CS 577 - Divide and Conquer. Applications

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

[Divide and Conquer](#page-1-0) [Fast Exp](#page-4-0) [Int Mult](#page-20-0) [Matrix Mult](#page-39-0) [Closest Pairs](#page-58-0) [Max Subarray](#page-115-0)

DIVIDE AND CONQUER

Divide and Conquer (DC)

Overview

- Split problem into smaller sub-problems.
- Solve (usually recurse on) the smaller sub-problems.
- Use the output from the smaller sub-problems to build the solution.

Divide and Conquer (DC)

Overview

- Split problem into smaller sub-problems.
- Solve (usually recurse on) the smaller sub-problems.
- Use the output from the smaller sub-problems to build the solution.

Tendencies of DC

- Naturally recursive solutions
- Solving complexities often involve recurrences.
- Often used to improve efficiency of efficient solutions, e.g. $O(n^2) \rightarrow O(n \log n)$.
- Used in conjunction with other techniques.

[Fast Exponentiation](#page-4-0)

EXPONENTIATION BY SOUARING

Problem

Compute x^n where x is an integer number and n is a non-negative integer, minimizing the number of multiplications.

Let's assume that multiplication counts per one step[∗]

∗*Note: In the real world, as numbers grow larger, the cost of multiplication increases significantly. For example,* 2 × 3 = 6*, but* 1, 234 × 56, 789 ≈ *70 million.*

EXPONENTIATION BY SOUARING

Problem

Compute *x ⁿ* where *x* is an integer number and *n* is a non-negative integer, minimizing the number of multiplications.

Let's assume that multiplication counts per one step[∗]

What is the complexity of the naive method $x^n = x \cdot x \cdots x$? *n*times

EXPONENTIATION BY SOUARING

Problem

Compute *x ⁿ* where *x* is an integer number and *n* is a non-negative integer, minimizing the number of multiplications.

Let's assume that multiplication counts per one step[∗]

What is the complexity of the naive method $x^n = x \cdot x \cdots x$? *n*times *O*(*n*).

Discussion: Suggest how to divide the problem.

Reducing the problem

Consider the following cases for *n*:

Reducing the problem

Consider the following cases for *n*:

• If *n* is even,
$$
x^n = (x^{n/2})^2
$$
.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

How many recursive calls?

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

How many recursive calls? 1 for each case.

Reducing the problem

Consider the following cases for *n*:

If *n* is even, $x^n = (x^{n/2})^2$.

• If *n* is odd,
$$
x^n = x \cdot x^{n-1}
$$

How many recursive calls? 1 for each case. Cost per call? *O*(1) for each multiplication.

.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

Example: Fast Exponentiation Algorithm

• Base Case: If $n = 0$, return 1.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

- Base Case: If $n = 0$, return 1.
- Recursive Case:
	- If *n* is even, return fastExp $(x, n/2)^2$.
	- \bullet If *n* is odd, return *x* ⋅ fastExp(*x*, *n* − 1).

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

- Base Case: If $n = 0$, return 1.
- Recursive Case:
	- If *n* is even, return fastExp $(x, n/2)^2$.
	- \bullet If *n* is odd, return *x* ⋅ fastExp(*x*, *n* − 1).
- Combine: The result is computed as the recursion unwinds.

Reducing the problem

Consider the following cases for *n*:

- If *n* is even, $x^n = (x^{n/2})^2$.
- If *n* is odd, $x^n = x \cdot x^{n-1}$.

- Base Case: If $n = 0$, return 1.
- Recursive Case:
	- If *n* is even, return fastExp $(x, n/2)^2$.
	- \bullet If *n* is odd, return *x* ⋅ fastExp(*x*, *n* − 1).
- Combine: The result is computed as the recursion unwinds.
- Recurrence: $T(n) \le T(n/2) + O(1) = O(\log n)$.

[Divide and Conquer](#page-1-0) [Fast Exp](#page-4-0) [Int Mult](#page-20-0) [Matrix Mult](#page-39-0) [Closest Pairs](#page-58-0) [Max Subarray](#page-115-0)

INTEGER MULTIPLICATION

Integer Multiplication

Partial Product Method:

Problem

Multiple two *n*-length binary numbers *x* and *y*, counting every bitwise operation.

