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Dynamic Programming

Richard Bellman

It is “programming” that is “dynamic”!

Why “Dynamic Programming”?
Reasons for the name:

In the 1950s, “programming” was about “planning” rather
than coding.
“Dynamic” is exciting – Air Force director didn’t like
research and wanted pizzazz.
“Dynamic” sounds better than “linear” (Re: rival Dantzig).
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Dynamic Programming

Richard Bellman

It is “programming” that is “dynamic”!

What is it?
Your new favourite algorithmic technique.
Extreme Divide and Conquer
Many sub-problems, but not quite brute-force.
Dynamic in that it calculates a bunch of solutions from the
“smallest” to the “largest”.
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Weighted Interval Scheduling

Problem Definition
Requests: σ = {r1,⋯, rn}

A request ri = (si, fi,vi), where si is the start time, fi is the
finish time, and vi is the value.
Objective: Produce a compatible schedule S that has
maximum value.
Compatible schedule S: ∀ri, rj ∈ S, fi ≤ sj ∨ fj ≤ si.

What is the value of the FF heuristic?

2.

What is the optimal value?

3.
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Recursive Solution
Recursive Procedure

1 Assume σ ordered by finish time (asc).

2 Find the optimal value in sorted σ of first j items:

1 Find largest i < j such that fi ≤ sj.
2 opt(j) =max(opt(j − 1),opt(i) + vj)

Proof of optimality.

By strong induction on j.
Base cases: j = 0 or j = 1: Only 1 possible optimal solution.
Inductive step:

By ind hyp, we have opt for j − 1 and opt for i.
Sorting order assures the dichotomy that the last interval is
either in the solution or not.
Take the max of whether or not a given interval is included.
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Consider the Recursion

opt(j) =max(opt(j − 1),opt(i) + vj)

What is the asymptotic number of recursive calls with n jobs?

O(2n)

4/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Consider the Recursion

opt(j) =max(opt(j − 1),opt(i) + vj)

What is the asymptotic number of recursive calls with n jobs?

O(2n)

4/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Consider the Recursion

opt(j) =max(opt(j − 1),opt(i) + vj)

What is the asymptotic number of recursive calls with n jobs?
O(2n)

4/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Memoizing the Recursion

Memoization
Not a typo.
Coined in 1989 by Donald Michie.
Derived from latin “memorandum”, meaning “to be
remembered”.

Basic Technique
Calculate once: store the value in array and retrieve for
future calls.
Can be implemented recursively, but tends to be more
natural as an iterative process.
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Dynamic Program Solution
Algorithm:WeightIntDP
Sort σ by finish time
m[0] ∶= 0
for j = 1 to n do

Find index i
m[j] =max(m[j − 1],m[i] + vj)

end

DP Solutions
DP algorithms
are formulaic.
We understand
how loops work.
NO Pseudocode.

We want:
Definitions required for algorithm to work
Description of matrix
Bellman Equation
Location of solution, order to populate the matrix

Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix

1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Algorithm:WeightIntDP
Sort σ by finish time
m[0] ∶= 0
for j = 1 to n do

Find index i
m[j] =max(m[j − 1],m[i] + vj)

end

DP Solutions
DP algorithms
are formulaic.
We understand
how loops work.
NO Pseudocode.

We want:
Definitions required for algorithm to work
Description of matrix
Bellman Equation
Location of solution, order to populate the matrix

Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix

1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Algorithm:WeightIntDP
Sort σ by finish time
m[0] ∶= 0
for j = 1 to n do

Find index i
m[j] =max(m[j − 1],m[i] + vj)

end

DP Solutions
DP algorithms
are formulaic.
We understand
how loops work.
NO Pseudocode.

We want:
Definitions required for algorithm to work
Description of matrix
Bellman Equation
Location of solution, order to populate the matrix

Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix

1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix

1D arrayM, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix

1D arrayM, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix

1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix
1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix
1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation

M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix
1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation
M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix
1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation
M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate

The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Dynamic Program Solution
Definitions required for algorithm to work

σ sorted by finish time, ascending order.
For a given job at index j, ij < j is the largest index such that
fij ≤ sj.

