CS 577 - Dynamic Programming

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

Richard Bellman

It is "programming" that is "dynamic"!

It is "programming" that is "dynamic"!

Richard Bellman

Why "Dynamic Programming"?

Reasons for the name:

- In the 1950s, "programming" was about "planning" rather than coding.
- "Dynamic" is exciting Air Force director didn't like research and wanted pizzazz.
- "Dynamic" sounds better than "linear" (Re: rival Dantzig).

It is "programming" that is "dynamic"!

Richard Bellman

What is it?

- Your new favourite algorithmic technique.
- Extreme Divide and Conquer
- Many sub-problems, but not quite brute-force.
- Dynamic in that it calculates a bunch of solutions from the "smallest" to the "largest".

Weighted Interval Scheduling

• Requests:
$$\sigma = \{r_1, \dots, r_n\}$$

• Requests:
$$\sigma = \{r_1, \dots, r_n\}$$

• A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.

- Requests: $\sigma = \{r_1, \dots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a <u>compatible</u> schedule *S* that has maximum value.

- Requests: $\sigma = \{r_1, \dots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a <u>compatible</u> schedule *S* that has maximum value.
- Compatible schedule *S*: $\forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$.

• Requests:
$$\sigma = \{r_1, \dots, r_n\}$$

- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a <u>compatible</u> schedule *S* that has maximum value.
- Compatible schedule *S*: $\forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$.

What is the value of the FF heuristic?

• Requests:
$$\sigma = \{r_1, \dots, r_n\}$$

- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a <u>compatible</u> schedule *S* that has maximum value.
- Compatible schedule *S*: $\forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$.

BWhat is the value of the FF heuristic? 2.

• Requests:
$$\sigma = \{r_1, \dots, r_n\}$$

- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a <u>compatible</u> schedule *S* that has maximum value.
- Compatible schedule *S*: $\forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$.

What is the value of the FF heuristic? 2.
What is the optimal value?

- Requests: $\sigma = \{r_1, \dots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a <u>compatible</u> schedule *S* that has maximum value.
- Compatible schedule *S*: $\forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$.

What is the value of the FF heuristic? 2. What is the optimal value? 3.

Recursive Solution

Recursive Procedure

• Assume σ ordered by finish time (asc).

Recursive Solution

Recursive Procedure

- Assume σ ordered by finish time (asc).
- **②** Find the optimal value in sorted σ of first *j* items:

DP **WIS** LIS Games Max Subarray Subset Edit Align* LS* RNA*

Recursive Solution

Recursive Procedure

- Assume σ ordered by finish time (asc).
- **②** Find the optimal value in sorted σ of first *j* items:
 - Find largest i < j such that $f_i \leq s_j$.

DP **WIS** LIS Games Max Subarray Subset Edit Align* LS* RNA*

Recursive Solution

Recursive Procedure

- Assume σ ordered by finish time (asc).
- **②** Find the optimal value in sorted σ of first *j* items:
 - Find largest i < j such that $f_i \leq s_j$.
 - OPT $(j) = \max(\operatorname{OPT}(j-1), \operatorname{OPT}(i) + v_j)$

DP **WIS** LIS Games Max Subarray Subset Edit Align* LS* RNA*

Recursive Solution

Recursive Procedure

- Assume σ ordered by finish time (asc).
- **②** Find the optimal value in sorted σ of first *j* items:
 - Find largest i < j such that $f_i \leq s_j$.
 - OPT $(j) = \max(\operatorname{OPT}(j-1), \operatorname{OPT}(i) + v_j)$

Proof of optimality.

By strong induction on *j*.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALIGN* LS* RNA*

Recursive Solution

Recursive Procedure

- Assume σ ordered by finish time (asc).
- **②** Find the optimal value in sorted σ of first *j* items:
 - Find largest i < j such that $f_i \leq s_j$.
 - Opt $(j) = \max(\text{Opt}(j-1), \text{Opt}(i) + v_j)$

Proof of optimality.

By strong induction on *j*. Base cases: j = 0 or j = 1: Only 1 possible optimal solution.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALIGN* LS* RNA*

Recursive Solution

Recursive Procedure

- Assume σ ordered by finish time (asc).
- **②** Find the optimal value in sorted σ of first *j* items:
 - Find largest i < j such that $f_i \leq s_j$.
 - $\bigcirc \text{ OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$

Proof of optimality.

By strong induction on *j*.

Base cases: *j* = 0 or *j* = 1: Only 1 possible optimal solution. **Inductive step**:

- By ind hyp, we have opt for j 1 and opt for i.
- Sorting order assures the dichotomy that the last interval is either in the solution or not.
- Take the max of whether or not a given interval is included.

Consider the Recursion

 $OPT(j) = \max(OPT(j-1), OPT(i) + v_j)$

Consider the Recursion

 $Opt(j) = \max(Opt(j-1), Opt(i) + v_j)$

What is the asymptotic number of recursive calls with *n* jobs?

Consider the Recursion

 $Opt(j) = \max(Opt(j-1), Opt(i) + v_j)$

What is the asymptotic number of recursive calls with *n* jobs? $O(2^n)$

Memoizing the Recursion

Memoization

- Not a typo.
- Coined in 1989 by Donald Michie.
- Derived from latin "memorandum", meaning "to be remembered".

Memoizing the Recursion

Memoization

- Not a typo.
- Coined in 1989 by Donald Michie.
- Derived from latin "memorandum", meaning "to be remembered".

Basic Technique

- Calculate once: store the value in array and retrieve for future calls.
- Can be implemented recursively, but tends to be more natural as an iterative process.

Algorithm: WEIGHTINTDP

Sort σ by finish time m[0] := 0for $\underline{j = 1 \text{ to } n \text{ do}}$ | Find index i $m[j] = \max(m[j-1], m[i] + v_j)$ end

Algorithm: WEIGHTINTDP

Sort σ by finish time m[0] := 0for j = 1 to n do Find index i $m[j] = \max(m[j-1], m[i] + v_j)$ end

DP Solutions

- DP algorithms are formulaic.
- We understand how loops work.
- NO Pseudocode.

Algorithm: WEIGHTINTDP

Sort σ by finish time m[0] := 0for $\underline{j} = 1$ to n do Find index i $m[j] = \max(m[j-1], m[i] + v_j)$ end

DP Solutions

- DP algorithms are formulaic.
- We understand how loops work.
- NO Pseudocode.

We want:

- Definitions required for algorithm to work
- Description of matrix
- Bellman Equation
- Location of solution, order to populate the matrix

Definitions required for algorithm to work

Definitions required for algorithm to work

- σ sorted by finish time, ascending order.
- For a given job at index j, $i_j < j$ is the largest index such that $f_{i_j} \leq s_j$.

Definitions required for algorithm to work

- σ sorted by finish time, ascending order.
- For a given job at index j, $i_j < j$ is the largest index such that $f_{i_j} \leq s_j$.

Description of matrix

Definitions required for algorithm to work

- σ sorted by finish time, ascending order.
- For a given job at index j, $i_j < j$ is the largest index such that $f_{i_j} \leq s_j$.

Description of matrix

1D array *M*, where *M*[*j*] is the maximum value of a compatible schedule for the first *j* items in sorted *σ*. Initialize *M*[1] = v₁.

