
CS 577 - Greedy

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin – Madison

Fall 2024

Intro Greedy Coin Collection Stays Ahead

Intro

Intro Greedy Coin Collection Stays Ahead

The algorithms class
is interesting, but even
when I find the solu-
tion,
I don’t know how to
prove it’s correct.

1/36

Intro Greedy Coin Collection Stays Ahead

The algorithms class
is interesting, but even
when I find the solu-
tion,
I don’t know how to
prove it’s correct.

Let’s fix that!
Welcome to
Greedy Algorithms!

1/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms
A Personal Confession

Student Perspective
As a student, I knew what the
correct solution was,
but I couldn’t prove it.

2/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms
A Personal Confession

Professor Perspective
As a professor, I don’t even know
what the correct solution is
anymore.

2/36

Intro Greedy Coin Collection Stays Ahead

Warm-up: The Solution is Simple... But the
Proof is Stronger

Intro Greedy Coin Collection Stays Ahead

3/36

Intro Greedy Coin Collection Stays Ahead

Warm-up: Maximizing a Linear Function

Definition
Maximize the value of f (x) = c ⋅ x, where x ∈ S such as
S = {−1,2,5,8,−3,7} or any unordered set S of distinct integers.

What is the algorithm that you will choose to solve this
problem?

Solution To maximize f (x) = c ⋅ x, we clearly want to pick the
largest value of x from the set S if c ≥ 0, otherwise the smallest.

Select x =max(S) because it gives the largest value for c ⋅ x.

4/36

Intro Greedy Coin Collection Stays Ahead

Warm-up: Maximizing a Linear Function

Definition
Maximize the value of f (x) = c ⋅ x, where x ∈ S such as
S = {−1,2,5,8,−3,7} or any unordered set S of distinct integers.

What is the algorithm that you will choose to solve this
problem?

Solution To maximize f (x) = c ⋅ x, we clearly want to pick the
largest value of x from the set S if c ≥ 0, otherwise the smallest.

Select x =max(S) because it gives the largest value for c ⋅ x.

4/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

Suppose the optimal solution, denoted as O(f ,S), is
different from the solution provided by our algorithm,
A(f ,S).

O(f ,S) ≠ A(f ,S)

We aim to show that A(f ,S)← O(f ,S) is only improving!!!

Why is it obvious that O(f ,S) ≥ A(f ,S) for any algorithm A?

● O(f ,S) represents the optimal solution.
● A(f ,S) is the solution generated by our algorithm.

By definition, O(f ,S) provides the best possible solution,
so no algorithm’s solution can exceed it.

5/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

Suppose the optimal solution, denoted as O(f ,S), is
different from the solution provided by our algorithm,
A(f ,S).

O(f ,S) ≠ A(f ,S)
We aim to show that A(f ,S)← O(f ,S) is only improving!!!

Why is it obvious that O(f ,S) ≥ A(f ,S) for any algorithm A?

● O(f ,S) represents the optimal solution.
● A(f ,S) is the solution generated by our algorithm.

By definition, O(f ,S) provides the best possible solution,
so no algorithm’s solution can exceed it.

5/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

Suppose the optimal solution, denoted as O(f ,S), is
different from the solution provided by our algorithm,
A(f ,S).

O(f ,S) ≠ A(f ,S)
We aim to show that A(f ,S)← O(f ,S) is only improving!!!

Why is it obvious that O(f ,S) ≥ A(f ,S) for any algorithm A?

● O(f ,S) represents the optimal solution.
● A(f ,S) is the solution generated by our algorithm.

By definition, O(f ,S) provides the best possible solution,
so no algorithm’s solution can exceed it.

5/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

Suppose the optimal solution, denoted as O(f ,S), is
different from the solution provided by our algorithm,
A(f ,S).

O(f ,S) ≠ A(f ,S)
We aim to show that A(f ,S)← O(f ,S) is only improving!!!

Why is it obvious that O(f ,S) ≥ A(f ,S) for any algorithm A?

● O(f ,S) represents the optimal solution.
● A(f ,S) is the solution generated by our algorithm.

By definition, O(f ,S) provides the best possible solution,
so no algorithm’s solution can exceed it.

5/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

We aim to show that A(f ,S)← O(f ,S) is only improving!!!

We will do the proof of arrogance:
We are better than any other best , !!!

Proof by Contradiction
Now, let’s assume that the optimal solution chooses a value
x′ ∈ S, where x′ ≠ x∗ =max(S).
Clearly, x′ <max(S). Therefore, the value of c ⋅ x′ would be less
than c ⋅max(S).
Thus, we can transform the optimal solution to match our
algorithm’s choice of x∗ =max(S) without loss.

By choosing x∗ =max(S), the value c ⋅ x∗ provides only a better
result than c ⋅ x′, which completes the proof.

6/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

We aim to show that A(f ,S)← O(f ,S) is only improving!!!

We will do the proof of arrogance:
We are better than any other best , !!!

Proof by Contradiction
Now, let’s assume that the optimal solution chooses a value
x′ ∈ S, where x′ ≠ x∗ =max(S).
Clearly, x′ <max(S). Therefore, the value of c ⋅ x′ would be less
than c ⋅max(S).
Thus, we can transform the optimal solution to match our
algorithm’s choice of x∗ =max(S) without loss.

By choosing x∗ =max(S), the value c ⋅ x∗ provides only a better
result than c ⋅ x′, which completes the proof.

6/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

We aim to show that A(f ,S)← O(f ,S) is only improving!!!

We will do the proof of arrogance:
We are better than any other best , !!!

Proof by Contradiction
Now, let’s assume that the optimal solution chooses a value
x′ ∈ S, where x′ ≠ x∗ =max(S).

Clearly, x′ <max(S). Therefore, the value of c ⋅ x′ would be less
than c ⋅max(S).
Thus, we can transform the optimal solution to match our
algorithm’s choice of x∗ =max(S) without loss.

By choosing x∗ =max(S), the value c ⋅ x∗ provides only a better
result than c ⋅ x′, which completes the proof.

6/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

We aim to show that A(f ,S)← O(f ,S) is only improving!!!

We will do the proof of arrogance:
We are better than any other best , !!!

Proof by Contradiction
Now, let’s assume that the optimal solution chooses a value
x′ ∈ S, where x′ ≠ x∗ =max(S).
Clearly, x′ <max(S). Therefore, the value of c ⋅ x′ would be less
than c ⋅max(S).

