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Connectivity Strongly Connected Components Topological Ordering

Graphs

Graphs
A graph G is a pair G = (V,E), where V is a set of
vertices/nodes and E is a set of edges/arcs connecting a pair of
vertices. That is, E ∈ V ×V.

Some Special Graphs

Complete graph (K4)
Cycle (C4)
Path (P4)
Trees

Digraph
Directed Acyclic Graph
(DAG)
Bipartite
Forests
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Connectivity Strongly Connected Components Topological Ordering

Trees

Definition
A connected graph without cycles.
A single node may be designated as the root of the tree.
Any node with degree 1 that is not the root is a leaf.

Properties of a tree T
1 If ∣V∣ ≥ 2, (unrooted) T has at least 2 leaves.
2 For all nodes u and v, there exists one path between them

in T.
3 ∣V∣ = ∣E∣ + 1 for ∣V∣ ≥ 1.

Is P10 a tree?
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What can be represented by graphs?

Transportation networks
Communication networks
Information networks
Social networks
Dependency networks
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Connectivity Strongly Connected Components Topological Ordering

Graph Connectivity

Problem: s-t connectivity
Given a graph G = (V,E), and the vertices s and t, is there a
path from s to t in G?

Connected Graph
If all (u,v) ∈ V ×V are connected, then G is connected.

Connected Components
Let H ⊂ G be a subgraph of G. If H is connected and there are
no edges between H and G ∖H. Then, H is a connected
component of G.

4/26



Connectivity Strongly Connected Components Topological Ordering

Graph Connectivity

Problem: s-t connectivity
Given a graph G = (V,E), and the vertices s and t, is there a
path from s to t in G?

Connected Graph
If all (u,v) ∈ V ×V are connected, then G is connected.

Connected Components
Let H ⊂ G be a subgraph of G. If H is connected and there are
no edges between H and G ∖H. Then, H is a connected
component of G.

4/26



Connectivity Strongly Connected Components Topological Ordering

Graph Connectivity

Problem: s-t connectivity
Given a graph G = (V,E), and the vertices s and t, is there a
path from s to t in G?

Connected Graph
If all (u,v) ∈ V ×V are connected, then G is connected.

Connected Components
Let H ⊂ G be a subgraph of G. If H is connected and there are
no edges between H and G ∖H. Then, H is a connected
component of G.

4/26



Connectivity Strongly Connected Components Topological Ordering

Graph Exploration/Traversal

Determining s-t Connectivity
Requires an algorithm that explores or traverses the graph by
considering the edges of the graph to find all nodes connected
to s.

Algorithm: Generalized Exploration
R = {s}
while ∃ an edge (u,v)where u ∈ R and v ∉ R do

Add v to R
end
return R
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Graph Encodings and Implementation

Representations
Adjacency matrix: ∣V∣ by ∣V∣matrix with a 1 if nodes are
adjacent.
Adjacency list: For each node, list adjacent nodes.
Edge list: List of all node pairs representing the edges
(plus list of nodes).
Incidence matrix: ∣V∣ by ∣E∣matrix with a 1 if node is
incident to the edge.

Space Find (u,v) List of neighbours
Adjacency matrix

O(∣V∣2) O(1) O(∣V∣)

Adjacency list

O(∣V∣ ⋅min(∣E∣, ∣V∣)) O(min(∣V∣, ∣E∣)) O(1)

Edge list

O(∣E∣ + ∣V∣) O(∣E∣) O(∣E∣)

Incidence matrix

O(∣V∣∣E∣) O(∣E∣) O(∣V∣∣E∣)
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Connectivity Strongly Connected Components Topological Ordering

Graph Exploration/Traversal

Algorithm: Generalized Exploration
R = {s}
while ∃ an edge (u,v)where u ∈ R and v ∉ R do

Add v to R
end
return R

Which graph representation would be best suited?
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Graph Exploration/Traversal

Algorithm: Generalized Exploration
R = {s}
while ∃ an edge (u,v)where u ∈ R and v ∉ R do

Add v to R
end
return R

Rough Running Time
At step i: O(∣Ei∣ ⋅ (log ∣Ri∣ + log ∣Ri∣) + log ∣Ri∣), assuming R is
a self-balancing BST.

