
CS 577 - More (Hard)/(Interesting) Greedy

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin – Madison

Fall 2024

Paging Prefix Codes Exchange Argument

Paging

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33 14 12 20

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12

3 33 14 12 20

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12

3 33 14 12 20

12

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3

33 14 12 20

12

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3

33 14 12 20

12 3

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33

14 12 20

12 3

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33

14 12 20

12 3 33

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33 14

12 20

12 3 33

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33 14

12 20

12 3 33 14

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33 14 12

20

12 3 33 14

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem
U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33 14 12 20

12 3 33 14

Definition
U : universe of pages (∣U ∣ > k).
Cache of size k.
Requests are to the pages of U .
Goal: Minimize the number of page faults (requests to
pages not in the cache). 1/27

Paging Prefix Codes Exchange Argument

Paging Problem

U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33 14 12 20

12 3 33 14

Eviction Strategies
When designing an algorithm, we are picking an eviction
strategy.

In the offline version, the algorithm knows the request
sequence. What might be a good eviction strategy?

1/27

Paging Prefix Codes Exchange Argument

Paging Problem

U :

1 2

3

4

5

6

7

8

910

11

1213
14

1516
17

18

19
20

21

22

23

24

25
26

27

28

29

30

31

32

33 34

35
36

37
38

39

40

41

42

4344

45

Cache:

Requests:

12 3 33 14 12 20

12 3 33 14

Eviction Strategies
When designing an algorithm, we are picking an eviction
strategy.
In the offline version, the algorithm knows the request
sequence. What might be a good eviction strategy?

1/27

Paging Prefix Codes Exchange Argument

Intuition

2/27

Paging Prefix Codes Exchange Argument

Intuition

2/27

Paging Prefix Codes Exchange Argument

Offline Greedy Algorithm

Farthest-in-Future (ff)
Evict the page whose next request is the furthest into the future.

Small Run:
U = {a, b, c}
k = 2
σ = ⟨a, b, c, b, c, a, b⟩

Which strategy to prove optimality?

3/27

Paging Prefix Codes Exchange Argument

Offline Greedy Algorithm

Farthest-in-Future (ff)
Evict the page whose next request is the furthest into the future.

Small Run:
U = {a, b, c}
k = 2
σ = ⟨a, b, c, b, c, a, b⟩

Which strategy to prove optimality?

3/27

Paging Prefix Codes Exchange Argument

Offline Greedy Algorithm

Farthest-in-Future (ff)
Evict the page whose next request is the furthest into the future.

Small Run:
U = {a, b, c}
k = 2
σ = ⟨a, b, c, b, c, a, b⟩

How many faults in small run?

Which strategy to prove optimality?

3/27

Paging Prefix Codes Exchange Argument

Offline Greedy Algorithm

Farthest-in-Future (ff)
Evict the page whose next request is the furthest into the future.

Small Run:
U = {a, b, c}
k = 2
σ = ⟨a, b, c, b, c, a, b⟩

Which strategy to prove optimality?

3/27

Paging Prefix Codes Exchange Argument

Offline Greedy Algorithm

Farthest-in-Future (ff)
Evict the page whose next request is the furthest into the future.

Small Run:
U = {a, b, c}
k = 2
σ = ⟨a, b, c, b, c, a, b⟩

Which strategy to prove optimality?

3/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 1

Proof.
If on request j + 1, S behaves as Sff, then define S′ as S and the claim
follows.

Since S and Sff agree up to now, how different are their caches at this point?

4/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 1

Proof.
If on request j + 1, S behaves as Sff, then define S′ as S and the claim
follows.

Since S and Sff agree up to now, how different are their caches at this point?

Same Initialization ⊕ Same Schedule ≡ Same Cache Content

4/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 1
Let S be a schedule for the n requests that makes the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
If on request j + 1, S behaves as Sff, then define S′ as S and the claim
follows.

Are there trivial cases where after the (j + 1)th step, S and Sff will be the
same again?

4/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 1
Let S be a schedule for the n requests that makes the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
If on request j + 1, S behaves as Sff, then define S′ as S and the claim
follows.

Are there trivial cases where after the (j + 1)th step, S and Sff will be the
same again?

Consider the (j + 1)th request for item d = dj+1. Since S and Sff have agreed so
far, their cache contents are the same.

If d is already in the cache for both schedules, no eviction is needed. 4/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 1
Let S be a schedule for the n requests that makes the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
If on request j + 1, S behaves as Sff, then define S′ as S and the claim
follows.

Any other trivial case where S and Sff will be the same again?

4/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 1
Let S be a schedule for the n requests that makes the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
If on request j + 1, S behaves as Sff, then define S′ as S and the claim
follows.

Any other trivial case where S and Sff will be the same again?

If d needs to be brought into the cache, but S and Sff both evict the same item.

4/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
Otherwise, say S evicts f and Sff evicts e. We will build S′ by
following Sff for the first j + 1 requests. Note that the number of
faults are the same for S and S′ up to j + 1, and the caches match
except for f and e.