Thus, we can transform the optimal solution to match our
algorithm’s choice of x∗ =max(S) without loss.

By choosing x∗ =max(S), the value c ⋅ x∗ provides only a better
result than c ⋅ x′, which completes the proof.

6/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

We aim to show that A(f ,S)← O(f ,S) is only improving!!!

We will do the proof of arrogance:
We are better than any other best , !!!

Proof by Contradiction
Now, let’s assume that the optimal solution chooses a value
x′ ∈ S, where x′ ≠ x∗ =max(S).
Clearly, x′ <max(S). Therefore, the value of c ⋅ x′ would be less
than c ⋅max(S).
Thus, we can transform the optimal solution to match our
algorithm’s choice of x∗ =max(S) without loss.

By choosing x∗ =max(S), the value c ⋅ x∗ provides only a better
result than c ⋅ x′, which completes the proof.

6/36

Intro Greedy Coin Collection Stays Ahead

Why is the solution correct?
Proof

We aim to show that A(f ,S)← O(f ,S) is only improving!!!

We will do the proof of arrogance:
We are better than any other best , !!!

Proof by Contradiction
Now, let’s assume that the optimal solution chooses a value
x′ ∈ S, where x′ ≠ x∗ =max(S).
Clearly, x′ <max(S). Therefore, the value of c ⋅ x′ would be less
than c ⋅max(S).
Thus, we can transform the optimal solution to match our
algorithm’s choice of x∗ =max(S) without loss.

By choosing x∗ =max(S), the value c ⋅ x∗ provides only a better
result than c ⋅ x′, which completes the proof. 6/36

Intro Greedy Coin Collection Stays Ahead

Maximizing Your Profit in the Magic World: A
Harry Potter Story

Imagine you are Harry Potter, and you run a magical shop in Diagon
Alley. You have a variety of magical items for sale, and just like in the
muggle world, some items make you money, but some have a
negative price (they cost you money to keep!).

Item A: Earns you 12 Galleons for each one sold.
Item B: Earns you 3 Galleons for each one sold.

Your goal is to choose two different items to maximize your profit!!!

Too Easy !!! Any constraints???

7/36

Intro Greedy Coin Collection Stays Ahead

Maximizing Your Profit in the Magic World: A
Harry Potter Story

However, you can only select one item for the 12 Galleon
promotion and one item for the 3 Galleon promotion.
Here’s a list of magical items you have in stock, with their
quantities: S={-1, 2, 5, 8, -3, and 7}

,: In the magical world, some items are cursed, which is why they have a
negative price—every time you sell them, you actually lose money!

What is the algorithm that you will choose to solve this
problem?

7/36

Intro Greedy Coin Collection Stays Ahead

Maximizing a Linear Function with Two Variables

Let’s simplify using math:

Definition
Maximize the value of f (x,y) = 12 ⋅ x + 3 ⋅ y, where x,y ∈ S, x ≠ y,
and S = {−1,2,5,8,−3,7}.

What is the algorithm that you will choose to solve this
problem?

7/36

Intro Greedy Coin Collection Stays Ahead

Maximizing a Linear Function with Two Variables

To maximize f (x,y) = 12 ⋅ x + 3 ⋅ y, we need to choose the two
largest values in the set S, assigning the larger coefficient to the
larger value.

Select x∗ =max(S) and y∗ =max(S ∖ {x∗}),

7/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

We’re about to prove that our solution is better than any other
—because why settle for anything less? — ,

I know, I know... it seems ridiculous to have to prove this, but
let’s just imagine there’s a non-believer out there who doesn’t
think it’s obvious!!

8/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Suppose the optimal solution chosen by a non-believer uses
values x′ and y′, where
x′,y′ ∈ S and x′ ≠ x∗ =max(S) or y′ ≠ y∗ =max(S ∖ {x′}).

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Suppose the optimal solution chosen by a non-believer uses
values x′ and y′, where
x′,y′ ∈ S and x′ ≠ x∗ =max(S) or y′ ≠ y∗ =max(S ∖ {x′}).

Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Suppose the optimal solution chosen by a non-believer uses
values x′ and y′, where
x′,y′ ∈ S and x′ ≠ x∗ =max(S) or y′ ≠ y∗ =max(S ∖ {x′}).

Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

Could the non-believer’s solution x′ < y′ be optimal?

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

Could the non-believer’s solution x′ < y′ be optimal?

No! We can improve the non-believer’s solution by simply swapping
x′ ↔ y′.

Example : f (5,12) = 12 × 5 + 3 × 7 ≤ 12 × 7 + 3 × 5 = f (12,5).

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

If x′ =max(S) and y′ < y∗, it is trivial—Why?? .

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

If x′ =max(S) and y′ < y∗, it is trivial— just exchange y′ ↔ y∗ .

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

Could x′ > x∗ be the case?

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

Could x′ > x∗ be the case?

No, because we chose x∗ to be the maximum of the distinct integers in
S.

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

No, because we chose x∗ to be the maximum of the distinct integers in
S.

So the only remaining case is: x∗ > x′

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

Could x∗ > x′ > y′ > y∗ be the case?

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

Could x∗ > x′ > y′ > y∗ be the case?

No, because we chose y∗ to be the maximum after x∗.

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

The only possible case is x∗ > y∗ > x′ > y′....What time is now?

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

The only possible case is x∗ > y∗ > x′ > y′....What time is now?

9/36

Intro Greedy Coin Collection Stays Ahead

Why is the two-variable solution correct?
The Proof of Arrogance Again

What would a non-believer try to claim?
max

x,y∈{−1,2,5,8,−3,7}
12 ⋅ x + 3 ⋅ y

Proof by Contradiction
Clearly, x′ < x∗ =max(S) or y′ < y∗ =max(S ∖ {x′}).

The only possible case is x∗ > y∗ > x′ > y′....What time is now?

Let’s exchange x′ ↔ x∗ and y′ ↔ y∗. Now, the non-believer has
our solution and seems happier ,.

9/36

Intro Greedy Coin Collection Stays Ahead

Moment of Truth

Aesop’s Moral
In both problems, finding the
solution was straightforward!

Aesop’s Moral
However, proving that the
solution is optimal required
more effort!

10/36

Intro Greedy Coin Collection Stays Ahead

Moment of Truth

Aesop’s Moral
In both problems, finding the
solution was straightforward!