Description of matrix
1D arrayM, whereM[j] is the maximum value of a
compatible schedule for the first j items in sorted σ.
InitializeM[1] = v1.

Bellman Equation
M[j] =max{M[j − 1],M[ij] + vj}

Solution, order to populate
The maximum value of a compatible schedule for the n
jobs is found atM[n]. Populate from 2 to n.

6/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Analyze the Algorithm

DP Solution
σ sorted by finish time, ascending order.
For a given job at index j, i < j is the largest index such that
fi ≤ sj.
Bellman Equation: m[j] =max(m[j − 1],m[i] + vj)
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Analyze the Algorithm
DP Solution

σ sorted by finish time, ascending order.
For a given job at index j, i < j is the largest index such that
fi ≤ sj.
Bellman Equation: m[j] =max(m[j − 1],m[i] + vj)

Runtime

Preprocessing:

Sorting jobs: O(n logn).

Populate the matrix:

Number of cells:

O(n)

Cost per cell:

Finding i: O(n) linear search, O(logn) binary
search

Overall:

O(n2) linear search, O(n logn) binary search
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Analyze the Algorithm

DP Solution
σ sorted by finish time, ascending order.
For a given job at index j, i < j is the largest index such that
fi ≤ sj.
Bellman Equation: m[j] =max(m[j − 1],m[i] + vj)

What about the schedule S?

Trace back from the optimal value:
Job j is part of the optimal schedule from 1 to j iff
vj + opt(i) ≥ opt(j − 1)

7/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Analyze the Algorithm

DP Solution
σ sorted by finish time, ascending order.
For a given job at index j, i < j is the largest index such that
fi ≤ sj.
Bellman Equation: m[j] =max(m[j − 1],m[i] + vj)

What about the schedule S?
Trace back from the optimal value:

Job j is part of the optimal schedule from 1 to j iff
vj + opt(i) ≥ opt(j − 1)

7/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Basic DP Outline

Algorithm Template
Preprocessing of data
Populate the matrix:

Iterate over the cells in the correct order.
Understand the work done per cell.

Algorithm Guidelines

1 There are only a polynomial number of subproblems.
2 The solution to the larger problem can be efficiently

calculated from the subproblems.
3 Natural ordering of the subproblems from “smallest” to

“largest”.

8/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Basic DP Outline

Algorithm Template
Preprocessing of data
Populate the matrix:

Iterate over the cells in the correct order.
Understand the work done per cell.

Algorithm Guidelines

1 There are only a polynomial number of subproblems.
2 The solution to the larger problem can be efficiently

calculated from the subproblems.
3 Natural ordering of the subproblems from “smallest” to

“largest”.

8/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Basic DP Outline

Algorithm Template
Preprocessing of data
Populate the matrix:

Iterate over the cells in the correct order.
Understand the work done per cell.

Algorithm Guidelines
1 There are only a polynomial number of subproblems.

2 The solution to the larger problem can be efficiently
calculated from the subproblems.

3 Natural ordering of the subproblems from “smallest” to
“largest”.

8/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Basic DP Outline

Algorithm Template
Preprocessing of data
Populate the matrix:

Iterate over the cells in the correct order.
Understand the work done per cell.

Algorithm Guidelines
1 There are only a polynomial number of subproblems.
2 The solution to the larger problem can be efficiently

calculated from the subproblems.

3 Natural ordering of the subproblems from “smallest” to
“largest”.

8/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Basic DP Outline

Algorithm Template
Preprocessing of data
Populate the matrix:

Iterate over the cells in the correct order.
Understand the work done per cell.

Algorithm Guidelines
1 There are only a polynomial number of subproblems.
2 The solution to the larger problem can be efficiently

calculated from the subproblems.
3 Natural ordering of the subproblems from “smallest” to

“largest”.

8/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Longest Increasing
Subsequence



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Longest Increasing Subsequence

Problem
Given an integer array A[1..n].
Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[ik] < A[ik+1] for all k.

Subsequence
For a sequence A, a subsequence S is a subset of A that
maintains the same relative order.