Definitions required for algorithm to work

- σ sorted by finish time, ascending order.
- For a given job at index j, $i_j < j$ is the largest index such that $f_{i_j} \leq s_j$.

Description of matrix

1D array *M*, where *M*[*j*] is the maximum value of a compatible schedule for the first *j* items in sorted *σ*. Initialize *M*[1] = *v*₁.

Bellman Equation

Definitions required for algorithm to work

- σ sorted by finish time, ascending order.
- For a given job at index j, $i_j < j$ is the largest index such that $f_{i_j} \leq s_j$.

Description of matrix

1D array *M*, where *M*[*j*] is the maximum value of a compatible schedule for the first *j* items in sorted *σ*. Initialize *M*[1] = *v*₁.

Bellman Equation

•
$$M[j] = \max\{M[j-1], M[i_j] + v_j\}$$

Definitions required for algorithm to work

- σ sorted by finish time, ascending order.
- For a given job at index j, $i_j < j$ is the largest index such that $f_{i_j} \leq s_j$.

Description of matrix

1D array *M*, where *M*[*j*] is the maximum value of a compatible schedule for the first *j* items in sorted *σ*. Initialize *M*[1] = *v*₁.

Bellman Equation

•
$$M[j] = \max\{M[j-1], M[i_j] + v_j\}$$

Solution, order to populate
DYNAMIC PROGRAM SOLUTION

Definitions required for algorithm to work

- σ sorted by finish time, ascending order.
- For a given job at index j, $i_j < j$ is the largest index such that $f_{i_j} \leq s_j$.

Description of matrix

1D array *M*, where *M*[*j*] is the maximum value of a compatible schedule for the first *j* items in sorted *σ*. Initialize *M*[1] = *v*₁.

Bellman Equation

•
$$M[j] = \max\{M[j-1], M[i_j] + v_j\}$$

Solution, order to populate

• The maximum value of a compatible schedule for the *n* jobs is found at *M*[*n*]. Populate from 2 to *n*.

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Runtime

• Preprocessing:

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells:

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: *O*(*n*)

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: *O*(*n*)
 - Cost per cell:

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: *O*(*n*)
 - Cost per cell: Finding *i*: *O*(*n*) linear search, *O*(log *n*) binary search

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Runtime

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: *O*(*n*)
 - Cost per cell: Finding *i*: *O*(*n*) linear search, *O*(log *n*) binary search

Overall:

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Runtime

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: *O*(*n*)
 - Cost per cell: Finding *i*: *O*(*n*) linear search, *O*(log *n*) binary search

Overall: $O(n^2)$ linear search, $O(n \log n)$ binary search

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

What about the schedule S?

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \leq s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

What about the schedule S?

Trace back from the optimal value:

• Job *j* is part of the optimal schedule from 1 to *j* iff $v_j + \text{OPT}(i) \ge \text{OPT}(j-1)$

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

• There are only a polynomial number of subproblems.

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

- There are only a polynomial number of subproblems.
- The solution to the larger problem can be efficiently calculated from the subproblems.

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

- There are only a polynomial number of subproblems.
- The solution to the larger problem can be efficiently calculated from the subproblems.
- Natural ordering of the subproblems from "smallest" to "largest".

Problem

- Given an integer array *A*[1..*n*].
- Find the longest increasing subsequence. That is, let *i* be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all *k*.

Problem

- Given an integer array *A*[1..*n*].
- Find the longest increasing subsequence. That is, let *i* be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all *k*.

Subsequence

• For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.

Problem

- Given an integer array *A*[1..*n*].
- Find the longest increasing subsequence. That is, let *i* be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all *k*.

Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
 - puddles: subsequence, substring (contiguous)
 - late train: subsequence, not substring (not contiguous)

Problem

- Given an integer array *A*[1..*n*].
- Find the longest increasing subsequence. That is, let *i* be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all *k*.

Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
 - puddles: subsequence, substring (contiguous)
 - late train: subsequence, not substring (not contiguous)

For an array of length *n*, how many subsequences?

Problem

- Given an integer array *A*[1..*n*].
- Find the longest increasing subsequence. That is, let *i* be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all *k*.

Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
 - puddles: subsequence, substring (contiguous)
 - late train: subsequence, not substring (not contiguous)

 \mathfrak{P} For an array of length *n*, how many subsequences? 2^n

Algorithm: LIS

Input : Integer k, and array of integers A[1..n]. **Output:** Return length of LIS where every value > k. Exo: Complete the algorithm

Algorithm: LIS

```
Input: Integer k, and array of integers A[1..n].Output: Return length of LIS where every value > k.if n = 0 then return 0else if A[1] \le k then| return LIS(k, A[2..n])else| skip :=LIS(k, A[2..n])take :=LIS(A[1], A[2..n]) + 1return max{skip, take}
```

end


```
Algorithm: LIS
```

```
Input : Integer k, and array of integers A[1..n].
```

Output: Return length of LIS where every value > *k*.

if $\underline{n=0}$ then return 0

else if $\underline{A[1] \leq k}$ then

```
return LIS(k, A[2..n])
```

else

```
skip := LIS(k, A[2..n])
take := LIS(A[1], A[2..n]) + 1
return max{skip, take}
```

end

For an array A[1..n], how would you find the length of the LIS using the LIS(·) algorithm?


```
Algorithm: LIS
```

```
Input : Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k.

if \underline{n = 0} then return 0

else if \underline{A[1] \le k} then

| return LIS(k, A[2..n])

else
```

```
skip :=LIS(k, A[2..n])
take :=LIS(A[1], A[2..n]) + 1
return max{skip, take}
```

end

For an array A[1..n], how would you find the length of the LIS using the LIS(·) algorithm? LIS($-\infty$, A[1..n])

Algorithm: LIS

```
Input: Integer k, and array of integers A[1..n].Output: Return length of LIS where every value > k.if n = 0 then return 0else if A[1] \le k then| return LIS(k, A[2..n])else| skip :=LIS(k, A[2..n])take :=LIS(A[1], A[2..n]) + 1return max{skip, take}
```

end

Algorithm: LIS

```
Input: Integer k, and array of integers A[1..n].Output: Return length of LIS where every value > k.if n = 0 then return 0else if A[1] \le k then| return LIS(k, A[2..n])else| skip :=LIS(k, A[2..n])take :=LIS(A[1], A[2..n]) + 1return max{skip, take}
```

end

CRun time of the algorithm for a length *n* array? $O(2^n)$

Algorithm: LIS

```
Input: Integer k, and array of integers A[1..n].Output: Return length of LIS where every value > k.if n = 0 then return 0else if A[1] \le k then| return LIS(k, A[2..n])else| skip :=LIS(k, A[2..n])take :=LIS(A[1], A[2..n]) + 1return max{skip, take}
```

end

Carrier Run time of the algorithm for a length n array? $O(2^n)$ How many distinct recursive calls for a length n array?

Algorithm: LIS

```
Input: Integer k, and array of integers A[1..n].Output: Return length of LIS where every value > k.if n = 0 then return 0else if A[1] \le k then| return LIS(k, A[2..n])else| skip :=LIS(k, A[2..n])take :=LIS(A[1], A[2..n]) + 1return max{skip, take}
```

end

Carrier Run time of the algorithm for a length *n* array? $O(2^n)$ How many distinct recursive calls for a length *n* array? $O(n^2)$

DYNAMIC PROGRAM FOR LIS

Description of matrix

©Number of dimensions of array?