Step Cache S Cache S′ ∶= Sff
j [same | f | e] [same | f | e]

j + 1 [same | d | e] [same | f | d]

5/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
From j + 2 onward, S′ follows S until they differ again
because of some required element x and either:

1 S evicts e. In this case, S′ evicts f .
2 S evicts g ≠ e to bring f into the cache. In this case, S′ evicts

g and brings in e.
Can S bring e into cache earlier than f ???

In either case, both S and S′ have a page fault, and
afterwards their cache match.

5/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
From j + 2 onward, S′ follows S until they differ again
because of some required element x and either:

1 S evicts e. In this case, S′ evicts f .
Step Cache S Cache S′ ∶= Sff
j′ [same | ? | e] [same | f | ?]

j′ + 1 [same | ? | x] [same | x | ?]

2 S evicts g ≠ e to bring f into the cache. In this case, S′ evicts
g and brings in e.
Can S bring e into cache earlier than f ???

In either case, both S and S′ have a page fault, and
afterwards their cache match.

5/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
From j + 2 onward, S′ follows S until they differ again
because of some required element x and either:

1 S evicts e. In this case, S′ evicts f .
2 S evicts g ≠ e to bring f into the cache. In this case, S′ evicts

g and brings in e.
Step Cache S Cache S′ ∶= Sff
j′ [same | g | e] [same | f | g]

j′ + 1 [same | f | e] [same | f | e]

Can S bring e into cache earlier than f ???
In either case, both S and S′ have a page fault, and
afterwards their cache match.

5/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
From j + 2 onward, S′ follows S until they differ again
because of some required element x and either:

1 S evicts e. In this case, S′ evicts f .
2 S evicts g ≠ e to bring f into the cache. In this case, S′ evicts

g and brings in e.
Can S bring e into cache earlier than f ???

In either case, both S and S′ have a page fault, and
afterwards their cache match.

5/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

Proof.
From j + 2 onward, S′ follows S until they differ again
because of some required element x and either:

1 S evicts e. In this case, S′ evicts f .
2 S evicts g ≠ e to bring f into the cache. In this case, S′ evicts

g and brings in e.
Can S bring e into cache earlier than f ???
No: Since Sff evicts e at j + 1, f must be requested before e.

In either case, both S and S′ have a page fault, and
afterwards their cache match.

Aesop’s Moral
So, we started with a schedule:

S = {evict1, . . . , evictj}[evictaj+1] . . . [evictaj′] . . .

Sff = {evict1, . . . , evictj}[evictbj+1] . . . [evictbj′] . . .

Thus, if instead of some schedule S, we follow Sff for j + 1 steps,
there will come a time in the future when S has a cache miss.

At that point, either S also incurs a cache miss, or being more
efficient, it may make a clever eviction to bring the caches in
sync.

5/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

How do we get optimality of Sff from Theorem 1?

By induction: We begin with the optimal schedule S∗ and
inductively apply Theorem 1 for j = 1,2,3, . . . ,n, which after the
n iterations, produces Sff.

5/27

Paging Prefix Codes Exchange Argument

Proving ff Optimality
Exchange Argument

Theorem 2
Let S be a schedule for the n request that make the same eviction decisions as Sff for
the first j items. Then, there is a schedule S′ that makes the same eviction requests as
Sff for the first j + 1 items with no more faults than S.

How do we get optimality of Sff from Theorem 1?
By induction: We begin with the optimal schedule S∗ and
inductively apply Theorem 1 for j = 1,2,3, . . . ,n, which after the
n iterations, produces Sff.

5/27

Paging Prefix Codes Exchange Argument

Prefix Codes

Paging Prefix Codes Exchange Argument

Binary Encoding

Fixed-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}k.
γ(S) ∶= {000,001,010,011,100}.
Ex. ASCII

Quiz #1: Decode 000010.

Variable-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {0,1,10,01,11}.

Quiz #2: How many ways to decode 0010?

6/27

Paging Prefix Codes Exchange Argument

Binary Encoding

Fixed-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}k.
γ(S) ∶= {000,001,010,011,100}.
Ex. ASCII
Quiz #1: Decode 000010.

Variable-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {0,1,10,01,11}.

Quiz #2: How many ways to decode 0010?

6/27

Paging Prefix Codes Exchange Argument

Binary Encoding

Fixed-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}k.
γ(S) ∶= {000,001,010,011,100}.
Ex. ASCII
Quiz #1: Decode 000010.

Variable-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {0,1,10,01,11}.

Quiz #2: How many ways to decode 0010?

6/27

Paging Prefix Codes Exchange Argument

Binary Encoding

Fixed-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}k.
γ(S) ∶= {000,001,010,011,100}.
Ex. ASCII
Quiz #1: Decode 000010.

Variable-Width Encoding
Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {0,1,10,01,11}.
Quiz #2: How many ways to decode 0010?

6/27

Paging Prefix Codes Exchange Argument

Unique Variable-Width Encodings
Prefix Codes
Encoding of S such that no encoding of a symbol in S is a prefix
of another.

Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {11,01,001,000,100}.

Easy Decoding
Scan left to right, once an encoding is matched, output symbol.

Optimal Prefix Codes
For a set of symbols S, let fx denote the frequency of x in
the text to be encoded.
Average bits abl(γ) ∶= ∑x∈S fx ⋅ ∣γ(x)∣.
Goal: Find γ that minimizes abl.

7/27

Paging Prefix Codes Exchange Argument

Unique Variable-Width Encodings
Prefix Codes
Encoding of S such that no encoding of a symbol in S is a prefix
of another.

Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {11,01,001,000,100}.
0010 invalid sequence

Quiz #3: Decode 1101.

Easy Decoding
Scan left to right, once an encoding is matched, output symbol.

Optimal Prefix Codes
For a set of symbols S, let fx denote the frequency of x in
the text to be encoded.
Average bits abl(γ) ∶= ∑x∈S fx ⋅ ∣γ(x)∣.
Goal: Find γ that minimizes abl.

7/27

Paging Prefix Codes Exchange Argument

Unique Variable-Width Encodings
Prefix Codes
Encoding of S such that no encoding of a symbol in S is a prefix
of another.

Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {11,01,001,000,100}.
0010 invalid sequence
Quiz #3: Decode 1101.

Easy Decoding
Scan left to right, once an encoding is matched, output symbol.

Optimal Prefix Codes
For a set of symbols S, let fx denote the frequency of x in
the text to be encoded.
Average bits abl(γ) ∶= ∑x∈S fx ⋅ ∣γ(x)∣.
Goal: Find γ that minimizes abl.

7/27

Paging Prefix Codes Exchange Argument

Unique Variable-Width Encodings
Prefix Codes
Encoding of S such that no encoding of a symbol in S is a prefix
of another.

Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {11,01,001,000,100}.

Easy Decoding
Scan left to right, once an encoding is matched, output symbol.

Optimal Prefix Codes
For a set of symbols S, let fx denote the frequency of x in
the text to be encoded.
Average bits abl(γ) ∶= ∑x∈S fx ⋅ ∣γ(x)∣.
Goal: Find γ that minimizes abl.

7/27

Paging Prefix Codes Exchange Argument

Unique Variable-Width Encodings
Prefix Codes
Encoding of S such that no encoding of a symbol in S is a prefix
of another.

Set of symbols S ∶= {a, b, c,d, e}.
Encoding function γ ∶ S→ {0,1}∗.
γ(S) ∶= {11,01,001,000,100}.

Easy Decoding
Scan left to right, once an encoding is matched, output symbol.

Optimal Prefix Codes
For a set of symbols S, let fx denote the frequency of x in
the text to be encoded.
Average bits abl(γ) ∶= ∑x∈S fx ⋅ ∣γ(x)∣.
Goal: Find γ that minimizes abl. 7/27

Paging Prefix Codes Exchange Argument

Algorithm Design
Prefix Binary Trees

8/27

Paging Prefix Codes Exchange Argument

Optimal Prefix Tree should be Full
Image

Could be that optimal??? 9/27

Paging Prefix Codes Exchange Argument

Optimal Prefix Tree is Full
Proof

Theorem 3
The binary tree corresponding to the optimal prefix code is full.

Proof.
By exchange argument:

Let T be an optimal prefix tree with a node uwith one
child v.
Let T′ be T with u replaced with v.
Distance to v decreases by 1 in T′, a contradiction.

10/27

Paging Prefix Codes Exchange Argument

Optimal Prefix Tree is Full
Proof

Theorem 3
The binary tree corresponding to the optimal prefix code is full.

Proof.

By exchange argument:

Let T be an optimal prefix tree with a node uwith one
child v.
Let T′ be T with u replaced with v.
Distance to v decreases by 1 in T′, a contradiction.

10/27

Paging Prefix Codes Exchange Argument

Optimal Prefix Tree is Full
Proof

Theorem 3
The binary tree corresponding to the optimal prefix code is full.

Proof.
By exchange argument:

Let T be an optimal prefix tree with a node uwith one
child v.

Let T′ be T with u replaced with v.
Distance to v decreases by 1 in T′, a contradiction.

10/27

Paging Prefix Codes Exchange Argument

Optimal Prefix Tree is Full
Proof

Theorem 3
The binary tree corresponding to the optimal prefix code is full.

Proof.
By exchange argument:

Let T be an optimal prefix tree with a node uwith one
child v.
Let T′ be T with u replaced with v.

Distance to v decreases by 1 in T′, a contradiction.

10/27

Paging Prefix Codes Exchange Argument

Optimal Prefix Tree is Full
Proof

Theorem 3
The binary tree corresponding to the optimal prefix code is full.

Proof.
By exchange argument:

Let T be an optimal prefix tree with a node uwith one
child v.
Let T′ be T with u replaced with v.
Distance to v decreases by 1 in T′, a contradiction.