Aesop’s Moral
However, proving that the
solution is optimal required
more effort!

10/36

Intro Greedy Coin Collection Stays Ahead

However !!!

Intro Greedy Coin Collection Stays Ahead

The Importance of Proof

1. Proof as Validation
The proof is the only way to be certain
about the heuristic we have chosen.

After our proof, no one can question our solution.

2. The Structure of Proofs
The proof may seem strange at first,

but it always follows a specific pattern.

11/36

Intro Greedy Coin Collection Stays Ahead

The Importance of Proof

1. Proof as Validation
The proof is the only way to be certain
about the heuristic we have chosen.

After our proof, no one can question our solution.

2. The Structure of Proofs
The proof may seem strange at first,

but it always follows a specific pattern.

11/36

Intro Greedy Coin Collection Stays Ahead

Greedy

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms
What is a Greedy Algorithm (greedy)?

Typically, thought of as a heuristic that is locally optimal.
Were our algorithms locally optimal??

Is greedy always the best?

No, but a good place to start!!!

This notion has yet to be fully formalized, and it often
problem specific.

Definition from Priority Algorithms
A greedy algorithm is an algorithm that processes the input in a specified
order. For each request in the input, the greedy algorithm processes it so as to
minimize (resp. maximize) the objective, assuming that the request is the
last request.

For a given problem, there may be many greedy algorithms.

12/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms

What is a Greedy Algorithm (greedy)?
Typically, thought of as a heuristic that is locally optimal.
Is greedy always the best?

No, but a good place to start!!!
This notion has yet to be fully formalized, and it often
problem specific.

Definition from Priority Algorithms
A greedy algorithm is an algorithm that processes the input in a specified
order. For each request in the input, the greedy algorithm processes it so as to
minimize (resp. maximize) the objective, assuming that the request is the
last request.

For a given problem, there may be many greedy algorithms.

12/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms

What is a Greedy Algorithm (greedy)?
Typically, thought of as a heuristic that is locally optimal.
Is greedy always the best? No, but a good place to start!!!

This notion has yet to be fully formalized, and it often
problem specific.

Definition from Priority Algorithms
A greedy algorithm is an algorithm that processes the input in a specified
order. For each request in the input, the greedy algorithm processes it so as to
minimize (resp. maximize) the objective, assuming that the request is the
last request.

For a given problem, there may be many greedy algorithms.

12/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms

What is a Greedy Algorithm (greedy)?
Typically, thought of as a heuristic that is locally optimal.
Is greedy always the best? No, but a good place to start!!!
This notion has yet to be fully formalized, and it often
problem specific.

Definition from Priority Algorithms
A greedy algorithm is an algorithm that processes the input in a specified
order. For each request in the input, the greedy algorithm processes it so as to
minimize (resp. maximize) the objective, assuming that the request is the
last request.

For a given problem, there may be many greedy algorithms.

12/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms

What is a Greedy Algorithm (greedy)?
Typically, thought of as a heuristic that is locally optimal.
Is greedy always the best? No, but a good place to start!!!
This notion has yet to be fully formalized, and it often
problem specific.

Definition from Priority Algorithms
A greedy algorithm is an algorithm that processes the input in a specified
order. For each request in the input, the greedy algorithm processes it so as to
minimize (resp. maximize) the objective, assuming that the request is the
last request.

For a given problem, there may be many greedy algorithms.

12/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms

What is a Greedy Algorithm (greedy)?
Typically, thought of as a heuristic that is locally optimal.
Is greedy always the best? No, but a good place to start!!!
This notion has yet to be fully formalized, and it often
problem specific.

Definition from Priority Algorithms
A greedy algorithm is an algorithm that processes the input in a specified
order. For each request in the input, the greedy algorithm processes it so as to
minimize (resp. maximize) the objective, assuming that the request is the
last request.

For a given problem, there may be many greedy algorithms.
12/36

Intro Greedy Coin Collection Stays Ahead

Historical Break

Intro Greedy Coin Collection Stays Ahead

Who Named Them?

History of the Term
The exact origin of the term "greedy algorithm" is not
attributed to one person. However:

It became popular in the 1950s and 1960s during the study
of algorithm theory.
The term likely evolved from the behavior of these
algorithms—they make decisions that seem "greedy" by
choosing the best local option at every step.
Notable contributors: Edsgar Dijkstra, Richard Karp, and
others, helped formalize greedy approaches.

13/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).

You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:

Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi:

requires 3 boxes.

Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).

Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:

Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi:

requires 3 boxes.

Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.

Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:

Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi:

requires 3 boxes.

Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:

Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi:

requires 3 boxes.

Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:

Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi:

requires 3 boxes.

Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:
Items: σ = ⟨4.9,4.9,5.1,5.1⟩

ffi:

requires 3 boxes.

Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:
Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi:

requires 3 boxes.
Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:
Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi: requires 3 boxes.

Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:
Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi: requires 3 boxes.
Optimal packing:

only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?

Not always: Packing Items into Boxes
You have boxes of a fixed size (e.g., each box can hold 10kg).
You have several items of varying weights (e.g., 2.5 kg to 9 kg).
Objective: Fit all items into the minimum number of boxes.
Greedy heuristic: First Fit Increasing (ffi)—place each item in
the first box that has enough space.

Non-optimal example:
Items: σ = ⟨4.9,4.9,5.1,5.1⟩
ffi: requires 3 boxes.
Optimal packing: only needs 2 boxes.

14/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].

Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:

σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi:

3 bins

opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.

Greedy heuristic: First Fit Increasing (ffi)
Non-optimal example:

σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi:

3 bins

opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:

σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi:

3 bins

opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:

σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi:

3 bins

opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:
σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩

ffi:

3 bins

opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:
σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi:

3 bins
opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:
σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi: 3 bins

opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:
σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi: 3 bins
opt:

2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:
σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi: 3 bins
opt: 2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Is greedy Optimal?
Not always: Bin Packing Problem

Bins of size 1, and requests of size (0,1].
Objective: Pack the items in the minimum number of bins.
Greedy heuristic: First Fit Increasing (ffi)

Non-optimal example:
σ = ⟨1/2 − ε,1/2 − ε,1/2 + ε,1/2 + ε⟩
ffi: 3 bins
opt: 2 bins

Techniques for showing that greedy is optimal:
Always stays ahead
Exchange argument

15/36

Intro Greedy Coin Collection Stays Ahead

Coin Collection

Intro Greedy Coin Collection Stays Ahead

The Cashier’s Problem

Imagine a cashier has to count various coins to provide
change.

