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Why “Dynamic Programming”?

Reasons for the name:

@ In the 1950s, “programming” was about “planning” rather
than coding.

@ “Dynamic” is exciting — Air Force director didn’t like
research and wanted pizzazz.

e “Dynamic” sounds better than “linear” (Re: rival Dantzig).
v
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Richard Bellman

@ Your new favourite algorithmic technique.
e Extreme Divide and Conquer
@ Many sub-problems, but not quite brute-force.

@ Dynamic in that it calculates a bunch of solutions from the
“smallest” to the “largest”.
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@ Requests: o = {r1,---, 7y}
e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

@ Objective: Produce a compatible schedule S that has
maximum value.

e Compatible schedule S: Vr;,7 € S,f; <s; v f; <s;.

@What is the value of the FF heuristic? 2.
©What is the optimal value? 3.
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@ Find largest i <j such thatf; <s;.
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Proof of optimality.
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Base cases: j = 0 or j = 1: Only 1 possible optimal solution.
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Max SUBARRAY

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).

@ Find the optimal value in sorted o of first j items:
@ Find largest i <j such thatf; <s;.
@ ort(j) = max(opr(j - 1),0p1(i) + ;)

.

Proof of optimality.

By strong induction on j.
Base cases: j = 0 or j = 1: Only 1 possible optimal solution.
Inductive step:

e By ind hyp, we have opt for j — 1 and opt for i.

@ Sorting order assures the dichotomy that the last interval is
either in the solution or not.

o Take the max of whether or not a given interval is include%

V
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CoNSIDER THE RECURSION

ort(j) = max(opr(j — 1), op1(i) + v;)

orr(6)

Index
L m=2
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2 —_—
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vg =1
6 [—

The tree of subproblems
grows very quickly.

ort(1)
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©What is the asymptotic number of recursive calls with 7 jobs?
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MEMOI1ZING THE RECURSION

Memoization

e Not a typo.
e Coined in 1989 by Donald Michie.

@ Derived from latin “memorandum”, meaning “to be
remembered”.
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MEMOI1ZING THE RECURSION

Memoization

@ Not a typo.
e Coined in 1989 by Donald Michie.

@ Derived from latin “memorandum”, meaning “to be
remembered”.

Basic Technique

e Calculate once: store the value in array and retrieve for
future calls.

e Can be implemented recursively, but tends to be more
natural as an iterative process.
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Dynamic PROGRAM SoLuTIiON

Algorithm: WeicHTINTDP

Sort o by finish time
m[0]:=0
forj=1tondo
Find index i
m(j] = max(m[j - 1], m[i] + v;)
end
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Dynamic PROGRAM SoLuTIiON

Algorithm: WeicHTINTDP

Sort o by finish time .

m[0] := 0 e DP algorithms

forj=1tondo are formulaic.
Find index i @ We understand
m(j] = max(m[j — 1], m[i] + vj) how loops work.

end e NO Pseudocode. |

@ Definitions required for algorithm to work

@ Description of matrix

@ Bellman Equation

@ Location of solution, order to populate the matrix
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Dynamic PROGRAM SOLUTION
Definitions required for algorithm to work

@ o sorted by finish time, ascending order.
@ For a given job at index j, i; < is the largest index such that

fij <85

Description of matrix

5\

e 1D array M, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted o.
Initialize M[1] = v;.

A\

Bellman Equation
o M[j] = max{M[j - 1], M[j;] + v;}

Solution, order to populate

@ The maximum value of a compatible schedule for the n
jobs is found at M[n]. Populate from 2 to n.
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ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

@ For a given job at index j, i < j is the largest index such that
fi< 5;.
@ Bellman Equation: m[j] = max(m[j - 1], m[i] + v})
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ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi <s).
e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
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ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
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e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
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e Populate the matrix:
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ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi <s).
e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
e Sorting jobs: O(nlogn).
e Populate the matrix:

e Number of cells: O(#n)
e Cost per cell: Finding i: O(n) linear search, O(logn) binary
search

A

Overall: O(n?) linear search, O(nlogn) binary search

A\
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ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

@ For a given job at index j, i < j is the largest index such that
fi< 5;.

