many recursive calls? 4. J

5/19



INT Murt MaTrix MuLT

Divipe & CONQUER V1

High and low bits

Consider x = x; - 22 + xg and y =y - 2"/ + y.

xy = (x1- 2% + x0) (y1 - 2" + o)

= x1y1 - 2" + (x1Y0 + X0Y1) et X0Yo

@How many recursive calls? 4. Cost per call? J

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER V1

High and low bits

Consider x = x; - 22 + xg and y =y - 2"/ + y.

xy = (01 Nl +x0) (1 Q2 +10)

=X1Y1- Zn + (x1y0 + X()yl) . 211/2 + XoYo

@How many recursive calls? 4. Cost per call? J

x1, 11 are the n/2 highest digits of x,y

X0, Yo are the n/2 lowest digits of x,y
X1Y1,X1Y0, X0Y1, XoYo are n-digits numbers
o - 2F can be done by shifting k digits

Summation of ¢-digit numbers requires O(¢) bit-operations.

5/19



INT Murt MaTrix MuLT

Divipe & CONQUER V1

High and low bits

Consider x = x; - 2% + xg and y=1 onf2 Yo.

xy = (x1 P +x0) (1 .n/2 +10)

=X1Y1 -2” + (X1y0 + x0y1) -Zn/z + XoYo

@How many recursive calls? 4. Cost per call? O(n) J

©What is the size of the subproblem in recursive calls? J

5/19



INT Murt MaTrix MuLT

Divipe & CONQUER V1

High and low bits

Consider x = x; - 2% + xg and y=1 onf2 Yo.

xy = (x1 P +x0) (1 .n/2 +10)

=X1Y1 -2” + (X1y0 + x0y1) -Zn/z + XoYo

@How many recursive calls? 4. Cost per call? O(n) J

@What is the size of the subproblem in recursive calls? 7/2. J

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER V1
High and low bits

Consider x = x1 - 2% + xy and Y= .on/2 Yo.

xy = (01 N +x0) (1 e +10)

=X1y1 2"+ (x1y0 + X0Y1) DB 4 XoYo

@How many recursive calls? 4. Cost per call? O(n) J

@What is the size of the subproblem in recursive calls? /2. J

@©What is the recurrence? )

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER V1
High and low bits

Consider x = x1 - 2% + xy and Y= .on/2 Yo.

xy = (01 N +x0) (1 e +10)

=X1y1 2"+ (x1y0 + X0Y1) DB 4 XoYo

@How many recursive calls? 4. Cost per call? O(n) J

@What is the size of the subproblem in recursive calls? /2. J

@©What is the recurrence? )

T(n)<4T(n/2) +cn

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER V1
High and low bits

Consider x = x1 - 2% + xy and Y= .on/2 Yo.

xy = (01 N +x0) (1 e +10)

=X1y1 2"+ (x1y0 + X0Y1) DB 4 XoYo

@How many recursive calls? 4. Cost per call? O(n) J

@What is the size of the subproblem in recursive calls? /2. J

@©What is the recurrence? )

T(n) <4T(n/2) +cn = O (n'¢*) = O (n?)

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER v2
High and low bits

Consider x = x1 - 2% + xy and Y= .on/2 Yo.

xy = (01 N +x0) (1 e +10)

=X1y1 2"+ (x1y0 + X0Y1) DB 4 XoYo

Hint: (x1 +x0) (Y1 + o) = X1Y1 + X140 + XoY1 + X0Yo-

Exercise: Design an algorithm with 3 Recursive Calls

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER v2
High and low bits

Consider x = x1 - 2% + xy and Y= .on/2 Yo.

xy = (01 N +x0) (1 e +10)

=X1y1 2"+ (x1y0 + X0Y1) DB 4 XoYo

Hint: (x1 +x0) (Y1 + o) = X1Y1 + X140 + XoY1 + X0Yo-

Exercise: Design an algorithm with 3 Recursive Calls

@ Recursions:
e p:=intMult(x1 + X0, Y1 + Yo)
° X1Y1 = intMult(xl,yl)
@ XoYo = intMult(xo,yo)

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER v2
High and low bits

Consider x = x1 - 2% + xy and Y= .on/2 Yo.

xy = (01 N +x0) (1 e +10)