Integer Multiplication

Partial Product Method:

Problem

Multiple two *n*-length binary numbers *x* and *y*, counting every bitwise operation.

What is the complexity of the partial product method?

Integer Multiplication

Partial Product Method:

Problem

Multiple two *n*-length binary numbers *x* and *y*, counting every bitwise operation.

What is the complexity of the partial product method? $O(n^2)$.

Discussion : Suggest how to divide the problem.

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

In decimal system:

$$
x = 12 \cdot 10^2 + 34 = 1200 + 34 = 1234
$$

$$
y = 56 \cdot 10^2 + 78 = 5600 + 78 = 5678
$$

High and low bits

Consider $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls?

High and low bits

Consider $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4.

High and low bits

Consider $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4. Cost per call?

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

How many recursive calls? 4. Cost per call?

 $\begin{bmatrix} \begin{bmatrix} & \phantom{$ x_1, y_1 are the $n/2$ highest digits of x, y

$$
x_0, y_0
$$
 are the $n/2$ lowest digits of x, y

- $\left\{ x_1y_1, x_1y_0, x_0y_1, x_0y_0 \right\}$ are *n*-digits numbers
- ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ $\alpha \cdot 2^k$ can be done by shifting k digits
	- Summation of ℓ -digit numbers requires $O(\ell)$ bit-operations.

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

 \bigcirc How many recursive calls? 4. Cost per call? $O(n)$

What is the size of the subproblem in recursive calls?

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

 \bigcirc How many recursive calls? 4. Cost per call? $O(n)$

What is the size of the subproblem in recursive calls? *n*/2.

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

 \bigcirc How many recursive calls? 4. Cost per call? $O(n)$

What is the size of the subproblem in recursive calls? *n*/2.

What is the recurrence?

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

 $\mathbf{\hat{\mathcal{C}}}$ How many recursive calls? 4. Cost per call? $O(n)$

What is the size of the subproblem in recursive calls? *n*/2.

What is the recurrence?

 $T(n) \leq 4T(n/2) + cn$

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

 \bigcirc How many recursive calls? 4. Cost per call? $O(n)$

What is the size of the subproblem in recursive calls? *n*/2.

What is the recurrence?

$$
T(n) \leq 4T(n/2) + cn = O\left(n^{\lg 4}\right) = O\left(n^2\right)
$$

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls
Divide & Conquer v2

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls

- Recursions:
	- \bullet *p* := intMult(*x*₁ + *x*₀, *y*₁ + *y*₀)
	- $x_1 y_1 := \text{intMult}(x_1, y_1)$
	- \bullet *x*₀*y*₀ ∶= intMult(*x*₀, *y*₀)

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls

- Recursions:
	- \bullet *p* := intMult(*x*₁ + *x*₀, *y*₁ + *y*₀)
	- $x_1 y_1 := \text{intMult}(x_1, y_1)$
	- \bullet *x*₀ y ₀ ∶= intMult(*x*₀, *y*₀)
- Combine: Return $x_1y_1 \cdot 2^n + (p x_1y_1 x_0y_0) \cdot 2^{n/2} + x_0y_0$

Divide & Conquer v2

High and low bits

Consider
$$
x = x_1 \cdot 2^{n/2} + x_0
$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

$$
xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)
$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Hint: $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$.

Exercise: Design an algorithm with 3 Recursive Calls

- Recursions:
	- \bullet *p* := intMult(*x*₁ + *x*₀, *y*₁ + *y*₀)
	- \bullet *x*₁*y*₁ := intMult(*x*₁, *y*₁)
	- \bullet *x*₀ y ₀ := intMult(*x*₀, *y*₀)
- Combine: Return $x_1y_1 \cdot 2^n + (p x_1y_1 x_0y_0) \cdot 2^{n/2} + x_0y_0$
- $Recurrence: T(n) \leq 3T(n/2) + O(n) = O(n^{\lg 3}) = O(n^{1.59})$

