CS 577 - Dynamic Programming

Primer

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin — Madison

Fall 2024

)

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

DynaMic PROGRAMMING

RECURRENT MATHS

DynaMic PROGRAMMING

It is “programming” that is “dynamic”!

Richard Bellman

1/41

RECURRENT MATHS CoMPARISON OF METHODS

DynaMic PROGRAMMING

o

w95 It is “programming” that is “dynamic”!
Rl

Richard Bellman

Why “Dynamic Programming”?

Reasons for the name:

@ In the 1950s, “programming” was about “planning” rather
than coding.

@ “Dynamic” is exciting — Air Force director didn’t like
research and wanted pizzazz.

e “Dynamic” sounds better than “linear” (Re: rival Dantzig).
<

1/41

RECURRENT MATHS CoMPARISON OF METHODS

DynaMic PROGRAMMING

s

el

O e
9 g It is “programming” that is “dynamic”!
T Ea

Richard Bellman

@ Your new favourite algorithmic technique.
e Extreme Divide and Conquer
@ Many sub-problems, but not quite brute-force.

@ Dynamic in that it calculates a bunch of solutions from the
“smallest” to the “largest”.

1/41

LET'S COMPUTE A RECURRENCE

RECURRENT MATHS CoMPARISON OF METHODS

ExamprLE: FacTORrIAL FUNCTION

Example 1: Compute the factorial function F(n) = n! for an
arbitrary non-negative integer n. Since:

nl=1.2-...-(n-1)-n=(m-1)'-n forn>1, 0'=1

By definition, we can compute Factorial(n) = Factorial(n —1) -n
using the following recursive algorithm.

e Algorithm Factorial(n) // Computes n! recursively //
Input: A non-negative integer n // Output: The value of n!

e ifn==0return1
e else return Factorial(n-1) *n

©What is the size of the recurrence tree? J

2/41

RECURRENT MATHS COMPARISON OF METHODS

Factorial. RECURRENCE TREE

Factorial(n) = Factorial(n — 1) -n, Factorial(0) =1

OO0

3/41

RECURRENT MATHS CoMPARISON OF METHODS

Factorial. RECURRENCE TREE

Factorial(n) = Factorial(n - 1) -n, Factorial(0) =1

O~ —O0—O—©

Interesting Observation:

@ Multiplications in Factorial Computation:
The number of multiplications M (n) needed to compute
F(n) = n! must satisfy the recurrence:

M(n)=M(n-1)+1 forn>0.

e Explanation: M(n — 1) multiplications are used to compute
F(n-1), and one more multiplication is required to
multiply the result by n.

3/41

RECURRENT MATHS CoMPARISON OF METHODS

Factorial. RECURRENCE TREE

Factorial(n) = Factorial(n - 1) -n, Factorial(0) =1

O O0—0O—O

Interesting Observation:
@ Multiplications in Factorial Computation:
The number of multiplications M (n) needed to compute
F(n) = n! must satisfy the recurrence:

M(mn)=M(n-1)+1 forn>0.
e Explanation: M(n — 1) multiplications are used to compute

F(n-1), and one more multiplication is required to
multiply the result by n.

@©How much is exactly M(n)?

3/41

RECURRENT MATHS CoMPARISON OF METHODS

Factorial. RECURRENCE TREE

Factorial(n) = Factorial(n - 1) -n, Factorial(0) =1

O O0—0O—O

Interesting Observation:
@ Multiplications in Factorial Computation:
The nugp
F(n) =

ompute

teresting!!!

We compute |n . which is a huge

number, in only . multiplications!
° Expland OIL: 1V pricanions-are-useato compute

F(n-1), and one more multlphcatlon is required to
multiply the result by n.

@How much is exactly M(n)? M(n) =n J
3/41

RECURRENT MATHS COMPARISON OF METHODS

FiBoNACCI SEQUENCE

Let’s see another sequence!!!

4/41

RECURRENT MATHS) SON OF METHODS

FiBoNACCI SEQUENCE

Let’s see another sequence!!!