@ Bellman Equation: m[j] = max(m[j - 1], m[i] + v})

What about the schedule S?

.
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ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

@ For a given job at index j, i < j is the largest index such that
fi< 5;.

@ Bellman Equation: m[j] = max(m[j - 1], m[i] + v})

.

What about the schedule S?
Trace back from the optimal value:

@ Job j is part of the optimal schedule from 1 to j iff
vj +opr(i) > opr(j - 1)

.
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Basic DP OuTLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.
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Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.

Algorithm Guidelines

© There are only a polynomial number of subproblems.

@ The solution to the larger problem can be efficiently
calculated from the subproblems.
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Basic DP OuTLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.

Algorithm Guidelines

© There are only a polynomial number of subproblems.
@ The solution to the larger problem can be efficiently
calculated from the subproblems.

@ Natural ordering of the subproblems from “smallest” to
“largest”.

8/42
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e Given an integer array A[1..n].

e Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[iy] < A[ik,1] for all k.
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sequence of indexes, we have A[iy] < A[ik,1] for all k.
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Subsequence

e For a sequence A, a subsequence S is a subset of A that
maintains the same relative order.
e Ex: Ilike watching the puddles gather rain.
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e late train: subsequence, not substring (not contiguous)
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LoONGEST INCREASING SUBSEQUENCE

e Given an integer array A[1..n].

e Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[iy] < A[ik,1] for all k.

A

Subsequence

e For a sequence A, a subsequence S is a subset of A that
maintains the same relative order.
e Ex: Ilike watching the puddles gather rain.

e puddles: subsequence, substring (contiguous)
e late train: subsequence, not substring (not contiguous)

©For an array of length 1, how many subsequences? 2"
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RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
Exo: Complete the algorithm
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RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k.

if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])

else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}

end

10/42



Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])
else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}
end

©For an array A[1..n], how would you find the length of the
LIS using the LIS(-) algorithm?

10/42



Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])
else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}
end

©For an array A[1..n], how would you find the length of the
LIS using the LIS(-) algorithm? LIS(-o0, A[1..1])
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RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0

else if A[1] <k then

| return LIS(k, A[2..n])

else
skip :=LIS(k, A[2..n])
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every item > A[i],i <j.
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Description of matrix

2D array L, where L[i, ] is the maximum LIS of A[j..n] with
every item > A[i],i <j.

4

Bellman Equation

0,ifj>n
L[i,j]1 =1 L[i,j +1],if A[i] > A[j]
max{L[i,j+1],L[j,j+ 1] + 1}, otherwise
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Dynamic ProGraM FOR LIS

Description of matrix

2D array L, where L[i, ] is the maximum LIS of A[j..n] with
every item > A[i],i <j.

.

Bellman Equation

0,ifj>n
L[i,j]={L[i,j+1],if A[i] = A[f]
max{L[i,j+1],L[j,j+ 1] + 1}, otherwise

\

Solution and populating L
@ Solution in L[0][1]; add A[0] = —oco.
@ Populate j fromnto1;ifrom0Otoj-1orj-1toO0.

.
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L[i,j]={L[i,j+1],if A[i] = A[f]
max{L[i,j+1],L[j,j+ 1] + 1}, otherwise

\

Solution and populating L
@ Solution in L[0][1]; add A[0] = —oco.
@ Populate j fromnto1;ifrom0Otoj-1orj-1toO0.
@ Run time: O(n?)

.
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@ Some number of players (1 to many).
@ Set of rules with some objective.

e Huge domain, started by Von Neumann, that spans many
fields such as Economics, Math, Biology, and Computer
Science.
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GAMEs

Dynamic PROGRAMMING FOR (GAMES

@ Some number of players (1 to many).
@ Set of rules with some objective.

e Huge domain, started by Von Neumann, that spans many
fields such as Economics, Math, Biology, and Computer
Science.

In many games, DP is a natural paradigm for an optimal
strategy.
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-
<

13/42



GAMEs MAX SUBARRAY

Coins IN A LINE

Two players:

)
L2 Alice Bob
Q (Player A) (Player B)

24
<

e n (even) coins in a line; each coin has a value.

e Starting with Alice, each player will pick a coin from the
head or the tail.