Ex: I like watching the puddles gather rain.
puddles: subsequence, substring (contiguous)
late train: subsequence, not substring (not contiguous)

For an array of length n, how many subsequences?

2n
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Recursive Approach

Algorithm: LIS
Input : Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
Exo: Complete the algorithm

Run time of the algorithm for a length n array?

O(2n)

How many distinct recursive calls for a length n array?

O(n2)
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Dynamic Program for LIS
Description of matrix

Number of dimensions of array?

2

Bellman Equation

L[i, j] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, if j > n
L[i, j + 1], if A[i] ≥ A[j]
max{L[i, j + 1],L[j, j + 1] + 1}, otherwise

Solution and populating L
Solution in L[0][1]; add A[0] = −∞.
Populate j from n to 1; i from 0 to j − 1 or j − 1 to 0.

Run time:

O(n2)
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Dynamic Programming for Games

Games
Some number of players (1 to many).
Set of rules with some objective.
Huge domain, started by Von Neumann, that spans many
fields such as Economics, Math, Biology, and Computer
Science.

DP for Games
In many games, DP is a natural paradigm for an optimal
strategy.
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Coins in a Line
Players
Two players:

Alice
(Player A)

Bob
(Player B)

Rules
n (even) coins in a line; each coin has a value.
Starting with Alice, each player will pick a coin from the
head or the tail.

Winner: Player with the max value at the end; winning
player keeps the coins.
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Greedy Approaches
Largest Coin

Give a counter-example.

Even or Odd

[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
A: 6; [1,3,6]
B: 7; [1,3]
A: 9; [1]
B: 8; []

[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [3,6,3,1]
A: 4; [3,6,3]
B: 4; [6,3]
A: 10; [3]
B: 7; []

Alice can always win.
But are we optimal?

No
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Natural Dichotomy

What is the natural dichotomy?

How many dimensions
for DP array?

2
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Natural Dichotomy

Head or Tail?
Two players: Assume that Bob will play optimally.

For Alice’s kth turn:
Coin array: C[i..j]
max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j − 1])}

BobOpt(c[i..j]) ∶=
min{AliceOpt(c[i + 1..j]),AliceOpt(c[i..j − 1])}

How many dimensions for DP array?

2

15/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Natural Dichotomy

Head or Tail?
Two players: Assume that Bob will play optimally.
For Alice’s kth turn:

Coin array: C[i..j]
max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j − 1])}

BobOpt(c[i..j]) ∶=
min{AliceOpt(c[i + 1..j]),AliceOpt(c[i..j − 1])}

How many dimensions for DP array?

2

15/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Natural Dichotomy

Head or Tail?
Two players: Assume that Bob will play optimally.
For Alice’s kth turn:

Coin array: C[i..j]
max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j − 1])}

BobOpt(c[i..j]) ∶=
min{AliceOpt(c[i + 1..j]),AliceOpt(c[i..j − 1])}

How many dimensions for DP array?

2

15/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Natural Dichotomy

Head or Tail?
Two players: Assume that Bob will play optimally.
For Alice’s kth turn:

Coin array: C[i..j]
max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j − 1])}

BobOpt(c[i..j]) ∶=
min{AliceOpt(c[i + 1..j]),AliceOpt(c[i..j − 1])}

How many dimensions for DP array?

2

15/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Natural Dichotomy

Head or Tail?
Two players: Assume that Bob will play optimally.
For Alice’s kth turn:

Coin array: C[i..j]
max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j − 1])}

BobOpt(c[i..j]) ∶=
min{AliceOpt(c[i + 1..j]),AliceOpt(c[i..j − 1])}

How many dimensions for DP array? 2

15/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Head or Tail DP
DP Description

2D arrayM:
M[i, j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

Bellman Equation:

M[i, j] =max{c[i] +min{M[i + 2, j],M[i + 1, j − 1]},
c[j] +min{M[i + 1, j − 1],M[i, j − 2]}}

M[i, i] = c[i] for all i.
M[i, j] =max{c[i], c[j]} for i = j − 1.
Populate i from n − 2 to 1; j from n to 3 for i < j − 1.
Solution:

M[1,n]

Runtime:

O(n2)

Proof of correctness:

Strong induction on the cell
population order.
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Max Subarray

Problem
Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.

