

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

• Complete graph (*K*₄)

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (*C*₄)
- Path (P_4)

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (*C*₄)
- Path (P_4)
- Trees

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

Some Special Graphs

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (P_4)
- Trees

Digraph

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (*C*₄)
- Path (*P*₄)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (*P*₄)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite

Graphs

A graph *G* is a pair G = (V, E), where *V* is a set of vertices/nodes and *E* is a set of edges/arcs connecting a pair of vertices. That is, $E \in V \times V$.

- Complete graph (*K*₄)
- Cycle (C_4)
- Path (*P*₄)
- Trees

- Digraph
- Directed Acyclic Graph (DAG)
- Bipartite
- Forests

Trees

Definition

- A connected graph without cycles.
- A single node may be designated as the root of the tree.
- Any node with degree 1 that is not the root is a leaf.

Trees

Definition

- A connected graph without cycles.
- A single node may be designated as the root of the tree.
- Any node with degree 1 that is not the root is a leaf.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) *T* has at least 2 leaves.
- For all nodes *u* and *v*, there exists one path between them in *T*.
- |V| = |E| + 1 for $|V| \ge 1$.

Trees

Definition

- A connected graph without cycles.
- A single node may be designated as the root of the tree.
- Any node with degree 1 that is not the root is a leaf.

Properties of a tree *T*

- If $|V| \ge 2$, (unrooted) *T* has at least 2 leaves.
- For all nodes *u* and *v*, there exists one path between them in *T*.

③
$$|V| = |E| + 1$$
 for $|V| ≥ 1$.

What can be represented by graphs?

- Transportation networks
- Communication networks
- Information networks
- Social networks
- Dependency networks

Connectivity

Graph Connectivity

Problem: *s*-*t* connectivity

Given a graph G = (V, E), and the vertices s and t, is there a path from s to t in G?

Graph Connectivity

Problem: *s*-*t* connectivity

Given a graph G = (V, E), and the vertices s and t, is there a path from s to t in G?

Connected Graph

If all $(u, v) \in V \times V$ are connected, then *G* is connected.

Graph Connectivity

Problem: *s*-*t* connectivity

Given a graph G = (V, E), and the vertices *s* and *t*, is there a path from *s* to *t* in *G*?

Connected Graph

If all $(u, v) \in V \times V$ are connected, then *G* is connected.

Connected Components

Let $H \subset G$ be a subgraph of G. If H is connected and there are no edges between H and $G \setminus H$. Then, H is a connected component of G.

GRAPH EXPLORATION/TRAVERSAL

Determining *s*-*t* Connectivity

Requires an algorithm that explores or traverses the graph by considering the edges of the graph to find all nodes connected to *s*.

GRAPH EXPLORATION/TRAVERSAL

Determining *s*-*t* Connectivity

Requires an algorithm that explores or traverses the graph by considering the edges of the graph to find all nodes connected to *s*.