At most ∣E∣ steps: O(∣E∣2 log ∣V∣)
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What is this algorithm lacking?
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Graph Exploration/Traversal
Algorithm: Generalized Exploration
R = {s}
while ∃ an edge (u,v)where u ∈ R and v ∉ R do

Add v to R
end
return R
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An exploitable order of traversing the edges!!!
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Connectivity Strongly Connected Components Topological Ordering

Breadth-First Search (BFS)
Process

Also referred to as graph flooding.
Let Li be all the neighbours at a distance i from s.
Starting from i = 0, visit all the nodes (not previously
visited) in Li. Increment i and repeat.

This process engenders a BFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

5

1 6

3

2

4

5

1 6
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Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Depth-First Search (DFS)

Recursive Process starting at s
Mark s as visited.
For each (s,u) ∈ Ewhere u has not been visited, do DFS(u).

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.

3

2

4

7

1 6

5

3

2

4

7

1 6

5

9/26



Connectivity Strongly Connected Components Topological Ordering

Implementing BFS and DFS

Which graph representation would be best for BFS and DFS?

Why?

Runtime: O(∣E∣ + ∣V∣)
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Implementing BFS and DFS

BFS Process
Also referred to as
graph flooding.
Let Li be all the
neighbours at a
distance i from s.
Starting from i = 0, visit
all the nodes (not
previously visited) in
Li. Increment i and
repeat.

DFS Recursive Process
starting at s

Mark s as visited.
For each (s,u) ∈ E
where u has not been
visited, do DFS(u).

Runtime: O(∣E∣ + ∣V∣)
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Implementing BFS and DFS
Algorithm: BFS(S)
Initialize v[u] = false for all
nodes

Set v[s] = true
Add s to tree T
Add s to queue Q
while Q is not empty do

u = dequeue(Q)
foreach neighbour r of u
do

if !v[r] then
Add (u, r) to T
Set v[r] = true
Enqueue v

end
end

end
return T

Algorithm: DFS(S)
Initialize v[u] = false and
p[u] = null for all nodes

Push s to stack S
while S is not empty do

u = pop(S)
if !v[u] then

Add (p[u],u) to T
Set v[u] = true
foreach neighbour r of
u do

Push r to stack S
Set p[r] = u

end
end

end
return T

Runtime: O(∣E∣ + ∣V∣)
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Directed Graphs
Directed Graph

In a directed graph, the edges have a direction and are
often called arcs.
I.e. (u,v) is different than (v,u).

B
A

D
C

E

Directed Acyclic Graph
(DAG)

A directed graph with
no directed cycles.
Precedence
relationships.

Getting dressed:
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Strong Connectivity
Mutually Reachable

A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.
Note: This property is transitive: if (u,v) and (v,w) are
both mutually reachable, then u,w is mutually reachable.

Strongly Connected
A directed graph is strongly connected if, for every pair of
nodes (u,v), u and v are mutually reachable.

G:

B
A

D
C

E

GREV :

B

A

D

C

E
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Strong Connectivity
Mutually Reachable

A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.
Note: This property is transitive: if (u,v) and (v,w) are
both mutually reachable, then u,w is mutually reachable.

Testing for Mutually Reachable
How might we check if (u,v) is mutually reachable?
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reachable if there is a path from u to v, and from v to u.
Note: This property is transitive: if (u,v) and (v,w) are
both mutually reachable, then u,w is mutually reachable.

Testing for Mutually Reachable
Check if DFS/BFS from u reach v, and DFS/BFS from v reaches
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A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.
Note: This property is transitive: if (u,v) and (v,w) are
both mutually reachable, then u,w is mutually reachable.

Testing for Mutually Reachable
Check if DFS/BFS from u in G reaches v, and DFS/BFS from u
in GREV reaches v.
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Strongly Connected Components

Strongly Connected Component (SCC)
A maximal strongly connected subgraph.

How many SCC in G?

3

G:

B

A

D
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E
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Strongly Connected Components

Problem
Find the SCCs in a digraph G.

Kosaraju’s Algorithm
1 Populate a stack Swith a DFS on G.
2 Build GREV for G, and set all nodes to unvisited.
3 While S is not empty:

1 Pop node v from S.
2 If v is unvisited, run DFS on GREV from v to extract an SCC.

What is the time complexity of Kosaraju’s Algorithm?

O(∣E∣ + ∣V∣)
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Kosaraju’s Algorithm
Execution Paradigm
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Kosaraju’s Algorithm
Execution Paradigm

How I can remember that [0,2,1] are in a different SCC?
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Kosaraju’s Algorithm
Execution Paradigm

We can have an array SCC[], initialized to −1 and write the
number of the corresponding SCC when it is finalized.
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Kosaraju’s Algorithm
Recap
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Strongly Connected Components

Problem
Find the SCCs in a digraph G.