10/27

Paging Prefix Codes Exchange Argument

Top-Down Approach
Algorithm

Split S into two sets such that the sets frequency are 1/2 the
total frequency.
Recurse on new sets until singletons.

fa = .32, fb = .25, fc = .2, fd = .18, fe = .05

abl(opt) = 2.23 abl(TopDown) = 2.25

11/27

Paging Prefix Codes Exchange Argument

Top-Down Approach
Algorithm

Split S into two sets such that the sets frequency are 1/2 the
total frequency.
Recurse on new sets until singletons.

fa = .32, fb = .25, fc = .2, fd = .18, fe = .05

abl(opt) = 2.23 abl(TopDown) = 2.25

11/27

Paging Prefix Codes Exchange Argument

Historical Break

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany
The Background
Huffman was a student in an information theory class taught by
Robert Fano, who was a close colleague of Claude Shannon, the father
of information theory. Fano and Shannon had previously developed a
different greedy algorithm for producing prefix codes — split the
frequency array into two subarrays as evenly as possible, and then
recursively build a code for each subarray — but these Fano-Shannon
codes were known not to be optimal.

The Challenge
Fano posed the problem of finding an optimal prefix code to his
class. Huffman decided to solve the problem as a class project,
instead of taking a final exam, not realizing that the problem
was open, or that Fano and Shannon had already tried and
failed to solve it.

12/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany
The Background
Huffman was a student in an information theory class taught by
Robert Fano, who was a close colleague of Claude Shannon, the father
of information theory. Fano and Shannon had previously developed a
different greedy algorithm for producing prefix codes — split the
frequency array into two subarrays as evenly as possible, and then
recursively build a code for each subarray — but these Fano-Shannon
codes were known not to be optimal.

The Challenge
Fano posed the problem of finding an optimal prefix code to his
class. Huffman decided to solve the problem as a class project,
instead of taking a final exam, not realizing that the problem
was open, or that Fano and Shannon had already tried and
failed to solve it.

12/27

Paging Prefix Codes Exchange Argument

The Epiphany
Months of Effort
After several months of fruitless effort, Huffman eventually
gave up and decided to take the final exam after all. As he was
throwing his notes in the trash, the solution dawned on him.

The Realization
Huffman would later describe the epiphany as:

“The absolute lightning of sudden realization.”

The Result
Huffman’s algorithm became the optimal method for
generating prefix codes, known today as Huffman Coding.

13/27

Paging Prefix Codes Exchange Argument

The Epiphany
Months of Effort
After several months of fruitless effort, Huffman eventually
gave up and decided to take the final exam after all. As he was
throwing his notes in the trash, the solution dawned on him.

The Realization
Huffman would later describe the epiphany as:

“The absolute lightning of sudden realization.”

The Result
Huffman’s algorithm became the optimal method for
generating prefix codes, known today as Huffman Coding.

13/27

Paging Prefix Codes Exchange Argument

The Epiphany
Months of Effort
After several months of fruitless effort, Huffman eventually
gave up and decided to take the final exam after all. As he was
throwing his notes in the trash, the solution dawned on him.

The Realization
Huffman would later describe the epiphany as:

“The absolute lightning of sudden realization.”

The Result
Huffman’s algorithm became the optimal method for
generating prefix codes, known today as Huffman Coding.

13/27

Paging Prefix Codes Exchange Argument

What if we knew the optimal tree?

Let T∗ be the optimal (unlabeled) prefix tree.

Lemma 4
Let x and y be the two least frequent characters (breaking ties
arbitrarily). There is an optimal code tree in which x and y are
siblings and have the largest depth of any leaf.

Proof.
Let T be an optimal code tree, and suppose this tree has depth
d.

What time is it?

14/27

Paging Prefix Codes Exchange Argument

What if we knew the optimal tree?

Let T∗ be the optimal (unlabeled) prefix tree.

Lemma 4
Let x and y be the two least frequent characters (breaking ties
arbitrarily). There is an optimal code tree in which x and y are
siblings and have the largest depth of any leaf.

14/27

Paging Prefix Codes Exchange Argument

What if we knew the optimal tree?

Let T∗ be the optimal (unlabeled) prefix tree.

Lemma 4
Let x and y be the two least frequent characters (breaking ties
arbitrarily). There is an optimal code tree in which x and y are
siblings and have the largest depth of any leaf.

Since T∗ is a full binary tree, it has at least two leaves at
depth d that are siblings (not just one!).
Suppose these two leaves are not x and y, but some other
characters a and b.

14/27

Paging Prefix Codes Exchange Argument

What if we knew the optimal tree?

Let T∗ be the optimal (unlabeled) prefix tree.

Lemma 4
Let x and y be the two least frequent characters (breaking ties
arbitrarily). There is an optimal code tree in which x and y are
siblings and have the largest depth of any leaf.

Let T′ be the code tree obtained by swapping x and a, and
let∆ = d − depthT′(x).
This swap increases the depth of x by ∆ and decreases the
depth of a by∆, so:

cost(T′) = cost(T) +∆ ⋅ (f [x] − f [a]).