Exercise – Teams of 3 or so
Solve the problem in Θ(n2).
Solve the problem in O(n logn).
Prove correctness and complexity.

With dynamic programming, solve the problem in O(n)!

17/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Max Subarray

Problem
Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.

Exercise – Teams of 3 or so
Solve the problem in Θ(n2).
Solve the problem in O(n logn).
Prove correctness and complexity.

With dynamic programming, solve the problem in O(n)!

17/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Part 1: Give a Θ(n2) solution.

Algorithm: CheckAllSubarrays
Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i ∶= 1 to len(A) do

for j ∶= i to len(A) do
if sum(A[i..j]) > sum(M) then

M ∶= A[i..j]
end

end
end
return M

Analysis
Correct: Checks all
possible contiguous
subarrays.
Complexity:

Re-calculating the sum
will make it O(n3). Key
is to calculate the sum
as you iterate.
For each i, check
n − i + 1 ends. Overall:
n
∑
i=1

i = n(n + 1)
2

= Θ(n2) .
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Part 2: Give an O(n logn) solution.

Algorithm: MaxSubarray
Input : Array A of n ints.
Output: Max subarray in A.
if ∣A∣ = 1 then return A[1]
A1 ∶=MaxSubarray(Front-half of A)
A2 ∶=MaxSubarray(Back-half of A)
M ∶=MidMaxSubarray(A)
return Array with max sum of {A1,A2,M}
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Algorithm: MidMaxSubarray
Input : Array A of n ints.
Output: Max subarray that crosses midpoint A.
m ∶=mid-point of A
L ∶=max subarray in A[i,m − 1] for i = m − 1→ 1
R ∶=max subarray in A[m, j] for j = m→ n
return L ∪R // subarray formed by combining L and R.
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Analysis
Correctness: By induction, A1 and A2 are max for subarray
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Complexity: Same recurrence asMergeSort.
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Max Subarray

Problem
Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.

Exercise – Teams of 3 or so
Solve the problem in Θ(n2).
Solve the problem in O(n logn).
Prove correctness and complexity.
With dynamic programming, solve the problem in O(n)!
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Part 3: Give an O(n) solution.
DP Solution

1D array s, where s[i] contains the value of the max
subarray ending at i. (O(n) cells)
Bellman equation: s[i] =max(s[i − 1] +A[i],A[i]). (O(1)
time)
Solutions is: maxj{s[j]}. (O(n) time)

But we need the subarray not the value!

Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i] =
⎧⎪⎪
⎨
⎪⎪⎩

start[i − 1] if s[i − 1] + a[i] > a[i]
i , otherwise

Or, trace back from max value at index j until s[i] = A[i].

21/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Part 3: Give an O(n) solution.
DP Solution

1D array s, where s[i] contains the value of the max
subarray ending at i. (O(n) cells)
Bellman equation: s[i] =max(s[i − 1] +A[i],A[i]). (O(1)
time)
Solutions is: maxj{s[j]}. (O(n) time)

But we need the subarray not the value!

Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i] =
⎧⎪⎪
⎨
⎪⎪⎩

start[i − 1] if s[i − 1] + a[i] > a[i]
i , otherwise

Or, trace back from max value at index j until s[i] = A[i].

21/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Part 3: Give an O(n) solution.
DP Solution

1D array s, where s[i] contains the value of the max
subarray ending at i. (O(n) cells)
Bellman equation: s[i] =max(s[i − 1] +A[i],A[i]). (O(1)
time)
Solutions is: maxj{s[j]}. (O(n) time)

But we need the subarray not the value!
Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i] =
⎧⎪⎪
⎨
⎪⎪⎩

start[i − 1] if s[i − 1] + a[i] > a[i]
i , otherwise

Or, trace back from max value at index j until s[i] = A[i].