Kosaraju’s Algorithm
1 Populate a stack Swith a DFS on G.
2 Build GREV for G, and set all nodes to unvisited.
3 While S is not empty:

1 Pop node v from S.
2 If v is unvisited, run DFS on GREV from v to extract an SCC.

What is the time complexity of Kosaraju’s Algorithm?

O(∣E∣ + ∣V∣)
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Kosaraju’s Algorithm
1 Populate a stack Swith a DFS on G.
2 Build GREV for G, and set all nodes to unvisited.
3 While S is not empty:

1 Pop node v from S.
2 If v is unvisited, run DFS on GREV from v to extract an SCC.

What is the time complexity of Kosaraju’s Algorithm?
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Kosaraju’s Algorithm
Correctness Proof: Key Lemma and Corollaries

Key Lemma
Let C be a strongly connected component of G, and v be a vertex not in C.
Suppose that there is a path from C to v (i.e., there is a path from some vertex
in C to v). Then

max{f [u] ∶ u ∈ C} > f [v].

⇓
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Suppose that there is a path from C to v (i.e., there is a path from some vertex
in C to v). Then

max{f [u] ∶ u ∈ C} > f [v].

⇓

Corollary 1
Let C1,C2 be two strongly connected components of G, and suppose that
there is a path from (some vertex in) C1 to (some vertex in) C2. Then

max{f [u] ∶ u ∈ C1} >max{f [v] ∶ v ∈ C2}.
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Corollary 1
Let C1,C2 be two strongly connected components of G, and suppose that
there is a path from (some vertex in) C1 to (some vertex in) C2. Then

max{f [u] ∶ u ∈ C1} >max{f [v] ∶ v ∈ C2}.

⇓

Corollary 2
Let C1,C2 be two strongly connected components of G, and suppose that

max{f [u] ∶ u ∈ C1} >max{f [v] ∶ v ∈ C2}.

Then there is no path in G from C2 to C1.
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Kosaraju’s Algorithm
Correctness Proof: Key Lemma and Corollaries

Corollary 2
Let C1,C2 be two strongly connected components of G, and suppose that

max{f [u] ∶ u ∈ C1} >max{f [v] ∶ v ∈ C2}.

Then there is no path in G from C2 to C1.

⇓

Corollary 3
Let C1,C2 be two strongly connected components of G, and suppose that

max{f [u] ∶ u ∈ C1} >max{f [v] ∶ v ∈ C2}.

Then there is no path in GT from C1 to C2. (Recall that GT is the transpose of
G, which is obtained from G by reversing all the edges of G.)

21/26



Connectivity Strongly Connected Components Topological Ordering

Topological Ordering



Connectivity Strongly Connected Components Topological Ordering

Directed Graphs
Directed Graph

In a directed graph, the edges have a direction and are
often called arcs.
I.e. (u,v) is different than (v,u).

B
A

D
C

E

Directed Acyclic Graph
(DAG)

A directed graph with
no directed cycles.
Precedence
relationships.

Getting dressed:
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Topological Ordering
Definition
An ordering of the nodes of a DAG which respected the
precedence relations.

Getting dressed DAG:

Topological ordering:
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DAGs and Topological Ordering

Observation 1
If G has a topological ordering, then G is a DAG.

Key Property
In every DAG G, there is a node v with no incoming edges.
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DAGs and Topological Ordering
Observation 1
If G has a topological ordering, then G is a DAG.

Key Property
In every DAG G, there is a node v with no incoming edges.

Proof (Exercise)

By way of contradiction, assume all nodes in G have an
incoming edge.
Pick an arbitrary node u and follow the incoming node
back to v. Since all nodes have an incoming edge, when can
repeat this infinitely.
After visiting ∣V∣ + 1 nodes, by the Pigeon Hole principle,
we have visited some node w twice Ô⇒ G contains a cycle.
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DAGs and Topological Ordering

Observation 1
If G has a topological ordering, then G is a DAG.

Key Property
In every DAG G, there is a node v with no incoming edges.

The Key Property allows us to show that all DAGs have a
topological ordering.

Prove it by induction.
Does the inductive proof imply an algorithm to build a
topological ordering from a DAG? If so, what is it?
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Topological Ordering
Induction

Base: DAGs with |V|=1 Ind. Hypothesis: DAGs with |V|=kv

G vnew

Topological Order: v Topological Order: v1 ≺ ⋯ ≺ vk
G

Ind. Step: DAGs with |V|=k+1

Topological Order:
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Topological Ordering
Visualization of Induction
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