CS 577 - Dynamic Programming

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin — Madison

Fall 2024

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Dynamic PROGRAMMING

DyNnamMic PROGRAMMING

L

bl Al -
? grﬁi It is “programming” that is “dynamic”!
\4' 4"’" [y

Richard Bellman

1/42

¢ & e

9 L It is “programming” that is “dynamic”!
T W

Richard Bellman

Why “Dynamic Programming”?

Reasons for the name:

@ In the 1950s, “programming” was about “planning” rather
than coding.

@ “Dynamic” is exciting — Air Force director didn’t like
research and wanted pizzazz.

e “Dynamic” sounds better than “linear” (Re: rival Dantzig).
v

1/42

Richard Bellman

@ Your new favourite algorithmic technique.
e Extreme Divide and Conquer
@ Many sub-problems, but not quite brute-force.

@ Dynamic in that it calculates a bunch of solutions from the
“smallest” to the “largest”.

1/42

WEIGHTED INTERVAL
SCHEDULING

WEIGHTED INTERVAL SCHEDULING
Index

Value = 1 .

Value = 3 .

Value = 1 .

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}

2/42

WEIGHTED INTERVAL SCHEDULING

Index
) . Value = 1 .
Value = 3
2 I {
Value = 1
3 I |

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}

e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

2/42

WEIGHTED INTERVAL SCHEDULING

Index
) . Value = 1 .
Value = 3
2 I {
Value = 1
3 I |

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}

e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

@ Objective: Produce a compatible schedule S that has
maximum value.

2/42

WEIGHTED INTERVAL SCHEDULING
Index

Value = 1 .

Value = 3 .

Value = 1 .

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}
e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

@ Objective: Produce a compatible schedule S that has
maximum value.

e Compatible schedule S: Vr;,7 € S,f; <s; v f; <s;.

2/42

WEIGHTED INTERVAL SCHEDULING

Index
) . Value = 1 .
Value = 3
2 I {
Value = 1
3 I |

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}
e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

@ Objective: Produce a compatible schedule S that has
maximum value.

e Compatible schedule S: Vr;,7 € S,f; <s; v f; <s;.

@What is the value of the FF heuristic?

2/42

WEIGHTED INTERVAL SCHEDULING

Index
) . Value = 1 .
Value = 3
2 I {
Value = 1
3 I |

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}
e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

@ Objective: Produce a compatible schedule S that has
maximum value.

e Compatible schedule S: Vr;,7 € S,f; <s; v f; <s;.

@What is the value of the FF heuristic? 2.

2/42

WEIGHTED INTERVAL SCHEDULING

Index
) . Value = 1 .
Value = 3
2 I {
Value = 1
3 I |

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}
e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

@ Objective: Produce a compatible schedule S that has
maximum value.

e Compatible schedule S: Vr;,7 € S,f; <s; v f; <s;.

@What is the value of the FF heuristic? 2.
©What is the optimal value?

2/42

WEIGHTED INTERVAL SCHEDULING

Index
) . Value = 1 .
Value = 3
2 I {
Value = 1
3 I |

L.
>

Problem Definition

@ Requests: o = {r1,---, 7y}
e Arequestr; = (s;,fi,vi), where s; is the start time, f; is the
finish time, and v; is the value.

@ Objective: Produce a compatible schedule S that has
maximum value.

e Compatible schedule S: Vr;,7 € S,f; <s; v f; <s;.

@What is the value of the FF heuristic? 2.
©What is the optimal value? 3.

2/42

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).

V.

Proof of optimality.

A

3/42

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).
@ Find the optimal value in sorted o of first j items:

V.

Proof of optimality.

A

3/42

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).

@ Find the optimal value in sorted o of first j items:
@ Find largest i <j such thatf; <s;.

V.

Proof of optimality.

A

3/42

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).

@ Find the optimal value in sorted o of first j items:
@ Find largest i <j such thatf; <s;.

@ ort(j) = max(opr(j - 1),0p1(i) + ;) |

Proof of optimality.

A

3/42

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).

@ Find the optimal value in sorted o of first j items:
@ Find largest i <j such thatf; <s;.

@ ort(j) = max(opr(j - 1),0p1(i) + ;) |

Proof of optimality.

By strong induction on j.

A

3/42

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).

@ Find the optimal value in sorted o of first j items:
@ Find largest i <j such thatf; <s;.

@ ort(j) = max(opr(j - 1),0p1(i) + ;) |

Proof of optimality.

By strong induction on j.
Base cases: j = 0 or j = 1: Only 1 possible optimal solution.

A

3/42

Max SUBARRAY

RECURSIVE SOLUTION

Recursive Procedure

@ Assume o ordered by finish time (asc).

@ Find the optimal value in sorted o of first j items:
@ Find largest i <j such thatf; <s;.
@ ort(j) = max(opr(j - 1),0p1(i) + ;)

.

Proof of optimality.

By strong induction on j.
Base cases: j = 0 or j = 1: Only 1 possible optimal solution.
Inductive step:

e By ind hyp, we have opt for j — 1 and opt for i.

@ Sorting order assures the dichotomy that the last interval is
either in the solution or not.

o Take the max of whether or not a given interval is include%

V

3/42

WIS

CoNSIDER THE RECURSION

ort(j) = max(opr(j — 1), op1(i) + v;)

orr(6)

Index
L m=2
v, =4
2 —_—
vy =4
3 —_—
=7
4 Vg opr(1) opt(1)
vs =2
5 5
vg =1
6 [—

The tree of subproblems
grows very quickly.

ort(1)

4/42

CoNSIDER THE RECURSION

ort(j) = max(opr(j — 1), op1(i) + v;)

orr(6)

Index
vy =2 opr(1)
L e —|
2 v, =4
5 vy =4
vy =7
4 4
5 52 orr(2)
vg =1
6 A opt(1)

The tree of subproblems
grows very quickly.

ort(1)

©What is the asymptotic number of recursive calls with 7 jobs?

4/42

CoNSIDER THE RECURSION

ort(j) = max(opr(j — 1), op1(i) + v;)

orr(6)

Index
v=2 opT(1)
L e —|
2 v, =4
vy =4
3 ——
vy =7
4
5 52 orr(2)
6 —l orr()
The tree of subproblems
opr(1)
©What is the asymptotic number of recursive calls with 7 jobs?
0(2")

4/42

MEMOI1ZING THE RECURSION

Memoization

e Not a typo.
e Coined in 1989 by Donald Michie.

@ Derived from latin “memorandum”, meaning “to be
remembered”.

5/42

MEMOI1ZING THE RECURSION

Memoization

@ Not a typo.
e Coined in 1989 by Donald Michie.

@ Derived from latin “memorandum”, meaning “to be
remembered”.

Basic Technique

e Calculate once: store the value in array and retrieve for
future calls.

e Can be implemented recursively, but tends to be more
natural as an iterative process.

5/42

Dynamic PROGRAM SoLuTIiON

Algorithm: WeicHTINTDP

Sort o by finish time
m[0]:=0
forj=1tondo
Find index i
m(j] = max(m[j - 1], m[i] + v;)
end

6/42

Dynamic PROGRAM SoLuTIiON

Algorithm: WeicHTINTDP

Sort o by finish time _

m[0] = 0 e DP algorithms

forj=1ton do are formulaic.
Find index i e We understand
m[j] = max(m[j - 1], m[i] + v;) how loops work.

end e NO Pseudocode. |

6/42

Dynamic PROGRAM SoLuTIiON

Algorithm: WeicHTINTDP

Sort o by finish time .

m[0] := 0 e DP algorithms

forj=1tondo are formulaic.
Find index i @ We understand
m(j] = max(m[j — 1], m[i] + vj) how loops work.

end e NO Pseudocode. |

@ Definitions required for algorithm to work

@ Description of matrix

@ Bellman Equation

@ Location of solution, order to populate the matrix

6/42

Dynamic PROGRAM SoLuTIiON

Definitions required for algorithm to work

6/42

Dynamic PROGRAM SoLuTIiON

Definitions required for algorithm to work

@ o sorted by finish time, ascending order.

@ For a given job at index j, i; < is the largest index such that
fij <85

6/42

Dynamic PROGRAM SOLUTION
Definitions required for algorithm to work

@ o sorted by finish time, ascending order.

@ For a given job at index j, i; < is the largest index such that
fij <85
o

Description of matrix
v

6/42

Dynamic PROGRAM SOLUTION
Definitions required for algorithm to work

@ o sorted by finish time, ascending order.

@ For a given job at index j, i; < is the largest index such that
fij <85

Description of matrix

<

e 1D array M, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted o.
Initialize M[1] = v;.