21/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Part 3: Give an O(n) solution.
DP Solution

1D array s, where s[i] contains the value of the max
subarray ending at i. (O(n) cells)
Bellman equation: s[i] =max(s[i − 1] +A[i],A[i]). (O(1)
time)
Solutions is: maxj{s[j]}. (O(n) time)

But we need the subarray not the value!
Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i] =
⎧⎪⎪
⎨
⎪⎪⎩

start[i − 1] if s[i − 1] + a[i] > a[i]
i , otherwise

Or, trace back from max value at index j until s[i] = A[i].
21/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Subset and Knapsack



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Subset Problem

Problem Definition
A single machine that we can use for timeW.

A set of jobs: 1,2, . . . ,n.
Each job has a run time: w1,w2, . . . ,wn.
What is the subset S of jobs to run that maximizes
∑i∈Swi ≤W?

Greedy Heuristics

Decreasing weights:

{W/2 + 1, W/2, W/2}

Increasing weights:

{1, W/2, W/2}
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Dynamic Programming Approach

1D Approach
if n ∉ S, then v[n] = v[n − 1]

if n ∈ S, then v[n] = ?

Accepting n does automatically exclude other items.

Need to consider more
To solve v[n], we need to consider:

the best solution with n − 1 previous items restricted byW,
and
the best solution with n − 1 previous items restricted by
W −wn
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Dynamic Programming Approach

2D Approach

2D Matrix v:
i: Item indices from 0 to n.
w: Max weight from 0 toW.
v[i,w] is the subset of the first i items of maximum sum ≤ w.

Indicator: xi,w ∶= 0 if wi > w and 1 otherwise.
Bellman Equation:

v[i,w] =max(v[i − 1,w],xi,w ⋅ (v[i − 1,w −wi] +wi))

v[0,w] ∶= 0 for all w and v[i,0] ∶= 0 for all i
Solution value: v[n,W].
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Subset Visualization
Matrix Visualization:
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Knapsack Extension

Problem Definition
You are a thief with a knapsack that can carryW weight of
goods.

A set of items: 1,2, . . . ,n.
Each item has a weight: w1,w2, . . . ,wn.
Each item has a value: v1,v2, . . . ,vn.
What is the subset S of items to steal that maximizes ∑i∈S vi
with the constraint that ∑i∈Swi ≤W?
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Exercise: Solve this with DP in O(nW).

DP Solution

2D Matrix:
i: Item indices from 0 to n.
w: Max weight from 0 toW.
v[i,w] is the subset of the first i items of maximum total
value with a sum of weights ≤ w.

Indicator: xi,w ∶= 0 if wi > w and 1 otherwise.
Bellman Equation:

v[i,w] =max(v[i − 1,w],xi,w ⋅ (v[i − 1,w −wi] + vi))

v[0,w] ∶= 0 for all w and v[i,0] ∶= 0 for all i
Solution value: v[n,W].
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Edit Distance

Problem
Minimum number of letter

insertions: adding a letter,
deletions: removing a letter,
substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY → THUESDAY → THURSDAY

Or, align and count mismatched letters

T UESDAY
THURSDAY
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Recursive Approach

Smaller Subproblems
Let A[1..m] and B[1..n] be the 2 input strings.
What is the edit distance for A[1..i] and B[1..j]:

Insertion: Edit(i, j) =

Edit(i, j − 1) + 1.

Deletion: Edit(i, j) =
Substitution: Edit(i, j) =
i = 0: Edit(i, j) =
j = 0: Edit(i, j) = i.
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Dynamic Program for Edit Distance
Description of matrix

Number of dimensions of array?

2

Bellman Equation

E[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i, if j = 0
j, if i = 0
min{E[i, j − 1] + 1,E[i − 1, j] + 1,

E[i − 1, j − 1] +A[i] ≠ B[j]}, otherwise

Solution and populating L
Solution in
Set E[0, j] = j; E[i,0] = i; populate from 1 to n, 1 to m.

Run time:

O(mn)
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Dynamic Program for Edit Distance
Description of matrix
2D array E, where E[i, j] is the edit distance for A[1..i] and
B[1..j].