[Divide and Conquer](#page-1-0) [Fast Exp](#page-4-0) [Int Mult](#page-20-0) [Matrix Mult](#page-39-0) [Closest Pairs](#page-58-0) [Max Subarray](#page-115-0)

[Matrix Multiplication](#page-39-0)

MATRIX MULTIPLICATION

Problem

Multiple two *n*x*n* matrices, *A* and *B*. Let *C* = *AB*.

$$
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}
$$

Matrix Multiplication

Problem

Multiple two *n*x*n* matrices, *A* and *B*. Let *C* = *AB*.

$$
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}
$$

Algorithm: Naïve Method

for
$$
i \leftarrow 1
$$
 to *n* do
\nfor $j \leftarrow 1$ to *n* do
\nfor $k \leftarrow 1$ to *n* do
\nfor $k \leftarrow 1$ to *n* do
\n
$$
\begin{bmatrix}\n\overline{C[i][j]} & \overline{B[k][k]} \\
\overline{C[i][j]} & \overline{B[k][k]} \\
\overline{C[k][k]} & \overline{B[k][j]}\n\end{bmatrix}
$$
\nend

What is the complexity of the Naïve Method?

Matrix Multiplication

Problem

Multiple two *n*x*n* matrices, *A* and *B*. Let *C* = *AB*.

$$
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \\ 3 \cdot 4 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}
$$

Algorithm: Naïve Method

for
$$
i \leftarrow 1
$$
 to *n* do
\nfor $j \leftarrow 1$ to *n* do
\nfor $k \leftarrow 1$ to *n* do
\nfor $k \leftarrow 1$ to *n* do
\n
$$
\begin{bmatrix}\n\overline{C[i][j]} & \overline{B[k][k]} \\
\overline{C[i][j]} & \overline{B[k][k]} \\
\overline{C[k][k]} & \overline{B[k][j]}\n\end{bmatrix}
$$
\nend

What is the complexity of the Naïve Method? $O(n^3)$ $\int_{6/19}$

Discussion !!!: Suggest how to divide the problem.

Discussion !!!: Suggest how to divide the problem.

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

Our standard D&C questions:

• \circledR How many recursive calls?

$$
\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

Our standard D&C questions:

• How many recursive calls? 8.

$$
\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

- How many recursive calls? 8.
- Cost per call?

$$
\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- \bullet \bullet What is the size of the recursive calls?

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? *n*/2.

$$
\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? *n*/2.
- **•** What is the recurrence?

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

Our standard D&C questions:

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? *n*/2.
- What is the recurrence?

 $T(n) \leq 8T(n/2) + cn^2$

$$
\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} ae + bg & af + bh \\ \hline ce + dg & cf + dh \end{array}\right]
$$

- How many recursive calls? 8.
- Cost per call? $O(n^2)$ time per addition
- What is the size of the recursive calls? *n*/2.
- What is the recurrence?

$$
T(n) \leq 8T(n/2) + cn^2 = O\left(n^{\lg 8}\right) = O\left(n^3\right)
$$

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{array}\right]
$$

Strassen's Method (1969)

• $p_1 := a(f - h)$

$$
\bullet \ \ p_2 \coloneqq (a+b)h
$$

$$
\bullet \ p_3 \coloneqq (c+d)e
$$

$$
\bullet \ \ p_4 := d(g-e)
$$

$$
\bullet \ \ p_5 := (a+d)(e+h)
$$

$$
\bullet \ p_6 \coloneqq (b-d)(g+h)
$$

$$
\bullet \ \ p_7 := (a-c)(e+f)
$$

 \bullet *p*₅ := $(a+d)(e+h)$ $p_6 := (b - d)(g + h)$ \bullet *p₇* := $(a-c)(e+f)$

DIVIDE & CONQUER V2

$$
\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{array}\right]
$$

Strassen's Method (1969)

• $p_1 := a(f - h)$

$$
\bullet \ \ p_2 \coloneqq (a+b)h
$$

$$
\bullet \ p_3 \coloneqq (c+d)e
$$

$$
\bullet \ p_4 := d(g-e)
$$

What is the recurrence?