DYNAMIC PROGRAM FOR LIS

Description of matrix

©Number of dimensions of array? 2

Dynamic Program for LIS

Description of matrix

2D array *L*, where L[i, j] is the maximum LIS of A[j..n] with every item > A[i], i < j.
Dynamic Program for LIS

Description of matrix

2D array *L*, where L[i, j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, \text{ if } j > n \\ L[i,j+1], \text{ if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, \text{ otherwise} \end{cases}$$

DP WIS **LIS** GAMES MAX SUBARRAY SUBSET EDIT ALIGN* LS*

Dynamic Program for LIS

Description of matrix

2D array *L*, where L[i, j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, \text{ if } j > n \\ L[i,j+1], \text{ if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, \text{ otherwise} \end{cases}$$

Solution and populating *L*

- Solution in L[0][1]; add $A[0] = -\infty$.
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.

Dynamic Program for LIS

Description of matrix

2D array *L*, where L[i, j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, \text{ if } j > n \\ L[i,j+1], \text{ if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, \text{ otherwise} \end{cases}$$

Solution and populating *L*

- Solution in L[0][1]; add $A[0] = -\infty$.
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.
- 🖗 Run time:

Dynamic Program for LIS

Description of matrix

2D array *L*, where L[i, j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, \text{ if } j > n \\ L[i,j+1], \text{ if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, \text{ otherwise} \end{cases}$$

Solution and populating *L*

- Solution in L[0][1]; add $A[0] = -\infty$.
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.
- Run time: $O(n^2)$

Dynamic Programming for Games

Dynamic Programming for Games

Games

- Some number of players (1 to many).
- Set of rules with some objective.
- Huge domain, started by Von Neumann, that spans many fields such as Economics, Math, Biology, and Computer Science.

Dynamic Programming for Games

Games

- Some number of players (1 to many).
- Set of rules with some objective.
- Huge domain, started by Von Neumann, that spans many fields such as Economics, Math, Biology, and Computer Science.

DP for Games

In many games, DP is a natural paradigm for an optimal strategy.

Coins in a Line

Coins in a Line

Rules

- *n* (even) coins in a line; each coin has a value.
- Starting with Alice, each player will pick a coin from the head or the tail.

Coins in a Line

Rules

- *n* (even) coins in a line; each coin has a value.
- Starting with Alice, each player will pick a coin from the head or the tail.
- Winner: Player with the max value at the end; winning player keeps the coins.

Largest Coin

PGive a counter-example.

DP	LIS	Games			

Greedy Approaches

Largest Coin					
[1,3,6,3]					
A: 3; [1,3,6]					
B: 6; [1,3]					
A: 6; [1]					
B: 7; []					

Largest Coin

Even or Odd

```
[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
A: 6; [1,3,6]
B: 7; [1,3]
A: 9; [1]
B: 8; []
```


Largest Coin

Even or Odd

- [1,3,6,3,1,3]
 A: 3; [1,3,6,3,1]
 B: 1; [1,3,6,3]
 A: 6; [1,3,6]
 B: 7; [1,3]
 A: 9; [1]
 B: 8; []
 - Alice can always win.

Largest Coin

Even or Odd

- [1,3,6,3,1,3]
- A: 3; [1,3,6,3,1]
- B: 1; [1,3,6,3]
- A: 6; [1,3,6]
- B: 7; [1,3]
- A: 9; [1]
- B: 8; []
 - Alice can always win.
 - But are we optimal?

Largest Coin

Even or Odd

- [1,3,6,3,1,3] A: 3; [1,3,6,3,1] B: 1; [1,3,6,3] A: 6; [1,3,6]
- B: 7; [1,3]
- A: 9; [1]
- B: 8; []
 - Alice can always win.
 - But are we optimal? No

[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [3,6,3,1]
A: 4; [3,6,3]
B: 4; [6,3]
A: 10; [3]
B: 7; []

What is the natural dichotomy?

Head or Tail?

• Two players: Assume that Bob will play optimally.

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: *C*[*i*..*j*]
 - $\max\{c[i] + BobOpt(c[i+1..j]), c[j] + BobOpt(c[i..j-1])\}$

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: *C*[*i*..*j*]
 - $\max\{c[i] + BobOpt(c[i+1..j]), c[j] + BobOpt(c[i..j-1])\}$
- BobOpt(*c*[*i*..*j*]) := min{AliceOpt(*c*[*i* + 1..*j*]), AliceOpt(*c*[*i*..*j* - 1])}

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: *C*[*i*..*j*]
 - $\max\{c[i] + BobOpt(c[i+1..j]), c[j] + BobOpt(c[i..j-1])\}$
- BobOpt(*c*[*i*..*j*]) := min{AliceOpt(*c*[*i* + 1..*j*]), AliceOpt(*c*[*i*..*j* − 1])}

How many dimensions for DP array?

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: *C*[*i*..*j*]
 - $\max\{c[i] + BobOpt(c[i+1..j]), c[j] + BobOpt(c[i..j-1])\}$
- BobOpt(*c*[*i*..*j*]) := min{AliceOpt(*c*[*i* + 1..*j*]), AliceOpt(*c*[*i*..*j* − 1])}

How many dimensions for DP array? 2

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation:

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\}, c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation: $M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\ c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$
- M[i,i] = c[i] for all *i*.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation: $M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\ c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$
- M[i,i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate *i* from n 2 to 1; *j* from *n* to 3 for i < j 1.

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation: $M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\}, c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$
- M[i,i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate *i* from n 2 to 1; *j* from *n* to 3 for i < j 1.
- Solution:

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation: $M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\}, c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$
- M[i,i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate *i* from n 2 to 1; *j* from *n* to 3 for i < j 1.
- Solution: *M*[1,*n*]

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation: $M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\}, c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$
- M[i,i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate *i* from n 2 to 1; *j* from *n* to 3 for i < j 1.
- Solution: *M*[1, *n*]
- Runtime:

Head or Tail DP

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation: $M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\}, c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$
- M[i,i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate *i* from n 2 to 1; *j* from *n* to 3 for i < j 1.
- Solution: *M*[1,*n*]
- Runtime: $O(n^2)$

Head or Tail DP

DP Description

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation:

$$\begin{split} M[i,j] &= \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\\ c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\} \end{split}$$

- M[i,i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate *i* from n 2 to 1; *j* from *n* to 3 for i < j 1.
- Solution: *M*[1,*n*]
- Runtime: $O(n^2)$
- Proof of correctness:

Head or Tail DP

DP Description

- 2D array *M*:
 - *M*[*i*,*j*] is the maximum value possible for Alice when choosing from *c*[*i*..*j*], assuming Bob plays optimally.
- Bellman Equation:

$$\begin{split} M[i,j] &= \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\\ c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\} \end{split}$$

- M[i,i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate *i* from n 2 to 1; *j* from *n* to 3 for i < j 1.
- Solution: *M*[1,*n*]
- Runtime: $O(n^2)$
- Proof of correctness: Strong induction on the cell population order.

Max Subarray

Max Subarray

Problem

Given an array *A* of integers, find the (non-empty) contiguous subarray of *A* of maximum sum.

Max Subarray

Problem

Given an array *A* of integers, find the (non-empty) contiguous subarray of *A* of maximum sum.