Cashier counting coins

16/36

Intro Greedy Coin Collection Stays Ahead

The Cashier’s Problem
Imagine a cashier has to count various coins to provide
change.
How can the cashier efficiently count the minimum
number of coins to give exact change?

Cashier counting coins
Apple Pay

Now, with solutions like Apple Pay, we avoid counting
coins! 16/36

Intro Greedy Coin Collection Stays Ahead

Coin Collection
Definition
We are given an array of coin denominations used in the U.S.
(1¢ , 5¢ , 10¢ , 25¢ , 50¢ , $1). The goal is to determine the
minimum number of coins needed to sum up to a given
amount S.

The input consists of the set of coins:
{1¢ ,5¢ ,10¢ ,25¢ ,50¢ ,$1}

The output is the minimum number of coins that sum up
to S

What happens for S = 87¢ ?
Can we solve the problem generally using a greedy
approach?

17/36

Intro Greedy Coin Collection Stays Ahead

The Greedy Idea
Greedy Strategy
The idea is to always select the largest coin denomination that
does not exceed the remaining amount.

Example: Solving for S = 87¢
Step 1: Pick the largest coin 50¢ . Remaining =
87¢ − 50¢ = 37¢
Step 2: Pick 25¢ . Remaining = 37¢ − 25¢ = 12¢
Step 3: Pick 10¢ . Remaining = 12¢ − 10¢ = 2¢
Step 4: Pick 1¢ . Remaining = 2¢ − 1¢ = 1¢
Step 5: Pick 1¢ . Remaining = 1¢ − 1¢ = 0

The minimum number of coins for S = 87¢ is 5 coins:
(50¢ , 25¢ , 10¢ , 1¢ , 1¢)

18/36

Intro Greedy Coin Collection Stays Ahead

The Greedy Idea
Greedy Strategy
The idea is to always select the largest coin denomination that
does not exceed the remaining amount.

Example: Solving for S = 87¢
Step 1: Pick the largest coin 50¢ . Remaining =
87¢ − 50¢ = 37¢
Step 2: Pick 25¢ . Remaining = 37¢ − 25¢ = 12¢
Step 3: Pick 10¢ . Remaining = 12¢ − 10¢ = 2¢
Step 4: Pick 1¢ . Remaining = 2¢ − 1¢ = 1¢
Step 5: Pick 1¢ . Remaining = 1¢ − 1¢ = 0

The minimum number of coins for S = 87¢ is 5 coins:
(50¢ , 25¢ , 10¢ , 1¢ , 1¢)

18/36

Intro Greedy Coin Collection Stays Ahead

The Greedy Idea
Greedy Strategy
The idea is to always select the largest coin denomination that
does not exceed the remaining amount.

Example: Solving for S = 87¢
Step 1: Pick the largest coin 50¢ . Remaining =
87¢ − 50¢ = 37¢
Step 2: Pick 25¢ . Remaining = 37¢ − 25¢ = 12¢
Step 3: Pick 10¢ . Remaining = 12¢ − 10¢ = 2¢
Step 4: Pick 1¢ . Remaining = 2¢ − 1¢ = 1¢
Step 5: Pick 1¢ . Remaining = 1¢ − 1¢ = 0

The minimum number of coins for S = 87¢ is 5 coins:
(50¢ , 25¢ , 10¢ , 1¢ , 1¢)

18/36

Intro Greedy Coin Collection Stays Ahead

Another Example with Greedy Approach
Greedy Strategy
The idea is to always select the largest coin denomination that
does not exceed the remaining amount.

Example: Solving for S = 2.51$
Step 1: Pick 1$. Remaining = 2.51$ − 1$ = 1.51$
Step 2: Pick 1$. Remaining = 1.51$ − 1$ = 0.51$
Step 3: Pick 25¢ . Remaining = 51¢ − 25¢ = 26¢
Step 4: Pick 25¢ . Remaining = 26¢ − 25¢ = 1¢
Step 5: Pick 1¢ . Remaining = 1¢ − 1¢ = 0

The minimum number of coins for S = 2.51$ is 5 coins:

(1$, 1$, 25¢ , 25¢ , 1¢)

19/36

Intro Greedy Coin Collection Stays Ahead

Another Example with Greedy Approach
Greedy Strategy
The idea is to always select the largest coin denomination that
does not exceed the remaining amount.

Example: Solving for S = 2.51$
Step 1: Pick 1$. Remaining = 2.51$ − 1$ = 1.51$
Step 2: Pick 1$. Remaining = 1.51$ − 1$ = 0.51$
Step 3: Pick 25¢ . Remaining = 51¢ − 25¢ = 26¢
Step 4: Pick 25¢ . Remaining = 26¢ − 25¢ = 1¢
Step 5: Pick 1¢ . Remaining = 1¢ − 1¢ = 0

The minimum number of coins for S = 2.51$ is 5 coins:

(1$, 1$, 25¢ , 25¢ , 1¢)

19/36

Intro Greedy Coin Collection Stays Ahead

Another Example with Greedy Approach
Greedy Strategy
The idea is to always select the largest coin denomination that
does not exceed the remaining amount.

Example: Solving for S = 2.51$
Step 1: Pick 1$. Remaining = 2.51$ − 1$ = 1.51$
Step 2: Pick 1$. Remaining = 1.51$ − 1$ = 0.51$
Step 3: Pick 25¢ . Remaining = 51¢ − 25¢ = 26¢
Step 4: Pick 25¢ . Remaining = 26¢ − 25¢ = 1¢
Step 5: Pick 1¢ . Remaining = 1¢ − 1¢ = 0

The minimum number of coins for S = 2.51$ is 5 coins:

(1$, 1$, 25¢ , 25¢ , 1¢)
19/36

Intro Greedy Coin Collection Stays Ahead

Proof of Optimality

Key Claim
The greedy algorithm provides the optimal solution because
any deviation from the greedy choice leads to using more coins.

Proof
Assume an optimal solution is different... What time is it
now???

20/36

Intro Greedy Coin Collection Stays Ahead

Proof of Optimality

Key Claim
The greedy algorithm provides the optimal solution because
any deviation from the greedy choice leads to using more coins.