13/42



GAMEs MAX SUBARRAY

Coins IN A LINE

Two players:

)
L2 Alice Bob
Q (Player A) (Player B)

24
<

e n (even) coins in a line; each coin has a value.

e Starting with Alice, each player will pick a coin from the
head or the tail.

e Winner: Player with the max value at the end; winning
player keeps the coins.
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©Give a counter-example.
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: 3; [1,3,6,3,1]
1; [1,3,6,3]
6; [1,3,6]
7; [1,3]
9; [1]
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[
A
B:
A:
B
A
B: 8; [I
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GREEDY APPROACHES

Largest Coin
Even or Odd

[1,3,6,3,1,3] [1,3,6,3,1,3]
A: 3; [1,3,6,3,1] A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3] B: 1; [3,6,3,1]
A: 6; [1,3,6] A: 4; [3,6,3]
B: 7; [1,3] B: 4; [6,3]
A: 9; [1] A: 10; [3]
B: 8; [] B: 7; [

@ Alice can always win.

@ But are we optimal? No

A
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NATturaL DicHOTOMY

@What is the natural dichotomy?
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e Two players: Assume that Bob will play optimally.
@ For Alice’s kth turn:

e Coin array: C[i..f]
e max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j —1])}
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NATturaL DicHOTOMY

Head or Tail?
e Two players: Assume that Bob will play optimally.
e For Alice’s kth turn:
e Coin array: C[i..f]
e max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j —1])}
@ BobOpt(c[i..j]) :=
min{AliceOpt(c[i + 1..j]), AliceOpt(c[i..j — 1])}

@How many dimensions for DP array? 2
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HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

o 16/42



GAMEs MAX SUBARRAY

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j]+ min{M[i + 1,7 = 1], M[i,j - 2]}}

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.

@ Solution:

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]
@ Runtime:

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]
e Runtime: O(n?)

o 16/42



GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
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GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]
e Runtime: O(1?)
@ Proof of correctness: Strong induction on the cell
population order.

o 16/42
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MaAx SUBARRAY

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.
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MaAx SUBARRAY SUBSET

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous

subarray of A of maximum sum.
v

Exercise — Teams of 3 or so

e Solve the problem in ©(n?).

@ Solve the problem in O(nlogn).

@ Prove correctness and complexity.

A
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MaAx SUBARRAY SUBSET

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARRAYS

Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
fori:=1tolen(A) do

forj:=itolen(A) do
if sum(A[i..j]) > sum(M) then
| M= Ali.j]
end

end
end
return M
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end
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MaAx SUBARRAY

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARR

Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
fori:=1tolen(A) do
forj:=itolen(A) do
if sum(A[i..j]) > sum(M
| M= Ali.j]
end

end
end
return M

@ Correct: Checks all
possible contiguous

e Complexity:

e Re-calculating the sum
will make it O(n®). Key
is to calculate the sum
as you iterate.

e For each i, check
n—i+1 ends. Overall:




MaAx SUBARRAY SUBSET

Part 2: Give AN O(nlog 1) SOLUTION.

Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=MI1DMAXSUBARRAY (A)

return Array with max sum of {A;, 4y, M}
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MaAx SUBARRAY SUBSET

Part 2: Give AN O(nlog 1) SOLUTION.
Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |[A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=MI1DMAXSUBARRAY (A)

return Array with max sum of {A;, 4y, M}

Algorithm: MIDMAXSUBARRAY

Input : Array A of n ints.

Output: Max subarray that crosses midpoint A.

m := mid-point of A

L := max subarray in A[i,m-1]fori=m-1-1

R := max subarray in A[m,j] forj=m —»>n

return LUR // subarray formed by combining L and K.
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MaAx SUBARRAY SUBSET

Part 2: Give AN O(nlog 1) SOLUTION.

Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=M1DMAXSUBARRAY (A)

return Array with max sum of {Ay, A, M}

e Correctness: By induction, A; and A, are max for subarray
and M is max mid-crossing array.

e Complexity: Same recurrence as MERGESORT.