=X1y1 2"+ (x1y0 + X0Y1) DB 4 XoYo

Hint: (x1 +x0) (Y1 + o) = X1Y1 + X140 + XoY1 + X0Yo-

Exercise: Design an algorithm with 3 Recursive Calls

@ Recursions:
e p:=intMult(x1 + X0, Y1 + Yo)
® X1l := intMult(xl,yl)
@ Xolp = intMult(xo,yo)

e Combine: Return xqy; - 2" + (p — x1y1 — XoYo0) L2 4 XoYo

5/19



Divipe AND CONQUER INT Murt MaTrix MuLT

Divipe & CONQUER v2
High and low bits

Consider x = x1 - 2% + xy and Y= .on/2 Yo.

xy = (01 N +x0) (1 e +10)

=X1y1 2"+ (x1y0 + X0Y1) DB 4 XoYo

Hint: (x1 +x0) (Y1 + o) = X1Y1 + X140 + XoY1 + X0Yo-

Exercise: Design an algorithm with 3 Recursive Calls

@ Recursions:
e p:=intMult(x1 + X0, Y1 + Yo)
° xl]/l = intMult(xl,]/l)
° Xolfo == intMult(xo, o)
e Combine: Return x1y1 - 2" + (p — x1y1 — Xo¥0) - 2"/% + X0y

e Recurrence: T(n) < 3T(n/2) + O(n) = O (n'¢3) = O (n*?)

5/19



MATRIX MULTIPLICATION



Matrix Murt

MATRIX MULTIPLICATION

Multiple two nxn matrices, A and B. Let C = AB. \

1 2(|14 3 (1-4+2-2 1-3+2-1| |8 5
3 4|12 1| |3-4+4-2 3-3+4-1| |20 13

6/19



Divipe AND CONQUER INT MuLt Matrix Murt

MATRIX MULTIPLICATION

Multiple two nxn matrices, A and B. Let C = AB.

1 2|{4 3| [1-4+2-2 1-3+2-1|] |8 5
3 4(|2 1| [3-4+4-2 3-3+4-1| [20 13
Algorithm: Naive Method

fori < 1tondo
forj< 1ltondo
fork < 1tondo
| Cli[j1+ = Ald][k] - B[K][/]

end

end
end

@What is the complexity of the Naive Method? 6/19



Divipe AND CONQUER INT MuLt Matrix Murt

MATRIX MULTIPLICATION

Multiple two nxn matrices, A and B. Let C = AB.

1 2|{4 3| [1-4+2-2 1-3+2-1|] |8 5
3 4(|2 1| [3-4+4-2 3-3+4-1| [20 13
Algorithm: Naive Method

fori < 1tondo
forj< 1ltondo
fork < 1tondo
| Cli[j1+ = Ald][k] - B[K][/]

end

end
end

@What is the complexity of the Naive Method? O(#?). 6/19



Divipe AND CONQUER INT MuLt Matrix Murt

Divipe & CONQUER V1

@Discussion !!!: Suggest how to divide the problem. J

@Our standard D&C questions:

7/19



Divipe AND CONQUER INT MuLt Matrix Murt

Divipe & CONQUER V1

@Discussion !!!: Suggest how to divide the problem. J

el L ]

@Our standard D&C questions:

7/19



Divipe AND CONQUER INT MuLt Matrix Murt

Divipe & CONQUER V1
alb e|f | [ ae+bg|af +bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

o @ How many recursive calls?

7/19



Divipe AND CONQUER INT MuLt Matrix Murt

Divipe & CONQUER V1
a|b ][ e|f ] [ ae+bg|af+0bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

7/19



Divipe AND CONQUER INT MuLt Matrix Murt

Divipe & CONQUER V1
a|b ][ e|f ] [ ae+bg|af+0bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

o Cost per call?

7/19



Divipe AND CONQUER INT MuLt Matrix Murt

Divipe & CONQUER V1
a|b ][ e|f ] [ ae+bg|af+0bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

e Cost per call? O(n?) time per addition

7/19



Divipe AND CONQUER INT MuLT Matrix Murt

Divipe & CONQUER V1
alb e|f | [ ae+bg|af +bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

e Cost per call? O(n?) time per addition

e & What is the size of the recursive calls?

7/19



Divipe AND CONQUER INT MuLt Matrix Murt

Divipe & CONQUER V1
a|b ][ e|f ] [ ae+bg|af+0bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

e Cost per call? O(n?) time per addition
e What is the size of the recursive calls? 7/2.