A\

6/42

Dynamic PROGRAM SOLUTION
Definitions required for algorithm to work
@ o sorted by finish time, ascending order.

@ For a given job at index j, i; < is the largest index such that
fij <85

v

Description of matrix

e 1D array M, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted o.
Initialize M[1] = v;.

A\

Bellman Equation

6/42

Dynamic PROGRAM SOLUTION
Definitions required for algorithm to work
@ o sorted by finish time, ascending order.
@ For a given job at index j, i; < is the largest index such that

fij <85

5\

Description of matrix

e 1D array M, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted o.
Initialize M[1] = v;.

A\

Bellman Equation
o M[j] = max{M[j - 1], M[j;] + v;}

6/42

Dynamic PROGRAM SOLUTION
Definitions required for algorithm to work
@ o sorted by finish time, ascending order.
@ For a given job at index j, i; < is the largest index such that

fij <85

5\

Description of matrix

e 1D array M, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted o.
Initialize M[1] = v;.

A\

Bellman Equation
o M[j] = max{M[j - 1], M[j;] + v;}

Solution, order to populate

6/42

MaXx SUBARRAY

Dynamic PROGRAM SOLUTION
Definitions required for algorithm to work

@ o sorted by finish time, ascending order.
@ For a given job at index j, i; < is the largest index such that

fij <85

Description of matrix

5\

e 1D array M, where M[j] is the maximum value of a
compatible schedule for the first j items in sorted o.
Initialize M[1] = v;.

A\

Bellman Equation
o M[j] = max{M[j - 1], M[j;] + v;}

Solution, order to populate

@ The maximum value of a compatible schedule for the n
jobs is found at M[n]. Populate from 2 to n.

6/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

@ For a given job at index j, i < j is the largest index such that
fi< 5;.
@ Bellman Equation: m[j] = max(m[j - 1], m[i] + v})

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi< 5j.

e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

v

A

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi< 5j.

e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:

A

A\

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi< 5j.

e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
e Sorting jobs: O(nlogn).

A

A\

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi< 5j.

e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
e Sorting jobs: O(nlogn).
e Populate the matrix:

A

A\

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi< 5j.

e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:

e Sorting jobs: O(nlogn).
e Populate the matrix:

o Number of cells:

A

A\

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi< 5j.

e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:

e Sorting jobs: O(nlogn).
e Populate the matrix:

e Number of cells: O(#n)

A

A\

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi <s).
e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
e Sorting jobs: O(nlogn).
e Populate the matrix:

e Number of cells: O(#n)
e Cost per cell:

A

A\

7/42

Max SUBARRAY

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi <s).
e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
e Sorting jobs: O(nlogn).
e Populate the matrix:

e Number of cells: O(#n)
e Cost per cell: Finding i: O(n) linear search, O(logn) binary
search

A

A\

7/42

MaXx SUBARRAY SUBSET

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi <s).
e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
e Sorting jobs: O(nlogn).
e Populate the matrix:

e Number of cells: O(#n)
e Cost per cell: Finding i: O(n) linear search, O(logn) binary
search

Overall:

A

A\

7/42

MaXx SUBARRAY SUBSET

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

e For a given job at index j, i < j is the largest index such that
fi <s).
e Bellman Equation: m[j] = max(m[j - 1], m[i] + v;)

@ Preprocessing:
e Sorting jobs: O(nlogn).
e Populate the matrix:

e Number of cells: O(#n)
e Cost per cell: Finding i: O(n) linear search, O(logn) binary
search

A

Overall: O(n?) linear search, O(nlogn) binary search

A\

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

@ For a given job at index j, i < j is the largest index such that
fi< 5;.

@ Bellman Equation: m[j] = max(m[j - 1], m[i] + v})

What about the schedule S?

.

.

7/42

ANALYZE THE ALGORITHM

@ o sorted by finish time, ascending order.

@ For a given job at index j, i < j is the largest index such that
fi< 5;.

@ Bellman Equation: m[j] = max(m[j - 1], m[i] + v})

.

What about the schedule S?
Trace back from the optimal value:

@ Job j is part of the optimal schedule from 1 to j iff
vj +opr(i) > opr(j - 1)

.

7/42

Basic DP OuTLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.

8/42

Basic DP OuTLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.

Algorithm Guidelines

8/42

Basic DP OuTLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.

Algorithm Guidelines

© There are only a polynomial number of subproblems.

8/42

Basic DP OuTLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.

Algorithm Guidelines

© There are only a polynomial number of subproblems.

@ The solution to the larger problem can be efficiently
calculated from the subproblems.

8/42

Basic DP OuTLINE

Algorithm Template

@ Preprocessing of data
e Populate the matrix:

o Iterate over the cells in the correct order.
e Understand the work done per cell.

Algorithm Guidelines

© There are only a polynomial number of subproblems.
@ The solution to the larger problem can be efficiently
calculated from the subproblems.

@ Natural ordering of the subproblems from “smallest” to
“largest”.

8/42

LONGEST INCREASING
SUBSEQUENCE

LoONGEST INCREASING SUBSEQUENCE

e Given an integer array A[1..n].

e Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[iy] < A[ik,1] for all k.

9/42

LoONGEST INCREASING SUBSEQUENCE

e Given an integer array A[1..n].

e Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[iy] < A[ik,1] for all k.

.

Subsequence

e For a sequence A, a subsequence S is a subset of A that
maintains the same relative order.

.

9/42

LoONGEST INCREASING SUBSEQUENCE

e Given an integer array A[1..n].

e Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[iy] < A[ik,1] for all k.

A

Subsequence

e For a sequence A, a subsequence S is a subset of A that
maintains the same relative order.
e Ex: Ilike watching the puddles gather rain.

e puddles: subsequence, substring (contiguous)
e late train: subsequence, not substring (not contiguous)

9/42

LoONGEST INCREASING SUBSEQUENCE

e Given an integer array A[1..n].

e Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[iy] < A[ik,1] for all k.

A

Subsequence

e For a sequence A, a subsequence S is a subset of A that
maintains the same relative order.
e Ex: Ilike watching the puddles gather rain.

e puddles: subsequence, substring (contiguous)
e late train: subsequence, not substring (not contiguous)

@For an array of length n, how many subsequences?

9/42

LoONGEST INCREASING SUBSEQUENCE

e Given an integer array A[1..n].

e Find the longest increasing subsequence. That is, let i be a
sequence of indexes, we have A[iy] < A[ik,1] for all k.

A

Subsequence

e For a sequence A, a subsequence S is a subset of A that
maintains the same relative order.
e Ex: Ilike watching the puddles gather rain.

e puddles: subsequence, substring (contiguous)
e late train: subsequence, not substring (not contiguous)

©For an array of length 1, how many subsequences? 2"

9/42

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
Exo: Complete the algorithm

10/42

Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k.

if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])

else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}

end

10/42

Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])
else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}
end

©For an array A[1..n], how would you find the length of the
LIS using the LIS(-) algorithm?

10/42

Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])
else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}
end

©For an array A[1..n], how would you find the length of the
LIS using the LIS(-) algorithm? LIS(-o0, A[1..1])

10/42

Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k.

if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])

else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}

end

@Run time of the algorithm for a length n array?

10/42

Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] <k then
| return LIS(k, A[2..n])
else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}
end

@Run time of the algorithm for a length n array? O(2")

10/42

Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0

else if A[1] <k then

| return LIS(k, A[2..n])

else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}

end

@Run time of the algorithm for a length n array? O(2")
©How many distinct recursive calls for a length n array?

10/42

Max SUBARRAY

RECURSIVE APPROACH

Algorithm: LIS

Input :Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0

else if A[1] <k then

| return LIS(k, A[2..n])

else
skip :=LIS(k, A[2..n])
take :=LIS(A[1],A[2..n]) + 1
return max{skip, take}

end

@Run time of the algorithm for a length n array? O(2")
©How many distinct recursive calls for a length 1 array? O(n?)

10/42

LIS

Dynamic ProGraM FOR LIS

Description of matrix

@Number of dimensions of array?

11/42

LIS

Dynamic ProGraM FOR LIS

Description of matrix

@Number of dimensions of array? 2

11/42

Dynamic ProGraM FOR LIS

Description of matrix

2D array L, where L[i,] is the maximum LIS of A[j..n] with
every item > A[i],i <j.

11/42

Dynamic ProGraM FOR LIS

Description of matrix

2D array L, where L[i,] is the maximum LIS of A[j..n] with
every item > A[i],i <j.

4

Bellman Equation

0,ifj>n
L[i,j]1 =1 L[i,j +1],if A[i] > A[j]
max{L[i,j+1],L[j,j+ 1] + 1}, otherwise

.