14/27

Paging Prefix Codes Exchange Argument

What if we knew the optimal tree?
Let T∗ be the optimal (unlabeled) prefix tree.

Lemma 4
Let x and y be the two least frequent characters (breaking ties
arbitrarily). There is an optimal code tree in which x and y are
siblings and have the largest depth of any leaf.

Our assumption that x is one of the two least frequent
characters and a is not implies that f [x] ≤ f [a].
Our assumption that a has maximum depth implies∆ ≥ 0.

cost(T′) = cost(T) +∆ ⋅ (f [x] − f [a]).

It follows that cost(T′) ≤ cost(T). Therefore, T′ is optimal.

14/27

Paging Prefix Codes Exchange Argument

What if we knew the optimal tree?

Let T∗ be the optimal (unlabeled) prefix tree.

Lemma 4
Let x and y be the two least frequent characters (breaking ties
arbitrarily). There is an optimal code tree in which x and y are
siblings and have the largest depth of any leaf.

Similarly, swapping y and b gives yet another optimal code
tree.
In this final optimal code tree, x and y are maximum-depth
siblings, as required.

14/27

Paging Prefix Codes Exchange Argument

So the least frequent characters are at bottom

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany

Let’s see an example:

15/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany

Let’s see an example:

The pantagram of Sallow.

15/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany

Let’s see an example:

The problem is the same if I normalize or not the frequencies!!!

15/27

Paging Prefix Codes Exchange Argument

Bottom-Up Approach
Huffman Code

Huffman’s Algorithm
(1) Bottom-up by lowest frequency:

Let x and y be the lowest frequency symbols.
Set S ∶= S ∖ {x,y} ∪ {w ∶= xy} and fw = fx + fy.
Repeat until ∣S∣ = 1.

(2) Generate the tree:
T ∶= root with element from S.

Replace

w ∶= xy

with
yx

Repeat until leaves of T are original symbols.

16/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany

Back to our example:

⇓ min freq: {D , Z }

17/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany

Back to our example:

17/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany
Back to our example:

17/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany
Back to our example:

17/27

Paging Prefix Codes Exchange Argument

Huffman Codes are Optimal
Lemma 5

Let T′ be the tree at the (k − 1)-st step, and let T be the tree at the k-th
step. abl(T′) = abl(T) − fw, where w is the symbol replaced in the
k-th step by y and z.

Proof.
abl(T) = ∑

x∈S
fx ⋅ depth(x)

= fy ⋅ depth(y) + fz ⋅ depth(z) + ∑
x∈S;x∉{y,z}

fx ⋅ depth(x)

= fw + fw ⋅ depth(w) + ∑
x∈S∖{y,z}

fx ⋅ depth(x)

= fw + abl(T′)

18/27

Paging Prefix Codes Exchange Argument

Huffman Codes are Optimal
Lemma 5

Let T′ be the tree at the (k − 1)-st step, and let T be the tree at the k-th
step. abl(T′) = abl(T) − fw, where w is the symbol replaced in the
k-th step by y and z.

Proof.
abl(T) = ∑

x∈S
fx ⋅ depth(x)

= fy ⋅ depth(y) + fz ⋅ depth(z) + ∑
x∈S;x∉{y,z}

fx ⋅ depth(x)

= fw + fw ⋅ depth(w) + ∑
x∈S∖{y,z}

fx ⋅ depth(x)

= fw + abl(T′)
18/27

Paging Prefix Codes Exchange Argument

Huffman Codes are Optimal

Lemma 5

Let T′ be the tree at the (k − 1)-st step, and let T be the tree at the k-th
step. abl(T′) = abl(T) − fw, where w is the symbol replaced in the
k-th step by y and z.

Theorem 6
Huffman Algorithm is optimal.

Proof.
Reverse Induction: Reducing the problem size to smaller
subproblems! ,

18/27

Paging Prefix Codes Exchange Argument

Huffman Codes are Optimal

Lemma 5

Let T′ be the tree at the (k − 1)-st step, and let T be the tree at the k-th
step. abl(T′) = abl(T) − fw, where w is the symbol replaced in the
k-th step by y and z.

Theorem 6
Huffman Algorithm is optimal.

Proof.
Reverse Induction: Reducing the problem size to smaller
subproblems! ,

18/27

Paging Prefix Codes Exchange Argument

Bottom-Up Approach
Huffman Code

Huffman’s Algorithm
(1) Bottom-up by lowest frequency:

Let x and y be the lowest frequency symbols.
Set S ∶= S ∖ {x,y} ∪ {w ∶= xy} and fw = fx + fy.
Repeat until ∣S∣ = 1.

(2) Generate the tree:
T ∶= root with element from S.

Replace

w ∶= xy

with
yx

Repeat until leaves of T are original symbols.

Runtime:

what about O(∣S∣ log ∣S∣)?