Proof
Assume an optimal solution is different... What time is it
now???

20/36

Intro Greedy Coin Collection Stays Ahead

Proof of Optimality

Key Claim
The greedy algorithm provides the optimal solution because
any deviation from the greedy choice leads to using more coins.

Proof
Assume an optimal solution uses a smaller denomination
instead of the largest possible coin, e.g., replacing a
25¢ coin with five 5¢ coins.
Replacing four 5¢ coins with a single 25¢ coin reduces the
total number of coins, contradicting the assumption that
the solution was optimal.

20/36

Intro Greedy Coin Collection Stays Ahead

Interesting properties

Theorem
The greedy algorithm finds the minimum number of coins for any
amount S using U.S. coin denominations.

Proof Structure
1 Greedy Choice Property: At each step, the largest coin

denomination is selected.
2 Optimal Substructure: Once the largest coin is selected, the

remaining amount can be solved optimally using the same
strategy.

3 Exchange Argument: Replacing any coin in the greedy solution
with smaller denominations results in more coins.

21/36

Intro Greedy Coin Collection Stays Ahead

Federal Bank is Clever
What if...

What if the coins are: 1¢ , 5¢ , 12¢ , 20¢ ?

Greedy Solution: 5 coins
Greedy chooses: 20¢ × 1 + 1¢ × 4

Optimal Solution: 2 coins
Optimal chooses: 12¢ × 2

-How can we solve the general case???
-Dynamic Programming Next Week!!!,

22/36

Intro Greedy Coin Collection Stays Ahead

Federal Bank is Clever
What if...

What if the coins are: 1¢ , 5¢ , 12¢ , 20¢ ?

Greedy Solution: 5 coins
Greedy chooses: 20¢ × 1 + 1¢ × 4

Optimal Solution: 2 coins
Optimal chooses: 12¢ × 2

-How can we solve the general case???
-Dynamic Programming Next Week!!!,

22/36

Intro Greedy Coin Collection Stays Ahead

Federal Bank is Clever
What if...

What if the coins are: 1¢ , 5¢ , 12¢ , 20¢ ?

Greedy Solution: 5 coins
Greedy chooses: 20¢ × 1 + 1¢ × 4

Optimal Solution: 2 coins
Optimal chooses: 12¢ × 2

-How can we solve the general case???
-Dynamic Programming Next Week!!!,

22/36

Intro Greedy Coin Collection Stays Ahead

Federal Bank is Clever
What if...

What if the coins are: 1¢ , 5¢ , 12¢ , 20¢ ?

Greedy Solution: 5 coins
Greedy chooses: 20¢ × 1 + 1¢ × 4

Optimal Solution: 2 coins
Optimal chooses: 12¢ × 2

-How can we solve the general case???

-Dynamic Programming Next Week!!!,

22/36

Intro Greedy Coin Collection Stays Ahead

Federal Bank is Clever
What if...

What if the coins are: 1¢ , 5¢ , 12¢ , 20¢ ?

Greedy Solution: 5 coins
Greedy chooses: 20¢ × 1 + 1¢ × 4

Optimal Solution: 2 coins
Optimal chooses: 12¢ × 2

-How can we solve the general case???
-Dynamic Programming Next Week!!!,

22/36

Intro Greedy Coin Collection Stays Ahead

How should I know that my idea is the correct
greedy algorithm???

Intro Greedy Coin Collection Stays Ahead

Seeking about two magic properties

1 Greedy Choice Property:
2 Optimal Substructure:

23/36

Intro Greedy Coin Collection Stays Ahead

Seeking about two magic properties

1 Greedy Choice Property: At each step, you
gave a very simple priority (the biggest/the
smallest/the largest/the fastest....).

2 Optimal Substructure: Once the greedy
choice has been done once, the remaining
amount should be solved optimally using
the same strategy.

23/36

Intro Greedy Coin Collection Stays Ahead

Summary of Exchange Argument Method
My solution is better than yours ,

Intro Greedy Coin Collection Stays Ahead

Step 1: Label Your Solutions

Algorithm’s Solution and Optimal Solution
Let’s define two solutions:

A = {a1, a2, . . . , ak} is the solution generated by your
algorithm.
O = {o1, o2, . . . , ok} is an optimal solution.

These will help us compare how close our algorithm’s solution
is to the best possible one.

24/36

Intro Greedy Coin Collection Stays Ahead

Step 2: Compare Greedy with Optimal

Two Possibilities
Assume that your optimal solution is different from the
solution given by the greedy algorithm. Then:

There is an element in O that is not in A, and an element in
A that is not in O, or
Two consecutive elements in O are in a different order
compared to how they appear in A (i.e., an inversion).

25/36

Intro Greedy Coin Collection Stays Ahead

Step 3: Exchange

Making Greedy Optimal
Swap or exchange elements in O to make it more like A:

Swap one element out and another in (in the first case).
Swap the order of two elements (in the second case).

Each time we swap, the solution is no worse than before. Keep
swapping until O and A are the same.

26/36

Intro Greedy Coin Collection Stays Ahead

Conclusion: Greedy is Optimal

The Final Argument
After all the exchanges, we see that the greedy solution is just
as good as any optimal solution, meaning the greedy algorithm
is optimal.

27/36

Intro Greedy Coin Collection Stays Ahead

Stays Ahead: IntervalScheduling

Intro Greedy Coin Collection Stays Ahead

Interval Scheduling

Problem Definition
Requests: σ = {r1,⋯, rn}

A request ri = (si, fi), where si is the start time and fi is the
finish time.
Objective: Produce a compatible schedule S that has
maximum cardinality.
Compatible schedule S: ∀ri, rj ∈ S, fi ≤ sj ∨ fj ≤ si.

What greedy heuristic might work?

28/36

Intro Greedy Coin Collection Stays Ahead

Interval Scheduling

Problem Definition
Requests: σ = {r1,⋯, rn}
A request ri = (si, fi), where si is the start time and fi is the
finish time.

Objective: Produce a compatible schedule S that has
maximum cardinality.
Compatible schedule S: ∀ri, rj ∈ S, fi ≤ sj ∨ fj ≤ si.

What greedy heuristic might work?

28/36

Intro Greedy Coin Collection Stays Ahead

Interval Scheduling

Problem Definition
Requests: σ = {r1,⋯, rn}
A request ri = (si, fi), where si is the start time and fi is the
finish time.
Objective: Produce a compatible schedule S that has
maximum cardinality.