Exercise – Teams of 3 or so

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.
Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRAYS
Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
       if sum(A[i..j]) > sum(M) then
         M \coloneqq A[i..j]
       end
   end
end
return M
```


MAX SUBARRAY

Part 1: Give a $\Theta(n^2)$ solution.

Input : Array A of n ints.Output: Max subarray in A.Let M be an empty arrayfor $i := 1$ to $len(A)$ dofor $j := i$ to $len(A)$ dofor $j := i$ to $len(A)$ doif $\underline{sum(A[ij])} > sum(M)$ $ if \underline{sum(A[ij])} > sum(M)$ $ end$ endendreturn \underline{M} $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$.	Algorithm: CHECKALLSUBARRA Analysis	
i=1	Input: Array A of n ints.Output: Max subarray in A.Let M be an empty arrayfor $i := 1$ to $len(A)$ do $for j := i$ to $len(A)$ do $for j := i$ to $len(A)$ do $ if sum(A[i.j]) > sum(M)$ $ M := A[ij]$ endendendendreturn M	 Correct: Checks all possible contiguous subarrays. Complexity: Re-calculating the sum will make it O(n³). Key is to calculate the sum as you iterate. For each <i>i</i>, check n - i + 1 ends. Overall: ∑_{i=1}ⁿ i = n(n+1)/2 = Θ(n²).

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarrayInput : Array A of n ints.Output: Max subarray in A.if |A| = 1 then return A[1] $A_1 := MaxSubarray(Front-half of A)$ $A_2 := MaxSubarray(Front-half of A)$ $A_2 := MaxSubarray(Back-half of A)$ M :=MIDMaxSubarray(A)return Array with max sum of $\{A_1, A_2, M\}$

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarray

Input : Array *A* of *n* ints.

Output: Max subarray in *A*.

if |A| = 1 then return A[1]

 $A_1 := MaxSubarray(Front-half of A)$

 $A_2 := MaxSubarray(Back-half of A)$

M := MidMaxSubarray(A)

return <u>Array with max sum of</u> $\{A_1, A_2, M\}$

Algorithm: MIDMAxSUBARRAY

Input : Array *A* of *n* ints.

Output: Max subarray that crosses midpoint *A*.

m := mid-point of A

L := max subarray in A[i, m-1] for $i = m - 1 \rightarrow 1$

R := max subarray in A[m, j] for $j = m \rightarrow n$

return $\underline{L \cup R}$ // subarray formed by combining L and R.

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarrayInput: Array A of n ints.Output: Max subarray in A.if |A| = 1 then return A[1] $A_1 := MaxSubarray$ (Front-half of A) $A_2 := MaxSubarray$ (Back-half of A)M := MIDMaxSubarray(A)return Array with max sum of $\{A_1, A_2, M\}$

Analysis

- Correctness: By induction, *A*₁ and *A*₂ are max for subarray and *M* is max mid-crossing array.
- Complexity: Same recurrence as MergeSort.

Max Subarray

Problem

Given an array *A* of integers, find the (non-empty) contiguous subarray of *A* of maximum sum.

Exercise – Teams of 3 or so

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.
- With dynamic programming, solve the problem in *O*(*n*)!

DP Solution

• 1D array *s*, where *s*[*i*] contains the value of the max subarray ending at *i*. (*O*(*n*) cells)

MAX SUBARRAY

- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

DP Solution

• 1D array *s*, where *s*[*i*] contains the value of the max subarray ending at *i*. (*O*(*n*) cells)

MAX SUBARRAY

- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

But we need the subarray not the value!

DP Solution

• 1D array *s*, where *s*[*i*] contains the value of the max subarray ending at *i*. (*O*(*n*) cells)

MAX SUBARRAY

- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

But we need the subarray not the value!

• Use a parallel array that memoizes the starting index of the subarray ending at *i*:

start[i] =

$$\begin{cases}
start[i-1] & \text{if } s[i-1] + a[i] > a[i] \\
i & \text{, otherwise}
\end{cases}$$

DP Solution

• 1D array *s*, where *s*[*i*] contains the value of the max subarray ending at *i*. (*O*(*n*) cells)

MAX SUBARRAY

- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

But we need the subarray not the value!

• Use a parallel array that memoizes the starting index of the subarray ending at *i*:

start[i] =

$$\begin{cases}
start[i-1] & \text{if } s[i-1] + a[i] > a[i] \\
i & \text{, otherwise}
\end{cases}$$

• Or, trace back from max value at index *j* until *s*[*i*] = *A*[*i*].

SUBSET AND KNAPSACK

Problem Definition

• A single machine that we can use for time *W*.

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.
- Each job has a run time: w_1, w_2, \ldots, w_n .

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

• Decreasing weights:

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

• Decreasing weights: $\{W/2 + 1, W/2, W/2\}$

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

- Decreasing weights: $\{W/2 + 1, W/2, W/2\}$
- Increasing weights:

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, . . . , *n*.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

- Decreasing weights: $\{W/2 + 1, W/2, W/2\}$
- Increasing weights: {1, W/2, W/2}

• if
$$n \notin S$$
, then $v[n] = v[n-1]$

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

1D Approach

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

Need to consider more

To solve v[n], we need to consider:

1D Approach

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

Need to consider more

To solve v[n], we need to consider:

• the best solution with n - 1 previous items restricted by W, and

1D Approach

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

Need to consider more

To solve v[n], we need to consider:

- the best solution with *n* − 1 previous items restricted by *W*, and
- the best solution with n 1 previous items restricted by $W w_n$

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$$

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

 $v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$

• $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

 $v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

Dynamic Programming Approach

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

• Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

Preserve the Running time to populate the matrix:

Dynamic Programming Approach

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

• Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

PRunning time to populate the matrix: O(nW)

Dynamic Programming Approach

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

• Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

Contract \mathbb{C} Running time to populate the matrix: O(nW) \mathbb{C} Is this polynomial?
DP WIS LIS Games Max Subarray **Subset** Edit Align* LS* RNA*

Dynamic Programming Approach

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

• Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

Running time to populate the matrix: O(nW)
Is this polynomial? No, pseudo-polynomial because of W which is unbounded.

DP WIS LIS GAMES MAX SUBARRAY **Subset** Edit Align* LS* RNA*

SUBSET VISUALIZATION

Matrix Visualization:

SUBSET VISUALIZATION

Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

SUBSET VISUALIZATION Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