19/42



MaAx SUBARRAY SUBSET

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous

subarray of A of maximum sum.
v

Exercise — Teams of 3 or so

e Solve the problem in ©(n?).

@ Solve the problem in O(nlogn).

@ Prove correctness and complexity.

e With dynamic programming, solve the problem in O(n)!

20/42



MaAx SUBARRAY SUBSET

Part 3: Give AN O(71) SOLUTION.

e 1D array s, where s[i] contains the value of the max
subarray ending ati. (O(n) cells)

@ Bellman equation: s[i] = max(s[i — 1]+ A[i],A[i]). (O(1)
time)

@ Solutions is: max;{s[j]}. (O(n) time)
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Part 3: Give AN O(71) SOLUTION.

e 1D array s, where s[i] contains the value of the max
subarray ending ati. (O(n) cells)

@ Bellman equation: s[i] = max(s[i — 1]+ A[i],A[i]). (O(1)
time)

@ Solutions is: max;{s[j]}. (O(n) time)

A

But we need the subarray not the value!

e Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i — 1] if s[i—1] +a[i] > a[i]
i , otherwise

start[i] = {
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MaAx SUBARRAY SUBSET

Part 3: Give AN O(71) SOLUTION.

e 1D array s, where s[i] contains the value of the max
subarray ending ati. (O(n) cells)

@ Bellman equation: s[i] = max(s[i — 1]+ A[i],A[i]). (O(1)
time)

@ Solutions is: max;{s[j]}. (O(n) time)

A

But we need the subarray not the value!

e Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i — 1] if s[i—1] +a[i] > a[i]
i , otherwise

start[i] = {

@ Or, trace back from max value at index j until s[i] = A[7].

/ 21/42
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Problem Definition
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SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

Greedy Heuristics
e Decreasing weights: {W/2 + 1, W/2, W/2}
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Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
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SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

Greedy Heuristics
e Decreasing weights: {W/2 + 1, W/2, W/2}
e Increasing weights: {1, W/2, W/2}

22/42
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1D Approach
e ifn¢S, thenv[n] =v[n-1]
e ifneS, thenv[n] =7
e Accepting n does automatically exclude other items.

A\

Need to consider more

To solve v[n], we need to consider:

@ the best solution with n — 1 previous items restricted by W,
and

@ the best solution with n — 1 previous items restricted by
W - wn

\
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2D Approach

o 2D Matrix v:

e i: Item indices from O to n.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:

v[i,w] = max(v[i - 1,w], %z - (v[i - 1,w —w;] +w;))
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SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to n.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
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@ Solution value: v[n, W].

®Running time to populate the matrix: O(nW)
@I this polynomial? No, pseudo-polynomial because of W
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2D Approach

o 2D Matrix v:

e i: Item indices from O to 7.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.
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@ Solution value: v[n, W].
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Problem Definition

@ You are a thief with a knapsack that can carry W weight of
goods.

o Asetofitems: 1,2,...,n.
o Each item has a weight: wy,w», ..., w,.
o Each item has a value: v1,0y,...,0y,.

@ What is the subset S of items to steal that maximizes ;.5 v;
with the constraint that } ;. w; < W?
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EpiT DisTANCE

Minimum number of letter
e insertions: adding a letter,
@ deletions: removing a letter,
@ substitutions: replacing a letter
to change string A[1..m] to string B[1..n].
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Minimum number of letter
e insertions: adding a letter,
@ deletions: removing a letter,

@ substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY — THUESDAY — THURSDAY

Or, align and count mismatched letters

T UESDAY
THURSDAY
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Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
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RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(7,j) = Edit(i - 1,/) + 1.
e Substitution: Edit(i,) = Edit(i - 1,7 — 1) + A[i] # B[/]
o i=0: Edit(i,]) = j.
o j=0: Edit(i,j) = i.
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Description of matrix

2D array E, where E[i,f] is the edit distance for A[1..i] and
B[1..j].