7/19



Divipe AND CONQUER INT MuLT Matrix Murt

Divipe & CONQUER V1
alb e|f | [ ae+bg|af +bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

e Cost per call? O(n?) time per addition
e What is the size of the recursive calls? n/2.

e @ What is the recurrence?

7/19



Divipe AND CONQUER INT MuLT Matrix Murt

Divipe & CONQUER V1
a|b ][ e|f ] [ ae+bg|af+0bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

e Cost per call? O(n?) time per addition
e What is the size of the recursive calls? 7/2.

@ What is the recurrence?

T(n) < 8T(n/2) +cn®

7/19



Divipe AND CONQUER INT MuLT Matrix Murt

Divipe & CONQUER V1
a|b ][ e|f ] [ ae+bg|af+0bh
cld || g|h| | ce+dg|cf +dn

@Our standard D&C questions:

e How many recursive calls? 8.

e Cost per call? O(n?) time per addition
e What is the size of the recursive calls? 7/2.

@ What is the recurrence?

T(n) < 8T(n/2) +cn* = O (n'¢%) = O (n°)

7/19



Matrix Murt

Divipe & CONQUER v2

[“b][ef]:[P5+P4—P2+P6 P1+p2 ]
cld || gl|h P3 + P4 | p1+ps—ps—p

Strassen’s Method (1969)

o pr:=a(f —h) @ ps:=(a+d)(e+h)
o pr:=(a+b)h ° ps:=(b-d)(g+h)
@ p3:=(c+d)e o p7:=(a-c)(e+f)

° py:=d(g-e)

7/19



Matrix Murt

Divipe & CONQUER v2

[“b][ef]:[P5+P4—P2+P6 P1+p2 ]
cld || gl|h P3 + P4 | p1+ps—ps—p

Strassen’s Method (1969)

o pr:=a(f —h) @ ps:=(a+d)(e+h)
o pr:=(a+b)h ° pe:=(b-d)(g+h)
@ p3:=(c+d)e o p7i=(a-c)(e+f)
° py:=d(g-e)

@ What is the recurrence?

7/19



Matrix Murt

Divipe & CONQUER v2

[“b][ef]:[P5+P4—P2+P6 P1+p2 ]
cld || gl|h P3 + P4 | p1+ps—ps—p

Strassen’s Method (1969)

o pr:=a(f —h) @ ps:=(a+d)(e+h)
o pr:=(a+b)h ° pe:=(b-d)(g+h)
@ p3:=(c+d)e o p7i=(a-c)(e+f)
° py:=d(g-e)

What is the recurrence?

T(n) <7T(n/2) +cn* = O (n'87) = O (n**7)

7/19



Matrix Murt

Divipe & CONQUER v2
[ab][ef]:[P5+P4—Pz+P6 p1+p2 ]
cld |l gl|hn pstps  |pitps—pa-pr

Current Champ: O(n?373)
:'

Virginia Vassilevska Williams,
MIT

7/19



Crosest PAIRS



INT MuLt MaTrix MuLT CrosEst PaIrs

Given a set of n points, P = {p1,p2,...,pn}, in the plane. Find
the closest pair. That is, solve argmin, ,\ep{d(pi,p;j)}, where
d(-,-) is the Euclidean distance.

8/19



INT MuLt MaTrix MuLT CrosEst PaIrs

Given a set of n points, P = {p1,p2,...,pn}, in the plane. Find
the closest pair. That is, solve argmin, ,\ep{d(pi,p;j)}, where
d(-,-) is the Euclidean distance.

What is the O(n?) solution?

8/19



CrosEst PaIrs

1-D VERSION

1-d Closest Pair

9/19



CrosEst PaIrs

1-D VERSION

1-d Closest Pair
The points are on the line.

9/19



CrosEst PaIrs

1-D VERSION

1-d Closest Pair
The points are on the line.

O(nlogn) for 1-d Closest Pair

9/19



CrosEst PaIrs

1-D VERSION

1-d Closest Pair
The points are on the line.

O(nlogn) for 1-d Closest Pair

@ Sort the points

9/19



CrosEst PaIrs

1-D VERSION

1-d Closest Pair
The points are on the line.

O(nlogn) for 1-d Closest Pair

e Sort the points (O(nlogn)).

9/19



MaTrIx MULT CrosEst PaIrs

1-D VERSION

1-d Closest Pair
The points are on the line.

