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OPOLOGICAL ORDERING

(GRAPHS

A graph G is a pair G = (V, E), where V is a set of
vertices/nodes and E is a set of edges/arcs connecting a pair of
vertices. Thatis, Ee V x V.
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TREES

Definition

@ A connected graph without cycles.
@ A single node may be designated as the root of the tree.

e Any node with degree 1 that is not the root is a leaf.
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Definition
@ A connected graph without cycles.
@ A single node may be designated as the root of the tree.

e Any node with degree 1 that is not the root is a leaf.

A

Properties of a tree T

Q@ If|V|>2, (unrooted) T has at least 2 leaves.

@ For all nodes u and v, there exists one path between them
inT.

@ |V|=|E|+1for |V|>1.
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OLOGICAL ORDERING

WHAT CAN BE REPRESENTED BY GRAPHS?

e Transportation networks
o Communication networks
e Information networks

@ Social networks

@ Dependency networks
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GRrRAPH CONNECTIVITY

Problem: s-t connectivity

Given a graph G = (V,E), and the vertices s and ¢, is there a
path from s to ¢ in G?
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GRrRAPH CONNECTIVITY

Problem: s-t connectivity

Given a graph G = (V,E), and the vertices s and t, is there a
path from s to ¢ in G?

Connected Graph

If all (u,v) € V x V are connected, then G is connected.

Connected Components

Let H c G be a subgraph of G. If H is connected and there are
no edges between H and G \ H. Then, H is a connected
component of G.
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GRAPH EXPLORATION/TRAVERSAL

Determining s-t Connectivity

Requires an algorithm that explores or traverses the graph by
considering the edges of the graph to find all nodes connected
tos.
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GRAPH EXPLORATION/TRAVERSAL

Determining s-t Connectivity

Requires an algorithm that explores or traverses the graph by
considering the edges of the graph to find all nodes connected
tos.

Algorithm: Generalized Exploration

R ={s}

while 3 an edge (#,v) where u ¢ Rand v ¢ R do
‘ AddvtoR

end

return R
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GRAPH ENCODINGS AND IMPLEMENTATION

Representations

e Adjacency matrix: |V| by |V| matrix with a 1 if nodes are
adjacent.

@ Adjacency list: For each node, list adjacent nodes.

o Edge list: List of all node pairs representing the edges
(plus list of nodes).

e Incidence matrix: |V| by |E| matrix with a 1 if node is
incident to the edge.
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GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

R={s}

while 3 an edge (#,v) where u e Rand v ¢ R do
| AddotoR

end

return R

@Which graph representation would be best suited? J
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while 3 an edge (1,v) where u e Rand v ¢ R do
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end

return R

Rough Running Time

o Atstep it O(|Ei| - (log|R;| + log|R;]) + log|R;|), assuming R is
a self-balancing BST.
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GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

R={s}

while 3 an edge (#,v) where u ¢ Rand v ¢ R do
‘ Addvto R

end

return R

Rough Running Time

o Atstep it O(|Ei| - (log|R;| + log|R;|) + log|R;|), assuming R is
a self-balancing BST.
o At most |E| steps: O(|E|*log|V])

@What is this algorithm lacking? J
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GRAPH EXPLORATION/TRAVERSAL

Algorithm: Generalized Exploration

R ={s}

while 3 an edge (4,v) where u ¢ Rand v ¢ R do
‘ AddvtoR

end

return R

Rough Running Time

o Atstep it O(|Ei| - (log|R;| + log|R;]) + log|R;|), assuming R is
a self-balancing BST.
o At most |E| steps: O(|E|*log|V])

An exploitable order of traversing the edges!!! J
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BrEADTH-FirsT SEARCH (BFS)

@ Also referred to as graph flooding.

o Let L; be all the neighbours at a distance 7 from s.

e Starting from i = 0, visit all the nodes (not previously
visited) in L;. Increment i and repeat.
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DEepTH-FirsT SEARCH (DFS)

Recursive Process starting at s

@ Mark s as visited.
e For each (s, u) € E where u has not been visited, do DFS(u).
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DEepTH-FirsT SEARCH (DFS)

Recursive Process starting at s

@ Mark s as visited.
e For each (s, u) € E where u has not been visited, do DFS(u).J

This process engenders a DFS tree. Start at 1 and draw such a
tree for the following.
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ImpLEMENTING BFS anD DFS

@Which graph representation would be best for BFS and DFS? J
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ImpLEMENTING BFS anD DFS

@Which graph representation would be best for BFS and DFS? J
Why?
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ImpLEMENTING BFS anD DFS

BES Process

o Also referred to as
graph flooding.