SUBSET VISUALIZATION Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

Filling in values for i = 2

SUBSET VISUALIZATION Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 =$

Filling in values for i = 2

Filling in values for i = 3

Dynamic Programming Approach

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

• Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

How can we recover the subset itself?

Dynamic Programming Approach

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

• Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i] + w_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

How can we recover the subset itself? Running time of recovery of subset:

Dynamic Programming Approach

2D Approach

- 2D Matrix *v*:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - v[i, w] is the subset of the first *i* items of maximum sum $\leq w$.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

• Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+w_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

Problem Definition

• You are a thief with a knapsack that can carry *W* weight of goods.

Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items: 1, 2, . . . , *n*.

Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items: 1, 2, . . . , *n*.
- Each item has a weight: w_1, w_2, \ldots, w_n .
- Each item has a value: v_1, v_2, \ldots, v_n .

Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items: 1, 2, . . . , *n*.
- Each item has a weight: w_1, w_2, \ldots, w_n .
- Each item has a value: v_1, v_2, \ldots, v_n .
- What is the subset *S* of items to steal that maximizes $\sum_{i \in S} v_i$ with the constraint that $\sum_{i \in S} w_i \leq W$?

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - *v*[*i*,*w*] is the subset of the first *i* items of maximum total value with a sum of weights ≤ *w*.

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - *v*[*i*,*w*] is the subset of the first *i* items of maximum total value with a sum of weights ≤ *w*.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - *v*[*i*,*w*] is the subset of the first *i* items of maximum total value with a sum of weights ≤ *w*.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+v_i))$$

DP Solution

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - *v*[*i*,*w*] is the subset of the first *i* items of maximum total value with a sum of weights ≤ *w*.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+v_i))$$

• $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.
 - *v*[*i*,*w*] is the subset of the first *i* items of maximum total value with a sum of weights ≤ *w*.
- Indicator: $x_{i,w} \coloneqq 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i,w] = \max(v[i-1,w], x_{i,w} \cdot (v[i-1,w-w_i]+v_i))$$

- $v[0,w] \coloneqq 0$ for all w and $v[i,0] \coloneqq 0$ for all i
- Solution value: v[n, W].

EDIT DISTANCE

Edit Distance

Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Edit Distance

Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY \rightarrow THUESDAY \rightarrow THURSDAY

Edit Distance

Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY \rightarrow THUESDAY \rightarrow THURSDAY

Or, align and count mismatched letters

T UESDAY THURSDAY

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: Edit(*i*,*j*) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: Edit(*i*,*j*) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: Edit(*i*,*j*) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: Edit(*i*,*j*) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: Edit(*i*,*j*) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + 1$.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - *i* = 0: Edit(*i*,*j*) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - *i* = 0: Edit(*i*,*j*) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - i = 0: Edit(i, j) = j.
Recursive Approach

Smaller Subproblems

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for *A*[1..*i*] and *B*[1..*j*]:
 - Insertion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - i = 0: Edit(i, j) = j.
 - j = 0: Edit(i, j) = i.

Description of matrix

Number of dimensions of array?

Description of matrix

Number of dimensions of array? 2

DP WIS LIS Games Max Subarray Subset **Edit** Align* LS* RNA*

Dynamic Program for Edit Distance

Description of matrix

2D array *E*, where E[i, j] is the edit distance for A[1..i] and B[1..j].

Description of matrix

2D array *E*, where E[i, j] is the edit distance for A[1..i] and B[1..j].

Edit

Bellman Equation $E[i,j] = \begin{cases}
i, \text{ if } j = 0 \\
j, \text{ if } i = 0 \\
\min\{E[i,j-1] + 1, E[i-1,j] + 1, \\
E[i-1,j-1] + A[i] \neq B[j]\}, \text{ otherwise}
\end{cases}$

Description of matrix

2D array *E*, where E[i, j] is the edit distance for A[1..i] and B[1..j].

Edit

Bellman Equ	ation
$E[i,j] = \langle$	j, if i = 0 $\min\{E[i, j - 1] + 1, E[i - 1, j] + 1,$ $E[i - 1, j - 1] + A[i] \neq B[j]\}, \text{ otherwise}$

Solution and populating *L*

- Solution in
- Set E[0,j] = j; E[i,0] = i; populate from 1 to n, 1 to m.

Description of matrix

2D array *E*, where E[i, j] is the edit distance for A[1..i] and B[1..j].

Edit

Bellman Equation $E[i,j] = \begin{cases} i, \text{ if } j = 0 \\ j, \text{ if } i = 0 \\ \min\{E[i,j-1] + 1, E[i-1,j] + 1, \\ E[i-1,j-1] + A[i] \neq B[j]\}, \text{ otherwise} \end{cases}$

Solution and populating L

- Solution in *E*[*m*, *n*]
- Set E[0,j] = j; E[i,0] = i; populate from 1 to n, 1 to m.
- 🖗 Run time:

Description of matrix

2D array *E*, where E[i, j] is the edit distance for A[1..i] and B[1..j].

Edit

Bellman Equ	ation
E[i,j] =	$ \begin{cases} i, i, j = 0 \\ j, \text{ if } i = 0 \\ \min\{E[i, j - 1] + 1, E[i - 1, j] + 1, \\ E[i - 1, j - 1] + A[i] \neq B[j] \}, \text{ otherwise} \end{cases} $

Solution and populating L

- Solution in *E*[*m*, *n*]
- Set *E*[0,*j*] = *j*; *E*[*i*,0] = *i*; populate from 1 to *n*, 1 to *m*.
- Run time: O(mn)

Space Savings

Bellman Equation

$$E[i,j] = \begin{cases} i, \text{ if } j = 0 \\ j, \text{ if } i = 0 \\ \min\{E[i,j-1] + 1, E[i-1,j] + 1, \\ E[i-1,j-1] + A[i] \neq B[j]\}, \text{ otherwise} \end{cases}$$

How much space do we need?

- Notice that *E*[*i*][*j*] depends on *E*[*i*,*j* − 1], *E*[*i* − 1,*j*], and *E*[*i* − 1,*j* − 1].
- We only need previous and current row of matrix for calculations.

SEQUENCE ALIGNMENT

SEQUENCE ALIGNMENT

Scarites	С	т	т	A	G	Å	т	С	G	т	A	с	с	à	A	-	-	-	Å	A	т	À	т	т	A	c
Carenum	С	т	т	A	G	A	т	с	G	т	A	с	с	A	С	A	-	т	A	с	-	т	т	т	A	c
Pasimachus	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	т	A	т	Å	A	G	т	т	т	A	c
Pheropsophus	С	т	т	À	G	Å	т	с	G	т	т	с	с	à	С	-	-	-	Å	с	A	т	à	т	A	c
Brachinus armiger	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	-	-	-	A	т	A	т	à	т	т	¢
Brachinus hirsutus	A	т	т	A	G	A	т	с	G	т	A	с	с	À	С	-	-	-	A	т	A	т	à	т	A	c
Aptinus	с	т	т	A	G	A	т	с	G	т	A	с	с	A	С	-	-	-	A	с	A	A	т	т	A	c
Pseudomorpha	с	т	т	A	G	A	т	с	6	т	A	с	с	-	-	-	-	-	A	с	A	A	A	т	A	c