O(nlogn) for 1-d Closest Pair

e Sort the points (O(nlogn)).
e Walk through sorted points and find minimum pair

9/19



MaTrIx MULT CrosEst PaIrs

1-D VERSION

1-d Closest Pair
The points are on the line.

O(nlogn) for 1-d Closest Pair

e Sort the points (O(nlogn)).
e Walk through sorted points and find minimum pair

(O(n)).

9/19



Divipe AND CONQUER st Exp INT MuLt MaTrix MuLT CrosEst PaIrs

2-D CLOSEST PAIR

Divipe AND CONQUER

@ Divide: Split point set (in half?).

10/19



Divibe AND CONQUER \sT Exp INT MuLt Matrix Mutt CrosEst PaIrs

2-D CLOSEST PAIR

Divipe AND CONQUER

@ Divide: Split point set (in half?).

@ Congquer: Find closest pair in each partition.

10/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

2-D CLOSEST PAIR

Divipe AND CONQUER

@ Divide: Split point set (in half?).
@ Congquer: Find closest pair in each partition.
© Combine: Merge the solutions.

10/19



INT MuLt MaTrIx MULT CrosEst PaIrs

11/19



INT MuLt MaTrIx MULT CrosEst PaIrs

11/19



INT MuLt MaTrIx MULT CrosEst PaIrs

Q R

11/19



INT MuLt MaTrix MuLT CrosEst PaIrs

Q R

Definitions
@ P,: Points sorted by x-coordinate.

@ P,: Points sorted by y-coordinate.
@ Q (resp. R) is left (resp. right) half of Px.

11/19



INT MuLt MaTrix MuLT CrosEst PaIrs

Q R

Key Observations

@ From P, and P,: We can create Qx, Qy, Ry, Ry without
resorting.

12/19



INT MuLt MaTrix MuLT CrosEst PaIrs

Q R

Key Observations

@ From P, and P,: We can create Qx, Qy, Ry, Ry without
resorting.

@ Running time for this:

12/19



INT MuLt MaTrix MuLT CrosEst PaIrs

Q R

Key Observations

@ From P, and P,: We can create Qx, Qy, Ry, Ry without
resorting.

@ Running time for this: O(n).
e Let (95,47) and (ry,r7) be closest pairs in Q and R.

12/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.
0 R

o o

Q @Are one of these always

o
o the minimum of P?

o o

Key Observations

@ From P, and P,: We can create Qx, Qy, Ry, Ry without
resorting.

@ Running time for this:

e Let (gq5,97) and (ry,r7) be closest pairs in Q and R.

13/19



MaTrix MuLT CrosEst PaIrs

o] o

Q @Are one of these always

o the minimum of P?

© o

@ Let 6 := min{d(qg,q7),d(ry,r7)}. If there exists a q € Q and an
r € R for which d(q,r) < §, then each of q and r are within O of L.

13/19



MaTrix MuLT CrosEst PaIrs

o o

Q @Are one of these always

o the minimum of P?

o o

Let ¢ := min{d(qy,q7),d(ry,77)}. If there exists a g € Qand anr € R
for which d(q,r) < 6, then each of q and r are within 6 of L.

13/19



INT MuLt MaTrix MuLT CrosEst PaIrs

o o

Q @Are one of these always

o the minimum of P?

o o

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <0, then s and s" are within 15 positions of each other in S,,.

13/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <0, then s and s" are within 15 positions of each other in S,,.

4
13/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <0, then s and s" are within 15 positions of each other in S,,.

Line L

fffffffffffffff

——————————————

4
13/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <0, then s and s" are within 15 positions of each other in S,,.

@ Partition /-space around L into
3 /2 squares.

Line L

fffffffffffffff

——————————————

4
13/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <0, then s and s" are within 15 positions of each other in S,,.

el @ Partition d-space around L into
i i /2 squares.
iﬂz e At most 1 point per square else
v 1| contradicts definition of §.
Boxes /Ezwi 777777777 13
R J:
3 3

4
13/19



Divibe AND CONQUER

INT MULT Matrix Mutt

CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <0, then s and s" are within 15 positions of each other in S,,.

Line L

———————

_______

,,,,,,,,

———————

@ Partition /-space around L into
/2 squares.

e Atmost 1 point per square else
contradicts definition of d.

e By way of contradiction, say

d(s,s’) < 0 and s and s" separated
by 16 positions.

4
13/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <0, then s and s" are within 15 positions of each other in S,,.

@ Partition /-space around L into
3 /2 squares.