\

0,1,1,2,3,5,8,13, 21, 34, ...

Definition

0 ifn=0
Fn—l +Fn_2 ifn>1

4/41

RECURRENT MATHS

FiBoNACCI SEQUENCE

\

0,1,1,2,3,5,8, 13, 21, 34, ...

Definition

0 ifn=0
Fn=11 ifn=1
F,1+F,» ifn>1

5/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

\

0,1,1,2,3,5,8,13, 21, 34, ...

fibl(n)
if n=0 then return 0

if n=1 then return 1
return fibl(n-1) +fib1(n-2)

6/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

\

0,1,1,2,3,5,8,13, 21, 34, ...

fibl(n)
if n=0 then return 0

if n=1 then return 1
return fibl(n-1) +fib1(n-2)

@What is the main problem with this code??? J
6/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

It is a big recurrence tree!!!)

7/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

It is a big recurrence tree!!!

fib1(n)
if n=0 then return ©
if n=1 then return 1
return fibl(n-1) +fib1l(n-2)

7/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

It is a very big recurrence tree!!! J

fibi(n)
if n=0 then return ©
if n=1 then return 1
return fib1(n-1) +fib1(n-2)

8/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

It is a very stupidly big recurrence tree!!! J

fibl(n)
if n=0 then return 0

if n=1 then return 1
return fibl(n-1)+fib1(n-2)

9/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

Those who cannot remember the past
are condemned to repeat it.

-Dynamic Programming

10/41

RECURRENT MATHS

Ler’s compruTE FIBONACCI SEQUENCE

Those who cannot remember the past
are condemned to repeat it.

-Dynamic Programming

@What is the size of the tree (approximately - or - exactly?) J

10/41

RECURRENT MATHS COMPARISON OF METHODS

COMPUTING THE SIZE OF THE TREE

Introduction

The algorithm’s basic operation is clearly addition, so let A(#)
be the number of additions performed by the algorithm in
computing F(n).

11/41

RECURRENT MATHS CoMPARISON OF METHODS

COMPUTING THE SIZE OF THE TREE

Introduction

The algorithm’s basic operation is clearly addition, so let A(#)
be the number of additions performed by the algorithm in
computing F(n).

A

Recurrence Setup

Then, the numbers of additions needed for computing F(n —1)
and F(n -2) are A(n - 1) and A(n - 2), respectively, and the
algorithm needs one more addition to compute their sum.
Thus, we get the following recurrence for A(n):

e An)=An-1)+A(n-2)+1 forn>1

e A(0)=0, A(1)=0

.

11/41

RECURRENT MATHS CoMPARISON OF METHODS

COMPUTING THE SIZE OF THE TREE

Introduction

The algorithm’s basic operation is clearly addition, so let A(#)
be the number of additions performed by the algorithm in
computing F(n).

A

Recurrence Setup

Then, the numbers of additions needed for computing F(n —1)
and F(n -2) are A(n - 1) and A(n - 2), respectively, and the
algorithm needs one more addition to compute their sum.
Thus, we get the following recurrence for A(n):

e An)=An-1)+A(n-2)+1 forn>1

e A(0)=0, A(1)=0

.

@Professor!!!
But we don’t know how to solve inhomogenius recurrences 11/41

RECURRENT MATHS CoMPARISON OF METHODS

COMPUTING THE SIZE OF THE TREE
lTo have an estimation you don’t need really!!! -

The aloorithm’s hagic onneration i clearlv addition cn let A (n)

@ Can you give me now an estimation???

Observe: ‘A(n -2)<A(n-1)<A(n) ‘

| Why???