Compatible schedule S: ∀ri, rj ∈ S, fi ≤ sj ∨ fj ≤ si.

What greedy heuristic might work?

28/36

Intro Greedy Coin Collection Stays Ahead

Interval Scheduling

Problem Definition
Requests: σ = {r1,⋯, rn}
A request ri = (si, fi), where si is the start time and fi is the
finish time.
Objective: Produce a compatible schedule S that has
maximum cardinality.
Compatible schedule S: ∀ri, rj ∈ S, fi ≤ sj ∨ fj ≤ si.

What greedy heuristic might work?

28/36

Intro Greedy Coin Collection Stays Ahead

Interval Scheduling

Problem Definition
Requests: σ = {r1,⋯, rn}
A request ri = (si, fi), where si is the start time and fi is the
finish time.
Objective: Produce a compatible schedule S that has
maximum cardinality.
Compatible schedule S: ∀ri, rj ∈ S, fi ≤ sj ∨ fj ≤ si.

What greedy heuristic might work?
28/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 1: Earliest First
Schedule a compatible request with the earliest start time.

Optimal?

Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 1: Earliest First
Schedule a compatible request with the earliest start time.

Optimal?

Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 1: Earliest First
Schedule a compatible request with the earliest start time.

Optimal?
Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 2: Smallest Interval
Schedule a compatible request ri with the smallest interval
(fi − si).

Optimal?

Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 2: Smallest Interval
Schedule a compatible request ri with the smallest interval
(fi − si).

Optimal?

Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 2: Smallest Interval
Schedule a compatible request ri with the smallest interval
(fi − si).

Optimal?
Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 3: Fewest Conflicts
Schedule a compatible request with the fewest remaining
conflicts.

Optimal?

Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 3: Fewest Conflicts
Schedule a compatible request with the fewest remaining
conflicts.

Optimal?

Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 3: Fewest Conflicts
Schedule a compatible request with the fewest remaining
conflicts.

Optimal?
Counter-example:

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 4: Finish First
Schedule a compatible request with the smallest finish time.

Optimal?

Counter-example? Let’s try and prove it.

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 4: Finish First
Schedule a compatible request with the smallest finish time.

Optimal?

Counter-example? Let’s try and prove it.

29/36

Intro Greedy Coin Collection Stays Ahead

Greedy Algorithms for Interval Scheduling

Heuristic 4: Finish First
Schedule a compatible request with the smallest finish time.

Optimal?
Counter-example? Let’s try and prove it.

29/36

Intro Greedy Coin Collection Stays Ahead

Exercise: Formalize the algorithm (pseudocode)
Heuristic 4: Finish First

Algorithm: FinishFirst
Let S be an initially empty set.
while σ is not empty do

Choose ri ∈ σ with the smallest finish time (break ties
arbitrarily).
Add ri to S.
Remove all incompatible requests in σ.

end
return S
Sample Run (What is ∣S∣?)

30/36

Intro Greedy Coin Collection Stays Ahead

Exercise: Formalize the algorithm (pseudocode)
Heuristic 4: Finish First

Algorithm: FinishFirst
Let S be an initially empty set.
while σ is not empty do

Choose ri ∈ σ with the smallest finish time (break ties
arbitrarily).
Add ri to S.
Remove all incompatible requests in σ.

end
return S

Sample Run (What is ∣S∣?)

30/36

Intro Greedy Coin Collection Stays Ahead

Exercise: Formalize the algorithm (pseudocode)
Heuristic 4: Finish First

Algorithm: FinishFirst
Let S be an initially empty set.
while σ is not empty do

Choose ri ∈ σ with the smallest finish time (break ties
arbitrarily).
Add ri to S.
Remove all incompatible requests in σ.

end
return S
Sample Run (What is ∣S∣?)

30/36

Intro Greedy Coin Collection Stays Ahead

Analysis of FinishFirst

Observation 1
Immediate from the definition of FinishFirst, S is compatible.

Showing Optimality
Let S∗ be an optimal solution.

We can show the strong claim that S = S∗.
Can there be multiple S∗?

Yes.

Hence, we can show the weaker claim of ∣S∣ = ∣S∗∣ for this
problem.
Technique: “Always stays ahead”

At every time step i, ∣Si∣ ≥ ∣S∗i ∣.

31/36

Intro Greedy Coin Collection Stays Ahead

Analysis of FinishFirst

Observation 1
Immediate from the definition of FinishFirst, S is compatible.

Showing Optimality
Let S∗ be an optimal solution.

We can show the strong claim that S = S∗.

Can there be multiple S∗?

Yes.

Hence, we can show the weaker claim of ∣S∣ = ∣S∗∣ for this
problem.
Technique: “Always stays ahead”

At every time step i, ∣Si∣ ≥ ∣S∗i ∣.

31/36

Intro Greedy Coin Collection Stays Ahead

Analysis of FinishFirst

Observation 1
Immediate from the definition of FinishFirst, S is compatible.

Showing Optimality
Let S∗ be an optimal solution.

We can show the strong claim that S = S∗.
Can there be multiple S∗?

Yes.
Hence, we can show the weaker claim of ∣S∣ = ∣S∗∣ for this
problem.
Technique: “Always stays ahead”

At every time step i, ∣Si∣ ≥ ∣S∗i ∣.

31/36

Intro Greedy Coin Collection Stays Ahead

Analysis of FinishFirst

Observation 1
Immediate from the definition of FinishFirst, S is compatible.

Showing Optimality
Let S∗ be an optimal solution.

We can show the strong claim that S = S∗.
Can there be multiple S∗? Yes.

Hence, we can show the weaker claim of ∣S∣ = ∣S∗∣ for this
problem.
Technique: “Always stays ahead”

At every time step i, ∣Si∣ ≥ ∣S∗i ∣.

31/36

Intro Greedy Coin Collection Stays Ahead

Analysis of FinishFirst

Observation 1
Immediate from the definition of FinishFirst, S is compatible.

Showing Optimality
Let S∗ be an optimal solution.

We can show the strong claim that S = S∗.
Can there be multiple S∗? Yes.
Hence, we can show the weaker claim of ∣S∣ = ∣S∗∣ for this
problem.

Technique: “Always stays ahead”

At every time step i, ∣Si∣ ≥ ∣S∗i ∣.