Line L

52 e At most 1 point per square else

fffffffffffffff

o2 | L contradicts definition of 6.

5 2 e By way of contradiction, say
d(s,s’) < 0 and s and s" separated
"""""""" by 16 positions.

e By counting argument, s and s’
are separated by 3 rows which is
at least 30/2. O

4
13/19



MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <6, then s and s are within 15 positions of each other in S,,.

Completing the Algorithm

13/19



MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <6, then s and s are within 15 positions of each other in S,,.

Completing the Algorithm

e Find the min pair (s,s’) in S.

13/19



INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <6, then s and s are within 15 positions of each other in S,,.

Completing the Algorithm

e Find the min pair (s,s’) in S.
e For eachp €S, check the distance to each of next 15 points
in§,.

13/19



INT MuLt MaTrix MuLT CrosEst PaIrs

3. COMBINE THE SOLUTIONS.

Let S be the set of points within 6 of L. If there exists a s,s' € S and
d(s,s") <6, then s and s are within 15 positions of each other in S,,.

Completing the Algorithm

e Find the min pair (s,s’) in S.
e For eachp €S, check the distance to each of next 15 points
in§,.
e Ifd(s,s") <9, return (s,s’)

e else return min of (g5,47) and (r§,77).

13/19



CrosEst PaIrs

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



CrosEst PaIrs

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



CrosEst PaIrs

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



CrosEst PaIrs

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



Crosest PAIRS

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



Crosest PAIRS

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



Crosest PAIRS

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



Crosest PAIRS

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



CLosEsT PAIrRs

Is 15 ELEMENTS OPTIMAL?

GEeoMETRY FuN QUESTION

14/19



CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

15/19



Divipe AND CONQUER st Exp INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

@ Sorting by x and by y

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

e Sorting by x and by y (O(nlogn)).

o & How many recursive calls?

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

e Sorting by x and by y (O(nlogn)).

e How many recursive calls? 2.

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

e Sorting by x and by y (O(nlogn)).
e How many recursive calls? 2.

o @ What is the size of the recursive calls?

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

e Sorting by x and by y (O(nlogn)).
e How many recursive calls? 2.

e What is the size of the recursive calls? n/2.

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS
Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm
e Sorting by x and by y (O(nlogn)).
e How many recursive calls? 2.

e What is the size of the recursive calls? n/2.
@ Work per call: check points in S.

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS
Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm
e Sorting by x and by y (O(nlogn)).
e How many recursive calls? 2.

e What is the size of the recursive calls? n/2.
@ Work per call: check points in S.
e 15-|S| = O(n).

V.
15/19



Divipe AND CONQUER INT MuLt MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

e Sorting by x and by y (O(nlogn)).
e How many recursive calls? 2.

e What is the size of the recursive calls? 7/2.
@ Work per call: check points in S.

e 15-|S| = O(n).
o & What is the recurrence?

V.
15/19



Divipe AND CONQUER INT MuLT MaTrix MuLT CrosEst PaIrs

COMPLETING THE ANALYSIS

Correctness of the Algorithm

@ By induction on the number of points.

@ Use the definition of the algorithm and the claims establish
in Step 3.

V.

Runtime of the Algorithm

e Sorting by x and by y (O(nlogn)).
e How many recursive calls? 2.

e What is the size of the recursive calls? 7/2.
@ Work per call: check points in S.
e 15-|S| = O(n).
@ What is the recurrence?
T(n) <2T(n/2) +cn=0O(nlogn) .

V.
15/19



Divipe AND CONQUER INT MuLt X CrosEst PaIrs

CrosEsT PAIR PrOBLEM (D1viDE & CONQUER)

def

def

def

dist(p1l, p2):
return ((p1[@] - p2[@1)**2 + (p1l[1] — p2[1])**2)%*0.5

brute_force(P):
return min([dist(P[i], P[j]) for i in range(len(P)) for j in range(i + 1, len(P))], default=float('inf'))

closest_split_pair(Px, Py, delta, best_pair):

middle = Px[len(Px) // 21[0]

S = [p for p in Py if middle - delta <= p[@] <= middle + deltal

best = delta

for i in range(len(S) - 1):
min_dist, j_best = min((dist(S[il, S[j1), j) for j in range(i + 1, min(i + 7, len(S))))
best, best_pair = (min_dist, (i, j_best)) if min_dist <= best else (best, best_pair)

return best, best_pair

16/19



INT MULT

CrosEsT PAIR PrOBLEM (D1viDE & CONQUER)

def closest_pair_rec(Px, Py):
if len(Px) <= 3:
return brute_force(Px)

mid = len(Px) // 2
Qx = Px[:mid]