, —
and F(n -2) are A(n - 1) and A(n - 2), respectively, and the)
algorithm needs one more addition to compute their sum.
Thus, we get the following recurrence for A(n):

e An)=An-1)+A(n-2)+1 forn>1

e A(0)=0, A(1)=0

@Professor!!!
But we don’t know how to solve inhomogenius recurrences

11/41

RECURRENT MATHS

COMPUTING THE SIZE OF THE TREE

The size of tree

e An)=An-1)+A(n-2)+1 forn>1
e A(0)=0, A(1)=0

12/41

RECURRENT MATHS

COMPUTING THE SIZE OF THE TREE

The size of tree

e An)=An-1)+A(n-2)+1 forn>1
e A(0)=0, A(1)=0

e Upper bound:
e A(n)<A(n-1)+A(n-1)+1=An)=2An-1)+1

12/41

RECURRENT MATHS) SON OF METHODS

COMPUTING THE SIZE OF THE TREE

The size of tree

e An)=An-1)+A(n-2)+1 forn>1
e A(0)=0, A(1)=0

e Upper bound:
e A(n)<A(n-1)+A(n-1)+1=An)=2An-1)+1
o = A(n)=2QA(n-2)+1)+1==2"A(0) +n

12/41

RECURRENT MATHS

COMPUTING THE SIZE OF THE TREE

The size of tree

e An)=An-1)+A(n-2)+1 forn>1
e A(0)=0, A(1)=0

e Upper bound:
e A(n)<A(n-1)+A(n-1)+1=An)=2An-1)+1
e =>A(n)=2QAn-2)+1)+1=--=2"A(0) +n

e Lower bound:
e An)<A(n-2)+A(n-2)+1=>An)=2A(n-2)+1

12/41

RECURRENT MATHS

COMPUTING THE SIZE OF THE TREE

The size of tree

e An)=An-1)+A(n-2)+1 forn>1
e A(0)=0, A(1)=0

e Upper bound:
e A(n)<A(n-1)+A(n-1)+1=An)=2An-1)+1
e =>A(n)=2QAn-2)+1)+1=--=2"A(0) +n

e Lower bound:
e An)<A(n-2)+A(n-2)+1=>An)=2A(n-2)+1
o = A(n)=2QA(n-2)+1)+1=--=2"2A(0) + n/2

12/41

RECURRENT MATHS

COMPUTING THE SIZE OF THE TREE

The size of tree

e An)=An-1)+A(n-2)+1 forn>1
e A(0)=0, A(1)=0

e Upper bound:
e A(n)<A(n-1)+An-1)+1=An)=2A(n-1)+1
e =>A(n)=2QAn-2)+1)+1=--=2"A(0) +n
e Lower bound:
e A(n)<A(n-2)+A(n-2)+1=>An)=2An-2)+1
o =>A(n)=22A(n-2)+1)+1=--=2""2A(0) +n/2
Thus:
0(2"%) < A(n) < O(2")

12/41

RECURRENT MATHS CoMPARISON OF METHODS

COMPUTING THE SIZE OF THE TREE

Exact CompuraTiON!!!

Inhomogeneous Recurrence

The recurrence A(n) - A(n—1) — A(n - 2) =1 is quite similar to
the recurrence for F(n) - F(n—-1) - F(n-2) = 0!!!

Homogenization Trick

We can reduce our inhomogeneous recurrence to a
homogeneous one by rewriting it as:

[A(n)+1]-[A(n-1)+1]-[A(n-2)+1]=0

and substituting B(n) = A(n) + 1.

13/41

RECURRENT MATHS CoMPARISON OF METHODS

COMPUTING THE SIZE OF THE TREE

Exact CompuraTiON!!!

Inhomogeneous Recurrence

The recurrence A(n) - A(n—1) — A(n - 2) =1 is quite similar to
the recurrence for F(n) - F(n—-1) - F(n-2) = 0!!!

Homogenization Trick

We can reduce our inhomogeneous recurrence to a
homogeneous one by rewriting it as:

[A(n)+1]-[A(n-1)+1]-[A(n-2)+1]=0

and substituting B(n) = A(n) + 1.

[B(m)] - [B(n-1)] - [B(n-2)] =0

13/41

RECURRENT MATHS CoMPARISON OF METHODS

14/41

RECURRENT MATHS

Homogenization Trick
e Whatis B(n) =A(n)+17??