Priority Queue (min-heap)

19/27

Paging Prefix Codes Exchange Argument

Bottom-Up Approach
Huffman Code

Huffman’s Algorithm
(1) Bottom-up by lowest frequency:

Let x and y be the lowest frequency symbols.
Set S ∶= S ∖ {x,y} ∪ {w ∶= xy} and fw = fx + fy.
Repeat until ∣S∣ = 1.

(2) Generate the tree:
T ∶= root with element from S.

Replace

w ∶= xy

with
yx

Repeat until leaves of T are original symbols.

Runtime: ∣S∣ − 1 recursions with find min over ∣Si∣ elements

what about O(∣S∣ log ∣S∣)?

Priority Queue (min-heap)

19/27

Paging Prefix Codes Exchange Argument

Bottom-Up Approach
Huffman Code

Huffman’s Algorithm
(1) Bottom-up by lowest frequency:

Let x and y be the lowest frequency symbols.
Set S ∶= S ∖ {x,y} ∪ {w ∶= xy} and fw = fx + fy.
Repeat until ∣S∣ = 1.

(2) Generate the tree:
T ∶= root with element from S.

Replace

w ∶= xy

with
yx

Repeat until leaves of T are original symbols.

Runtime: O(∣S∣2)

what about O(∣S∣ log ∣S∣)?

Priority Queue (min-heap)

19/27

Paging Prefix Codes Exchange Argument

Bottom-Up Approach
Huffman Code

Huffman’s Algorithm
(1) Bottom-up by lowest frequency:

Let x and y be the lowest frequency symbols.
Set S ∶= S ∖ {x,y} ∪ {w ∶= xy} and fw = fx + fy.
Repeat until ∣S∣ = 1.

(2) Generate the tree:
T ∶= root with element from S.

Replace

w ∶= xy

with
yx

Repeat until leaves of T are original symbols.

Runtime: O(∣S∣2)
what about O(∣S∣ log ∣S∣)?

Priority Queue (min-heap)

19/27

Paging Prefix Codes Exchange Argument

Bottom-Up Approach
Huffman Code

Huffman’s Algorithm
(1) Bottom-up by lowest frequency:

Let x and y be the lowest frequency symbols.
Set S ∶= S ∖ {x,y} ∪ {w ∶= xy} and fw = fx + fy.
Repeat until ∣S∣ = 1.

(2) Generate the tree:
T ∶= root with element from S.

Replace

w ∶= xy

with
yx

Repeat until leaves of T are original symbols.

Runtime: O(∣S∣2)
what about O(∣S∣ log ∣S∣)? Priority Queue (min-heap)

19/27

Paging Prefix Codes Exchange Argument

Huffman’s Epiphany

20/27

Paging Prefix Codes Exchange Argument

Exchange Argument:
Minimize Max Lateness

Paging Prefix Codes Exchange Argument

Scheduling Problem: Minimize Max Lateness

Problem Definition
n jobs and a single machine that can process one job at a
time

For job i:

ti is the processing time, di is the deadline.
Lateness li = fi − di if finish time fi > di; 0 otherwise.

Objective: Build a schedule for all the jobs that minimizes
the max lateness.

What greedy heuristic might work?

21/27

Paging Prefix Codes Exchange Argument

Scheduling Problem: Minimize Max Lateness

Problem Definition
n jobs and a single machine that can process one job at a
time
For job i:

ti is the processing time, di is the deadline.
Lateness li = fi − di if finish time fi > di; 0 otherwise.

Objective: Build a schedule for all the jobs that minimizes
the max lateness.

What greedy heuristic might work?

21/27

Paging Prefix Codes Exchange Argument

Scheduling Problem: Minimize Max Lateness

Problem Definition
n jobs and a single machine that can process one job at a
time
For job i:

ti is the processing time, di is the deadline.

Lateness li = fi − di if finish time fi > di; 0 otherwise.
Objective: Build a schedule for all the jobs that minimizes
the max lateness.

What greedy heuristic might work?

21/27

Paging Prefix Codes Exchange Argument

Scheduling Problem: Minimize Max Lateness

Problem Definition
n jobs and a single machine that can process one job at a
time
For job i:

ti is the processing time, di is the deadline.
Lateness li = fi − di if finish time fi > di; 0 otherwise.

Objective: Build a schedule for all the jobs that minimizes
the max lateness.

What greedy heuristic might work?

21/27

Paging Prefix Codes Exchange Argument

Scheduling Problem: Minimize Max Lateness

Problem Definition
n jobs and a single machine that can process one job at a
time
For job i:

ti is the processing time, di is the deadline.
Lateness li = fi − di if finish time fi > di; 0 otherwise.

Objective: Build a schedule for all the jobs that minimizes
the max lateness.

What greedy heuristic might work?

21/27

Paging Prefix Codes Exchange Argument

Scheduling Problem: Minimize Max Lateness

Problem Definition
n jobs and a single machine that can process one job at a
time
For job i:

ti is the processing time, di is the deadline.
Lateness li = fi − di if finish time fi > di; 0 otherwise.