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{array}\right]
$$

Strassen's Method (1969)

• $p_1 := a(f - h)$

$$
\bullet \ \ p_2 := (a+b)h
$$

$$
\bullet \ p_3 := (c + d)e
$$

$$
\bullet \ \ p_4 := d(g-e)
$$

$$
p_5 := (a + d)(e + h)
$$

$$
p_6 := (b - d)(g + h)
$$

$$
\bullet \ \ p_7:=(a-c)(e+f)
$$

What is the recurrence?

$$
T(n) \leq 7T(n/2) + cn^2 = O\left(n^{\lg 7}\right) = O\left(n^{2.8074}\right)
$$

$$
\left[\begin{array}{c|c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c|c} e & f \\ \hline g & h \end{array}\right] = \left[\begin{array}{c|c} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ \hline p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{array}\right]
$$

Current Champ: *O*(*n* ².³⁷³)

Virginia Vassilevska Williams, MIT

[Closest Pairs](#page-58-0)

FINDING THE CLOSES PAIR OF POINTS

Problem

Given a set of *n* points, $P = \{p_1, p_2, \dots, p_n\}$, in the plane. Find the closest pair. That is, solve $\arg \min_{(p_i, p_j) \in \mathcal{P}} \{d(p_i, p_j)\}\,$, where $d(\cdot, \cdot)$ is the Euclidean distance.

FINDING THE CLOSES PAIR OF POINTS

Problem

Given a set of *n* points, $P = \{p_1, p_2, \dots, p_n\}$, in the plane. Find the closest pair. That is, solve $\arg \min_{(p_i, p_j) \in \mathcal{P}} \{d(p_i, p_j)\}\,$, where $d(\cdot, \cdot)$ is the Euclidean distance.

What is the $O(n^2)$ solution?

1-d Closest Pair

1-D VERSION

1-d Closest Pair

The points are on the line.

1-d Closest Pair

The points are on the line.

O(*n* log *n*) for 1-d Closest Pair

1-d Closest Pair

The points are on the line.

O(*n* log *n*) for 1-d Closest Pair

• Sort the points

1-d Closest Pair

The points are on the line.

O(*n* log *n*) for 1-d Closest Pair

• Sort the points $(O(n \log n))$.

1-d Closest Pair

The points are on the line.

O(*n* log *n*) for 1-d Closest Pair

- Sort the points $(O(n \log n))$.
- Walk through sorted points and find minimum pair

1-d Closest Pair

The points are on the line.

O(*n* log *n*) for 1-d Closest Pair

- Sort the points $(O(n \log n))$.
- Walk through sorted points and find minimum pair $(O(n)).$

2-D CLOSEST PAIR

Divide and Conquer

1 Divide: Split point set (in half?).

2-d Closest Pair

Divide and Conquer

- **1** Divide: Split point set (in half?).
- ² Conquer: Find closest pair in each partition.

2-d Closest Pair

Divide and Conquer

- **1** Divide: Split point set (in half?).
- ² Conquer: Find closest pair in each partition.
- **3** Combine: Merge the solutions.

1. Divide: Split the Points

1. Divide: Split the Points

1. Divide: Split the Points

1. Divide: Split the Points

Definitions

- P_x : Points sorted by *x*-coordinate.
- P*y*: Points sorted by *y*-coordinate.
- Q (resp. R) is left (resp. right) half of P_x .

2. Conquer: Find the min in *Q* and *R*

Key Observations

• From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_y without resorting.

2. Conquer: Find the min in *Q* and *R*

Key Observations

- From \mathcal{P}_x and \mathcal{P}_y : We can create Q_x, Q_y, R_x, R_y without resorting.
- Running time for this:

2. Conquer: Find the min in *Q* and *R*

Key Observations

- From P_x and P_y : We can create Q_x, Q_y, R_x, R_y without resorting.
- Running time for this: $O(n)$.
- Let (q_0^*, q_1^*) and (r_0^*, r_1^*) be closest pairs in *Q* and *R*.