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from *S*.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.

SEQUENCE ALIGNMENT

Scarites	С	т	т	A	G	Å	т	С	G	т	A	с	с	à	A	-	-	-	Å	A	т	À	т	т	A	c
Carenum	С	т	т	A	G	A	т	с	G	т	A	с	с	A	С	A	-	т	A	с	-	т	т	т	A	c
Pasimachus	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	т	A	т	Å	A	G	т	т	т	A	c
Pheropsophus	С	т	т	A	G	Å	т	с	G	т	т	с	с	à	С	-	-	-	Å	с	A	т	à	т	A	c
Brachinus armiger	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	-	-	-	A	т	A	т	à	т	т	¢
Brachinus hirsutus	A	т	т	A	G	A	т	с	G	т	A	с	с	À	С	-	-	-	A	т	A	т	à	т	A	c
Aptinus	С	т	т	A	G	A	т	с	G	т	A	с	с	A	С	-	-	-	A	с	A	A	т	т	A	c
Pseudomorpha	с	т	т	A	G	A	т	с	6	т	A	с	с	-	-	-	-	-	A	с	A	A	A	т	A	c

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from *S*.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.

DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

SEQUENCE ALIGNMENT

Scarites	С	т	т	A	G	Å	т	С	G	т	A	с	с	à	A	-	-	-	Å	A	т	À	т	т	A	c
Carenum	С	т	т	A	G	A	т	с	G	т	A	с	с	A	С	A	-	т	A	с	-	т	т	т	A	c
Pasimachus	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	т	A	т	Å	A	G	т	т	т	A	c
Pheropsophus	С	т	т	A	G	Å	т	с	G	т	т	с	с	à	С	-	-	-	Å	с	A	т	à	т	A	c
Brachinus armiger	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	-	-	-	A	т	A	т	à	т	т	¢
Brachinus hirsutus	A	т	т	A	G	A	т	с	G	т	A	с	с	À	С	-	-	-	A	т	A	т	à	т	A	c
Aptinus	С	т	т	A	G	A	т	с	G	т	A	с	с	A	С	-	-	-	A	с	A	A	т	т	A	c
Pseudomorpha	с	т	т	A	G	A	т	с	6	т	A	с	с	-	-	-	-	-	A	с	A	A	A	т	A	c

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from *S*.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

SEQUENCE ALIGNMENT

Scarites	С	т	т	A	G	A	т	с	G	т	A	с	с	A	A	-	-	-	A	A	т	A	т	т	A	l
Carenum	С	т	т	A	G	A	т	с	G	т	A	с	с	à	С	A	-	т	Å	с	-	т	т	т	A	l
Pasimachus	A	т	т	A	G	A	т	с	G	т	A	с	с	à	С	т	A	т	Å	A	G	т	т	т	A	l
Pheropsophus	С	т	т	A	G	A	т	с	G	т	т	с	с	à	С	-	-	-	A	с	A	т	à	т	A	l
Brachinus armiger	A	т	т	A	G	A	т	с	G	т	A	с	с	à	С	-	-	-	A	т	A	т	à	т	т	ł
Brachinus hirsutus	A	т	т	A	G	A	т	с	G	т	A	с	с	À	С	-	-	-	A	т	A	т	à	т	A	e
Aptinus	С	т	т	A	G	A	т	с	G	т	A	с	с	A	С	-	-	-	A	с	A	A	т	т	A	e
Pseudomorpha	с	т	т	A	G	A	т	с	G	т	A	с	с	-	-	-	-	-	A	с	A	A	A	т	A	l

 $\delta = 3$; $\alpha_{pp} = 0$; $\alpha_{pq} = 1$ 26: What is the cost of the matching: o-currance occurrence

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from *S*.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

SEQUENCE ALIGNMENT

Scarites	С	т	т	A	G	A	т	с	G	т	A	с	с	A	A	-	-	-	A	A	т	A	т	т	A	l
Carenum	С	т	т	A	G	A	т	с	G	т	A	с	с	à	С	A	-	т	Å	с	-	т	т	т	A	l
Pasimachus	A	т	т	A	G	A	т	с	G	т	A	с	с	à	С	т	A	т	Å	A	G	т	т	т	A	l
Pheropsophus	С	т	т	A	G	A	т	с	G	т	т	с	с	à	С	-	-	-	A	с	A	т	à	т	A	l
Brachinus armiger	A	т	т	A	G	A	т	с	G	т	A	с	с	à	С	-	-	-	A	т	A	т	à	т	т	ł
Brachinus hirsutus	A	т	т	A	G	A	т	с	G	т	A	с	с	À	С	-	-	-	A	т	A	т	à	т	A	e
Aptinus	С	т	т	A	G	A	т	с	G	т	A	с	с	A	С	-	-	-	A	с	A	A	т	т	A	e
Pseudomorpha	с	т	т	A	G	A	т	с	G	т	A	с	с	-	-	-	-	-	A	с	A	A	A	т	A	l

 $\delta = 3$; $\alpha_{pp} = 0$; $\alpha_{pq} = 1$ 27: What is the cost of the matching: o-curr-ance occurre-nce

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from *S*.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

SEQUENCE ALIGNMENT

Scarites	С	т	т	A	G	A	т	с	G	т	A	с	с	A	A	-	-	-	A	А	т	A	т	т	A
Carenum	С	т	т	A	G	A	т	с	G	т	A	с	с	à	С	A	-	т	Å	с	-	т	т	т	A
Pasimachus	A	т	т	A	G	A	т	с	G	т	A	с	с	à	С	т	A	т	Å	A	G	т	т	т	A
Pheropsophus	С	т	т	A	G	A	т	с	G	т	т	с	с	à	С	-	-	-	Å	с	A	т	à	т	A
Brachinus armiger	A	т	т	A	G	A	т	с	G	т	A	с	с	à	С	-	-	-	A	т	A	т	à	т	т
Brachinus hirsutus	A	т	т	A	G	A	т	с	G	т	A	с	с	A	с	-	-	-	A	т	A	т	A	т	A
Aptinus	с	т	т	A	G	A	т	с	G	т	A	с	с	A	с	-	-	-	A	с	A	A	т	т	A
Pseudomorpha	с	т	т	A	G	A	т	с	G	т	A	с	с	-	-	-	-	-	A	с	A	A	A	т	A

 $\delta = 1; \alpha_{pp} = 0; \alpha_{pq} = 4$ 8: What is the cost of the matching: o-currance occurrence

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from *S*.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

DP WIS LIS Games Max Subarray Subset Edit **Align*** LS* RNA*

SEQUENCE ALIGNMENT

Scarites	С	т	т	A	G	A	т	с	G	т	A	с	с	A	A	-	-	-	A	A	т	A	т	т	A
Carenum	С	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	A	-	т	Å	с	-	т	т	т	A
Pasimachus	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	т	A	т	Å	A	G	т	т	т	A
Pheropsophus	С	т	т	A	G	Å	т	с	G	т	т	с	с	à	С	-	-	-	A	с	A	т	à	т	A
Brachinus armiger	A	т	т	A	G	Å	т	с	G	т	A	с	с	à	С	-	-	-	A	т	A	т	à	т	т
Brachinus hirsutus	A	т	т	A	G	A	т	с	G	т	A	с	с	À	С	-	-	-	A	т	A	т	à	т	A
Aptinus	с	т	т	A	G	A	т	с	G	т	A	с	с	A	с	-	-	-	A	с	A	A	т	т	A
Pseudomorpha	с	т	т	A	G	A	т	с	G	т	A	с	с	-	-	-	-	-	A	с	A	A	A	т	A

 $\delta = 1$; $\alpha_{pp} = 0$; $\alpha_{pq} = 4$ 9: What is the cost of the matching: o-curr-ance occurre-nce

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from *S*.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

Basic Dichotomy

In optimal alignment *M*, either $(m, n) \in M$ or $(m, n) \notin M$.

Basic Dichotomy

In optimal alignment *M*, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let M be any alignment of X and Y. If $(m, n) \notin M$, then either the *m*th position of X, or the *n*th position of Y is not matched in M.

Basic Dichotomy

In optimal alignment *M*, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let *M* be any alignment of *X* and *Y*. If $(m, n) \notin M$, then either the *m*th position of *X*, or the *n*th position of *Y* is not matched in *M*.

Proof.

Basic Dichotomy

In optimal alignment *M*, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let *M* be any alignment of *X* and *Y*. If $(m, n) \notin M$, then either the *m*th position of *X*, or the *n*th position of *Y* is not matched in *M*.

Proof.

• By way of contradiction, assume that

Basic Dichotomy

In optimal alignment *M*, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let *M* be any alignment of *X* and *Y*. If $(m, n) \notin M$, then either the *m*th position of *X*, or the *n*th position of *Y* is not matched in *M*.

Proof.

• By way of contradiction, assume that (*m*, *n*) ∉ *M*, and (*m*, *j*), (*i*, *n*) ∈ *M* for *i* < *m* and *j* < *n*.

Basic Dichotomy

In optimal alignment *M*, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let *M* be any alignment of *X* and *Y*. If $(m, n) \notin M$, then either the *m*th position of *X*, or the *n*th position of *Y* is not matched in *M*.

Proof.

- By way of contradiction, assume that (*m*, *n*) ∉ *M*, and (*m*, *j*), (*i*, *n*) ∈ *M* for *i* < *m* and *j* < *n*.
- Contradicts the non-crossing requirement.

Key Concepts for Optimality

- $(m,n) \in M$; or
- the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.

Key Concepts for Optimality

- $(m,n) \in M$; or
- the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.
 - How many dimensions for the matrix?

Key Concepts for Optimality

- $(m,n) \in M$; or
- the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.
 - 2D matrix called *A*, where *A*[*i*][*j*] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.

Key Concepts for Optimality

- $(m,n) \in M$; or
- the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.
 - 2D matrix called *A*, where *A*[*i*][*j*] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.
