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Dynamic Programming

Richard Bellman

It is “programming” that is “dynamic”!

Why “Dynamic Programming”?
Reasons for the name:

In the 1950s, “programming” was about “planning” rather
than coding.
“Dynamic” is exciting – Air Force director didn’t like
research and wanted pizzazz.
“Dynamic” sounds better than “linear” (Re: rival Dantzig).

1/41



DP Recurrent Maths Comparison of Methods

Dynamic Programming

Richard Bellman

It is “programming” that is “dynamic”!

Why “Dynamic Programming”?
Reasons for the name:

In the 1950s, “programming” was about “planning” rather
than coding.
“Dynamic” is exciting – Air Force director didn’t like
research and wanted pizzazz.
“Dynamic” sounds better than “linear” (Re: rival Dantzig).

1/41



DP Recurrent Maths Comparison of Methods

Dynamic Programming

Richard Bellman

It is “programming” that is “dynamic”!

What is it?
Your new favourite algorithmic technique.
Extreme Divide and Conquer
Many sub-problems, but not quite brute-force.
Dynamic in that it calculates a bunch of solutions from the
“smallest” to the “largest”.
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Let’s compute a recurrence
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Example: Factorial Function

Example 1: Compute the factorial function F(n) = n! for an
arbitrary non-negative integer n. Since:

n! = 1 ⋅ 2 ⋅ . . . ⋅ (n − 1) ⋅ n = (n − 1)! ⋅ n for n ≥ 1, 0! = 1

By definition, we can compute Factorial(n) = Factorial(n − 1) ⋅ n
using the following recursive algorithm.

Algorithm Factorial(n) // Computes n! recursively //
Input: A non-negative integer n // Output: The value of n!

if n == 0 return 1
else return Factorial(n-1) * n

What is the size of the recurrence tree?
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Factorial Recurrence Tree

Factorial(n) = Factorial(n − 1) ⋅ n, Factorial(0) = 1

n! (n-1)! (n-2)! ⋯ 1! 0!
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Factorial Recurrence Tree

Factorial(n) = Factorial(n − 1) ⋅ n, Factorial(0) = 1

n! (n-1)! (n-2)! ⋯ 1! 0!

Interesting Observation:
Multiplications in Factorial Computation:
The number of multiplicationsM(n) needed to compute
F(n) = n! must satisfy the recurrence:

M(n) =M(n − 1) + 1 for n > 0.

Explanation: M(n − 1)multiplications are used to compute
F(n − 1), and one more multiplication is required to
multiply the result by n.
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M(n) =M(n − 1) + 1 for n > 0.
Explanation: M(n − 1)multiplications are used to compute
F(n − 1), and one more multiplication is required to
multiply the result by n.

How much is exactlyM(n)? M(n) = n

Interesting!!!

We compute n! , which is a huge
number, in only n multiplications!
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Fibonacci Sequence
Let’s see another sequence!!!

Definition

Fn =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1
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Let’s compute Fibonacci Sequence

What is the main problem with this code???
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Let’s compute Fibonacci Sequence

It is a very big recurrence tree!!!
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Let’s compute Fibonacci Sequence

It is a very stupidly big recurrence tree!!!
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Let’s compute Fibonacci Sequence

What is the size of the tree (approximately - or - exactly?)
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Computing the size of the tree
Introduction
The algorithm’s basic operation is clearly addition, so let A(n)
be the number of additions performed by the algorithm in
computing F(n).

Recurrence Setup
Then, the numbers of additions needed for computing F(n − 1)
and F(n − 2) are A(n − 1) and A(n − 2), respectively, and the
algorithm needs one more addition to compute their sum.
Thus, we get the following recurrence for A(n):

A(n) = A(n − 1) +A(n − 2) + 1 for n > 1
A(0) = 0, A(1) = 0

Professor!!!
But we don’t know how to solve inhomogenius recurrences

To have an estimation you don’t need really!!!

Can you give me now an estimation???

Observe: A(n − 2) ≤ A(n − 1) ≤ A(n)

Why???
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Computing the size of the tree

The size of tree
A(n) = A(n − 1) +A(n − 2) + 1 for n > 1
A(0) = 0, A(1) = 0

Upper bound:
A(n) ≤ A(n − 1) +A(n − 1) + 1⇒ A(n) = 2A(n − 1) + 1
⇒ A(n) = 2(2A(n − 2) + 1) + 1 = ⋯ = 2nA(0) + n

Lower bound:
A(n) ≤ A(n − 2) +A(n − 2) + 1⇒ A(n) = 2A(n − 2) + 1
⇒ A(n) = 2(2A(n − 2) + 1) + 1 = ⋯ = 2n/2A(0) + n/2

Thus:
O(2n/2) ≤ A(n) ≤ O(2n)
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Computing the size of the tree
Exact Computation!!!