[Divide and Conquer](#page-1-0) [Fast Exp](#page-4-0) [Int Mult](#page-20-0) [Matrix Mult](#page-39-0) [Closest Pairs](#page-58-0) [Max Subarray](#page-115-0) 3. Combine the Solutions. \overline{O} \overline{R} \circ \circ Ω \circ \circ Are one of these always Ω the minimum of P ? \circ Ω \cap \circ

 \circ

Key Observations

• From P_x and P_y : We can create Q_x, Q_y, R_x, R_y without resorting.

 \circ

- Running time for this:
- Let (q_0^*, q_1^*) and (r_0^*, r_1^*) be closest pairs in *Q* and *R*.

[Divide and Conquer](#page-1-0) [Fast Exp](#page-4-0) [Int Mult](#page-20-0) [Matrix Mult](#page-39-0) [Closest Pairs](#page-58-0) [Max Subarray](#page-115-0) 3. Combine the Solutions.

Claim 1

Let $\delta \coloneqq \min\{d(q_0^*,q_1^*),d(r_0^*,r_1^*)\}$ *. If there exists a q* \in *Q and an r* \in *R* for which $d(q, r)$ < δ , then each of q and r are within \Box of L.

3. Combine the Solutions.

Claim 1

Let $\delta \coloneqq \min\{d(q_0^*,q_1^*),d(r_0^*,r_1^*)\}$ *. If there exists a q* ∈ *Q and an r* ∈ *R for which* $d(q, r) < \delta$, then each of q and r are within δ of L.

3. Combine the Solutions.

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Proof.

Partition δ-space around *L* into $\delta/2$ squares.

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

- Partition δ-space around *L* into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ .

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

- Partition δ-space around *L* into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ .
- By way of contradiction, say $d(s, s') < \delta$ and *s* and *s'* separated by 16 positions.

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

- Partition δ-space around *L* into $\delta/2$ squares.
- At most 1 point per square else contradicts definition of δ .
- By way of contradiction, say $d(s, s') < \delta$ and *s* and *s'* separated by 16 positions.
- By counting argument, *s* and *s* ′ are separated by 3 rows which is at least $3\delta/2$.

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Completing the Algorithm

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Completing the Algorithm

Find the min pair (s, s') in S .

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Completing the Algorithm

- Find the min pair (s, s') in S .
	- For each *p* ∈ *S*, check the distance to each of next 15 points in S_ν .

Lemma 1

Let S be the set of points within δ *of L. If there exists a s*,*s* ′ ∈ *S and d*(*s*,*s* ′) < δ*, then s and s*′ *are within 15 positions of each other in Sy.*

Completing the Algorithm

- Find the min pair (s, s') in S .
	- For each *p* ∈ *S*, check the distance to each of next 15 points in S_ν .
- If $d(s, s') < \delta$, return (s, s')
- else return min of (q_0^*, q_1^*) and (r_0^*, r_1^*) .

GEOMETRY FUN QUESTION

GEOMETRY FUN QUESTION

Correctness of the Algorithm

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

Sorting by *x* and by *y*

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by *x* and by ψ ($O(n \log n)$).
- \bullet \bullet How many recursive calls?

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by *x* and by ψ ($O(n \log n)$).
- How many recursive calls? 2.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

- Sorting by *x* and by ψ ($O(n \log n)$).
- How many recursive calls? 2.
- \bullet What is the size of the recursive calls?
Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by ψ ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by ψ ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by ψ ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.
	- $15 \cdot |S| = O(n)$.

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by ψ ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.

• $15 \cdot |S| = O(n)$.

 \odot What is the recurrence?

Correctness of the Algorithm

- By induction on the number of points.
- Use the definition of the algorithm and the claims establish in Step 3.

Runtime of the Algorithm

- Sorting by *x* and by ψ ($O(n \log n)$).
- How many recursive calls? 2.
- What is the size of the recursive calls? *n*/2.
- Work per call: check points in *S*.

• $15 \cdot |S| = O(n)$.

• What is the recurrence?

 $T(n) \leq 2T(n/2) + cn = O(n \log n)$.