11/42

Dynamic ProGraM FOR LIS

Description of matrix

2D array L, where L[i,] is the maximum LIS of A[j..n] with
every item > A[i],i <j.

.

Bellman Equation

0,ifj>n
L[i,j]={L[i,j+1],if A[i] = A[f]
max{L[i,j+1],L[j,j+ 1] + 1}, otherwise

\

Solution and populating L
@ Solution in L[0][1]; add A[0] = —oco.
@ Populate j fromnto1;ifrom0Otoj-1orj-1toO0.

.

11/42

Dynamic ProGraM FOR LIS

Description of matrix

2D array L, where L[i,]] is the maximum LIS of A[j..n] with
every item > A[i],i <j.

\

Bellman Equation

0,ifj>n
L[i,j]={L[i,j+1],if A[i] > A[j]
max{L[i,j+1],L[j,j+1] + 1}, otherwise

A

Solution and populating L
@ Solution in L[0][1]; add A[0] = —oo.
@ Populate j fromnto1;ifrom0Otoj-1orj-1toO0.

e @Run time:

A\

11/42

Dynamic ProGraM FOR LIS

Description of matrix

2D array L, where L[i,] is the maximum LIS of A[j..n] with
every item > A[i],i <j.

.

Bellman Equation

0,ifj>n
L[i,j]={L[i,j+1],if A[i] = A[f]
max{L[i,j+1],L[j,j+ 1] + 1}, otherwise

\

Solution and populating L
@ Solution in L[0][1]; add A[0] = —oco.
@ Populate j fromnto1;ifrom0Otoj-1orj-1toO0.
@ Run time: O(n?)

.

11/42

DynaMic PROGRAMMING FOR
(GAMES

GAMEs

Dynamic PROGRAMMING FOR (GAMES

@ Some number of players (1 to many).
@ Set of rules with some objective.

e Huge domain, started by Von Neumann, that spans many
fields such as Economics, Math, Biology, and Computer
Science.

12/42

GAMEs

Dynamic PROGRAMMING FOR (GAMES

@ Some number of players (1 to many).
@ Set of rules with some objective.

e Huge domain, started by Von Neumann, that spans many
fields such as Economics, Math, Biology, and Computer
Science.

In many games, DP is a natural paradigm for an optimal
strategy.

12/42

GAMEs

Coins IN A LINE

Two players:

)
e Alice Bob
Q (Player A) (Player B)

-
<

13/42

GAMEs MAX SUBARRAY

Coins IN A LINE

Two players:

)
L2 Alice Bob
Q (Player A) (Player B)

24
<

e n (even) coins in a line; each coin has a value.

e Starting with Alice, each player will pick a coin from the
head or the tail.

13/42

GAMEs MAX SUBARRAY

Coins IN A LINE

Two players:

)
L2 Alice Bob
Q (Player A) (Player B)

24
<

e n (even) coins in a line; each coin has a value.

e Starting with Alice, each player will pick a coin from the
head or the tail.

e Winner: Player with the max value at the end; winning
player keeps the coins.

13/42

GAMEs

GREEDY APPROACHES

Largest Coin

©Give a counter-example.

14/42

GAMEs

GREEDY APPROACHES

Largest Coin

[1,3,6,3]

A: 3; [1,3,6]
B: 6; [1,3]
A: 6; [1]

B: 7; [

14/42

GAMEs

GREEDY APPROACHES

Largest Coin

Even or Odd

1,3,6,3,1,3]
: 3; [1,3,6,3,1]
1; [1,3,6,3]
6; [1,3,6]
7; [1,3]
9; [1]

8

[
A
B:
A:
B
A
B: 8; [I

A

14/42

GAMEs

GREEDY APPROACHES

Largest Coin

Even or Odd

1,3,6,3,1,3]

: 3; [1,3,6,3,1]
1; [1,3,6,3]
6; [1,3,6]
7; [1,3]
9; [1]
8; [

L
A
B:
A:
B
A
B:
@ Alice can always win.

A

14/42

GAMEs

GREEDY APPROACHES

Largest Coin

Even or Odd

1,3,6,3,1,3]

: 3; [1,3,6,3,1]
1; [1,3,6,3]
6; [1,3,6]
7; [1,3]
9; [1]
8; [

L
A
B:
A:
B
A
B:
@ Alice can always win.

@ But are we optimal?

A

14/42

GAMEs MAX SUBARRAY

GREEDY APPROACHES

Largest Coin
Even or Odd

[1,3,6,3,1,3] [1,3,6,3,1,3]
A: 3; [1,3,6,3,1] A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3] B: 1; [3,6,3,1]
A: 6; [1,3,6] A: 4; [3,6,3]
B: 7; [1,3] B: 4; [6,3]
A: 9; [1] A: 10; [3]
B: 8; [] B: 7; [

@ Alice can always win.

@ But are we optimal? No

A

14/42

GAMEs

NATturaL DicHOTOMY

@What is the natural dichotomy?

15/42

GAMEs

NATturaL DicHOTOMY

Head or Tail?
e Two players: Assume that Bob will play optimally.

15/42

GAMEs

NATturaL DicHOTOMY

Head or Tail?
e Two players: Assume that Bob will play optimally.
@ For Alice’s kth turn:

e Coin array: C[i..f]
e max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j —1])}

15/42

NATturaL DicHOTOMY

Head or Tail?
e Two players: Assume that Bob will play optimally.
e For Alice’s kth turn:
e Coin array: C[i..f]
e max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j —1])}
@ BobOpt(c[i..j]) :=
min{AliceOpt(c[i + 1..j]), AliceOpt(c[i..j — 1])}

15/42

GAMEs MAX SUBARRAY SUBSET

NATturaL DicHOTOMY

Head or Tail?
e Two players: Assume that Bob will play optimally.
e For Alice’s kth turn:
e Coin array: C[i..f]
e max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j —1])}
@ BobOpt(c[i..j]) :=
min{AliceOpt(c[i + 1..j]), AliceOpt(c[i..j — 1])}

@How many dimensions for DP array?

15/42

GAMEs MAX SUBARRAY SUBSET

NATturaL DicHOTOMY

Head or Tail?
e Two players: Assume that Bob will play optimally.
e For Alice’s kth turn:
e Coin array: C[i..f]
e max{c[i] + BobOpt(c[i + 1..j]), c[j] + BobOpt(c[i..j —1])}
@ BobOpt(c[i..j]) :=
min{AliceOpt(c[i + 1..j]), AliceOpt(c[i..j — 1])}

@How many dimensions for DP array? 2

15/42

GAMEs MAX SUBARRAY

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

o 16/42

GAMEs MAX SUBARRAY

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j]+ min{M[i + 1,7 = 1], M[i,j - 2]}}

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.

@ Solution:

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]
@ Runtime:

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]
e Runtime: O(n?)

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]
e Runtime: O(n?)

@ Proof of correctness:

o 16/42

GAMEs MAX SUBARRAY SUBSET

HeaDp or TaiL DP

DP Description

e 2D array M:

e M]Ji,j] is the maximum value possible for Alice when
choosing from c[i..j], assuming Bob plays optimally.

@ Bellman Equation:
M[i,j] = max{c[i] + min{M[i +2,j],M[i+1,j - 1]},
c[j] + min{M[i +1,j - 1],M[i,j - 2]}}
e M[i,i] = c[i] for all i.
e M[i,j] = max{c[i],c[j]} fori=j—1.
e Populate i fromn-2to 1;jfromnto3fori<j-1.
@ Solution: M[1,n]
e Runtime: O(1?)
@ Proof of correctness: Strong induction on the cell
population order.

o 16/42

MAX SUBARRAY

MaAx SUBARRAY

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous
subarray of A of maximum sum.

17/42

MaAx SUBARRAY SUBSET

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous

subarray of A of maximum sum.
v

Exercise — Teams of 3 or so

e Solve the problem in ©(n?).

@ Solve the problem in O(nlogn).

@ Prove correctness and complexity.

A

17/42

MaAx SUBARRAY SUBSET

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARRAYS

Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
fori:=1tolen(A) do

forj:=itolen(A) do
if sum(A[i..j]) > sum(M) then
| M= Ali.j]
end

end
end
return M

18/42

MaAx SUBARRAY SUBSET

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARR

Input : Array A of n 'm.ts. @ Correct: Checks all
Output: Max subarray in A. possible contiguous

Let M be an empty array subarrays.
fori:=1tolen(A) do

forj:=itolen(A) do
if sum(A[i..j]) > sum(M
| M= Ali.j]
end

end
end
return M

MaAx SUBARRAY

Part 1: GIVE A ©(11?) SOLUTION.