Inhomogeneous Recurrence
The recurrence A(n) −A(n − 1) −A(n − 2) = 1 is quite similar to
the recurrence for F(n) − F(n − 1) − F(n − 2) = 0!!!

Homogenization Trick
We can reduce our inhomogeneous recurrence to a
homogeneous one by rewriting it as:

[A(n) + 1] − [A(n − 1) + 1] − [A(n − 2) + 1] = 0

and substituting B(n) = A(n) + 1.

[B(n)] − [B(n − 1)] − [B(n − 2)] = 0
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Homogenization Trick
What is B(n) = A(n) + 1 ??

The size of the tree!!
And what kind of equation B(n) satisfies??

[B(n)] − [B(n − 1)] − [B(n − 2)] = 0

B(n) is a Fibonacci!!!
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An interesting paradox

Thus, in the recursion:
If we need to compute n!, we need n operations.
If we need to compute Fib(n), we need Fib(n) = Ω(2n/2),
which is greater than 2n + n.

But... n! is a larger number. Huh?

What is the difference between them?

It is not the type of equation. ,
In Factorial(n), it is not necessary to remember
Factorial(n − 1),Factorial(n − 2), . . . multiple times!
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Fibonacci Sequence
Which Memory is important?
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Moment of Truth
Of course...we could have only two variables ,

Aesop’s Moral
In both problems, finding the
solution was straightforward!

Aesop’s Moral
However, finding the solution
is equivalent to store the correct
subproblems

Solving Subproblems
I can solve a problem easily

if I define and keep the solutions
to the smaller subproblems !!!

Can you do better?

How can you do it in O(logn)?
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Shortest Path in DAGs

A DAG is a Directed Acyclic Graph.
The shortest path problem involves finding the minimum
distance from a source node to all other nodes.

What is the special characteristic of a DAG
except the fact that is acyclic ,?

Every DAG has a topological order!!! – Why is this useful?
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Shortest Paths in DAGs

Characteristic of a DAG: Topological Sorting

Why does this characteristic help in computing shortest paths
from a node, say s?
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Shortest Paths in DAGs

Characteristic of a DAG: Topological Sorting

Let’s focus on a node, say x.
The only way to reach x is through its predecessors: v or u.
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Shortest Paths in DAGs
Characteristic of a DAG: Topological Sorting

How many optimal candidate paths do exist from s to x?

Thus, to find the shortest distance from s to x, it is enough to
compare the two paths:

d(x) =min{d(v) + 4,d(u) + 2}
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Shortest Paths in DAGs

A similar relationship holds for every node! For example,
for node t:

d(t) =min{d(x) + 9,d(v) + 5,d(u) + 8}

If we compute the values d(.) following the topological
order, then:

By the time we reach node x, we will have all the information
needed to compute d(x).
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Shortest Paths in DAGs
Algorithm SP-DAG

1 Initialize(G, s)
2 Topological-Sorting(G)
3 For each node x ∈ V − {s} in topological order :

d(x) = min
(u,x)∈E

{d(u) +w(u,x)}

4 Return d(.)

Keep these two elements of the algorithm in mind!!!
25/41
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Shortest Paths in DAGs
Observations #1

The SP-DAG algorithm solves subproblems of the form:

{d(x) ∣ x ∈ V − {s}}

It starts from the smallest subproblem and moves on to
solve larger subproblems!!!
A subproblem is considered large if we need to solve many
other subproblems before arriving at it!!!
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Shortest Paths in DAGs
Observations #2

At each node x, the SP-DAG algorithm computes a function
of the distances d(.) from the predecessors of node x.
Here, the function is aminimum sum of distances!
The function could just as easily be:

Maximum: In which case we would compute the
maximum paths, or
Minimum product: Where we calculate the path with the
smallest product of edges.
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Shortest Paths in DAGs
Observations #3

Find the differences in the implementation

Case #1: Case #2:
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Shortest Paths in DAGs
Observations #3

Case #1:
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Shortest Paths in DAGs
Observations #3

Case #2:

30/41



DP Recurrent Maths Comparison of Methods

One Million Dollar Question for DP

Why is the assumption of DAG crucial for the previous DP?