Closest Pair Problem (Divide & Conquer)

```
def dist(p1, p2):return ((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5def brute_force(P):
    return min([dist(P[i], P[j]) for i in range(len(P)) for j in range(i + 1, len(P))], default=float('inf'))
def closest_split_pair(Px, Py, delta, best_pair):
    middle = Px[len(Px) // 2][0]S = [p for p in Py if middle - delta <= p[0] <= middle + delta]
    best = deltafor i in range(len(S) - 1):
        min\_dist, j\_best = min((dist(S[i], S[j]), j) for j in range(i + 1, min(i + 7, len(S))))best, best_pair = (min\_dist, (i, j_best)) if min_dist <= best else (best, best_pair)
    return best, best_pair
```
Closest Pair Problem (Divide & Conquer)

```
def closest_pair_rec(Px, Py):
   if len(Px) \leq 3.
        return brute_force(Px)
    mid = len(Px) // 2
    Qx = Pxf:mid1Rx = Px[mid:]midpoint = Px[mid][0]Qy = [point for point in Py if point [0] <= midpoint]
    Rv = [point for point in Py if point[0] > midpoint]
    (d1, pair1) = closest pair rec(Qx, Qy)(d2, pair2) = closest\_pair\_rec(Rx, Ry)d, best_pair = (d1, pair1) if d1 \leq d2 else (d2, pair2)(d3, pair3) = closest_split_pair(Px, Py, d, best_pair)
    return (d, best_pair) if d <= d3 else (d3, pair3)
def closest pair(points):
    Px = sorted(points, key=lambda x: x[0])Py = sorted(points, key=lambda x: x[1])return closest_pair_rec(Px, Py)
```
MAX SUBARRAY

Max Subarray

Problem

Given an array *A* of integers, find the (non-empty) contiguous subarray of *A* of maximum sum.

Max Subarray

Problem

Given an array *A* of integers, find the (non-empty) contiguous subarray of *A* of maximum sum.

Exercise – Teams of 3 or so

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.

Part 1: Give a $\Theta(n^2)$ solution.

Algorithm: CheckAllSubarrays **Input :** Array *A* of *n* ints. **Output:** Max subarray in *A*. Let *M* be an empty array **for** $i := 1$ to $len(A)$ **do for** $j := i$ to $len(A)$ **do if** *sum*(*A*[*i*..*j*]) > *sum*(*M*) **then** $M = A[i..j]$ **end end end return** *M*

Part 1: Give a $\Theta(n^2)$ solution.

2

Part 1: Give a $\Theta(n^2)$ solution.

PART 2: GIVE AN $O(n \log n)$ solution.

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarray

Input : Array *A* of *n* ints.

Output: Max subarray in *A*.

if $|A| = 1$ **then return** $A[1]$

 A_1 := MAXSUBARRAY(Front-half of *A*)

 A_2 := MAXSUBARRAY(Back-half of *A*)

 $M := MIDMAXSUBARRAY(A)$

return Array with max sum of $\{A_1, A_2, M\}$

Algorithm: MidMaxSubarray

Input : Array *A* of *n* ints.

Output: Max subarray that crosses midpoint *A*.

m ∶= mid-point of *A*

L := max subarray in $A[i, m-1]$ for $i = m-1 \rightarrow 1$

 $R := \max$ subarray in $A[m, j]$ for $j = m \rightarrow n$

return $L \cup R$ // subarray formed by combining L and R .

PART 2: GIVE AN $O(n \log n)$ solution.

Algorithm: MaxSubarray **Input :** Array *A* of *n* ints. **Output:** Max subarray in *A*. **if** $|A|$ = 1 **then return** *A*[1] A_1 := MAXSUBARRAY(Front-half of *A*) A_2 := MAXSUBARRAY(Back-half of *A*) $M := MIDMAXSUBARRAY(A)$ **return** Array with max sum of $\{A_1, A_2, M\}$

Analysis

- Correctness: By induction, A_1 and A_2 are max for subarray and *M* is max mid-crossing array.
- Complexity: Same recurrence as MergeSort.

APPENDIX

REFERENCES

Image Sources I