 - 🖗 Build the Bellman equation.

Key Concepts for Optimality

- $(m,n) \in M$; or
- the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.
 - 2D matrix called *A*, where *A*[*i*][*j*] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.
 - $A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$

Key Concepts for Optimality

- $(m,n) \in M$; or
- the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.
 - 2D matrix called *A*, where *A*[*i*][*j*] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.
 - $A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$
 - Runtime:

Key Concepts for Optimality

- $(m,n) \in M$; or
- the *m*th position of X is not matched; or
- the *n*th position of *Y* is not matched.
 - 2D matrix called *A*, where *A*[*i*][*j*] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.
 - $A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$
 - Runtime: O(mn).

GRAPHING THE ALGORITHM

Theorem 2

Let f(i, j) denote the minimum cost of a path from (0, 0) to (i, j) in G_{XY} . Then, $\forall i, j f(i, j) = A[i][j]$.

GRAPHING THE ALGORITHM

Theorem 2

Let f(i, j) denote the minimum cost of a path from (0,0) to (i, j) in G_{XY} . Then, $\forall i, j f(i, j) = A[i][j]$.

GRAPHING THE ALGORITHM

Theorem 2

Let f(i, j) denote the minimum cost of a path from (0,0) to (i, j) in G_{XY} . Then, $\forall i, j f(i, j) = A[i][j]$.

Proof.

• By strong induction on

GRAPHING THE ALGORITHM

Theorem 2

Let f(i, j) denote the minimum cost of a path from (0,0) to (i, j) in G_{XY} . Then, $\forall i, j f(i, j) = A[i][j]$.

Proof.

• By strong induction on (i + j).

GRAPHING THE ALGORITHM

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i, j f(i,j) = A[i][j]$.

Proof.

- By strong induction on (i + j).
- Base case:

GRAPHING THE ALGORITHM

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i, j f(i,j) = A[i][j]$.

Proof.

- By strong induction on (i + j).
- Base case: i + j = 0. We have f(0, 0) = 0 = A[0][0].
- Induction hypothesis: The claim holds for all pairs (*i*', *j*') such that *i*' + *j*' < *i* + *j*.
DP WIS LIS Games Max Subarray Subset Edit **Align*** LS* RNA*

GRAPHING THE ALGORITHM

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i, j f(i,j) = A[i][j]$.

Proof.

- By strong induction on (i + j).
- Base case: i + j = 0. We have f(0, 0) = 0 = A[0][0].
- Induction hypothesis: The claim holds for all pairs (*i*', *j*') such that *i*' + *j*' < *i* + *j*.
- Inductive step:

$$\begin{aligned} f(i,j) &= \min\{\alpha_{x_iy_j} + f(i-1,j-1), \delta + f(i-1,j), \delta + f(i,j-1)\} \\ &= \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\} \\ &= A[i,j] \end{aligned}$$

SEQUENCE ALIGNMENT EXAMPLE

- "mean" vs "name"
- $\delta = 2; \alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 1 & \text{otherwise} \end{cases}$

SEQUENCE ALIGNMENT EXAMPLE

- "mean" vs "name"
- $\delta = 2; \alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 1 & \text{otherwise} \end{cases}$

n	8	6	5	4	6
а	6	5	3	5	5
e	4	3	2	4	4
m	2	1	3	4	6
-	0	2	4	6	8
	-	n	a	m	e

SEQUENCE ALIGNMENT EXAMPLE

- "mean" vs "name"
- $\delta = 2; \alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 2 & \text{otherwise} \end{cases}$

SEQUENCE ALIGNMENT EXAMPLE

- "mean" vs "name"
- $\delta = 2; \alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 2 & \text{otherwise} \end{cases}$

n	8	6	6	6	8
а	6	6	4	6	6
e	4	4	4	6	4
m	2	2	4	4	6
-	0	2	4	6	8
	-	n	а	m	e

Least Squares

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALIGN* **LS*** RNA*

Segmented Least Squares

Problem Setup

- Set of *n* points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: Error $(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALIGN* LS* RNA*

Segmented Least Squares

Problem Setup

- Set of *n* points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: Error $(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

Problem Formulation

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of Error(*L*, *p*_{*i*}) + *C* for all subsets, where *C* is a fixed cost per subset.

Segmented Least Squares

0 0 0 0 0 0 0 0 0 0

Problem Setup

- Set of *n* points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: Error $(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

Problem Formulation

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of Error(*L*, *p*_{*i*}) + *C* for all subsets, where *C* is a fixed cost per subset.

DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Segmented Least Squares

Problem Setup

- Set of *n* points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: Error $(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

Problem Formulation

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of Error(*L*, *p*_{*i*}) + *C* for all subsets, where *C* is a fixed cost per subset.

DP Solution

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

• $e_{i,j}$ is the min error for a partition from *i* to *j*.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.

$$s[j] = \min_{1 \leq i \leq j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

Complexity

• Preprocessing error calc $e_{i,j}$ can be done in $O(n^3)$.

$$s[j] = \min_{1 \leq i \leq j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

- Preprocessing error calc $e_{i,j}$ can be done in $O(n^3)$.
- Number of cells:

$$s[j] = \min_{1 \leq i \leq j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

- Preprocessing error calc $e_{i,j}$ can be done in $O(n^3)$.
- Number of cells: O(n).

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

- Preprocessing error calc $e_{i,j}$ can be done in $O(n^3)$.
- Number of cells: O(n).
- Work done for cell *j*:

$$s[j] = \min_{1 \leq i \leq j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

- Preprocessing error calc $e_{i,j}$ can be done in $O(n^3)$.
- Number of cells: O(n).
- Work done for cell j: O(j).

$$s[j] = \min_{1 \leq i \leq j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from *i* to *j*.
- *C* is added each time as we are adding a new partition.
- *s*[*i*] is optimum up to point *i*.

- Preprocessing error calc $e_{i,j}$ can be done in $O(n^3)$.
- Number of cells: O(n).
- Work done for cell j: O(j).
- Overall: $O(n^2)$.

RNA Secondary Structure

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALIGN* LS* RNA*

RNA Secondary Structure

Problem Definition

- RNA tends to loop back on itself, forming base pairs.
- RNA alphabet: $\{A, C, G, U\}$.
- Valid pairs: (A, U) or (C, G).

RNA Secondary Structure

Problem Definition

- RNA tends to loop back on itself, forming base pairs.
- RNA alphabet: $\{A, C, G, U\}$.
- Valid pairs: (A, U) or (C, G).
- Input: *n* length string: $B = b_1 b_2 \dots b_n$
- Output: Determine a secondary structure with maximum number of base pairs.

DP WIS LIS Games Max Subarray Subset Edit Align* LS* **RNA***

RNA Secondary Structure

Secondary Structure

- $S = \{(i, j)\}, \text{ where } i < j \text{ and } j \in \{i, j\}$
- $i, j \in \{1, ..., n\}$, such that:
 - No Sharp turns: *i* < *j d* for some constant *d*.
 - All pairs are valid.