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
| Add v \text{ to } R
end
return R
```

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix			
Adjacency list			
Edge list			
Incidence matrix			

Representations

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

SpaceAdjacency matrix $O(|V|^2)$ Adjacency listEdge listIncidence matrix

Find (u, v) List of neighbours

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	
Adjacency list			
Edge list			
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list			
Edge list			
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	<i>O</i> (1)	O(V)
Adjacency list	$O(V \cdot\min(E , V))$		
Edge list			
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	<i>O</i> (1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	
Edge list			
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	<i>O</i> (1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	<i>O</i> (1)
Edge list			
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	<i>O</i> (1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	<i>O</i> (1)
Edge list	O(E + V)		
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	<i>O</i> (1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	<i>O</i> (1)
Edge list	O(E + V)	O(E)	
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	O(1)	O(V)
Adjacency list	$O(V \cdot \min(E , V))$	$O(\min(V , E))$	<i>O</i> (1)
Edge list	O(E + V)	O(E)	O(E)
Incidence matrix			

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	<i>O</i> (1)	O(V)
Adjacency list	$O(V \cdot\min(E , V))$	$O(\min(V , E))$	<i>O</i> (1)
Edge list	O(E + V)	O(E)	O(E)
Incidence matrix	O(V E)		

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

	Space	Find (u, v)	List of neighbours
Adjacency matrix	$O(V ^2)$	<i>O</i> (1)	O(V)
Adjacency list	$O(V \cdot\min(E , V))$	$O(\min(V , E))$	<i>O</i> (1)
Edge list	O(E + V)	O(E)	O(E)
Incidence matrix	O(V E)	O(E)	

- Adjacency matrix: |*V*| by |*V*| matrix with a 1 if nodes are adjacent.
- Adjacency list: For each node, list adjacent nodes.
- Edge list: List of all node pairs representing the edges (plus list of nodes).
- Incidence matrix: |*V*| by |*E*| matrix with a 1 if node is incident to the edge.

Space	Find (u, v)	List of neighbours
$O(V ^2)$	<i>O</i> (1)	O(V)
$O(V \cdot\min(E , V))$	$O(\min(V , E))$	<i>O</i> (1)
O(E + V)	O(E)	O(E)
O(V E)	O(E)	O(V E)
	Space $O(V ^2)$ $O(V \cdot \min(E , V))$ O(E + V) O(V E)	Space Find (u, v) $O(V ^2)$ $O(1)$ $o(V \cdot \min(E , V))$ $o(\min(V , E))$ $O(E + V)$ $O(E)$ $O(V E)$ $O(E)$

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

 $R = \{s\}$ while \exists an edge (u, v) where $u \in R$ and $v \notin R$ do | Add v to Rend
return R

Which graph representation would be best suited?

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

 $R = \{s\}$ while \exists an edge (u, v) where $u \in R$ and $v \notin R$ do | Add v to Rend
return \underline{R}

Rough Running Time

• At step *i*: $O(|E_i| \cdot (\log |R_i| + \log |R_i|) + \log |R_i|)$, assuming *R* is a self-balancing BST.
GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

 $R = \{s\}$ while \exists an edge (u, v) where $u \in R$ and $v \notin R$ do | Add v to Rend
return \underline{R}

Rough Running Time

- At step *i*: $O(|E_i| \cdot (\log |R_i| + \log |R_i|) + \log |R_i|)$, assuming *R* is a self-balancing BST.
- At most |E| steps: $O(|E|^2 \log |V|)$

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
| Add v \text{ to } R
end
return R
```

Rough Running Time

- At step *i*: $O(|E_i| \cdot (\log |R_i| + \log |R_i|) + \log |R_i|)$, assuming *R* is a self-balancing BST.
- At most |E| steps: $O(|E|^2 \log |V|)$

What is this algorithm lacking?

GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

```
R = \{s\}
while \exists an edge (u, v) where u \in R and v \notin R do
| Add v \text{ to } R
end
return R
```

Rough Running Time

- At step *i*: $O(|E_i| \cdot (\log |R_i| + \log |R_i|) + \log |R_i|)$, assuming *R* is a self-balancing BST.
- At most |E| steps: $O(|E|^2 \log |V|)$

An exploitable order of traversing the edges!!!

Process

- Also referred to as graph flooding.
- Let L_i be all the neighbours at a distance *i* from *s*.
- Starting from *i* = 0, visit all the nodes (not previously visited) in *L_i*. Increment *i* and repeat.

Process

- Also referred to as graph flooding.
- Let L_i be all the neighbours at a distance *i* from *s*.
- Starting from *i* = 0, visit all the nodes (not previously visited) in *L_i*. Increment *i* and repeat.

Process

- Also referred to as graph flooding.
- Let *L_i* be all the neighbours at a distance *i* from *s*.
- Starting from *i* = 0, visit all the nodes (not previously visited) in *L_i*. Increment *i* and repeat.

Process

- Also referred to as graph flooding.
- Let *L_i* be all the neighbours at a distance *i* from *s*.
- Starting from *i* = 0, visit all the nodes (not previously visited) in *L_i*. Increment *i* and repeat.

Process

- Also referred to as graph flooding.
- Let *L_i* be all the neighbours at a distance *i* from *s*.
- Starting from *i* = 0, visit all the nodes (not previously visited) in *L_i*. Increment *i* and repeat.

Process

- Also referred to as graph flooding.
- Let *L_i* be all the neighbours at a distance *i* from *s*.
- Starting from *i* = 0, visit all the nodes (not previously visited) in *L_i*. Increment *i* and repeat.

Recursive Process starting at s

- Mark *s* as visited.
- For each $(s, u) \in E$ where u has not been visited, do DFS(u).

Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Which graph representation would be best for BFS and DFS?

Which graph representation would be best for BFS and DFS? Why?