Algorithm: CHECKALLSUBARR

Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
fori:=1tolen(A) do
forj:=itolen(A) do
if sum(A[i..j]) > sum(M
| M= Ali.j]
end

end
end
return M

@ Correct: Checks all
possible contiguous

e Complexity:

e Re-calculating the sum
will make it O(n®). Key
is to calculate the sum
as you iterate.

e For each i, check
n—i+1 ends. Overall:

MaAx SUBARRAY SUBSET

Part 2: Give AN O(nlog 1) SOLUTION.

Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=MI1DMAXSUBARRAY (A)

return Array with max sum of {A;, 4y, M}

19/42

MaAx SUBARRAY SUBSET

Part 2: Give AN O(nlog 1) SOLUTION.
Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |[A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=MI1DMAXSUBARRAY (A)

return Array with max sum of {A;, 4y, M}

Algorithm: MIDMAXSUBARRAY

Input : Array A of n ints.

Output: Max subarray that crosses midpoint A.

m := mid-point of A

L := max subarray in A[i,m-1]fori=m-1-1

R := max subarray in A[m,j] forj=m —»>n

return LUR // subarray formed by combining L and K.

19/42

MaAx SUBARRAY SUBSET

Part 2: Give AN O(nlog 1) SOLUTION.

Algorithm: MaxSuBARRAY

Input : Array A of n ints.

Output: Max subarray in A.

if |A| = 1 then return A[1]

A1 := MaxSuBarray (Front-half of A)

Aj := MaxSuBarray (Back-half of A)

M :=M1DMAXSUBARRAY (A)

return Array with max sum of {Ay, A, M}

e Correctness: By induction, A; and A, are max for subarray
and M is max mid-crossing array.

e Complexity: Same recurrence as MERGESORT.

19/42

MaAx SUBARRAY SUBSET

MAXx SUBARRAY

Given an array A of integers, find the (non-empty) contiguous

subarray of A of maximum sum.
v

Exercise — Teams of 3 or so

e Solve the problem in ©(n?).

@ Solve the problem in O(nlogn).

@ Prove correctness and complexity.

e With dynamic programming, solve the problem in O(n)!

20/42

MaAx SUBARRAY SUBSET

Part 3: Give AN O(71) SOLUTION.

e 1D array s, where s[i] contains the value of the max
subarray ending ati. (O(n) cells)

@ Bellman equation: s[i] = max(s[i — 1]+ A[i],A[i]). (O(1)
time)

@ Solutions is: max;{s[j]}. (O(n) time)

21/42

MaAx SUBARRAY SUBSET

Part 3: Give AN O(71) SOLUTION.

e 1D array s, where s[i] contains the value of the max
subarray ending ati. (O(n) cells)

@ Bellman equation: s[i] = max(s[i — 1]+ A[i],A[i]). (O(1)
time)

@ Solutions is: max;{s[j]}. (O(n) time)

But we need the subarray not the value!

A

/ 21/42

MaAx SUBARRAY SUBSET

Part 3: Give AN O(71) SOLUTION.

e 1D array s, where s[i] contains the value of the max
subarray ending ati. (O(n) cells)

@ Bellman equation: s[i] = max(s[i — 1]+ A[i],A[i]). (O(1)
time)

@ Solutions is: max;{s[j]}. (O(n) time)

A

But we need the subarray not the value!

e Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i — 1] if s[i—1] +a[i] > a[i]
i , otherwise

start[i] = {

/ 21/42

MaAx SUBARRAY SUBSET

Part 3: Give AN O(71) SOLUTION.

e 1D array s, where s[i] contains the value of the max
subarray ending ati. (O(n) cells)

@ Bellman equation: s[i] = max(s[i — 1]+ A[i],A[i]). (O(1)
time)

@ Solutions is: max;{s[j]}. (O(n) time)

A

But we need the subarray not the value!

e Use a parallel array that memoizes the starting index of the
subarray ending at i:

start[i — 1] if s[i—1] +a[i] > a[i]
i , otherwise

start[i] = {

@ Or, trace back from max value at index j until s[i] = A[7].

/ 21/42

SUBSET AND KNAPSACK

SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.

22/42

SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

22/42

SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

22/42

SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

22/42

SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

Greedy Heuristics

22/42

SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

Greedy Heuristics

@ Decreasing weights:

22/42

MAX SUBARRAY SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

Greedy Heuristics
e Decreasing weights: {W/2 + 1, W/2, W/2}

22/42

MAX SUBARRAY SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

Greedy Heuristics
e Decreasing weights: {W/2 + 1, W/2, W/2}
@ Increasing weights:

22/42

MAX SUBARRAY SUBSET

SuBSET PROBLEM

Problem Definition
e A single machine that we can use for time W.
e Asetofjobs: 1,2,...,n.

e Eachjob has a run time: wy,w», ..., wy.

e What is the subset S of jobs to run that maximizes
YiesWi < W?

Greedy Heuristics
e Decreasing weights: {W/2 + 1, W/2, W/2}
e Increasing weights: {1, W/2, W/2}

22/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

1D Approach

e ifn¢S, thenv[n] =v[n-1]

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

1D Approach

e ifn¢S, thenv[n] =v[n-1]
e ifneS, thenv[n] ="

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

1D Approach

e ifn¢S, thenv[n] =v[n-1]
e ifneS, thenv[n] =7
e Accepting n does automatically exclude other items.

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

1D Approach
e ifn¢S, thenv[n] =v[n-1]
e ifneS, thenv[n] =7
e Accepting n does automatically exclude other items.

A\

Need to consider more

To solve v[n], we need to consider:

.

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

1D Approach
e ifn¢S, thenv[n] =v[n-1]
e ifneS, thenv[n] =7
e Accepting n does automatically exclude other items.

A\

Need to consider more

To solve v[n], we need to consider:

@ the best solution with n — 1 previous items restricted by W,
and

.

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

1D Approach
e ifn¢S, thenv[n] =v[n-1]
e ifneS, thenv[n] =7
e Accepting n does automatically exclude other items.

A\

Need to consider more

To solve v[n], we need to consider:

@ the best solution with n — 1 previous items restricted by W,
and

@ the best solution with n — 1 previous items restricted by
W - wn

\

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:
e i: Item indices from O to n.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to n.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to n.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:

v[i,w] = max(v[i - 1,w], %z - (v[i - 1,w —w;] +w;))

23/42

SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to n.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
U[i, w] = max(v[i -1, W],Xj’w : (U[l -Lw- wi] + wl))

e v[0,w]:=0 for all w and v[7,0] := 0 for all i

23/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to n.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
U[i, w] = max(v[i -1, W],Xj’w : (U[l -Lw- wi] + wl))

e v[0,w]:=0 for all w and v[7,0] := 0 for all i

e Solution value: v[n, W].

23/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from 0 to n.
o w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
U[ia w] = rnax(v[i -1, w]7xi,w : ('U[l -Lw- wi] + wl))

e v[0,w]:= 0 for all w and v[7,0] := 0 for all i

@ Solution value: v[n, W].

®Running time to populate the matrix:

23/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from 0 to n.
o w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
U[ia w] = rnax(v[i -1, w]7xi,w : ('U[l -Lw- wi] + wl))

e v[0,w]:= 0 for all w and v[7,0] := 0 for all i

@ Solution value: v[n, W].

®Running time to populate the matrix: O(nW)

23/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from 0 to n.
o w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
U[ia w] = rnax(v[i -1, w]7xi,w : ('U[l -Lw- wi] + wl))

e v[0,w]:= 0 for all w and v[7,0] := 0 for all i

@ Solution value: v[n, W].

®Running time to populate the matrix: O(nW)
@Is this polynomial?

23/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from 0 to n.
o w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
U[ia w] = rnax(v[i -1, w]7xi,w : ('U[l -Lw- wi] + wl))

e v[0,w]:= 0 for all w and v[7,0] := 0 for all i

@ Solution value: v[n, W].

®Running time to populate the matrix: O(nW)
@I this polynomial? No, pseudo-polynomial because of W
which is unbounded.

