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Computational Intractability

Easy Problems
Problems that can be solved by efficient algorithms.
Polynomial running time.
Complexity class: P

Hard Problems
Problems for which we do not know how to solve
efficiently.

NP-hard
NP-complete
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Decision Problem

Optimization:

Bipartite Matching
Given a bipartite graph G,
find the largest matching.

⇐⇒

Decision:

Bipartite Matching
Given a bipartite graph G, is
there a matching of size ≥ k?

Decision Problem
binary output: yes / no answer.

Optimization to Decision
Solve the optimization version.
If the solution of size ≥ k, return yes.
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Bipartite Matching
Given a bipartite graph G,
find the largest matching.

⇐⇒

Decision:

Bipartite Matching
Given a bipartite graph G, is
there a matching of size ≥ k?

Decision Problem
binary output: yes / no answer.

Decision to Optimization
Upper bound on maximum matching is N =min(∣A∣, ∣B∣).
For k = N to 0, return first k that returns yes.

(Or, binary search between [0,N].)
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Polynomial-Time Reduction
Problem Reduction: Y ≤p X

Consider any instance of problem Y.
Assume we have a black-box solver for problem X.

Efficiently transform an instance of problem Y into a
polynomial number of instances of X that we solve
(black-box solver) for problem X and aggregate efficiently
to solve Y.

Y is polynomial-time reducible to X
Suppose Y ≤p X. If X is solvable in polynomial time, then Y can
be solved in polynomial time.

X is at least as hard as Y
Suppose Y ≤p X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.
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Independent Set ⇐⇒ Vertex Cover

Given a graph G and a number k.
Independent Set (IS)

Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.
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What is size of the largest
independent set?
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no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

Theorem 1
Let G = (V,E) be a graph. Then S is an independent set if and only if
its complement V ∖ S is a vertex cover.

Proof.
⇒: Suppose S is an IS. For any edge (u,v), at most one of
{u,v} ∈ S. Hence, one of {u,v} ∈ V ∖ S.

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover
Given a graph G and a number k.

Independent Set (IS)
Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

Theorem 1
Let G = (V,E) be a graph. Then S is an independent set if and only if
its complement V ∖ S is a vertex cover.

Proof.
⇒: Suppose S is an IS. For any edge (u,v), at most one of
{u,v} ∈ S. Hence, one of {u,v} ∈ V ∖ S.

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover
Given a graph G and a number k.

Independent Set (IS)
Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
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to at least 1 node in S.

Theorem 1
Let G = (V,E) be a graph. Then S is an independent set if and only if
its complement V ∖ S is a vertex cover.

Proof.
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Packing and Covering Problems

Packing Problem
Independent Set

Goal is to pack as many
vertices as possible
without violating edge
constraints.

Covering Problem
Vertex Cover

Goal is to cover all the
edges in the graph
using as few vertices as
possible.
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Set Cover (SC)

Problem Definition
A universe U of n
elements.
A collection of subsets of
U: S1,S2, . . . ,Sm.
A number k.
Goal: Does there exist a
collection of at most k of
the subsets whose unions
equal U.
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Reduction: Vertex Cover (VC) to Set Cover (SC)

Theorem 2
VC ≤p SC

Proof.

Consider an arbitrary instance of VC on G = (V,E).
Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between VC and SC.
VC ≤ k ⇐⇒ SC ≤ k
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Set Packing (SP)

Problem Definition
A universe U of n
elements.
A collection of subsets of
U: S1,S2, . . . ,Sm.
A number k.
Goal: Does there exist a
collection of at least k of the
subsets that don’t intersect.

Exercise: Show that IS ≤p SP
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Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3
IS ≤p SP

Proof.
Assume that we have a black-box solver for SP.

Consider an arbitrary instance of IS on G = (V,E).
Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between IS and SP.
IS ≥ k ⇐⇒ SP ≥ k
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Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.

For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.
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Satisfiability Problem (SAT)
: What values will satisfy the example?

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)
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Three Satifiability (3SAT)

SAT Problem
Given a set of literals: X ∶ x1, . . . ,xn, and a collection of clauses
C ∶ C1 ∧C2 ∧ ⋅ ∧Ck, does there exist a satisfying assignment?

Gadgets
Gadgets are often used to show Y ≤p X.