15/41

RECURRENT MATHS COMPARISON OF METHODS

Homogenization Trick
e Whatis B(n) = A(n) + 1 ?? The size of the tree!!
e And what kind of equation B(n) satisfies??

15/41

RECURRENT MATHS COMPARISON OF METHODS

Homogenization Trick
e Whatis B(n) = A(n) + 1 ?? The size of the tree!!
e And what kind of equation B(n) satisfies??

[B(m)] - [B(n-1)] - [B(n-2)] =0

B(n) is a Fibonacci!!!

15/41

RECURRENT MATHS COMPARISON OF METHODS

16/41

RECURRENT MATHS COMPARISON OF METHODS

AN INTERESTING PARADOX

Thus, in the recursion:
e If we need to compute 1!, we need n operations.

o If we need to compute Fib(n), we need Fib(n) = Q(2"/?),
which is greater than 2" + n.

But... n! is a larger number. Huh?

17/41

RECURRENT MATHS CoMPARISON OF METHODS

AN INTERESTING PARADOX

Thus, in the recursion:
e If we need to compute 1!, we need n operations.

o If we need to compute Fib(n), we need Fib(n) = Q(2"/?),
which is greater than 2" + n.

But... n! is a larger number. Huh?

@ What is the difference between them? J

17/41

RECURRENT MATHS CoMPARISON OF METHODS

AN INTERESTING PARADOX

Thus, in the recursion:
e If we need to compute 1!, we need n operations.

o If we need to compute Fib(n), we need Fib(n) = Q(2"/?),
which is greater than 2" + n.

But... n! is a larger number. Huh?

@ What is the difference between them? J

It is not the type of equation. ©
In Factorial(n), it is not necessary to remember
Factorial(n — 1), Factorial(n — 2), . .. multiple times!

17/41

RECURRENT MATHS COMPARISON OF METHODS

FiBoNACCI SEQUENCE

WHicH MEMORY IS IMPORTANT?

fib(n) = fib(n-1) + fib(n-2)

18/41

RECURRENT MATHS

FiBoNACCI SEQUENCE

WHicH MEMORY IS IMPORTANT?

£ib(2) = fib(1) + fib(@)

fib(n) = fib(n-1) + fib(n-2)

18/41

RECURRENT MATHS) SON OF METHODS

FiBoNACCI SEQUENCE

WHicH MEMORY IS IMPORTANT?

£ib(3) = fib(2) + fib(1)

fib(n) = fib(n-1) + fib(n-2)

18/41

RECURRENT MATHS COMPARISON OF METHODS

FiBoNACCI SEQUENCE

WHicH MEMORY IS IMPORTANT?

fib(4) = fib(3) + fib(2)

fib(n) = fib(n-1) + fib(n-2)

18/41

RECURRENT MATHS COMPARISON OF METHODS

FiBoNACCI SEQUENCE

WHicH MEMORY IS IMPORTANT?

fib(5) = fib(4) + fib(3)

fib(n) = fib(n-1) + fib(n-2)

18/41

RECURRENT MATHS

CoMPARISON OF METHODS

FiBoNACCI SEQUENCE

WHicH MEMORY IS IMPORTANT?

fib2(n)
1. if n=0 then return 0
if n=1 then return 1
F(@)=0, F(1)=1 -
., for i=2,3, ..,n

F(i) = F(i-1) + F(i-2)
5. return F(n)

A W N

18/41

RECURRENT MATHS COMPARISON OF METH(

MOoMENT OF TRUTH

OF COURSE...WE COULD HAVE ONLY TWO VARIABLES ©

19/41

RECURRENT MATHS COMPARISON OF METE

MOoMENT OF TRUTH

OF COURSE...WE COULD HAVE ONLY TWO VARIABLES ©

RESOP'S FRBLES fulog
Included:

Aesop’s Moral
The Ant and the Dove
The Dog in the M 1.
SN i ricn In both problems, finding the

The Goose Who Laid Golden Eggs
The Lion and the Boar
The Peacock and the Crane
The Two Crabs
The Wind and the Sun
Town Mouse and Country Mouse
The Ant and the Grasshopper
The Boy who Cried Wolf
Belling the Cat
The Milk Maid and her Pail
The Crow and the Pitcher
The Dog and his Shadow
The Fox and the Stork
The Fox and the Grapes
The Lion and the Mouse
The Miller, His Son, and the Donkey
The Tortoise and the Hare

solution was straightforward!