23/42

SUBSET

SUBSET VISUALIZATION

Matrix Visualization:

n|o
0
0
0
il 0 7
i-1/0 — !
0
0
0
210
10
ojoj|o0 o|jo|jojofojofojojo|0|0]|O
0 w-w; w

24/42

SUBSET

SUBSET VISUALIZATION
Example Run:

W=¢6ltemsw, =2, w, = 2,wy; =3

S = W

gfojofojofojo
01 2 3 45 6

Initial values

24/42

SUBSET

SUBSET VISUALIZATION
Example Run:

W=¢6ltemsw, =2, w, = 2,wy; =3

o = W

3
2
Mlofof2]2]2|2]2
ojlojo|olofo]o ojofofolofofofo

01 2 3 45 6 012 3 456

Initial values Filling in values fori = 1

24/42

SUBSET

SUBSET VISUALIZATION
Example Run:

W=¢6ltemsw, =2, w, = 2,wy; =3

3 3

2 2

1 Mlofof2]2]2|2]2

0 o(ofojoj|o ojojojo|jofojojo
1 2 3 4 5 6 01 2 3 4 5 6
Initial values Filling in values fori = 1

3

@|ofo|2]|2]a|4a|4

1{ojo0|2]2(2|2]|2

ojojofojo|0f0]|0O

01 2 3 4 5 6

Filling in values fori = 2
24/42

SUBSET

SUBSET VISUALIZATION
Example Run:

W=¢6ltemsw, =2, w, = 2,wy; =3

3 3

2 2
1 Mlofof2]2]2|2]2
0 o|jojojofo 0|0j0j0j0O|0O|0]|0O
1 2 3 4 5 6 01 2 3 4 5 6
Initial values Filling in values fori = 1
3 ®ofo|2|3[4a|5]|5
@ 010122444 2/0]0(2(2(4|4|4
1j0j0(2(2]2(2]|2 1jo0jo0f2|2]2(2]|2
o|ojofojo0j0|0]|O o|o|ofojofof|o]0O
01 2 3 45 6 01 2 3 4 5 6

Filling in values fori = 2 Filling in values fori = 3
24/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to 7.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.
@ Bellman Equation:

v[i,w] = max(v[i - 1,w], % - (v[i - 1,w - w;] +w;))

e v[0,w]:=0 for all w and v[i,0] := 0 for all i

@ Solution value: v[n, W].

How can we recover the subset itself?

25/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to 7.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.
@ Bellman Equation:

v[i,w] = max(v[i - 1,w], % - (v[i - 1,w - w;] +w;))

e v[0,w]:=0 for all w and v[i,0] := 0 for all i

@ Solution value: v[n, W].

How can we recover the subset itself?
@Running time of recovery of subset:

25/42

MAX SUBARRAY SUBSET

DyNnaMic PROGRAMMING APPROACH

2D Approach

o 2D Matrix v:

e i: Item indices from O to 7.
e w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum sum < w.

@ Indicator: x; := 0 if w; > w and 1 otherwise.
@ Bellman Equation:

v[i,w] = max(v[i - 1,w], % - (v[i - 1,w - w;] +w;))

e v[0,w]:=0 for all w and v[i,0] := 0 for all i

@ Solution value: v[n, W].

How can we recover the subset itself?
@Running time of recovery of subset: O(1)

25/42

SUBSET

Problem Definition

@ You are a thief with a knapsack that can carry W weight of
goods.

26/42

SUBSET

Problem Definition

@ You are a thief with a knapsack that can carry W weight of
goods.

o Asetofitems: 1,2,...,n.

26/42

SUBSET

Problem Definition

@ You are a thief with a knapsack that can carry W weight of
goods.

o Asetofitems: 1,2,...,n.
o Each item has a weight: wy,w», ..., w,.

o Each item has a value: v1,0y,...,0y,.

26/42

SUBSET

Problem Definition

@ You are a thief with a knapsack that can carry W weight of
goods.

o Asetofitems: 1,2,...,n.
o Each item has a weight: wy,w», ..., w,.
o Each item has a value: v1,0y,...,0y,.

@ What is the subset S of items to steal that maximizes ;.5 v;
with the constraint that } ;. w; < W?

26/42

SUBSET

Exercise: Sowve tHis witH DP in O(nW).

27/42

SUBSET

Exercise: Sowve tHis witH DP in O(nW).

o 2D Matrix:

e i: Item indices from 0 to n.

o w: Max weight from 0 to W.

e v[i,w] is the subset of the first i items of maximum total
value with a sum of weights < w.

27/42

SUBSET

Exercise: Sowve tHis witH DP in O(nW).

o 2D Matrix:
e i: Item indices from 0 to 7.
o w: Max weight from 0 to W.
e v[i,w] is the subset of the first i items of maximum total
value with a sum of weights < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.

27/42

MAX SUBARRAY SUBSET

Exercise: Sowve tHis witH DP in O(nW).

o 2D Matrix:

e i: Item indices from 0 to n.

o w: Max weight from 0 to W.

e v[i,w] is the subset of the first i items of maximum total
value with a sum of weights < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:

vli,w] = max(v[i-1,w], X (v[i - 1,w - w;] +v;))

27/42

MAX SUBARRAY SUBSET

Exercise: Sowve tHis witH DP in O(nW).

o 2D Matrix:

e i: Item indices from 0 to n.

o w: Max weight from 0 to W.

e v[i,w] is the subset of the first i items of maximum total
value with a sum of weights < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.

@ Bellman Equation:
vli,w] = max(v[i-1,w], X (v[i - 1,w - w;] +v;))

e v[0,w]:=0 for all w and v[i,0] := 0 for all i

27/42

MAX SUBARRAY SUBSET

Exercise: Sowve tHis witH DP in O(nW).

o 2D Matrix:

e i: Item indices from 0 to n.

o w: Max weight from 0 to W.

e v[i,w] is the subset of the first i items of maximum total
value with a sum of weights < w.

e Indicator: x; := 0 if w; > w and 1 otherwise.
@ Bellman Equation:

vli,w] = max(v[i-1,w], X (v[i - 1,w - w;] +v;))

e v[0,w]:=0 for all w and v[i,0] := 0 for all i

@ Solution value: v[n, W].

27/42

Epit DIisTANCE

EpiT DisTANCE

Minimum number of letter
e insertions: adding a letter,
@ deletions: removing a letter,
@ substitutions: replacing a letter
to change string A[1..m] to string B[1..n].

28/42

EpiT DisTANCE

Minimum number of letter
e insertions: adding a letter,
@ deletions: removing a letter,

@ substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY — THUESDAY — THURSDAY

28/42

EpiT DisTANCE

Minimum number of letter
e insertions: adding a letter,
@ deletions: removing a letter,

@ substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY — THUESDAY — THURSDAY

Or, align and count mismatched letters

T UESDAY
THURSDAY

28/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(i,;) =

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(i,;) =

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(i,;) =

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(7,j) = Edit(i - 1,/) + 1.

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(7,j) = Edit(i - 1,/) + 1.
e Substitution: Edit(i,) =

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(7,j) = Edit(i - 1,/) + 1.
e Substitution: Edit(i,) =

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(7,j) = Edit(i - 1,/) + 1.
e Substitution: Edit(,f) = Edit(i - 1,7 - 1) + 1.

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(7,j) = Edit(i - 1,/) + 1.
e Substitution: Edit(i,) = Edit(i - 1,7 — 1) + A[i] # B[/]

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.

e What is the edit distance for A[1..i] and B[1..j]:
Insertion: Edit(i,j) = Edit(i,j — 1) + 1.

Deletion: Edit(i,j) = Edit(i — 1,7) + 1.

Substitution: Edit(7, ;) = Edit(i - 1,j - 1) + A[i] # B[]
i = 0: Edit(i,) =

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.

e What is the edit distance for A[1..i] and B[1..j]:
Insertion: Edit(i,j) = Edit(i,j — 1) + 1.

Deletion: Edit(i,j) = Edit(i — 1,7) + 1.

Substitution: Edit(7, ;) = Edit(i - 1,j - 1) + A[i] # B[]
i = 0: Edit(i,) =

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.

e What is the edit distance for A[1..i] and B[1..j]:
Insertion: Edit(i,j) = Edit(i,j — 1) + 1.

Deletion: Edit(i,j) = Edit(i — 1,7) + 1.

Substitution: Edit(7, ;) = Edit(i - 1,j - 1) + A[i] # B[]
i = 0: Edit(i,j) = .

29/42

RECURSIVE APPROACH

Smaller Subproblems

e Let A[1..m] and B[1..n] be the 2 input strings.
e What is the edit distance for A[1..i] and B[1..j]:
e Insertion: Edit(7,j) = Edit(i,j - 1) + 1.
e Deletion: Edit(7,j) = Edit(i - 1,/) + 1.
e Substitution: Edit(i,) = Edit(i - 1,7 — 1) + A[i] # B[/]
o i=0: Edit(i,]) = j.
o j=0: Edit(i,j) = i.