BFS Process

- Also referred to as graph flooding.
- Let *L_i* be all the neighbours at a distance *i* from *s*.
- Starting from *i* = 0, visit all the nodes (not previously visited) in *L_i*. Increment *i* and repeat.

DFS Recursive Process starting at *s*

- Mark *s* as visited.
- For each $(s, u) \in E$ where *u* has not been visited, do DFS(u).

Algorithm: BFS(S)

```
Initialize v[u] = false for all
 nodes
Set v[s] = true
Add s to tree T
Add s to queue Q
while Q is not empty do
    u = dequeue(Q)
    foreach neighbour r of u
     do
        if |v[r] then
            Add (u, r) to T
            Set v[r] = true
            Enqueue v
        end
    end
end
return T
```

Algorithm: BFS(S)

```
Initialize v[u] = false for all
 nodes
Set v[s] = true
Add s to tree T
Add s to queue Q
while Q is not empty do
    u = dequeue(Q)
    foreach neighbour r of u
     do
        if |v[r] then
            Add (u, r) to T
            Set v[r] = true
            Enqueue v
        end
    end
end
return T
```

Algorithm: DFS(S)

```
Initialize v[u] = false and
 p[u] = null for all nodes
Push s to stack S
while S is not empty do
    u = \operatorname{pop}(S)
    if |v[u] then
         Add (p[u], u) to T
         Set v[u] = true
         foreach neighbour r of
           u \, do
              Push r to stack S
              Set p[r] = u
         end
    end
end
return T
```

Algorithm: BFS(S)

```
Initialize v[u] = false for all
 nodes
Set v[s] = true
Add s to tree T
Add s to queue Q
while Q is not empty do
    u = \text{dequeue}(Q)
    foreach neighbour r of u
     do
        if |v[r] then
             Add (u, r) to T
             Set v[r] = true
             Enqueue v
        end
    end
end
return T
```

Algorithm: DFS(S)

Initialize v[u] = false and p[u] = null for all nodes Push s to stack S while *S* is not empty do $u = \operatorname{pop}(S)$ if v[u] then Add (p[u], u) to T Set v[u] = true **foreach** neighbour *r* of u do Push *r* to stack *S* Set p[r] = uend end end return T

Runtime: O(|E| + |V|)

Strongly Connected Components

Directed Graphs

Directed Graph

- In a directed graph, the edges have a direction and are often called arcs.
- I.e. (u, v) is different than (v, u).

Mutually Reachable

- A pair of nodes (*u*, *v*) in a directed graph are mutually reachable if there is a path from *u* to *v*, and from *v* to *u*.
- Note: This property is transitive: if (*u*, *v*) and (*v*, *w*) are both mutually reachable, then *u*, *w* is mutually reachable.

Mutually Reachable

- A pair of nodes (*u*, *v*) in a directed graph are mutually reachable if there is a path from *u* to *v*, and from *v* to *u*.
- Note: This property is transitive: if (*u*, *v*) and (*v*, *w*) are both mutually reachable, then *u*, *w* is mutually reachable.

Strongly Connected

A directed graph is strongly connected if, for every pair of nodes (u, v), u and v are mutually reachable.

Mutually Reachable

- A pair of nodes (*u*, *v*) in a directed graph are <u>mutually</u> reachable if there is a path from *u* to *v*, and from *v* to *u*.
- Note: This property is transitive: if (*u*, *v*) and (*v*, *w*) are both mutually reachable, then *u*, *w* is mutually reachable.

Testing for Mutually Reachable

How might we check if (u, v) is mutually reachable?

Mutually Reachable

- A pair of nodes (*u*, *v*) in a directed graph are mutually reachable if there is a path from *u* to *v*, and from *v* to *u*.
- Note: This property is transitive: if (*u*, *v*) and (*v*, *w*) are both mutually reachable, then *u*, *w* is mutually reachable.

Testing for Mutually Reachable

Check if DFS/BFS from *u* reach *v*, and DFS/BFS from *v* reaches *u*.

Mutually Reachable

- A pair of nodes (*u*, *v*) in a directed graph are mutually reachable if there is a path from *u* to *v*, and from *v* to *u*.
- Note: This property is transitive: if (*u*, *v*) and (*v*, *w*) are both mutually reachable, then *u*, *w* is mutually reachable.

Testing for Mutually Reachable

Check if DFS/BFS from u in G reaches v, and DFS/BFS from u in G^{REV} reaches v.