DEFES Recursive Process

o Let L; be all the starting at s
neighbours at a

) . @ Mark s as visited.
distance i from s.

e For each (s,u) ¢ E
where u has not been
visited, do DFS(u).

e Starting from i = 0, visit
all the nodes (not
previously visited) in
L;. Increment i and
repeat.
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ImpLEMENTING BFS anp DFS
Algorithm: BFS(S)
Initialize v[u] = false for all
nodes
Set v[s] = true
Addstotree T
Add s to queue Q

while Q is not empty do
u = dequeue(Q)

foreach neighbour r of u
do
if lv[r] then
Add (u,r)to T
Set v[r] = true
Enqueue v
end
end

end
return T
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Algorithm: BFS(S)

Initialize v[u] = false for all
nodes

Set v[s] = true

Addstotree T

Add s to queue Q

while Q is not empty do
u = dequeue(Q)

foreach neighbour r of u
do
if lv[r] then
Add (u,r)to T
Set v[r] = true
Enqueue v
end
end

end
return T

Algorithm: DFS(S)
Initialize v[u] = false and

plu] = null for all nodes
Push s to stack S
while S is not empty do
u = pop(S)
if lv[u] then
Add (p[u],u)to T
Set v[u] = true

foreach neighbour r of

u do
[ Push r to stack S
Setp[r] =u
end
end
end
return T
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ImpLEMENTING BFS anp DFS
Algorithm: BFS(S)
Initialize v[u] = false for all
nodes
Set v[s] = true
Addstotree T
Add s to queue Q

while Q is not empty do
u = dequeue(Q)

foreach neighbour r of u
do
if lv[r] then
Add (u,r)to T
Set v[r] = true
Enqueue v
end
end

end
return T

Algorithm: DFS(S)
Initialize v[u] = false and

plu] = null for all nodes
Push s to stack S
while S is not empty do
u = pop(S)
if lv[u] then
Add (p[u],u)to T
Set v[u] = true

foreach neighbour r of

u do
[ Push r to stack S
Setp[r] =u
end
end
end
return T

Runtime: O(|E| + [V]) 10/26
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DirecTED GRAPHS
Directed Graph

@ In a directed graph, the edges have a direction and are
often called arcs.

e Le. (u,v) is different than (v, u).
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LB Ge
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STRONG CONNECTIVITY
Mutually Reachable

@ A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.

@ Note: This property is transitive: if (#,v) and (v, w) are
both mutually reachable, then u, w is mutually reachable.
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STRONG CONNECTIVITY

Mutually Reachable

@ A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.

@ Note: This property is transitive: if (#,v) and (v, w) are
both mutually reachable, then u, w is mutually reachable.

A

Strongly Connected

A directed graph is strongly connected if, for every pair of
nodes (u,v), u and v are mutually reachable.

\.

G:
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STRONG CONNECTIVITY
Mutually Reachable

@ A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.

e Note: This property is transitive: if (u,v) and (v, w) are
both mutually reachable, then u, w is mutually reachable.

Testing for Mutually Reachable
How might we check if (#,v) is mutually reachable?
G:

(&)
59,
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STRONG CONNECTIVITY

Mutually Reachable

@ A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.

@ Note: This property is transitive: if (#,v) and (v, w) are
both mutually reachable, then u, w is mutually reachable.

A

Testing for Mutually Reachable
Check if DFS/BFS from u reach v, and DFS/BFS from v reaches

u
G:

.

‘6@

12/26



StRONGLY CONNECTED COMPONENTS ToroLoGicAL ORDERING

STRONG CONNECTIVITY

Mutually Reachable

@ A pair of nodes (u,v) in a directed graph are mutually
reachable if there is a path from u to v, and from v to u.

@ Note: This property is transitive: if (#,v) and (v, w) are
both mutually reachable, then u, w is mutually reachable.

A

Testing for Mutually Reachable

Check if DFS/BFS from u in G reaches v, and DFS/BFS from u
in GREV reaches v.

G:

.

GREV.

‘6@
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StrRONGLY CONNECTED COMPONENTS

Find the SCCs in a digraph G.

Kosaraju’s Algorithm

© Populate a stack S with a DFS on G.