Rx = Px[mid:]

midpoint = Px[mid1[@]

Qy = [point for point in Py if point[@] <= midpoint]
Ry = [point for point in Py if point[@] > midpoint]

(d1, pairl) = closest_pair_rec(Qx, Qy)
(d2, pair2) = closest_pair_rec(Rx, Ry)
d, best_pair = (d1, pairl) if d1 <= d2 else (d2, pair2)
(d3, pair3) = closest_split_pair(Px, Py, d, best_pair)

return (d, best_pair) if d <= d3 else (d3, pair3)
def closest_pair(points):
Px = sorted(points, key=lambda x: x[0]1)

Py = sorted(points, key=lambda x: x[1]1)
return closest_pair_rec(Px, Py)

16/19



MaTrix MuLT CrosEtst PaIrs Max SUBARRAY

MAX SUBARRAY



DiviDe » CoNQt S > INT MuLt Matrix Mutr s Max SUBARRAY

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.

17/19



Divibe AND CONQUER \sT Exp INT MuLt MaTrix MuLT Max SUBARRAY

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous

subarray of A of maximum sum.
v

Exercise — Teams of 3 or so

e Solve the problem in ©(n?).

@ Solve the problem in O(nlogn).

@ Prove correctness and complexity.

.

17/19



Divipe AND CONQUER INT MuLT MaTrix MuLT S Max SUBARRAY

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARRAYS

Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
fori:=1tolen(A) do

forj:=itolen(A) do
if sum(A[i..j]) > sum(M) then
| M= Ali.j]
end

end
end
return M

18/19



Divipe AND CONQUER INT MuLT MaTrix MuLT Max SUBARRAY

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARR

Input : Array A of n 'm.ts. @ Correct: Checks all
Output: Max subarray in A. possible contiguous

Let M be an empty array subarrays.
fori:=1tolen(A) do

forj:=itolen(A) do
if sum(A[i..j]) > sum(M
| M= Ali.j]
end

end
end
return M




OE AND CONQUER st Exp INT MULT

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARR

Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
fori:=1tolen(A) do
forj:=itolen(A) do
if sum(A[i..j]) > sum(M
| M= Ali.j]
end

end
end
return M

@ Correct: Checks all
possible contiguous

e Complexity:

e Re-calculating the sum
will make it O(n®). Key
is to calculate the sum
as you iterate.

e For each i, check
n—i+1 ends. Overall:




Max SUBARRAY

Divibe AND CONQUER INT MULT Matrix Mutt

Part 2: Give AN O(nlog 1) SOLUTION.

Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=MI1DMAXSUBARRAY (A)

return Array with max sum of {A;, 4y, M}

19/19



Divipe AND CONQUER INT MuLT MaTrix MuLT RS Max SUBARRAY

Part 2: Give AN O(nlog 1) SOLUTION.
Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |[A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=MI1DMAXSUBARRAY (A)

return Array with max sum of {A;, 4y, M}

Algorithm: MIDMAXSUBARRAY

Input : Array A of n ints.

Output: Max subarray that crosses midpoint A.

m := mid-point of A

L := max subarray in A[i,m-1]fori=m-1-1

R := max subarray in A[m,j] forj=m —»>n

return LUR // subarray formed by combining L and K.

19/19



Max SUBARRAY

Divibe AND CONQUER INT MULT Matrix Mutt

Part 2: Give AN O(nlog 1) SOLUTION.

Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=M1DMAXSUBARRAY (A)

return Array with max sum of {Ay, A, M}

e Correctness: By induction, A; and A, are max for subarray
and M is max mid-crossing array.

e Complexity: Same recurrence as MERGESORT.

19/19



APPENDIX



REFERENCES



APPENDI REFERENCES

IMAGE SoURcEs 1

WISCONSIN https://brand.wisc.edu/web/logos/

{ https://people.csail.mit.edu/virgi/

20/19


https://brand.wisc.edu/web/logos/
https://people.csail.mit.edu/virgi/

	Divide and Conquer
	Fast Exponentiation
	Integer Multiplication
	Matrix Multiplication
	Closest Pairs
	Max Subarray
	Appendix
	Appendix
	References