A subset of problem X that represents a component of
problem Y.

A procedure to convert some of the components of Y to a
piece of problem X.
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3SAT to Independent Set (IS)

Theorem 4
3SAT ≤p IS

Proof.

Assume we have a black-box solver for IS.
Transfer any 3SAT to IS:

Clause gadget: k3 graph
Add an edge between vij = xq and all vi′j′ = xq.
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3SAT to Independent Set (IS)
Theorem 4
3SAT ≤p IS

Proof.

IS of size ≥ k ⇐⇒ 3SAT is satisfiable.

Each node in IS represents a 1 assignment.
Within each gadget, only 1 node can be in IS.
Conflict edges prevent xi and xi both being assigned 1.
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Transitivity of Reductions

Observation 1
If Z ≤p Y, and Y ≤p X, then Z ≤p X.

So,
3SAT ≤p IS ≤p VC ≤p SC

and
3SAT ≤p IS ≤p SP

and
VC ≤p IS ≤p SP .
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Efficient Certification

Input Formalization
For a problem instance:

Let s be a binary string that encodes the input.
∣s∣ is the length of s, i.e., the # of bits in s.

Polynomial Run-Time
Algorithm A has a polynomial run-time if run-time is
O(poly(∣s∣)) in the worst-case, where poly(⋅) is a polynomial
function.

Complexity class P
P is the set of all problems for which there exists an algorithm A
that solves the problem with polynomial run-time.
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Efficient Certification
Certifier B(s, t) for a problem P:

s is an input instance of P.
t is a certificate; a proof that s is a yes-instance.

Efficient:
For every s, we have s ∈ P iff there exists a t, ∣t∣ ≤ poly(∣s∣),
for which B(s, t) returns yes.

In other words, using t, we can check if s is a yes-instance in
polynomial time.

B(s, t) returning no does not mean that s is a no-instance

...
only that t is not a valid proof.

B(s, t) provides a brute-force algorithm: For a given s,
check every possible t.
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NP Problems
Complexity Class NP

Non-deterministic, Polynomial time: can be solved in
polynomial time by testing every t simultaneously
(non-deterministic).
Set of all problems for which there exists an efficient
certifier.

Theorem 5
P ⊆ NP

Proof.

For every p ∈ P, ∃ an algorithm A that runs in polynomial
time.
B(s, t) for any t returns A(s).
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1 of 7 Clay Mathematics Institute Millennium Prize Problems
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Hardest NP Problems

NP-Hard
Problem X is NP-Hard if:

For all Y ∈ NP, Y ≤p X.
NP-Hard problem may or may not be in NP.

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.
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Hardest NP Problems

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.

Theorem 6
Suppose X ∈ NP-Complete. Then, X is solvable in polynomial time iff
P = NP.

Proof.
⇐: Suppose P = NP, then by definition of P, X can be solved in
polynomial time.
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For all Y ∈ NP, Y ≤p X.
X is in NP.

Theorem 6
Suppose X ∈ NP-Complete. Then, X is solvable in polynomial time iff
P = NP.

Proof.
⇒: Suppose X can be solved in polynomial time. Then, by
definition of NP-Complete, all problems ∈ NP ≤p X. Hence,
solvable in polynomial time and ∈ P.
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First NP-Complete Problem

Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Stephen Cook
(1968)

Leonid Levin
(2010)
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Circuit Satisfiability Problem (CSAT)

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).

Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).
Source: Nodes with no
incoming edges; may
have a preset binary
value.
Every other node is
labelled with a gate.
Output: Result of the
node with no outgoing
edges.
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Circuit Satisfiability Problem (CSAT)

: What is the output with
an input of (1,0,0)?

Problem Definition
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Circuit Satisfiability Problem (CSAT)

: Give an input that
satisfies the example.
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First NP-Complete Problem

Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:

Input size is Ω(∣V∣).
A single gate can be evaluated in constant time.
Evaluate a certificate of the inputs can be verified in O(∣V∣)
time.