Objective: Build a schedule for all the jobs that minimizes
the max lateness.

What greedy heuristic might work? 21/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 1: Increasing processing time.
Schedule jobs by increasing ti.

Optimal?

Counter-example: Jobs (ti,di): {(1,100), (10,10)}

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 1: Increasing processing time.
Schedule jobs by increasing ti.

Optimal?

Counter-example: Jobs (ti,di): {(1,100), (10,10)}

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 1: Increasing processing time.
Schedule jobs by increasing ti.

Optimal?
Counter-example: Jobs (ti,di): {(1,100), (10,10)}

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 2: Increasing slack.
Schedule by increasing di − ti.

Optimal?

Counter-example:

Jobs (ti,di): {(1,2), (10,10)}

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 2: Increasing slack.
Schedule by increasing di − ti.

Optimal?

Counter-example:

Jobs (ti,di): {(1,2), (10,10)}

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 2: Increasing slack.
Schedule by increasing di − ti.

Optimal?
Counter-example:

Jobs (ti,di): {(1,2), (10,10)}

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 3: Earliest deadline first.
Schedule by increasing di.

Optimal?

Counter-example? Let’s try and prove it.

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 3: Earliest deadline first.
Schedule by increasing di.

Optimal?

Counter-example? Let’s try and prove it.

22/27

Paging Prefix Codes Exchange Argument

Greedy Algorithms for Minimizing Max Lateness

Heuristic 3: Earliest deadline first.
Schedule by increasing di.

Optimal?
Counter-example? Let’s try and prove it.

22/27

Paging Prefix Codes Exchange Argument

Exercise: Formalize the algorithm (pseudocode)
Heuristic 3: Earliest deadline first.

Algorithm: edf
Let J be the set of jobs.
Let S be an initially empty list.
while J is not empty do

Choose j ∈ J with the smallest di (break ties arbitrarily).
Append j to S.

end
return S
Sample Run (Quiz: What is max lateness?)

23/27

Paging Prefix Codes Exchange Argument

Exercise: Formalize the algorithm (pseudocode)
Heuristic 3: Earliest deadline first.

Algorithm: edf
Let J be the set of jobs.
Let S be an initially empty list.
while J is not empty do

Choose j ∈ J with the smallest di (break ties arbitrarily).
Append j to S.

end
return S

Sample Run (Quiz: What is max lateness?)

23/27

Paging Prefix Codes Exchange Argument

Exercise: Formalize the algorithm (pseudocode)
Heuristic 3: Earliest deadline first.

Algorithm: edf
Let J be the set of jobs.
Let S be an initially empty list.
while J is not empty do

Choose j ∈ J with the smallest di (break ties arbitrarily).
Append j to S.

end
return S
Sample Run (Quiz: What is max lateness?)

23/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣?

No.

Can there be multiple S∗?

Yes.

We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to S while
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣?

No.
Can there be multiple S∗?

Yes.

We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to Swhile
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣? No.

Can there be multiple S∗?

Yes.

We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to Swhile
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣? No.
Can there be multiple S∗?

Yes.
We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to Swhile
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣? No.
Can there be multiple S∗? Yes.

We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to Swhile
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣? No.
Can there be multiple S∗? Yes.
We need to show either S = S∗, or S ≡ S∗ for max lateness.

Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to Swhile
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣? No.
Can there be multiple S∗? Yes.
We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to Swhile
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣? No.
Can there be multiple S∗? Yes.
We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to S while
maintaining optimality.

S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Analysis of edf

Observation 1
There is an optimal schedule with no idle time.

Showing Optimality
Let S∗ be an optimal solution.

Is it sufficient to show that ∣S∣ = ∣S∗∣? No.
Can there be multiple S∗? Yes.
We need to show either S = S∗, or S ≡ S∗ for max lateness.
Technique: “Exchange Argument”

Start with an optimal solution S∗ and transform it over a
series of steps to something equivalent to S while
maintaining optimality.
S∗ ≡ S1 ≡ S2 ≡ ⋯ ≡ S for max lateness.

24/27

Paging Prefix Codes Exchange Argument

Exchange Argument Analysis
Definition 7
A schedule A has an inversion if the are jobs i and j with i
scheduled before j and dj < di.

Lemma 8

All schedules with no inversions and no idle time have the same
lateness.

Proof.

Only vary in jobs with the same deadline.
Jobs with same deadline must sequential.
Ordering of jobs with same deadline won’t change lateness.

25/27

Paging Prefix Codes Exchange Argument

Exchange Argument Analysis
Definition 7
A schedule A has an inversion if the are jobs i and j with i
scheduled before j and dj < di.

Lemma 8

All schedules with no inversions and no idle time have the same
lateness.

Proof.

Only vary in jobs with the same deadline.
Jobs with same deadline must sequential.
Ordering of jobs with same deadline won’t change lateness.

25/27

Paging Prefix Codes Exchange Argument

Exchange Argument Analysis
Definition 7
A schedule A has an inversion if the are jobs i and j with i
scheduled before j and dj < di.