Bellman Equation

E[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i, if j = 0
j, if i = 0
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Space Savings

Bellman Equation

E[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i, if j = 0
j, if i = 0
min{E[i, j − 1] + 1,E[i − 1, j] + 1,

E[i − 1, j − 1] +A[i] ≠ B[j]}, otherwise

How much space do we need?
Notice that E[i][j] depends on E[i, j − 1], E[i − 1, j], and
E[i − 1, j − 1].
We only need previous and current row of matrix for
calculations.
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Sequence Alignment

Needleman–Wunsch Problem
An alphabet S.
Strings X = x1x2 . . .xm and Y = y1y2 . . .yn from S.
A matchingM = {(i, j)} of pairs without crossings, where
i ∈ [1,m] and j ∈ [1,n].

Cost:
Gaps (unmatched indexes) have a cost of δ.
For each symbol pair p, q ∈ S, αpq is the matching cost.

Goal: Find the matching that minimizes the cost.
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Sequence Alignment
δ = 3;αpp = 0;αpq = 1
6: What is the cost of the

matching:
o-currance
occurrence

Needleman–Wunsch Problem
An alphabet S.
Strings X = x1x2 . . .xm and Y = y1y2 . . .yn from S.
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Sequence Alignment
δ = 1;αpp = 0;αpq = 4
8: What is the cost of the

matching:
o-currance
occurrence

Needleman–Wunsch Problem
An alphabet S.
Strings X = x1x2 . . .xm and Y = y1y2 . . .yn from S.
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Designing Needleman–Wunsch Algorithm

Basic Dichotomy
In optimal alignmentM, either (m,n) ∈M or (m,n) ∉M.

Lemma 1
Let M be any alignment of X and Y. If (m,n) ∉M, then either the
mth position of X, or the nth position of Y is not matched in M.

Proof.

By way of contradiction, assume that (m,n) ∉M, and
(m, j), (i,n) ∈M for i < m and j < n.
Contradicts the non-crossing requirement.
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Designing Needleman–Wunsch Algorithm

Key Concepts for Optimality
In an optimal alignmentM, at least one of the following is true:

1 (m,n) ∈M; or
2 the mth position of X is not matched; or
3 the nth position of Y is not matched.

2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x2 . . .xi and y1y2 . . .yj.
A[i][j] =min{αxiyj+A[i−1][j−1], δ+A[i−1][j], δ+A[i][j−1]}
Runtime:
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Key Concepts for Optimality
In an optimal alignmentM, at least one of the following is true:

1 (m,n) ∈M; or
2 the mth position of X is not matched; or
3 the nth position of Y is not matched.

How many dimensions for the matrix?

A[i][j] =min{αxiyj+A[i−1][j−1], δ+A[i−1][j], δ+A[i][j−1]}
Runtime:
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Key Concepts for Optimality
In an optimal alignmentM, at least one of the following is true:

1 (m,n) ∈M; or
2 the mth position of X is not matched; or
3 the nth position of Y is not matched.

2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x2 . . .xi and y1y2 . . .yj.
Build the Bellman equation.

Runtime:
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Designing Needleman–Wunsch Algorithm

Key Concepts for Optimality
In an optimal alignmentM, at least one of the following is true:

1 (m,n) ∈M; or
2 the mth position of X is not matched; or
3 the nth position of Y is not matched.

2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x2 . . .xi and y1y2 . . .yj.
A[i][j] =min{αxiyj+A[i−1][j−1], δ+A[i−1][j], δ+A[i][j−1]}
Runtime: O(mn).
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Graphing the Algorithm

Theorem 2
Let f (i, j) denote the minimum
cost of a path from (0,0) to (i, j) in
GXY. Then, ∀i, j f (i, j) = A[i][j].

Proof.

By strong induction on (i + j).
Base case:

i + j = 0. We have f (0,0) = 0 = A[0][0].