2 Reduce every problem ∈ NP to CSAT:
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First NP-Complete Problem
Theorem 6
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Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
Reduction to CSAT:

Output is 1 when X is yes; otherwise 0.
Sources: ∣s∣ + ∣t∣ = n + poly(n) bits.
The first n bits are hard-coded to the X instance input.
The poly(n) bits are free and used to find a t such that
BX(s, t) is yes.
The gates of the circuit are a translation of algorithm BX .
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Example: Independent Set (k ≥ 2) as Circuit
Satisfiability Problem.
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Example: Independent Set (k ≥ 2) as Circuit
Satisfiability Problem.

: Draw the underlying Independent Set graph.
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Strategies for Proving NP-Completeness
Showing that Problem X is NP-Complete
Cook Reduction:

1 Prove that X ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p X.

Typical Step 3
3 Karp Reduction: For an arbitrary instance sY of Y, show

how to construct, in polynomial time, an instance sX of X
such that sy is a yes iff sx is a yes.
Steps:

1 Provide efficient reduction.
2 Prove⇒: if sY is a yes, sX is a yes.
3 Prove⇐: if sX is a yes, then sY had to have been a yes.
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3SAT is NP-Complete

Theorem 7
3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete
Cook Reduction:

1 Prove that 3SAT ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p 3SAT.
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Exercise: Do step 1.
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Cook Reduction:

1 Prove that 3SAT ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p 3SAT.

Proof.
1 Use a truth assignment of the literals as a certificate. This

can be verified in polynomial time.

2 The only NP-Complete problem we know is CSAT.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete
Theorem 7
3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete
Cook Reduction:

1 Prove that 3SAT ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p 3SAT.

Proof.
1 Use a truth assignment of the literals as a certificate. This

can be verified in polynomial time.
2 The only NP-Complete problem we know is CSAT.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.

For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete
Proof.

3 For an arbitrary circuit k:
Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).
Convert clauses to length 3:

We need 2 variables z1 and z2 that are always 0 in a satisfying
assignment.
To ensure this, we need 4 variables: z1, z2, z3, z4.
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For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).
Convert clauses to length 3:

4 variables: z1, z2, z3, z4, and 8 clauses for i ∈ {1, 2}:
(zi ∨ z3 ∨ z4) ∧ (zi ∨ z3 ∨ z4) ∧ (zi ∨ z3 ∨ z4) ∧ (zi ∨ z3 ∨ z4).
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3SAT is NP-Complete

Proof.
3 sCSAT is a yes iff s3SAT is a yes:

⇒: If sCSAT is a yes, then the satisfying assignment to the
circuit inputs can be used to calculate the value of each
gate. By the reduction, these value will satisfy all the
clauses of s3SAT.
⇐: If s3SAT is a yes, then the assignment of the variables give
the satisfying assignment of the circuit inputs, and the
reduction guarantees that the assigned values for the nodes
match the gate calculations.
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3SAT is NP-Complete

From our previous reductions

3SAT ≤p IS ≤p VC ≤p SC

and
3SAT ≤p IS ≤p SP

and the fact that 3SAT is NP-Complete:

Corollary 7
The following problems are NP-Complete:

3SAT, IS,VC,SC,SP .
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Taxonomy of
NP-completeness
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Sequencing Problems

Travelling Salesperson
Problem (TSP)

A salesperson must visit n
cities v1,v2, . . . ,vn.
Starting at some v1, visit all
cities and return to v1.
Distance function: d(⋅, ⋅)
for all pairs of cities (not
necessarily symmetric nor
metric).
Optimization: What is the
shortest tour?

Hamiltonian Cycle
Graph analogue of TSP.
Hamiltonian cycle: a tour
of the nodes of G that visits
each node once.
Given a digraph G, does it
contain a Hamiltonian
cycle?
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Distance function: d(⋅, ⋅)
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length D?

Hamiltonian Cycle
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cities v1,v2, . . . ,vn.
Starting at some v1, visit all
cities and return to v1.
Distance function: d(⋅, ⋅)
for all pairs of cities (not
necessarily symmetric nor
metric).

: Does this
graph contain a
Hamiltonian
cycle?

Hamiltonian Cycle
Graph analogue of TSP.
Hamiltonian cycle: a tour
of the nodes of G that visits
each node once.
Given a digraph G, does it
contain a Hamiltonian
cycle?
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3SAT ≤p Hamiltonian

Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
1 In NP: A certificate would be a sequence of vertices which

can be verified in polynomial time.
2 Choose an NP-complete problem: 3SAT.