19/41

RECURRENT MATHS

COMPARISON

oF METHODS

MOoMENT OF TRUTH

OF COURSE...WE COULD HAVE ONLY TWO VARI

Included:

The Ant and the Dove
The Dog in the Manger
The Fox and the Rooster
The Goose Who Laid Golden Eggs
The Lion and the Boar
The Peacock and the Crane
The Two Crabs
The Wind and the Sun
Town Mouse and Country Mouse
The Ant and the Grasshopper
The Boy who Cried Wolf
Belling the Cat
The Milk Maid and her Pail
The Crow and the Pitcher
The Dog and his Shadow
The Fox and the Stork
The Fox and the Grapes
The Lion and the Mouse
The Miller, His Son, and the Donkey
The Tortoise and the Hare

RESOP'S FRBLES (..

ABLES ©

Aesop’s Moral

In both problems, finding the
solution was straightforward!

v

Aesop’s Moral

However, finding the solution

is equivalent to store the correct

subproblems

19/41

RECURRENT MATHS CoMPARISON OF METHODS

Wl¢ Solving Subproblems

Orc I can solve a problem easily

l if I define and keep the solutions
to the smaller subproblems !!!

subproblems

The Crow and the Pifcher
The Dog and his Shadow
The Fox and the Stork
The Fox and the Grapes
The Lion and the Mouse
The Miller, His Son, and the Donkey

The Tortoise and the Hare

19/41

RECURRENT MATHS CoMPARISON OF METHODS

Wl¢ Solving Subproblems

Orc I can solve a problem easily

l if I define and keep the solutions
to the smaller subproblems !!!

Can you do better7
Prove the equality

Fn-1) F(n)
Fn) Fn+1

Il
| —
()
—_
| I—
=

—

e}

-

S

\%

—_

©How can you do it in O(logn)?
|

19/41

RECURRENT MATHS COMPARISON OF METHODS

SHORTEST PAaTH IN DAGS

o A DAG is a Directed Acyclic Graph.

@ The shortest path problem involves finding the minimum
distance from a source node to all other nodes.

20/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PAaTH IN DAGS

o A DAG is a Directed Acyclic Graph.

@ The shortest path problem involves finding the minimum
distance from a source node to all other nodes.

What is the special characteristic of a DAG
except the fact that is acyclic ©? J

20/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PAaTH IN DAGS

o A DAG is a Directed Acyclic Graph.

@ The shortest path problem involves finding the minimum
distance from a source node to all other nodes.

What is the special characteristic of a DAG
except the fact that is acyclic ©? J

Every DAG has a topological order!!! — Why is this useful? J

20/41

RECURRENT MATHS COMPARISON OF METHODS

SHORTEST PaTHS IN DAGS

Characteristic of a DAG: Topological Sorting

21/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS

Characteristic of a DAG: Topological Sorting

Why does this characteristic help in computing shortest paths
from a node, say s? J

21/41

RECURRENT MATHS

SHORTEST PaTHS IN DAGS

COMPARISON

Characteristic of a DAG: Topological Sorting

®

2 \ 5
00 0 o0 oo/ZR
' & 3 6 4 9
- u v —>@
6

Let’s focus on a node, say x.
The only way to reach x is through its predecessors: v or u.

T

oF METHODS

22/41

RECURRENT MATHS COMPARISON OF METHODS

SHORTEST PaTHS IN DAGS
Characteristic of a DAG: Topological Sorting

2 \ 5
o0
2 mvz/@?

How many optimal candidate paths do exist from s to x?

23/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS
Characteristic of a DAG: Topological Sorting

2 \ 5
o0
2 mvz/@?