Strongly Connected Component (SCC)

A maximal strongly connected subgraph.

Strongly Connected Component (SCC)

A maximal strongly connected subgraph.

How many SCC in *G*?

Strongly Connected Component (SCC)

A maximal strongly connected subgraph.

How many SCC in G? 3

Problem

Find the SCCs in a digraph *G*.

Strongly Connected Components

Problem

Find the SCCs in a digraph *G*.

Kosaraju's Algorithm

- Populate a stack *S* with a DFS on *G*.
- Build *G*^{*REV*} for *G*, and set all nodes to unvisited.
- While *S* is not empty:
 - Pop node *v* from *S*.
 - **9** If v is unvisited, run DFS on G^{REV} from v to extract an SCC.

Kosaraju's Algorithm

EXECUTION PARADIGM

Start DFS traversal Put vertex on stack when finished

Stack

Execution Paradigm

Reverse the original graph

Stack

Execution Paradigm

How I can remember that [0,2,1] are in a different SCC?

EXECUTION PARADIGM

We can have an array SCC[], initialized to -1 and write the number of the corresponding SCC when it is finalized.

Recap

Step 1: Start DFS traversal Put vertex on stack when finished

Stack

Recap

Stack

Recap

Stack

Recap

Step 3: Start DFS again from top of the vertex

Stack

Recap

form a SCC

Recap

Step 3: Start DFS again from top of the vertex

When DFS finishes, all visited nodes form a SCC

Pop nodes until unvisited node is found

Recap

STRONGLY CONNECTED COMPONENTS

Problem

Find the SCCs in a digraph *G*.

Kosaraju's Algorithm

- Populate a stack *S* with a DFS on *G*.
- Build *G*^{*REV*} for *G*, and set all nodes to unvisited.
- While *S* is not empty:
 - Pop node *v* from *S*.
 - **9** If v is unvisited, run DFS on G^{REV} from v to extract an SCC.

What is the time complexity of Kosaraju's Algorithm?

STRONGLY CONNECTED COMPONENTS

Problem

Find the SCCs in a digraph *G*.

Kosaraju's Algorithm

- Populate a stack *S* with a DFS on *G*.
- Build *G*^{*REV*} for *G*, and set all nodes to unvisited.
- While *S* is not empty:
 - Pop node *v* from *S*.
 - **9** If v is unvisited, run DFS on G^{REV} from v to extract an SCC.

What is the time complexity of Kosaraju's Algorithm? O(|E| + |V|)

Correctness Proof: Key Lemma and Corollaries

Key Lemma

Let *C* be a strongly connected component of *G*, and *v* be a vertex not in *C*. Suppose that there is a path from *C* to *v* (i.e., there is a path from some vertex in *C* to *v*). Then

 $\max\{f[u]: u \in C\} > f[v].$

₽

Correctness Proof: Key Lemma and Corollaries

Key Lemma

Let *C* be a strongly connected component of *G*, and *v* be a vertex not in *C*. Suppose that there is a path from *C* to v (i.e., there is a path from some vertex in *C* to v). Then

 $\max\{f[u]: u \in C\} > f[v].$

↓

Corollary 1

Let C_1, C_2 be two strongly connected components of *G*, and suppose that there is a path from (some vertex in) C_1 to (some vertex in) C_2 . Then

 $\max\{f[u]: u \in C_1\} > \max\{f[v]: v \in C_2\}.$

Correctness Proof: Key Lemma and Corollaries

Corollary 1

Let C_1, C_2 be two strongly connected components of G, and suppose that there is a path from (some vertex in) C_1 to (some vertex in) C_2 . Then

 $\max\{f[u]: u \in C_1\} > \max\{f[v]: v \in C_2\}.$

₽

Corollary 2

Let C_1, C_2 be two strongly connected components of G, and suppose that

 $\max\{f[u]: u \in C_1\} > \max\{f[v]: v \in C_2\}.$

Then there is no path in *G* from C_2 to C_1 .

Correctness Proof: Key Lemma and Corollaries

Corollary 2

Let C_1, C_2 be two strongly connected components of G, and suppose that

```
\max\{f[u]: u \in C_1\} > \max\{f[v]: v \in C_2\}.
```

Then there is no path in *G* from C_2 to C_1 .