Bellman Equation

jifi=0
min{E[i,j - 1]+ 1,E[i-1,j] +1,
E[i-1,j-1]+ A[i] # B[j]}, otherwise

30/42



2D array E, where E[i,f] is the edit distance for A[1..i] and
B[1..j].

jifi=0
min{E[i,j - 1]+ 1,E[i-1,j] +1,
E[i-1,j-1]+ A[i] # B[j]}, otherwise

Solution and populating L

@ Solution in

e Set E[0,j] =J; E[i,0] = i; populate from 1 to n, 1 to m.

30/42



2D array E, where E[i,] is the edit distance for A[1..i] and
B[1.,].

jifi=0
min{E[i,j-1]+1,E[i-1,j] +1,
E[i-1,j-1]+A[i] # B[j]}, otherwise

Solution and populating L

@ Solution in E[m, n]

e Set E[0,/] =J; E[i,0] = i; populate from 1 to n, 1 to m.

o @Run time:

30/42



2D array E, where E[i,] is the edit distance for A[1..i] and
B[1.].

j,ifi=0
min{E[i,j - 1]+ 1,E[i-1,j] +1,
E[i-1,j-1]+A[i] # B[j]}, otherwise

Solution and populating L

@ Solution in E[m, n]

e Set E[0,j] =J; E[i,0] = i; populate from 1 to 1, 1 to m.

@ Run time: O(mn)
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min{E[i,j - 1]+ 1,E[i - 1,j]+ 1,
E[i-1,j-1]+A[i] # B[j]}, otherwise

How much space do we need?

e Notice that E[][j] depends on E[i,j - 1], E[i - 1,], and
E[i-1,j-1].

@ We only need previous and current row of matrix for
calculations.
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Scarites
Carenum
Paimachus
Pheropsophus
Brachinus armiger
Brrachinus hirsutus
Aptinus
Pseudomorpha | T BT e o Flcc - - - - -

Needleman—-Wunsch Problem

@ An alphabet S.
@ Strings X =x1xp...x; and Y = y1y> ...y, from S.

e A matching M = {(i,)} of pairs without crossings, where
ie[l,m]andje[1,n].
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o Cost:
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DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

—

Basic Dichotomy
In optimal alignment M, either (m,n) e M or (m,n) ¢ M.

Let M be any alignment of X and Y. If (m,n) ¢ M, then either the
mth position of X, or the nth position of Y is not matched in M.

.

e By way of contradiction, assume that (m,n) ¢ M, and
(m,j),(i,n) e M fori<mandj<n.

e Contradicts the non-crossing requirement.

A
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@ the mth position of X is not matched; or
@ the nth position of Y is not matched.
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Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q@ (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

@ 2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x7 ... x; and y1y2 Yj

e Ali][j] = mln{axy]+A 1[j-1],0+A[i-1][j],0+A[i][j-1]}
e Runtime: O(mn).
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GRAPHING THE ALGORITHM
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X2

Let f(i,]) denote the minimum
cost of a path from (0,0) to (i,]) in
Gxy. Then, Vi,j f(i,7) = A[i][j].
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\/‘8 cost of a path from (0,0) to (i,f) in
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e By strong induction on (i + ).
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/ Let f(i,]) denote the minimum
\/‘8 cost of a path from (0,0) to (i,f) in
Gxy. Then, Vi,j f(i,j) = A[][]].

e By strong induction on (i + ).

@ Base case: i +j = 0. We have f(0,0) =0 = A[0][0].

e Induction hypothesis: The claim holds for all pairs (i’,]")
such that i’ + " <i+j.

@ Inductive step:
f(i?j) = min{axiyj +f(i_ 1?j_ 1)76+f(i_ 17j)75+f(i7j_ 1)}
= min{ay,y, + A[i - 1][j - 1],6 + A[i - 1][j], 0 + A[i][j - 1]}
:A[ivj] ]

v
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SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}

o “mean” vs “name”
0 if same letter

@ 0=2;a=43 if vowel to consonant
1 otherwise

Blo|o |3

36/42



SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}

o “mean” vs “name”
0 if same letter

@ 0=2;a=43 if vowel to consonant
1 otherwise

Blo|o |3
o M| | o]

SN =] W Ul o
QO WN| WO
AR NENENESUES
| 0| | =1l O

36/42



SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}

o “mean” vs “name”
0 if same letter

@ 0=2;a=43 if vowel to consonant
2 otherwise

Blo|lv|s

36/42



SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}
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SEGMENTED LEAST SQUARES

Problem Setup

- @ Set of n points: P :=

{(e1,91), (x2,2); -+ (i )} om
iy the plane.