Induction hypothesis: The claim holds for all pairs (i′, j′)
such that i′ + j′ < i + j.
Inductive step:

f (i, j) =min{αxiyj + f (i − 1, j − 1), δ + f (i − 1, j), δ + f (i, j − 1)}
=min{αxiyj +A[i − 1][j − 1], δ +A[i − 1][j], δ +A[i][j − 1]}
= A[i, j]
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Sequence Alignment Example

A[i][j] =min{αxiyj +A[i − 1][j − 1], δ +A[i − 1][j], δ +A[i][j − 1]}

“mean” vs “name”

δ = 2;α =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if same letter
3 if vowel to consonant
1 otherwise

n
a
e
m
-

- n a m e
36/42
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Segmented Least Squares

Problem Setup
Set of n points: P ∶=
{(x1,y1), (x2,y2), . . . , (xn,yn)} on
the plane.
Suppose x1 < x2 < ⋯ < xn.
Find L ∶ y = ax + b that minimizes:
Error(L,P) = ∑n

i=1(yi − axi − b)2 .

Problem Formulation
Partition the points (by x) into contiguous subsets.
Minimize the sum of Error(L,pi) +C for all subsets, where
C is a fixed cost per subset.
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DP Solution

s[j] =min
1≤i≤j
(ei,j +C + s[i − 1])

Notes
ei,j is the min error for a partition from i to j.

C is added each time as we are adding a new partition.
s[i] is optimum up to point i.

Complexity

Preprocessing error calc ei,j can be done in O(n3).
Number of cells:

O(n).

Work done for cell j:

O(j).

Overall: O(n2).
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RNA Secondary Structure

Problem Definition
RNA tends to loop back on
itself, forming base pairs.
RNA alphabet: {A,C,G,U}.
Valid pairs: (A,U) or (C,G).

Input: n length string:
B = b1b2 . . . bn
Output: Determine a
secondary structure with
maximum number of base
pairs.
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RNA Secondary Structure

Secondary Structure
S = {(i, j)}, where i < j and
i, j ∈ {1, . . . ,n}, such that:

1 No Sharp turns: i < j − d for
some constant d.

2 All pairs are valid.
3 S is a matching: no base

appears more than once.
4 Non-crossing: For any
(i, j), (i′, j′) ∈ S, we cannot
have i < i′ < j < j′.
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First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.

No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].

Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.

Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].

Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].

Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].

Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].

2 j is paired with t < j − d:
Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].

Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].

Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].
Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].
Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].

2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].
Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]:

Restricted to bt+1bt+2 . . . bj−1 which
current DP does not calculate.

40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

First Dynamic Programming Attempt
1D Approach

1D array m, where m[j] is the maximum # of pairs among:
b1b2 . . . bj.
No sharp turns: m[j] = 0 for j ≤ d + 1.
Solution: m[n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[j] = m[j − 1].
2 j is paired with t < j − d:

Non-crossing: No pairs between [1, t − 1] and [t + 1, j − 1].
Sub-problems:

1 Max pairs in [1, t − 1]: m[t − 1].
2 Max pairs in [t + 1, j − 1]: Restricted to bt+1bt+2 . . . bj−1 which

current DP does not calculate.
40/42



DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Second Dynamic Programming Attempt
2D Approach

2D array m, where m[i][j] is the maximum # of pairs
among: bibi+1 . . . bj.

No sharp turns: m[i][j] = 0 for i ≥ j − d.
Solution:

m[1][n].

Recursive Sub-problems
Dichotomy:

1 j is not a pair: m[i][j] = m[i][j − 1].
2 j is paired with i ≤ t < j − d

vij as indicator: 1 if valid pair, 0 otherwise
Non-crossing: No pairs between [i, t − 1] and [t + 1, j − 1].

Sub-problems:

1 Max pairs in [i, t − 1]: m[i][t − 1].
2 Max pairs in [t + 1, j − 1]: m[t + 1][j − 1].
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Second Dynamic Programming Attempt
2D Approach

2D array m, where m[i][j] is the maximum # of pairs
among: bibi+1 . . . bj.
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What is the Bellman equation?
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RNA Secondary Structure Example

m[i][j] = max(m[i][j − 1], max
i≤t<j−d

{vtj ⋅ (1 +m[i][t − 1] +m[t + 1][j − 1])})

B = ACCGGUAGU and d = 4
i
4
3
2
1
j 6 7 8 9

Running Time
# of cells:
Work per cell:

Overall: O(n3).
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http://www.sequence-alignment.com/

https://medium.com/koderunners/
genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
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