29/42

Epir

DyNamic PRoGraM FOR EDiT DisTANCE

Description of matrix

@Number of dimensions of array?

30/42

Epir

DyNamic PRoGraM FOR EDiT DisTANCE

Description of matrix

@Number of dimensions of array? 2

30/42

DyNamic PRoGraM FOR EDiT DisTANCE

Description of matrix

2D array E, where E[i,f] is the edit distance for A[1..i] and
B[1..j].

30/42

DyNamic PRoGraM FOR EDiT DisTANCE

Description of matrix

2D array E, where E[i,f] is the edit distance for A[1..i] and
B[1..j].

Bellman Equation

jifi=0
min{E[i,j - 1]+ 1,E[i-1,j] +1,
E[i-1,j-1]+ A[i] # B[j]}, otherwise

30/42

2D array E, where E[i,f] is the edit distance for A[1..i] and
B[1..j].

jifi=0
min{E[i,j - 1]+ 1,E[i-1,j] +1,
E[i-1,j-1]+ A[i] # B[j]}, otherwise

Solution and populating L

@ Solution in

e Set E[0,j] =J; E[i,0] = i; populate from 1 to n, 1 to m.

30/42

2D array E, where E[i,] is the edit distance for A[1..i] and
B[1.,].

jifi=0
min{E[i,j-1]+1,E[i-1,j] +1,
E[i-1,j-1]+A[i] # B[j]}, otherwise

Solution and populating L

@ Solution in E[m, n]

e Set E[0,/] =J; E[i,0] = i; populate from 1 to n, 1 to m.

o @Run time:

30/42

2D array E, where E[i,] is the edit distance for A[1..i] and
B[1.].

j,ifi=0
min{E[i,j - 1]+ 1,E[i-1,j] +1,
E[i-1,j-1]+A[i] # B[j]}, otherwise

Solution and populating L

@ Solution in E[m, n]

e Set E[0,j] =J; E[i,0] = i; populate from 1 to 1, 1 to m.

@ Run time: O(mn)

30/42

min{E[i,j - 1]+ 1,E[i - 1,j]+ 1,
E[i-1,j-1]+A[i] # B[j]}, otherwise

How much space do we need?

e Notice that E[][j] depends on E[i,j - 1], E[i - 1,], and
E[i-1,j-1].

@ We only need previous and current row of matrix for
calculations.

31/42

SEQUENCE ALIGNMENT

Scarites
Carenum
Paimachus
Pheropsophus
Brachinus armiger
Brrachinus hirsutus
Aptinus
Pseudomorpha | T BT e o Flcc - - - - -

Needleman—-Wunsch Problem

@ An alphabet S.
@ Strings X =x1xp...x; and Y = y1y> ...y, from S.

e A matching M = {(i,)} of pairs without crossings, where
ie[l,m]andje[1,n].

32/42

MaXx SUBARRAY

Needleman—-Wunsch Problem

@ An alphabet S.

@ Strings X =x1xp...x; and Y = y1y> ...y, from S.

e A matching M = {(i,)} of pairs without crossings, where
ie[l,m]andje[1,n].

o Cost:

o Gaps (unmatched indexes) have a cost of 4.
e For each symbol pair p,q € S, ay, is the matching cost.

32/42

MaXx SUBARRAY

Scarites
Carenum

Paimachus
Pherop:
Brachi

Needleman—-Wunsch Problem

@ An alphabet S.

@ Strings X =x1xp...x; and Y = y1y> ...y, from S.

e A matching M = {(i,)} of pairs without crossings, where
ie[l,m]andje[1,n].

o Cost:

o Gaps (unmatched indexes) have a cost of 4.
e For each symbol pair p,q € S, ay, is the matching cost.

@ Goal: Find the matching that minimizes the cost.

32/42

MaXx SUBARRAY

0=350pp =0;0p =1

i : : @6: What is the cost of the
e e : matching:

Oo-currance

Peudomorpha

occurrence

Needleman—Wunsch Problem

@ An alphabet S.
@ Strings X = x1xp...x and Y = y1y2 ...y, from S.

e A matching M = {(i,) } of pairs without crossings, where
ie[l,m]andje[1,n].
e Cost:

e Gaps (unmatched indexes) have a cost of 4.
e For each symbol pair p,q € S, ay is the matching cost.

@ Goal: Find the matching that minimizes the cost.

32/42

MaXx SUBARRAY

0=350pp =0;0p =1

i : : @7: What is the cost of the
e e : matching:

Oo-curr-ance

Peudomorpha

occurre-nce

Needleman—Wunsch Problem

@ An alphabet S.
@ Strings X = x1xp...x and Y = y1y2 ...y, from S.

e A matching M = {(i,) } of pairs without crossings, where
ie[l,m]andje[1,n].
e Cost:

e Gaps (unmatched indexes) have a cost of 4.
e For each symbol pair p,q € S, ay is the matching cost.

@ Goal: Find the matching that minimizes the cost.

32/42

MaXx SUBARRAY

0=T;0p =0;ap =4

i : : @8: What is the cost of the
e e : matching:

Oo-currance

Peudomorpha

occurrence

Needleman—Wunsch Problem

@ An alphabet S.
@ Strings X = x1xp...x and Y = y1y2 ...y, from S.

e A matching M = {(i,) } of pairs without crossings, where
ie[l,m]andje[1,n].
e Cost:

e Gaps (unmatched indexes) have a cost of 4.
e For each symbol pair p,q € S, ay is the matching cost.

@ Goal: Find the matching that minimizes the cost.

32/42

MaXx SUBARRAY

0=T;0p =0;ap =4

i : : @9: What is the cost of the
e e : matching:

Oo-curr-ance

Peudomorpha

occurre-nce

Needleman—Wunsch Problem

@ An alphabet S.
@ Strings X = x1xp...x and Y = y1y2 ...y, from S.

e A matching M = {(i,) } of pairs without crossings, where
ie[l,m]andje[1,n].
e Cost:

e Gaps (unmatched indexes) have a cost of 4.
e For each symbol pair p,q € S, ay is the matching cost.

@ Goal: Find the matching that minimizes the cost.

32/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Basic Dichotomy

In optimal alignment M, either (m,n) e M or (m,n) ¢ M.

33/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Basic Dichotomy
In optimal alignment M, either (m,n) e M or (m,n) ¢ M.

Let M be any alignment of X and Y. If (m,n) ¢ M, then either the
mth position of X, or the nth position of Y is not matched in M.

33/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

—

Basic Dichotomy
In optimal alignment M, either (m,n) e M or (m,n) ¢ M.

Let M be any alignment of X and Y. If (m,n) ¢ M, then either the
mth position of X, or the nth position of Y is not matched in M.

A\

LD i

33/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

—

Basic Dichotomy
In optimal alignment M, either (m,n) e M or (m,n) ¢ M.

Let M be any alignment of X and Y. If (m,n) ¢ M, then either the
mth position of X, or the nth position of Y is not matched in M.

.

e By way of contradiction, assume that

A

33/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

—

Basic Dichotomy
In optimal alignment M, either (m,n) e M or (m,n) ¢ M.

Let M be any alignment of X and Y. If (m,n) ¢ M, then either the
mth position of X, or the nth position of Y is not matched in M.

.

e By way of contradiction, assume that (m,n) ¢ M, and
(m,j),(i,n) e M fori<mandj<n.

A

33/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

—

Basic Dichotomy
In optimal alignment M, either (m,n) e M or (m,n) ¢ M.

Let M be any alignment of X and Y. If (m,n) ¢ M, then either the
mth position of X, or the nth position of Y is not matched in M.

.

e By way of contradiction, assume that (m,n) ¢ M, and
(m,j),(i,n) e M fori<mandj<n.

e Contradicts the non-crossing requirement.

A

33/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q@ (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

34/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q@ (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

e @How many dimensions for the matrix?

34/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q@ (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

@ 2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x2 ... x; and 112 . . . ;-

34/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

e 2D matrix called A, where A[i][/] is alignment of minimum
cost for x1x2 ... x; and y1y2 . . . ;-

o @Build the Bellman equation.

34/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q@ (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

@ 2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x2 ... x; and 112 . . . ;-

o A[i][j] = min{auy,, +A[i-1][j-1],0+A[i-1][j],6 +A[i][j-1]}

34/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q@ (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

@ 2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x2 ... x; and 112 . . . ;-

e Ali][j] = min{ole.y].+A[i—1][j—1],5+A[i—1][j],5+A[i][j—1]}
@ Runtime:

34/42

DEesiGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

In an optimal alignment M, at least one of the following is true:
Q@ (m,n)eM;or
@ the mth position of X is not matched; or
@ the nth position of Y is not matched.