Lemma 8

All schedules with no inversions and no idle time have the same
lateness.

Proof.

Only vary in jobs with the same deadline.
Jobs with same deadline must sequential.
Ordering of jobs with same deadline won’t change lateness.

25/27

Paging Prefix Codes Exchange Argument

Exchange Argument Analysis
Definition 7
A schedule A has an inversion if the are jobs i and j with i
scheduled before j and dj < di.

Lemma 8

All schedules with no inversions and no idle time have the same
lateness.

Proof.
Only vary in jobs with the same deadline.
Jobs with same deadline must sequential.
Ordering of jobs with same deadline won’t change lateness.

25/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.

If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.
We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.
We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.
Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.

26/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.

If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.
We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.
We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.
Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.

26/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.
If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.

We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.
We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.
Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.

26/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.
If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.
We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.

We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.
Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.

26/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.
If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.
We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.
We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.
Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.

26/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.
If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.
We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.
We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.

Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.

26/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.
If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.
We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.
We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.
Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.

26/27

Paging Prefix Codes Exchange Argument

Analysis of edf
Theorem 9

There is an optimal schedule that has no inversions and no idle time.

Proof.
If S∗ has an inversion, then there is a pair of jobs i and j
such that j is scheduled immediately after i and has dj < di.
We will swap i and j to create a new schedule S′. Note that
S′ has one less inversion than S∗.
We need to show that S′ has the same max lateness as S∗:

Swapping i and j means that l′j (lateness in S′) is less than
that in S∗.
Lateness of i may increase, but:
l′i = f ′i − di = f ∗j − di ≤ f ∗j − dj = l∗j .

Let S∗ ∶= S′ and repeat until no more inversions.
26/27

Paging Prefix Codes Exchange Argument

edf is Optimal

Corollary 10
edf produces an optimal schedule.

Proof.

edf produces a schedule with no inversions and no idle
time.
From Theorem 9, there is an optimal schedule with no
inversions and no idle time.
Lemma 8 shows that these two schedules have the same
max lateness.

Run time:

Sort the jobs by deadline: O(n logn)

.

27/27

Paging Prefix Codes Exchange Argument

edf is Optimal

Corollary 10
edf produces an optimal schedule.

Proof.
edf produces a schedule with no inversions and no idle
time.
From Theorem 9, there is an optimal schedule with no
inversions and no idle time.
Lemma 8 shows that these two schedules have the same
max lateness.

Run time:

Sort the jobs by deadline: O(n logn)

.

27/27

Paging Prefix Codes Exchange Argument

edf is Optimal

Corollary 10
edf produces an optimal schedule.

Proof.
edf produces a schedule with no inversions and no idle
time.
From Theorem 9, there is an optimal schedule with no
inversions and no idle time.
Lemma 8 shows that these two schedules have the same
max lateness.

Run time:

Sort the jobs by deadline: O(n logn)

.
27/27

Paging Prefix Codes Exchange Argument

edf is Optimal

Corollary 10
edf produces an optimal schedule.

Proof.
edf produces a schedule with no inversions and no idle
time.
From Theorem 9, there is an optimal schedule with no
inversions and no idle time.
Lemma 8 shows that these two schedules have the same
max lateness.

Run time: Sort the jobs by deadline: O(n logn).
27/27

Appendix References

Appendix

Appendix References

References

Appendix References

Image Sources I

https://www.cse.unsw.edu.au/~cs1521/17s2/
lecs/notices/slide068.html

http://mediablogrueil.blogspot.fr/2012/11/
one-page-design-effet-de-mode-ou-reel.html

http://www.culturizame.es/articulo/
nuestro-pequeno-diccionario-de-tecnologia

http://computer-help-tips.blogspot.fr/2011/
04/different-types-of-computer-processors.
html

28/27

https://www.cse.unsw.edu.au/~cs1521/17s2/lecs/notices/slide068.html
https://www.cse.unsw.edu.au/~cs1521/17s2/lecs/notices/slide068.html
http://mediablogrueil.blogspot.fr/2012/11/one-page-design-effet-de-mode-ou-reel.html
http://mediablogrueil.blogspot.fr/2012/11/one-page-design-effet-de-mode-ou-reel.html
http://www.culturizame.es/articulo/nuestro-pequeno-diccionario-de-tecnologia
http://www.culturizame.es/articulo/nuestro-pequeno-diccionario-de-tecnologia
http://computer-help-tips.blogspot.fr/2011/04/different-types-of-computer-processors.html
http://computer-help-tips.blogspot.fr/2011/04/different-types-of-computer-processors.html
http://computer-help-tips.blogspot.fr/2011/04/different-types-of-computer-processors.html

Appendix References

Image Sources II

https://brand.wisc.edu/web/logos/

29/27

https://brand.wisc.edu/web/logos/

	Paging
	Prefix Codes
	Historical Break
	So the least frequent characters are at bottom

	Exchange Argument: Minimize Max Lateness
	Appendix
	Appendix
	References