@ Build GREV for G, and set all nodes to unvisited.
© While S is not empty:

® Pop node v from S.
@ If v is unvisited, run DFS on GREV from v to extract an SCC. |
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

SCC -1

SCC-2

SCC-3
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SCC-4

SCC-3

SCC-4
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

DA D7

Start DFS traversal
Put vertex on stack when finished
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

©) 2 () (¥ 7

Start DFS traversal
Put vertex on stack when finished

visited T T T T T T T T
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D 0 0 @

Start DFS traversal
Put vertex on stack when finished
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ExecuTioN PARADIGM

D 0 0 @

Start DFS traversal 6
Put vertex on stack when finished

visited T T T T T T T T
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ExecuTioN PARADIGM

1 @ ©; () 7

Start DFS traversal 6
Put vertex on stack when finished

visited T T T T T T T T
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

N (3) ()
1 2 (3) 4 7

3

Oz O s

5

Start DFS traversal 6

Put vertex on stack when finished 7

Stack

visited T T T Ti T T T T

18/26



StRONGLY CONNECTED COMPONENTS

Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

L 2) ) D 2
1 2 (3) 4 7 ;
2
3
(O— s
5
Start DFS traversal 6
Put vertex on stack when finished 7
Stack

visited T T T T T T T T
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

Reverse the original graph

ENE N N

(2]

Stack
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

ENE I N

(]

Stack Start DFS again from the top vertex on stack
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ExecuTioN PARADIGM

Stack Start DFS again from the top vertex on stack
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM
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2
3
4
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6
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Stack
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

1 1 2)- (3) (&)
N
2
3
4
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6
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Stack
visited T T T F F F
0 1 2 3 4 6

18/26



StRONGLY CONNECTED COMPONENTS ToroLoGICAL ORDEF

Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

Stack

visited T T T F F F F E

18/26



StRONGLY CONNECTED COMPONENTS TOPOLOGICAL

Kosaraju’s ALGORITHM
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s (O—©

7 021 SCC
Stack

Keep popping the nodes until we get unvisited node

visited i T T F F F F F
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ExecuTioN PARADIGM

7 021 SCC
Stack

Keep popping the nodes until we get unvisited node

visited T T T F F F F F
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

. (a3 ()
1 2 \3) 4 7
4
5 (OH—
6
7 3
Stack 021

visited T T T T F F F F

@How I can remember that [0,2,1] are in a different SCC? J
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

6
7 465
Stack 021 3

visited T T T T T T T F

We can have an array SCC[ |, initialized to —1 and write the
number of the corresponding SCC when it is finalized. J
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ExecuTioN PARADIGM

TOPOLOGIC

1 /;\ (3 O
@ : ’
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6
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Stack 021 3
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Kosaraju’s ALGORITHM

ExecuTioN PARADIGM

TOPOLOGIC

1 (2) Y oD
@ : U
6
7 465
Stack 021 3
visited T T T T T T F
0 1 2 3 4 6 7
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Recar

Step 1: Start DFS traversal
Put vertex on stack when finished

Stack
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Kosaraju’s ALGORITHM

Recar

Step 1: Start DFS traversal
Put vertex on stack when finished

A 0N

N o o

Stack
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TOPOLOGIC

L ORDERI

Kosaraju’s ALGORITHM

Recar
T /@ 3 4 T
S @&

Step 2: Reverse the original graph

Start DFS again from top of the vertex

A 0N

N o o

Stack
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TOPOLOGIC

L ORDERI

Kosaraju’s ALGORITHM

Recar

Step 3: Start DFS again from top of the vertex

A 0N

N o o

Stack
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L ORDERI

Kosaraju’s ALGORITHM

Recar

Step 3: Start DFS again from top of the vertex

When DFS finishes, all visited nodes
form a SCC

A ON

N o o

Stack
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TOPOLOGIC

L ORDERI

Kosaraju’s ALGORITHM

Recar

Step 3: Start DFS again from top of the vertex

When DFS finishes, all visited nodes
form a SCC

Pop nodes until unvisited node is found

A 0N

N o o

Stack

19/26



StRONGLY CONNECTED COMPONENTS TororLoGicAaL ORDERI

Kosaraju’s ALGORITHM

Recar

4
5
Step 3: Start DFS again from top of the vertex 6
When DFS finishes, all visited nodes Repeat process !

form a SCC Stack

Pop nodes until unvisited node is found
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StrRONGLY CONNECTED COMPONENTS

Find the SCCs in a digraph G.

Kosaraju’s Algorithm

© Populate a stack S with a DFS on G.

@ Build GREV for G, and set all nodes to unvisited.
© While S is not empty:

® Pop node v from S.
@ If v is unvisited, run DFS on GREV from v to extract an SCC. |

@What is the time complexity of Kosaraju’s Algorithm?
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StrRONGLY CONNECTED COMPONENTS

Find the SCCs in a digraph G.

Kosaraju’s Algorithm

© Populate a stack S with a DFS on G.