@ 2D matrix called A, where A[i][j] is alignment of minimum
cost for x1x7 ... x; and y1y2 Yj

e Ali][j] = mln{axy]+A 1[j-1],0+A[i-1][j],0+A[i][j-1]}
e Runtime: O(mn).

34/42

GRAPHING THE ALGORITHM

X3

X2

Let f(i,]) denote the minimum
cost of a path from (0,0) to (i,]) in
Gxy. Then, Vi,j f(i,7) = A[i][j].

X1

N Y2 V3 Ya

35/42

Let f(i,]) denote the minimum
/Q cost of a path from (0,0) to (i,f) in
N V2 V3 Ya GXY. Then, Vi,jf(i,j) = A[i] [j].

35/42

Let f(i,]) denote the minimum
/Q cost of a path from (0,0) to (i,f) in
N V2 V3 Ya GXY. Then, Vi,jf(i,j) = A[i] [j].

e By strong induction on

35/42

Let f(i,]) denote the minimum
/Q cost of a path from (0,0) to (i,f) in
N V2 V3 Ya GXY. Then, Vi,jf(i,j) = A[i] [j].

e By strong induction on (i +).

35/42

Let f(i,]) denote the minimum
/Q cost of a path from (0,0) to (i,f) in
N V2 V3 Ya GXY. Then, Vi,jf(i,j) = A[i] [j].

e By strong induction on (i +).

@ Base case:

35/42

Let f(i,7) denote the minimum
\/‘8 cost of a path from (0,0) to (i,f) in
A ny. Then, Vi,jf(i,j) = A[l] [j]

e By strong induction on (i +).

@ Base case: i +j = 0. We have f(0,0) =0 = A[0][0].

e Induction hypothesis: The claim holds for all pairs (i’,]")
such that i’ + " <i+j.

35/42

/ Let f(i,]) denote the minimum
\/‘8 cost of a path from (0,0) to (i,f) in
Gxy. Then, Vi,j f(i,j) = A[][]].

e By strong induction on (i +).

@ Base case: i +j = 0. We have f(0,0) =0 = A[0][0].

e Induction hypothesis: The claim holds for all pairs (i’,]")
such that i’ + " <i+j.

@ Inductive step:
f(i?j) = min{axiyj +f(i_ 1?j_ 1)76+f(i_ 17j)75+f(i7j_ 1)}
= min{ay,y, + A[i - 1][j - 1],6 + A[i - 1][j], 0 + A[i][j - 1]}
:A[ivj]]

v

35/42

SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}

o “mean” vs “name”
0 if same letter

@ 0=2;a=43 if vowel to consonant
1 otherwise

Blo|o |3

36/42

SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}

o “mean” vs “name”
0 if same letter

@ 0=2;a=43 if vowel to consonant
1 otherwise

Blo|o |3
o M| | o]

SN =] W Ul o
QO WN| WO
AR NENENESUES
| 0| | =1l O

36/42

SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}

o “mean” vs “name”
0 if same letter

@ 0=2;a=43 if vowel to consonant
2 otherwise

Blo|lv|s

36/42

SEQUENCE ALIGNMENT EXAMPLE

Ali][j] = min{ay,y, + Ali - 1][j - 1],0 + A[i - 1][j], 0 + A[{][j - 1]}

o “mean” vs “name”
0 if same letter

@ 0=2;a=43 if vowel to consonant
2 otherwise

SBlo|o |3
O| N x| v o

SN N |
S ETNFUNITN ITN FO
Blowklolo|o
| ©| || o

36/42

LEAST SQUARES

SEGMENTED LEAST SQUARES

Problem Setup

- @ Set of n points: P :=

{(e1,91), (x2,2); -+ (i)} om
iy the plane.

@ Suppose x1 < xp < -+ < Xp.

e Find L : y = ax + b that minimizes:
Error(L,P) = Y1 (yi — ax; - b)? .

V

37/42

SEGMENTED LEAST SQUARES

Problem Setup

- @ Set of n points: P :=

{(e1,91), (x2,2); -+ (i)} om
iy the plane.

@ Suppose x1 < xp < -+ < Xp.

e Find L : y = ax + b that minimizes:
Error(L,P) = Y1 (yi — ax; - b)? .

£

Problem Formulation
e Partition the points (by x) into contiguous subsets.

e Minimize the sum of Error(L,p;) + C for all subsets, where
C is a fixed cost per subset.

37/42

£

SEGMENTED LEAST SQUARES
5 @ Set of n points: P :=
° {1, 91), (x2,42), -5 (X, Y} oM
° the plane.
@ Suppose x1 < X2 < -+ < Xp.
e Find L : y = ax + b that minimizes:

Error(L,P) = Y1 (yi — ax; — b)?.

Problem Formulation
e Partition the points (by x) into contiguous subsets.
e Minimize the sum of Error(L,p;) + C for all subsets, where

C is a fixed cost per subset.

37/42

SEGMENTED LEAST SQUARES
Problem Setup
@ Set of n points: P :=
{(x1,91), (x2,%2),- .., (Xn,yu)} on

3 the plane.
@ Suppose x1 < X2 < -+ < Xp.
e Find L :y = ax + b that minimizes:

Error(L,P) = Y1 (yi — ax; — b)?.

£

Problem Formulation
e Partition the points (by x) into contiguous subsets.
e Minimize the sum of Error(L,p;) + C for all subsets, where

C is a fixed cost per subset.

37/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.

e Cis added each time as we are adding a new partition.

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.
e Cis added each time as we are adding a new partition.

@ s[i] is optimum up to point i.

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.
e Cis added each time as we are adding a new partition.

@ s[i] is optimum up to point i.

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.
e Cis added each time as we are adding a new partition.

@ s[i] is optimum up to point i.

e Preprocessing error calc ¢;; can be done in O(n?).

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

e;j is the min error for a partition fromi to j.

C is added each time as we are adding a new partition.

s[i] is optimum up to point i.

Preprocessing error calc ¢; ; can be done in O(n?).

Number of cells:

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

e;j is the min error for a partition fromi to j.

C is added each time as we are adding a new partition.

s[i] is optimum up to point i.

Preprocessing error calc ¢; ; can be done in O(n?).
Number of cells: O(n).

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.
e Cis added each time as we are adding a new partition.

@ s[i] is optimum up to point i.

e Preprocessing error calc ¢;; can be done in O(n?).
e Number of cells: O(n).
e Work done for cell j:

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.
e Cis added each time as we are adding a new partition.

@ s[i] is optimum up to point i.

e Preprocessing error calc ¢;; can be done in O(n?).
e Number of cells: O(n).
e Work done for cell j: O(j).

38/42

DP SorutioNn

s[j] = min(e;; + C +s[i - 1])

1<igj

@ ¢;; is the min error for a partition from i to j.
e Cis added each time as we are adding a new partition.

@ s[i] is optimum up to point i.

e Preprocessing error calc ¢;; can be done in O(n?).
e Number of cells: O(n).

e Work done for cell j: O(j).

e Overall: O(1?).

38/42

RNA SECONDARY STRUCTURE

RNA SECONDARY STRUCTURE

Problem Definition

e RNA tends to loop back on
itself, forming base pairs.

e RNA alphabet: {A,C,G,U}.
e Valid pairs: (A, U) or (C,G).

39/42

RNA SECONDARY STRUCTURE

Problem Definition

e RNA tends to loop back on
itself, forming base pairs.

e RNA alphabet: {A,C,G,U}.

e Valid pairs: (A, U) or (C,G).

e Input: n length string:
B=0bib,...b,

@ Output: Determine a
secondary structure with
maximum number of base
pairs.

39/42

RNA SECONDARY STRUCTURE

Secondary Structure

S={(i,j)}, where i <jand
i,je{l,...,n}, such that:
@ No Sharp turns: i < j —d for
some constant d.
@ All pairs are valid.
@ S is a matching: no base
appears more than once.
© Non-crossing: For any
(i,7),(i',j") € S, we cannot
havei<i'<j<j'

39/42

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m(j] is the maximum # of pairs among;:
bib .. .b;.

40/42

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m(j] is the maximum # of pairs among;:
bib .. .b;.
@ No sharp turns: m[j] =0 forj<d+1.

40/42

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m(j] is the maximum # of pairs among;:
bib .. .b;.
@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].

40/42

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].)

Recursive Sub-problems

Dichotomy:

.

40/42

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].)

Recursive Sub-problems

Dichotomy:

@ jis not a pair: m[j] =m[j - 1].

.

40/42

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].)