@ Suppose x1 < xp < -+ < Xp.

e Find L : y = ax + b that minimizes:
Error(L,P) = Y1 (yi — ax; - b)? .

V
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Problem Setup
@ Set of n points: P :=
{(x1,91), (x2,%2),- .., (Xn,yu)} on

3 the plane.
@ Suppose x1 < X2 < -+ < Xp.
e Find L :y = ax + b that minimizes:

Error(L,P) = Y1 (yi — ax; — b)?.
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Problem Formulation
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DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj
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DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.
e Cis added each time as we are adding a new partition.

@ s[i] is optimum up to point i.

e Preprocessing error calc ¢;; can be done in O(n?).
e Number of cells: O(n).

e Work done for cell j: O(j).

e Overall: O(1?).
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RNA SECONDARY STRUCTURE

Problem Definition

e RNA tends to loop back on
itself, forming base pairs.

e RNA alphabet: {A,C,G,U}.
e Valid pairs: (A, U) or (C,G).
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RNA SECONDARY STRUCTURE

Problem Definition

e RNA tends to loop back on
itself, forming base pairs.

e RNA alphabet: {A,C,G,U}.

e Valid pairs: (A, U) or (C,G).

e Input: n length string:
B=0bib,...b,

@ Output: Determine a
secondary structure with
maximum number of base
pairs.
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RNA SECONDARY STRUCTURE

Secondary Structure

S={(i,j)}, where i <jand
i,je{l,...,n}, such that:
@ No Sharp turns: i < j —d for
some constant d.
@ All pairs are valid.
@ S is a matching: no base
appears more than once.
© Non-crossing: For any
(i,7),(i',j") € S, we cannot
havei<i'<j<j'
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FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m(j] is the maximum # of pairs among;:
bib .. .b;.
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Max SUBARRAY

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n]. )

Recursive Sub-problems

Dichotomy:

@ jis nota pair: m[j] =m[j - 1].
@ jis paired with t <j - d:
e Non-crossing: No pairs between [1,¢—1] and [t+1,j-1].
e Sub-problems:
@ Max pairsin [1,¢t-1]: m[t - 1].
@ Max pairs in [t +1,j — 1]: Restricted to by11bss2 . . . bj—1 which
current DP does not calculate.

.
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SecoND DynaMic PROGRAMMING ATTEMPT

2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs

among: b;bj1 ... b;. |

Recursive Sub-problems

Dichotomy:
@ jis not a pair: m[i][j] = m[i][j - 1].
@ jis paired withi<t<j-d

e v; as indicator: 1 if valid pair, 0 otherwise

e Non-crossing: No pairs between [i,t —1] and [t +1,j - 1].
e Sub-problems:

@ Max pairsin [i,t —1]: m[i][f-1].

® Maxpairsin [t+1,j - 1]: m[t+1][j - 1].

.

©@What is the Bellman equation?
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SecoND DynaMic PROGRAMMING ATTEMPT

2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bj,1 ... b;.

Recursive Sub-problems

Dichotomy:
@ jis not a pair: m[i][j] = m[i][j - 1].
@ jis paired withi<t<j-d

e v; as indicator: 1 if valid pair, 0 otherwise

A

e Non-crossing: No pairs between [i,f - 1] and [t +1,j - 1].
e Sub-problems:

@ Max pairsin [i,t —1]: m[i][t - 1].

® Maxpairsin [t+1,j - 1]: m[t+1][j - 1].

m[i][j] = max (m[i][j - 1], maxic-a{vy - (1 +m[i][t = 1] + m[t + 1][ - 1])})

A\
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