How many optimal candidate paths do exist from s to x?

Thus, to find the shortest distance from s to x, it is enough to
compare the two paths:

d(x) = min{d(v) +4,d(u) +2}

23/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS

@ A similar relationship holds for every node! For example,
for node t:

d(t) = min{d(x) +9,d(v) +5,d (1) + 8}

24/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS

@ A similar relationship holds for every node! For example,
for node t:

d(t) = min{d(x) +9,d(v) +5,d(u) + 8}

e If we compute the values d(.) following the topological
order, then:

24/41

RECURRENT MATHS CoMPARISON OF METHODS

@ A similar relationship holds for every node! For example,
for node t:

d(t) = min{d(x) +9,d(v) +5,d(u) + 8}

e If we compute the values d(.) following the topological
order, then:

By the time we reach node x, we will have all the information
needed to compute d(x). J

24/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS
Algorithm SP-DAG
Q Initialize(G,s)
@ Topological-Sorting(QG)
@ For eachnode x € V - {s} in| topological order |

d(x) = (g{i)gE{d(u) +w(u,x)}

© Returnd(.)

Keep these two elements of the algorithm in mind!!!)

25/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS

OBSERVATIONS #1

@ The SP-DAG algorithm solves subproblems of the form:
{d(x) [x eV —{s}}

o It starts from the smallest subproblem and moves on to
solve larger subproblems!!!

@ A subproblem is considered large if we need to solve many
other subproblems before arriving at it!!!

26/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS

(OBSERVATIONS #2

@ Ateach node x, the SP-DAG algorithm computes a function
of the distances d(.) from the predecessors of node x.

@ Here, the function is a minimum sum of distances!

@ The function could just as easily be:

e Maximum: In which case we would compute the
maximum paths, or

e Minimum product: Where we calculate the path with the
smallest product of edges.

27/41

RECURRENT MATHS

SON OF METHODS

SHORTEST PaTHS IN DAGS

OBSERVATIONS #3

Find the differences in the implementation
Case #1

Case #2

// Step 1: Initialize memoization table
memo = {}

// DP Shortest Path from source 's' to all nodes using a for loop

/7 Step 2: Recursive function with memoization
function ShortestPathFromS(DAG, s):

function DP(u):
PathFr D : if u ==t
/f Step 1: Initialize distances return @
for each node v in DAG: if u in memo:
distlv] = &
dist[s] = @

Teturn memolu]

// Step 2: Topologically sort all nodes in DAG

topoOrder = TopologicalSort(DAG)

// Step 3: Process nodes in topological order
for each node u in topoOrder
for each edge (u, V) in DAG:
if distlv] > distlul + weight(u, v):
distlv] = distlul + weight(u, v)

// Return the shortest path distances from s to all nodes

return dist

/f Initialize the shortest path to 't' from 'u' as infinity

shortest =

/I Process each neighbor v of u
for each edge (u, v) in DAG:
shortest = min(shortest

/I Memoize and return the result
memolul = shortest
return memolu]

L DP(V) + weight(u, v))

/ Step 3: Compute shortest path from source 's' to any node

for each node u in DAG:
DP(u)

/I Return the shortest path distance from source node s to target t

return DP(s)

28/41

RECURRENT MATHS CoMPARISON OF METHODS

SHORTEST PaTHS IN DAGS

OBSERVATIONS #3

Case #1:

// DP Shortest Path from source 's' to all nodes using a for loop
function ShortestPathFromS(DAG, s):
[/ Step 1: Initialize distances
for each node v in DAG:
distlv] = =
dist[s] = @

// Step 2: Topologically sort all nodes in DAG
topoOrder = TopologicalSort(DAG)

// Step 3: Process nodes in topological order
for each node u in topoQOrder:
for each edge (u, v) in DAG:
if distlv] > distlul + weight(u, v):
dist[v] = dist[u] + weight{u, v)

/! Return the shortest path distances from s to all nodes
return dist

29/41

RECURRENT MATHS Comra DN OF METHO

SHORTEST PaTHS IN DAGS

OBSERVATIONS #3

Case #2:

// Step 1: Initialize memoization table
memo = {}

// Step 2: Recursive function with memoization
function DP(u):
if u == t:
return @
if u in memeo:
return memo[u]

// Initialize the shortest path to 't' from 'u' as infinity
shortest = =

// Process each neighbor v of u
for each edge (u, v) in DAG:
shortest = min(shortest, DP(v) + weight(u, v))

// Memoize and return the result
memo[u] = shortest
return memolul

// Step 3: Compute shortest path from source 's' to any node
for each node u in DAG:
DP (u)

// Return the shortest path distance from source node s to target t
return DP(g) 30/41

RECURRENT MATHS COMPARISON OF METHODS

ONE MiLLION DoLLAR QUESTION FOR DP

©Why is the assumption of DAG crucial for the previous DP? J

31/41

RECURRENT MATHS CoMPARISON OF METHODS

ONE MiLLION DoLLAR QUESTION FOR DP

©Why is the assumption of DAG crucial for the previous DP? J

DAG explains the order of the subproblems that we have to
solve to compose the final solution!!!

A (B) (c)

31/41

COMPARISON OF METHODS

COMPARISON OF METHODS

Divide & Conquer,
Greedy Algo,

Dynamic Programming...
What should I choose?

32/41

RECURRENT MATHS COMPARISON OF METHODS

Divide & Conquer,
Greedy Algo,

Dynamic Programming...
What should I choose?

32/41

COMPARISON OF METHODS

What are finally their
differences?

33/41

RECURRENT MATHS COMPARISON OF METHODS

What are finally their
differences?

33/41

RECURRENT MATHS COMPARISON OF METHODS

Divipe & CoNQUER VS DyNaMic PROGRAMMING

What is the difference between the subproblems & the
computation tree in DC & DP?

d

DIVIDE AND CONQUER DYNAMIC PROGRAMMING

34/41

RECURRENT MATHS COMPARISON OF METHODS

DyNnaAaMIC PROGRAMMING CHARACTERISTICS
e Divide-and-Conquer vs Dynamic Programming!!!
V" In the Divide-and-Conquer technique, a problem of size n
is expressed as subproblems I1(1),II(2), ..., II(k) that are
significantly smaller (for example 1/2) and do not overlap!

v" Due to the sharp decrease in the size of 11, the recursion
tree has:

e Depth: O(logn)
@ Number of nodes: O(n)

35/41

RECURRENT MATHS COMPARISON OF METHODS

DyNnaAaMIC PROGRAMMING CHARACTERISTICS
e Divide-and-Conquer vs Dynamic Programming!!!

v In the Dynamic Programming technique, the subproblems
I1(1),I1(2), ..., II(k) are slightly smaller. For example, II(7)
depends on II(i - 1), and the subproblems overlap!

v" Here, the recursion tree typically has:

e Depth: O(n)
o Number of nodes: O(c"), where ¢ > 1
e Exponential number of nodes!!!

(1)
@ @ ©
© @
®

36/41

RECURRENT MATHS COMPARISON OF METHODS

DIFFERENCES BETWEEN ALGORITHMIC TECHNIQUES

@ Greedy vs Dynamic Programming!!!

v" In the Dynamic Programming technique, the subproblems
I1(1),11(2), . .., II(k) are slightly smaller. For example, II(7)
depends on II(i — 1), and the subproblems overlap!

v In the Greedy Algorithms technique, the subproblems
I1(1),I1(2), ..., II(k) are slightly smaller. For example, II(7)
depends on II(i - 1), and the subproblems overlap!

v Greedy algorithms are like Factorial Problem:

o If you sort correctly (greedy criterion) your data, every
optimal solution depends only on the optimal solution of the
previous step and a local choice!!!

e Depth: O(n)

e Number of nodes: O(n), where ¢ > 1

e Linear number of nodes!!!