 - *S* is a matching: no base appears more than once.
 - Non-crossing: For any $(i,j), (i',j') \in S$, we cannot have i < i' < j < j'.

FIRST DYNAMIC PROGRAMMING ATTEMPT

1D Approach

• 1D array *m*, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.

1D Approach

- 1D array *m*, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: *m*[*n*].

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: *m*[*n*].

Recursive Sub-problems

Dichotomy:

FIRST DYNAMIC PROGRAMMING ATTEMPT

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2\ldots b_i$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

Dichotomy:

is not a pair:
$$m[j] = m[j-1]$$
.

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: *m*[*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[j] = m[j-1].
- 2 *j* is paired with t < j d:
 - Non-crossing: No pairs between [1, *t* 1] and [*t* + 1, *j* 1].

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: *m*[*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[j] = m[j-1].
- 2 *j* is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
 - Sub-problems:

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: *m*[*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[j] = m[j-1].
- 2 *j* is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [1, t 1]: m[t 1].

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: *m*[*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[j] = m[j-1].
- 2 *j* is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [1, t 1]: m[t 1].
 - Max pairs in [t+1, j-1]:

1D Approach

- 1D array *m*, where *m*[*j*] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: *m*[*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[j] = m[j-1].
- 2 *j* is paired with t < j d:
 - Non-crossing: No pairs between [1, t 1] and [t + 1, j 1].
 - Sub-problems:
 - Max pairs in [1, t 1]: m[t 1].
 - Max pairs in [t + 1, j 1]: Restricted to $b_{t+1}b_{t+2} \dots b_{j-1}$ which current DP does not calculate.

Second Dynamic Programming Attempt 2D Approach

• 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
Second Dynamic Programming Attempt 2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.

2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution:

2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: *m*[1][*n*].

2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: m[1][n].

Recursive Sub-problems

Dichotomy:

2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: *m*[1][*n*].

Recursive Sub-problems

Dichotomy:

• *j* is not a pair: m[i][j] = m[i][j-1].

2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: *m*[1][*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[i][j] = m[i][j-1].
- 2 *j* is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].

2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: *m*[1][*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[i][j] = m[i][j-1].
- 2 *j* is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [i, t-1]: m[i][t-1].

2D Approach

- 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: *m*[1][*n*].

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[i][j] = m[i][j-1].
- 2 *j* is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [*i*, *t* 1] and [*t* + 1, *j* 1].
 - Sub-problems:
 - Max pairs in [i, t-1]: m[i][t-1].
 - Max pairs in [t+1, j-1]: m[t+1][j-1].

2D Approach

• 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.

Recursive Sub-problems

Dichotomy:

- *j* is not a pair: m[i][j] = m[i][j-1].
- 2 *j* is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [*i*, *t* 1] and [*t* + 1, *j* 1].
 - Sub-problems:
 - Max pairs in [i, t-1]: m[i][t-1].
 - Max pairs in [t+1, j-1]: m[t+1][j-1].

What is the Bellman equation?

DP WIS LIS Games Max Subarray Subset Edit Align* LS* RNA*

Second Dynamic Programming Attempt

2D Approach

• 2D array *m*, where *m*[*i*][*j*] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.

Recursive Sub-problems

Dichotomy:

• *j* is not a pair: m[i][j] = m[i][j-1].

2 *j* is paired with $i \le t < j - d$

- v_{ij} as indicator: 1 if valid pair, 0 otherwise
- Non-crossing: No pairs between [*i*, *t* 1] and [*t* + 1, *j* 1].
- Sub-problems:
 - Max pairs in [i, t-1]: m[i][t-1].
 - **2** Max pairs in [t+1, j-1]: m[t+1][j-1].

 $m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALICN^{*} LS^{*} RNA^{*} RNA SECONDARY STRUCTURE EXAMPLE $m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$ • B = ACCGGUAGU and d = 4

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALICA^{*} LS^{*} RNA^{*} RNA SECONDARY STRUCTURE EXAMPLE $m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$ • B = ACCGGUAGU and d = 4i |

i				
4	0	0	0	
3	0	0		
2	0			
1				
j	6	7	8	9

RNA SECONDARY STRUCTURE EXAMPLE $m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$

• B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	
2	0	0		
1	1			
j	6	7	8	9

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALICA^{*} LS^{*} RNA^{*} RNA SECONDARY STRUCTURE EXAMPLE $m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$ • B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	
1	1	1		
j	6	7	8	9

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALICA^{*} LS^{*} RNA^{*} RNA SECONDARY STRUCTURE EXAMPLE $m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$ • B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	
j	6	7	8	9

$$m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$$

• $B = ACCGGUAGU$ and $d = 4$

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT ALICN^{*} LS^{*} RNA^{*} RNA SECONDARY STRUCTURE EXAMPLE $m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$ • B = ACCGGUAGU and d = 4i

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

Running Time

- # of cells:
- Work per cell:

$$m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$$

• $B = ACCGGUAGU$ and $d = 4$

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

Running Time

- # of cells: $O(n^2)$.
- Work per cell:

$$m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$$

• $B = ACCGGUAGU$ and $d = 4$

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

Running Time

- # of cells: $O(n^2)$.
- Work per cell:

$$m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$$

• $B = ACCGGUAGU$ and $d = 4$

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

Running Time

- # of cells: $O(n^2)$.
- Work per cell: O(n).

$$m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$$

• $B = ACCGGUAGU$ and $d = 4$

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

Running Time

- # of cells: $O(n^2)$.
- Work per cell: O(n).
- Overall: $O(n^3)$.

Appendix

References

Image Sources I

https://medium.com/neurosapiens/ 2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/ 08/biografia-de-lester-randolph-ford-jr/

https://medium.com/koderunners/ genetic-algorithm-part-3-knapsack-problem-b59035

DNSIN https://brand.wisc.edu/web/logos/

Image Sources II

https://www.pngfind.com/mpng/mTJmbx_ spongebob-squarepants-png-image-spongebob-cartoo

https://www.pngfind.com/mpng/xhJRmT_ cheshire-cat-vintage-drawing-alice-in-wonderland