31/36

Intro Greedy Coin Collection Stays Ahead

Analysis of FinishFirst

Observation 1
Immediate from the definition of FinishFirst, S is compatible.

Showing Optimality
Let S∗ be an optimal solution.

We can show the strong claim that S = S∗.
Can there be multiple S∗? Yes.
Hence, we can show the weaker claim of ∣S∣ = ∣S∗∣ for this
problem.
Technique: “Always stays ahead”

At every time step i, ∣Si∣ ≥ ∣S∗i ∣.

31/36

Intro Greedy Coin Collection Stays Ahead

Analysis of FinishFirst

Observation 1
Immediate from the definition of FinishFirst, S is compatible.

Showing Optimality
Let S∗ be an optimal solution.

We can show the strong claim that S = S∗.
Can there be multiple S∗? Yes.
Hence, we can show the weaker claim of ∣S∣ = ∣S∗∣ for this
problem.
Technique: “Always stays ahead”

At every time step i, ∣Si∣ ≥ ∣S∗i ∣.

31/36

Intro Greedy Coin Collection Stays Ahead

Stays Ahead Analysis

At every round, we are at least as any other solution

Label S = ⟨i1, . . . , ik⟩ such that fiu < fiv for u < v.
Label S∗ = ⟨j1, . . . , jm⟩ such that fju < fjv for u < v.

Lemma 1
For all ir, jr with r ≤ k, we have fir ≤ fjr

32/36

Intro Greedy Coin Collection Stays Ahead

Stays Ahead Analysis
Label S = ⟨i1, . . . , ik⟩ such that fiu < fiv for u < v.
Label S∗ = ⟨j1, . . . , jm⟩ such that fju < fjv for u < v.

Lemma 1
For all ir, jr with r ≤ k, we have fir ≤ fjr

Proof.

The proof is by induction.

For r = 1, the claim is true as FinishFirst first selects the
request with the earliest finish time.
Assume true for r − 1.

By the induction hypothesis, we have that fir−1 ≤ fjr−1 .
The only way for S to fall behind S∗ would be for FinishFirst
to choose a request q with fq > fjr , but this is a contradiction.

32/36

Intro Greedy Coin Collection Stays Ahead

Stays Ahead Analysis
Label S = ⟨i1, . . . , ik⟩ such that fiu < fiv for u < v.
Label S∗ = ⟨j1, . . . , jm⟩ such that fju < fjv for u < v.

Lemma 1
For all ir, jr with r ≤ k, we have fir ≤ fjr

Proof.
The proof is by induction.

For r = 1, the claim is true as FinishFirst first selects the
request with the earliest finish time.

Assume true for r − 1.
By the induction hypothesis, we have that fir−1 ≤ fjr−1 .
The only way for S to fall behind S∗ would be for FinishFirst
to choose a request q with fq > fjr , but this is a contradiction.

32/36

Intro Greedy Coin Collection Stays Ahead

Stays Ahead Analysis
Label S = ⟨i1, . . . , ik⟩ such that fiu < fiv for u < v.
Label S∗ = ⟨j1, . . . , jm⟩ such that fju < fjv for u < v.

Lemma 1
For all ir, jr with r ≤ k, we have fir ≤ fjr

Proof.
The proof is by induction.

For r = 1, the claim is true as FinishFirst first selects the
request with the earliest finish time.
Assume true for r − 1.

By the induction hypothesis, we have that fir−1 ≤ fjr−1 .
The only way for S to fall behind S∗ would be for FinishFirst
to choose a request q with fq > fjr , but this is a contradiction.

32/36

Intro Greedy Coin Collection Stays Ahead

Stays Ahead Analysis

Label S = ⟨i1, . . . , ik⟩ such that fiu < fiv for u < v.
Label S∗ = ⟨j1, . . . , jm⟩ such that fju < fjv for u < v.

Lemma 1
For all ir, jr with r ≤ k, we have fir ≤ fjr

The optimality of FinishFirst, essentially, follows immediately
from Lemma 1.

32/36

Intro Greedy Coin Collection Stays Ahead

FinishFirst is Optimal

Label S = ⟨i1, . . . , ik⟩ such that fiu < fiv for u < v.
Label S∗ = ⟨j1, . . . , jm⟩ such that fju < fjv for u < v.

Theorem 2
FinishFirst produces an optimal schedule.

Proof.

By way of contradiction, assume that ∣S∗∣ > ∣S∣. This implies that
m > k. Lemma 1 shows that FinishFirst is ahead for all the k
requests. That means it would be able to add the (k + 1)-st item
of S∗. As it did not, this contradicts the definition of
FinishFirst.

33/36

Intro Greedy Coin Collection Stays Ahead

FinishFirst is Optimal

Label S = ⟨i1, . . . , ik⟩ such that fiu < fiv for u < v.
Label S∗ = ⟨j1, . . . , jm⟩ such that fju < fjv for u < v.

Theorem 2
FinishFirst produces an optimal schedule.

Proof.
By way of contradiction, assume that ∣S∗∣ > ∣S∣. This implies that
m > k. Lemma 1 shows that FinishFirst is ahead for all the k
requests. That means it would be able to add the (k + 1)-st item
of S∗. As it did not, this contradicts the definition of
FinishFirst.

33/36

Intro Greedy Coin Collection Stays Ahead

Implementation and Running Time
Algorithm: FinishFirst
Let S be an initially
empty set.
while σ is not empty do

Choose ri ∈ σ with
the smallest finish
time (break ties
arbitrarily).
Add ri to S.
Remove all
incompatible
request in σ.

end
return S

Implementation Details

Choose request with
smallest finish time:

Before processing, sort
requests: O(n logn).

Remove incompatible
requests:

Advance in
sorted order until a
request with a
compatible start time.

Overall:
O(n logn)+O(n) = O(n logn)

34/36

Intro Greedy Coin Collection Stays Ahead

Implementation and Running Time
Algorithm: FinishFirst
Let S be an initially
empty set.
while σ is not empty do

Choose ri ∈ σ with
the smallest finish
time (break ties
arbitrarily).
Add ri to S.
Remove all
incompatible
request in σ.

end
return S

Implementation Details
Choose request with
smallest finish time:

Before processing, sort
requests: O(n logn).

Remove incompatible
requests:

Advance in
sorted order until a
request with a
compatible start time.