37/41

RECURRENT MATHS

COMPARISON OF METHODS

DIFFERENCES BETWEEN ALGORITHMIC TECHNIQUES

@ Greedy vs Dynamic Programming!!!

l Opt(n) = Greedy(n-1) ® Local-Choice(n)

l Opt(n-1) = Greedy (n-2) ® Local-Choice(n-1)

l Opt(n-2) = Greedy (n-1) ® Local-Choice(n-2)

l Opt(1) = Greedy(0) ® Local-Choice(1) ‘

Opt(0) = Greedy-Choice

37/41

RECURRENT MATHS COMPARISON OF METHODS

The Basic Idea!!!... Solving problem II with DP:

DP Design Steps

© Compute a set of subproblems of 11
@ Devise a relation for solving one subproblem in terms of
the others

© Solve the subproblems, starting from the smallest, store
their solutions, and move to the larger subproblems, using
the stored solutions of smaller ones!!!

© Retrieve the solution of the original problem II, by solving
all subproblems in a determined order!!!

38/41

RECURRENT MATHS COMPARISON OF METHODS

Dynamic PROGRAMMING CHARACTERISTICS

Attention!!!

v In DD, the "technique model" can be considered as a
computational graph G, which is a DAG!!!

v The nodes of G correspond to subproblems, and the edges
represent dependencies between them:

4]~ [B]

@ Ais considered a "smaller" subproblem than B, or

@ To solve B, we need the solution for A!!!

39/41

RECURRENT MATHS COMPARISON OF METHODS

Dynamic PROGRAMMING CHARACTERISTICS

Fundamental Property of DP!!!

There exists an ordering of the subproblems and a relation that
shows how a subproblem can be solved using the solutions of
"smaller" subproblems, i.e., subproblems that appear earlier in

the order!
o Order:
V@O 0—F
@ Relation:

Large Subproblem = f(Smaller Subproblems)

40/41

RECURRENT MATHS COMPARISON OF METHODS

Basic DP OutLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
o Understand the work done per cell.

41/41

RECURRENT MATHS COMPARISON OF METHODS

Basic DP OutLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
o Understand the work done per cell.

Algorithm Guidelines

41/41

RECURRENT MATHS COMPARISON OF METHODS

Basic DP OutLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
o Understand the work done per cell.

Algorithm Guidelines

@ There are only a polynomial number of subproblems.

41/41

RECURRENT MATHS COMPARISON OF METHODS

Basic DP OutLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
o Understand the work done per cell.

Algorithm Guidelines

@ There are only a polynomial number of subproblems.

@ The solution to the larger problem can be efficiently
calculated from the subproblems.

41/41

RECURRENT MATHS COMPARISON OF METHODS

Basic DP OutLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
o Understand the work done per cell.

Algorithm Guidelines

@ There are only a polynomial number of subproblems.
@ The solution to the larger problem can be efficiently
calculated from the subproblems.

© Natural ordering of the subproblems from “smallest” to
“largest”.

41/41

APPENDIX

REFERENCES

APPENDIX REFERENCES

IMAGE SouRrces 1

'« ’ -
gadﬁﬁ https://medium.com/neurosapiens/
2-dynamic-programming-9177012dcdd

08/biografia-de-lester-randolph-ford-jr/

H
Vlclil A

i http://www.sequence-alignment.com/

rrZ https://medium. com/koderunners/
genetic-algorithm-part-3-knapsack-problem-b5903E

WISCONSIN https://brand.wisc.edu/web/logos/
42/41

https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
http://www.sequence-alignment.com/
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://brand.wisc.edu/web/logos/

APPENDIX REFERENCES

IMAGE Sources 11

< & https://www.pngfind.com/mpng/mTJImbx_
spongebob-squarepants-png-image-spongebob-cartoo

o)
%

°

https://www.pngfind.com/mpng/xhJRmT_
cheshire-cat-vintage-drawing-alice-in-wonderland

43/41

https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/

	Dynamic Programming
	Let's compute a recurrence
	Idea: Keep your memories!!! They are valuable!!!

	Comparison of Methods
	Appendix
	Appendix
	References