₽

Corollary 3

Let C_1, C_2 be two strongly connected components of G, and suppose that

 $\max\{f[u]: u \in C_1\} > \max\{f[v]: v \in C_2\}.$

Then there is no path in G^T from C_1 to C_2 . (Recall that G^T is the transpose of *G*, which is obtained from *G* by reversing all the edges of *G*.)

Directed Graphs

Directed Graph

- In a directed graph, the edges have a direction and are often called arcs.
- I.e. (u, v) is different than (v, u).

Directed Graphs

Directed Graph

- In a directed graph, the edges have a direction and are often called <u>arcs</u>.
- I.e. (u, v) is different than (v, u).

Directed Acyclic Graph (DAG)

- A directed graph with no directed cycles.
- Precedence relationships.

Getting dressed:

Definition

An ordering of the nodes of a DAG which respected the precedence relations.

Definition

An ordering of the nodes of a DAG which respected the precedence relations.

Getting dressed DAG:

Definition

An ordering of the nodes of a DAG which respected the precedence relations.

Getting dressed DAG:

Topological ordering:

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

• By way of contradiction, assume all nodes in *G* have an incoming edge.

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

- By way of contradiction, assume all nodes in *G* have an incoming edge.
- Pick an arbitrary node *u* and follow the incoming node back to *v*. Since all nodes have an incoming edge, when can repeat this infinitely.

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

Proof (Exercise)

- By way of contradiction, assume all nodes in *G* have an incoming edge.
- Pick an arbitrary node *u* and follow the incoming node back to *v*. Since all nodes have an incoming edge, when can repeat this infinitely.
- After visiting |V| + 1 nodes, by the Pigeon Hole principle, we have visited some node w twice \implies *G* contains a cycle.

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

• The Key Property allows us to show that all DAGs have a topological ordering.

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

- The Key Property allows us to show that all DAGs have a topological ordering.
- Prove it by induction.

Observation 1

If *G* has a topological ordering, then *G* is a DAG.

Key Property

In every DAG *G*, there is a node *v* with no incoming edges.

- The Key Property allows us to show that all DAGs have a topological ordering.
- Prove it by induction.
- Does the inductive proof imply an algorithm to build a topological ordering from a DAG? If so, what is it?

INDUCTION

Base: DAGs with
$$|V|=1$$
 v Ind. Hypothesis: DAGs with $|V|=k$ G Topological Order: v Topological Order: $v_1 < \cdots < v_k$ G

Ind. Step: DAGs with |V|=k+1

Topological Order:

TOPOLOGICAL ORDERING INDUCTION

Base: DAGs with
$$|V|=1$$

Topological Order: v

Ind. Step: DAGs with |V|=k+1

Topological Order: $v_1 \prec \cdots \prec v_k \prec v_{new}$

VISUALIZATION OF INDUCTION

VISUALIZATION OF INDUCTION

VISUALIZATION OF INDUCTION

VISUALIZATION OF INDUCTION

 $\leq \leq \leq \leq \leq \leq \leq \leq \leq E$

VISUALIZATION OF INDUCTION

 $\leq \leq \leq \leq \leq \leq \leq \leq \leq E$

VISUALIZATION OF INDUCTION

 $\leq \leq \leq \leq \leq \leq \leq I \leq E$
VISUALIZATION OF INDUCTION

 $\preceq \preceq \preceq \preceq \preceq \preceq \preceq K \preceq I \preceq E$

VISUALIZATION OF INDUCTION

 $\leq \leq \leq \leq B \leq F \leq J \leq K \leq I \leq E$

VISUALIZATION OF INDUCTION

 $\leq \leq \leq C \leq B \leq F \leq J \leq K \leq I \leq E$

VISUALIZATION OF INDUCTION

 $\leq \leq \leq C \leq B \leq F \leq J \leq K \leq I \leq E$

VISUALIZATION OF INDUCTION

 $\leq \leq \leq G \leq C \leq B \leq F \leq J \leq K \leq I \leq E$

VISUALIZATION OF INDUCTION

$\leq \leq H \leq G \leq C \leq B \leq F \leq J \leq K \leq I \leq E$

VISUALIZATION OF INDUCTION

$\leq D \leq H \leq G \leq C \leq B \leq F \leq J \leq K \leq I \leq E$

VISUALIZATION OF INDUCTION

$A \preceq D \preceq H \preceq G \preceq C \preceq B \preceq F \preceq J \preceq K \preceq I \preceq E$

Appendix

References

Image Sources I