@ Build GREV for G, and set all nodes to unvisited.
© While S is not empty:

® Pop node v from S.
@ If v is unvisited, run DFS on GREV from v to extract an SCC. |

@What is the time complexity of Kosaraju’s Algorithm?
O([E| + V1)
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Kosaraju’s ALGORITHM

CorrecTNESS Proor: KEy LEMMA AND COROLLARIES

Let C be a strongly connected component of G, and v be a vertex not in C.
Suppose that there is a path from C to v (i.e., there is a path from some vertex

in C to v). Then

max{f[u]:ueC}>f[v].
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CorrecTNESS Proor: KEy LEMMA AND COROLLARIES

Let C be a strongly connected component of G, and v be a vertex not in C.
Suppose that there is a path from C to v (i.e., there is a path from some vertex

in C to v). Then
max{f[u]:ueC} > f[v].

Let C1, C; be two strongly connected components of G, and suppose that
there is a path from (some vertex in) C; to (some vertex in) C,. Then

max{f[u] :ueCi} >max{f[v]:veC}.
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Kosaraju’s ALGORITHM

CorrecTNESS Proor: KEy LEMMA AND COROLLARIES

Let C1, C; be two strongly connected components of G, and suppose that
there is a path from (some vertex in) C; to (some vertex in) C,. Then

max{f[u]:ueCi}>max{f[v]:veCa}.

Let C1, C; be two strongly connected components of G, and suppose that

max{f[u] :ueCi}>max{f[v]:veCs}.

Then there is no path in G from C; to C;.
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Kosaraju’s ALGORITHM

CorrecTNESS Proor: KEy LEMMA AND COROLLARIES

Let C1, C; be two strongly connected components of G, and suppose that

max{f[u] :ueCi} >max{f[v]:veCs}.

Then there is no path in G from C; to C;.

Let C1, C; be two strongly connected components of G, and suppose that

max{f[u] :ueCi} >max{f[v]:veCa}.

Then there is no path in G” from C; to C,. (Recall that G” is the transpose of
G, which is obtained from G by reversing all the edges of G.)
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DirecTED GRAPHS
Directed Graph

@ In a directed graph, the edges have a direction and are
often called arcs.

e Le. (u,v) is different than (v, u).

&)
LB Ge
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DirecTED GRAPHS

Directed Graph

@ In a directed graph, the edges have a direction and are
often called arcs.

e Le. (u,v) is different than (v, u).

Getting dressed:

Directed Acyclic Graph

(DAG)

e A directed graph with
no directed cycles.

@ Precedence
relationships.
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Definition

An ordering of the nodes of a DAG which respected the
precedence relations.
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DAGs aAND TororoGicAL ORDERING

Observation 1
If G has a topological ordering, then G is a DAG.
In every DAG G, there is a node v with no incoming edges.

Proof (Exercise)

e By way of contradiction, assume all nodes in G have an
incoming edge.

@ Pick an arbitrary node u and follow the incoming node
back to v. Since all nodes have an incoming edge, when can
repeat this infinitely.
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DAGs aAND TororoGicAL ORDERING

Observation 1
If G has a topological ordering, then G is a DAG.

In every DAG G, there is a node v with no incoming edges.

Proof (Exercise)

e By way of contradiction, assume all nodes in G have an
incoming edge.

@ Pick an arbitrary node u and follow the incoming node
back to v. Since all nodes have an incoming edge, when can
repeat this infinitely.

e After visiting |V| + 1 nodes, by the Pigeon Hole principle,
we have visited some node w twice == G contains a cycle.

.
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Observation 1

If G has a topological ordering, then G is a DAG.

In every DAG G, there is a node v with no incoming edges.

e The Key Property allows us to show that all DAGs have a
topological ordering.
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Observation 1

If G has a topological ordering, then G is a DAG.

In every DAG G, there is a node v with no incoming edges.

e The Key Property allows us to show that all DAGs have a
topological ordering.

@ Prove it by induction.
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DAGs aAND TororoGicAL ORDERING

Observation 1

If G has a topological ordering, then G is a DAG.

In every DAG G, there is a node v with no incoming edges.

e The Key Property allows us to show that all DAGs have a
topological ordering.

@ Prove it by induction.

@ Does the inductive proof imply an algorithm to build a
topological ordering from a DAG? If so, what is it?
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InDuUCTION

Base: DAGs with |[V|=1 Ind. Hypothesis: DAGs with [V|=k
Topological Order: v Topological Order: vy < -+ < v}
Ind. Step: DAGs with [V|=k+1
Topological Order:
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InDuUCTION

Base: DAGs with |[V|=1 Ind. Hypothesis: DAGs with [V|=k
Topological Order: v Topological Order: vy < -+ < vg
Ind. Step: DAGs with [V|=k+1 \
Topological Order: vy < - < Vg < Vpew

<

)
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