Recursive Sub-problems

Dichotomy:

@ jis not a pair: m[j] =m[j - 1].
@ jis paired with t <j - d:
e Non-crossing: No pairs between [1,¢—1] and [t+ 1,7 -1].

.

40/42

MaXx SUBARRAY SUBSET

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].)

Recursive Sub-problems

Dichotomy:

@ jis not a pair: m[j] =m[j - 1].

@ jis paired with t <j - d:
e Non-crossing: No pairs between [1,¢—1] and [t+1,j-1].
e Sub-problems:

.

40/42

MaXx SUBARRAY SUBSET

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].)

Recursive Sub-problems

Dichotomy:

@ jis nota pair: m[j] =m[j - 1].
@ jis paired with t <j - d:
e Non-crossing: No pairs between [1,¢—1] and [t+1,j-1].
e Sub-problems:
@ Max pairsin [1,¢t-1]: m[t - 1].

.

40/42

MaXx SUBARRAY SUBSET

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].)

Recursive Sub-problems

Dichotomy:

@ jis nota pair: m[j] =m[j - 1].
@ jis paired with t <j - d:
e Non-crossing: No pairs between [1,¢—1] and [t+1,j-1].
e Sub-problems:
@ Max pairsin [1,¢t-1]: m[t - 1].
® Max pairsin [t+1,j-1]:

.

40/42

Max SUBARRAY

FirsT DYNAMIC PROGRAMMING ATTEMPT
1D Approach

e 1D array m, where m[j] is the maximum # of pairs among:
b1b2 556 b]

@ No sharp turns: m[j] =0 forj<d+1.

e Solution: m[n].)

Recursive Sub-problems

Dichotomy:

@ jis nota pair: m[j] =m[j - 1].
@ jis paired with t <j - d:
e Non-crossing: No pairs between [1,¢—1] and [t+1,j-1].
e Sub-problems:
@ Max pairsin [1,¢t-1]: m[t - 1].
@ Max pairs in [t +1,j — 1]: Restricted to by11bss2 . . . bj—1 which
current DP does not calculate.

.

40/42

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

41/42

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.

41/42

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.

@ Solution:

41/42

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.
e Solution: m[1][n].

41/42

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.

e Solution: m[1][n].

V.

Recursive Sub-problems

Dichotomy:

A\

41/42

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.

e Solution: m[1][n].

V.

Recursive Sub-problems

Dichotomy:
@ j is not a pair: m[i][j] = m[i][j - 1]

A\

41/42

MaXx SUBARRAY SUBSET

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.

e Solution: m[1][n].)

Recursive Sub-problems

Dichotomy:
@ jis not a pair: m[i][j] = m[i][j - 1].
@ jis paired withi<t<j-d

e v; as indicator: 1 if valid pair, 0 otherwise

e Non-crossing: No pairs between [i,t —1] and [t +1,j - 1].

\.

41/42

MaXx SUBARRAY SUBSET

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.

e Solution: m[1][n].)

Recursive Sub-problems

Dichotomy:
@ jis not a pair: m[i][j] = m[i][j - 1].
@ jis paired withi<t<j-d

e v; as indicator: 1 if valid pair, 0 otherwise

e Non-crossing: No pairs between [i,t —1] and [+ 1,j - 1].
e Sub-problems:
@ Max pairsin [i,t —1]: m[i][t - 1].

\.

41/42

MaXx SUBARRAY SUBSET

SecoND DynaMic PROGRAMMING ATTEMPT
2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bjy1 ... b;.

@ No sharp turns: m[i][j] =0 fori>j-d.

e Solution: m[1][n].)

Recursive Sub-problems

Dichotomy:
@ jis not a pair: m[i][j] = m[i][j - 1].
@ jis paired withi<t<j-d

e v; as indicator: 1 if valid pair, 0 otherwise

e Non-crossing: No pairs between [i,t —1] and [+ 1,j - 1].
e Sub-problems:

@ Max pairsin [i,t —1]: m[i][t - 1].

® Maxpairsin [t+1,j - 1]: m[t+1][j - 1].

\.

41/42

SecoND DynaMic PROGRAMMING ATTEMPT

2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs

among: b;bj1 ... b;. |

Recursive Sub-problems

Dichotomy:
@ jis not a pair: m[i][j] = m[i][j - 1].
@ jis paired withi<t<j-d

e v; as indicator: 1 if valid pair, 0 otherwise

e Non-crossing: No pairs between [i,t —1] and [t +1,j - 1].
e Sub-problems:

@ Max pairsin [i,t —1]: m[i][f-1].

® Maxpairsin [t+1,j - 1]: m[t+1][j - 1].

.

©@What is the Bellman equation?

41/42

SecoND DynaMic PROGRAMMING ATTEMPT

2D Approach

@ 2D array m, where m[i][j] is the maximum # of pairs
among: b;bj,1 ... b;.

Recursive Sub-problems

Dichotomy:
@ jis not a pair: m[i][j] = m[i][j - 1].
@ jis paired withi<t<j-d

e v; as indicator: 1 if valid pair, 0 otherwise

A

e Non-crossing: No pairs between [i,f - 1] and [t +1,j - 1].
e Sub-problems:

@ Max pairsin [i,t —1]: m[i][t - 1].

® Maxpairsin [t+1,j - 1]: m[t+1][j - 1].

m[i][j] = max (m[i][j - 1], maxic-a{vy - (1 +m[i][t = 1] + m[t + 1][- 1])})

A\

41/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i][j-1] max{vt] (1 +m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

— =] W |

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i][j-1] max{vt] (1 +m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

— = N QA S e
(@)
(@)

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i][j-1] max{vt] (1 +m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

(e}
—_

— = N o |

[Rl N el Ne) New)
o

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i][j-1] max{vt] (1 +m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1
4/0[0]0]0
3/0[0[1]1
21001
111
il6]7[8[9

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i][j-1] max{vt] (1 +m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1
4/0[0]0]0
3/0[0[1]1
20011
T[1[1]1
il6]7[8[9

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i][j-1] max{vt] (1 +m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1

4/0[0]0]0
3]0([0 |11
2/0([0[1]1
1[1[1[1]2
il6/7]8]9

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i][j-1] max{vt] (1 +m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1

4/0[0]0]0
3]0([0 |11
2/0([0[1]1
1[1[1[1]2
il6/7]8]9

Running Time

o # of cells:
e Work per cell:

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i)[j-1] max{vt] (1+m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1

4/0[0]0]0
3[0([0 1|1
2/0[0[1]1
1[1[1[1]2
6789

Running Time

e #of cells: O(n?).
e Work per cell:

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i)[j-1] max{vt] (1+m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1

4/0[0]0]0
3[0([0 1|1
2/0[0[1]1
1[1[1[1]2
6789

Running Time

e #of cells: O(n?).
e Work per cell:

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i)[j-1] max{vt] (1+m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1

4/0[0]0]0
3[0([0 1|1
2/0[0[1]1
1[1[1[1]2
6789

Running Time

e #of cells: O(n?).
e Work per cell: O(n).

42/42

RNA SECONDARY STRUCTURE EXAMPLE

m[i][j] = max(i)[j-1] max{vt] (1+m[][t—1]+m[t+1][j—1])})
e B=ACCGGUAGU andd—4

1

4/0[0]0]0
3[0([0 1|1
2/0[0[1]1
1[1[1[1]2
6789

Running Time

e #of cells: O(n?).
e Work per cell: O(n).
e Overall: O(n®).

42/42

APPENDIX

REFERENCES

APPENDIX REFERENCES

IMAGE SoURcEs 1

c ’ -
;?éﬁﬁ https://medium.com/neurosapiens/
2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/
08/biografia-de-lester-randolph-ford-jr/

¢ http://wwuw.sequence-alignment.com/

rrZ https://medium.com/koderunners/
genetic-algorithm-part-3-knapsack-problem-b5903E

WISCONSIN https://brand.wisc.edu/web/logos/
43/42

https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
http://www.sequence-alignment.com/
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://brand.wisc.edu/web/logos/

APPENDIX REFERENCES

IMmAGE Sources 11

P 10cY

< < https://www.pngfind.com/mpng/mTJmbx_
spongebob-squarepants-png-image-spongebob-cartoc

e

https://wuw.pngfind. com/mpng/xhJRmT_
cheshire-cat-vintage-drawing-alice-in-wonderlanc

44/42

https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/

	Dynamic Programming
	Weighted Interval Scheduling
	Longest Increasing Subsequence
	Dynamic Programming for Games
	Max Subarray
	Subset and Knapsack
	Edit Distance
	Sequence Alignment
	Least Squares
	RNA Secondary Structure
	Appendix
	Appendix
	References