DAG explains the order of the subproblems that we have to
solve to compose the final solution!!!
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Comparison of Methods
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Divide & Conquer,
Greedy Algo,
Dynamic Programming...
What should I choose?
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Divide & Conquer,
Greedy Algo,
Dynamic Programming...
What should I choose?

The optimal one ,
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What are finally their
differences?
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What are finally their
differences?

Let’s check together!
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Divide & Conquer VS Dynamic Programming

What is the difference between the subproblems & the
computation tree in DC & DP?
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Dynamic Programming Characteristics
Divide-and-Conquer vs Dynamic Programming!!!
✓ In the Divide-and-Conquer technique, a problem of size n

is expressed as subproblems Π(1),Π(2), . . . ,Π(k) that are
significantly smaller (for example n/2) and do not overlap!

✓ Due to the sharp decrease in the size of Π, the recursion
tree has:

Depth: O(logn)
Number of nodes: O(n)
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Dynamic Programming Characteristics
Divide-and-Conquer vs Dynamic Programming!!!
✓ In the Dynamic Programming technique, the subproblems

Π(1),Π(2), . . . ,Π(k) are slightly smaller. For example, Π(i)
depends on Π(i − 1), and the subproblems overlap!

✓ Here, the recursion tree typically has:
Depth: O(n)
Number of nodes: O(cn), where c > 1

Exponential number of nodes!!!
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Differences between Algorithmic Techniques

Greedy vs Dynamic Programming!!!
✓ In the Dynamic Programming technique, the subproblems

Π(1),Π(2), . . . ,Π(k) are slightly smaller. For example, Π(i)
depends on Π(i − 1), and the subproblems overlap!

✓ In the Greedy Algorithms technique, the subproblems
Π(1),Π(2), . . . ,Π(k) are slightly smaller. For example, Π(i)
depends on Π(i − 1), and the subproblems overlap!

✓ Greedy algorithms are like Factorial Problem:
If you sort correctly (greedy criterion) your data, every
optimal solution depends only on the optimal solution of the
previous step and a local choice!!!
Depth: O(n)
Number of nodes: O(n), where c > 1

Linear number of nodes!!!
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Differences between Algorithmic Techniques

Greedy vs Dynamic Programming!!!
Opt(n) = Greedy(n-1) ⊕ Local-Choice(n)

Opt(n-1) = Greedy(n-2) ⊕ Local-Choice(n-1)

Opt(n-2) = Greedy(n-1) ⊕ Local-Choice(n-2)

⋯

Opt(1) = Greedy(0) ⊕ Local-Choice(1)

Opt(0) = Greedy-Choice
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Dynamic Programming Characteristics

The Basic Idea!!!... Solving problem Π with DP:

DP Design Steps
1 Compute a set of subproblems of Π
2 Devise a relation for solving one subproblem in terms of

the others
3 Solve the subproblems, starting from the smallest, store

their solutions, and move to the larger subproblems, using
the stored solutions of smaller ones!!!

4 Retrieve the solution of the original problem Π, by solving
all subproblems in a determined order!!!
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Dynamic Programming Characteristics

Attention!!!
✓ In DP, the "technique model" can be considered as a

computational graph G, which is a DAG!!!
✓ The nodes of G correspond to subproblems, and the edges

represent dependencies between them:

A → B

A is considered a "smaller" subproblem than B, or
To solve B, we need the solution for A!!!
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Dynamic Programming Characteristics
Fundamental Property of DP!!!

There exists an ordering of the subproblems and a relation that
shows how a subproblem can be solved using the solutions of
"smaller" subproblems, i.e., subproblems that appear earlier in
the order!

Order:

Relation:

Large Subproblem = f (Smaller Subproblems)
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Basic DP Outline

Algorithm Template
Preprocessing of data
Populate the matrix:

Iterate over the cells in the correct order.
Understand the work done per cell.

Algorithm Guidelines

1 There are only a polynomial number of subproblems.
2 The solution to the larger problem can be efficiently

calculated from the subproblems.
3 Natural ordering of the subproblems from “smallest” to

“largest”.
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Image Sources I

https://medium.com/neurosapiens/
2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/
08/biografia-de-lester-randolph-ford-jr/

http://www.sequence-alignment.com/

https://medium.com/koderunners/
genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6

https://brand.wisc.edu/web/logos/
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Image Sources II
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