Overall:
O(n logn)+O(n) = O(n logn)

34/36

Intro Greedy Coin Collection Stays Ahead

Implementation and Running Time
Algorithm: FinishFirst
Let S be an initially
empty set.
while σ is not empty do

Choose ri ∈ σ with
the smallest finish
time (break ties
arbitrarily).
Add ri to S.
Remove all
incompatible
request in σ.

end
return S

Implementation Details
Choose request with
smallest finish time:
Before processing, sort
requests: O(n logn).
Remove incompatible
requests:

Advance in
sorted order until a
request with a
compatible start time.

Overall:
O(n logn)+O(n) = O(n logn)

34/36

Intro Greedy Coin Collection Stays Ahead

Implementation and Running Time
Algorithm: FinishFirst
Let S be an initially
empty set.
while σ is not empty do

Choose ri ∈ σ with
the smallest finish
time (break ties
arbitrarily).
Add ri to S.
Remove all
incompatible
request in σ.

end
return S

Implementation Details
Choose request with
smallest finish time:
Before processing, sort
requests: O(n logn).
Remove incompatible
requests: Advance in
sorted order until a
request with a
compatible start time.

Overall:
O(n logn)+O(n) = O(n logn)

34/36

Intro Greedy Coin Collection Stays Ahead

Implementation and Running Time
Algorithm: FinishFirst
Let S be an initially
empty set.
while σ is not empty do

Choose ri ∈ σ with
the smallest finish
time (break ties
arbitrarily).
Add ri to S.
Remove all
incompatible
request in σ.

end
return S

Implementation Details
Choose request with
smallest finish time:
Before processing, sort
requests: O(n logn).
Remove incompatible
requests: Advance in
sorted order until a
request with a
compatible start time.

Overall:
O(n logn)+O(n) = O(n logn)

34/36

Intro Greedy Coin Collection Stays Ahead

Interval Extensions

Online variant: Requests are presented in a specific order
to the algorithm. At request i, the algorithm does not know
n nor ri+1, . . . , rn.

Add a value to the intervals (online/offline). Now
objective is to maximize the total value of scheduled
intervals.
Scheduling all intervals: Interval Colouring Problem.

Unlimited resources and the algorithm must produce
multiple compatible schedules that cover all the requests
(without duplicates between the schedules).
Objective: Minimize the number of schedules.

35/36

Intro Greedy Coin Collection Stays Ahead

Interval Extensions

Online variant: Requests are presented in a specific order
to the algorithm. At request i, the algorithm does not know
n nor ri+1, . . . , rn.
Add a value to the intervals (online/offline). Now
objective is to maximize the total value of scheduled
intervals.

Scheduling all intervals: Interval Colouring Problem.

Unlimited resources and the algorithm must produce
multiple compatible schedules that cover all the requests
(without duplicates between the schedules).
Objective: Minimize the number of schedules.

35/36

Intro Greedy Coin Collection Stays Ahead

Interval Extensions

Online variant: Requests are presented in a specific order
to the algorithm. At request i, the algorithm does not know
n nor ri+1, . . . , rn.
Add a value to the intervals (online/offline). Now
objective is to maximize the total value of scheduled
intervals.
Scheduling all intervals: Interval Colouring Problem.

Unlimited resources and the algorithm must produce
multiple compatible schedules that cover all the requests
(without duplicates between the schedules).
Objective: Minimize the number of schedules.

35/36

Intro Greedy Coin Collection Stays Ahead

Interval Extensions

Online variant: Requests are presented in a specific order
to the algorithm. At request i, the algorithm does not know
n nor ri+1, . . . , rn.
Add a value to the intervals (online/offline). Now
objective is to maximize the total value of scheduled
intervals.
Scheduling all intervals: Interval Colouring Problem.

Unlimited resources and the algorithm must produce
multiple compatible schedules that cover all the requests
(without duplicates between the schedules).

Objective: Minimize the number of schedules.

35/36

Intro Greedy Coin Collection Stays Ahead

Interval Extensions

Online variant: Requests are presented in a specific order
to the algorithm. At request i, the algorithm does not know
n nor ri+1, . . . , rn.
Add a value to the intervals (online/offline). Now
objective is to maximize the total value of scheduled
intervals.
Scheduling all intervals: Interval Colouring Problem.

Unlimited resources and the algorithm must produce
multiple compatible schedules that cover all the requests
(without duplicates between the schedules).
Objective: Minimize the number of schedules.

35/36

Intro Greedy Coin Collection Stays Ahead

What time is now???

Intro Greedy Coin Collection Stays Ahead

36/36

Appendix References

Appendix

Appendix References

References

Appendix References

Image Sources I

https://www.cse.unsw.edu.au/~cs1521/17s2/
lecs/notices/slide068.html

http://mediablogrueil.blogspot.fr/2012/11/
one-page-design-effet-de-mode-ou-reel.html

http://www.culturizame.es/articulo/
nuestro-pequeno-diccionario-de-tecnologia

http://computer-help-tips.blogspot.fr/2011/
04/different-types-of-computer-processors.
html

37/36

https://www.cse.unsw.edu.au/~cs1521/17s2/lecs/notices/slide068.html
https://www.cse.unsw.edu.au/~cs1521/17s2/lecs/notices/slide068.html
http://mediablogrueil.blogspot.fr/2012/11/one-page-design-effet-de-mode-ou-reel.html
http://mediablogrueil.blogspot.fr/2012/11/one-page-design-effet-de-mode-ou-reel.html
http://www.culturizame.es/articulo/nuestro-pequeno-diccionario-de-tecnologia
http://www.culturizame.es/articulo/nuestro-pequeno-diccionario-de-tecnologia
http://computer-help-tips.blogspot.fr/2011/04/different-types-of-computer-processors.html
http://computer-help-tips.blogspot.fr/2011/04/different-types-of-computer-processors.html
http://computer-help-tips.blogspot.fr/2011/04/different-types-of-computer-processors.html

Appendix References

Image Sources II

https://brand.wisc.edu/web/logos/

38/36

https://brand.wisc.edu/web/logos/

	Intro
	Warm-up: The Solution is Simple... But the Proof is Stronger
	However !!!

	Greedy
	Historical Break

	Coin Collection
	How should I know that my idea is the correct greedy algorithm???
	Summary of Exchange Argument Method My solution is better than yours 44

	Stays Ahead: Interval Scheduling
	What time is now???

	Appendix
	Appendix
	References