27/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT ≤p Hamiltonian
Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
3 3SAT ≤p Hamiltonian:

Pi (containing
3k + 2 nodes)
for each Xi: left
traversal for 1
and right
traversal for 0.
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3SAT ≤p Hamiltonian
Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
3 3SAT ≤p Hamiltonian:

Ci for each
clause i:
Connect based
on xi or xi.
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3SAT ≤p Hamiltonian
Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
3 s3SAT is a yes iff sHamiltonian is a yes:

⇒: If s3SAT is a yes, then each clause node can be visited
from one of the paths corresponding to one of the variables
when the path is traversed in the direction of the satisfying
assignment.
⇐: If sHamiltonian is a yes, then every clause node is visited,
and the direction of each path traversal gives a value
assignment for the corresponding variable in s3SAT. The
reduction guarantees that value assignment for a variable
the path used to traverse the clause node will be the
assignment of a variable that satisfies the corresponding
clause.
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Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.

1 In NP: Certificate that is a tour of the cities.
2

3 Hamiltonian Cycle ≤p TSP:
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Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Which NP-complete problem?

3 Hamiltonian Cycle ≤p TSP:
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Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Exo: Try to come up with the reduction.
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Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):

For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.
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Travelling Salesperson
Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.
⇒With a Hamiltonian Cycle in G, the shortest tour will be
length n.
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Travelling Salesperson
Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.
⇐ If the shortest tour is length n, then no d(u,v) = 2 is used,
so only edges from the graph are used implying a
Hamiltonian cycle in G.
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Exercise: Show that Hamiltonian Path is
NP-complete

Hamiltonian Path
A simple path in a digraph G that contains all nodes.
Another sequencing problem.
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Exercise: Show that Hamiltonian Path is
NP-complete

Theorem 10
Hamiltonian Path is NP-complete

Proof.
1 In NP: Certificate is a path in G which can be verified in

polynomial time.
2 NP-complete problem: Hamiltonian Cycle.
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Exercise: Show that Hamiltonian Path is
NP-complete

Theorem 10
Hamiltonian Path is NP-complete

Proof.
3 Hamiltonian Cycle ≤p Hamiltonian Path:

For G = (V,E) create G′:

Choose an arbitrary v ∈ V: V′ = V ∖ {v} ∪ {v′,v′′}.
Initialize E′ = E:

For each edge (v,w) ∈ E: E′ ∖ {(v,w)} ∪ {(v′,w)}.
For each edge (u, v) ∈ E: E′ ∖ {(u, v)} ∪ {(u, v′′)}.

A path v′ → v′′ means Hamiltonian Cycle.
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Partitioning Problems

3-D Matching
Given 3 disjoint sets: X,Y,Z (each of size n).
A set of m ≥ n trebles T ⊆ X ×Y ×Z.
Does there exist a set of n trebles from T so that each item
is in exactly one of these trebles?
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3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.
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3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.
1 In NP: Certificate is a set of trebles which can be verified in

polynomial time.
2 Which NP-complete problem?
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3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.
1 In NP: Certificate is a set of trebles which can be verified in

polynomial time.
2 Use 3SAT.
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3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Variable xi gadget:

Core:
Ai = {ai1, . . . , ai2k}.
Tips:
Bi = {bi1, . . . , bi2k}.
tij = (aij, aij+1, bij) for
j = 1, 2, . . . , 2k (add
mod 2k).
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3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Clause Cj gadget:

Add Pj = {pj, p′j}with trebles: (pj, p′j , bi2j−1) if xi and (pj, p′j , bi2j)
if xi.
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3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Counting cores: covered by even/odd choice.

Counting tips: n2k
Even/odd tips cover nk.
Clauses cover k.
(n − 1)k uncovered.

(n − 1)k clean-up gadgets:
Qi = {qi, q′i}with treble (qi, q′i , b) for every tip b.

What are the 3 sets?
X = {aij even} ∪ {pj} ∪ {qi},Y = {aij odd} ∪ {p′j} ∪ {q′i},Z = {bij}.
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3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
⇒ For a yes 3SAT, there is a matching that takes the
even/odd tip trebles, leaving at least one tip as part of each
clause gadget treble. The remaining unmatched tips are
match to a clean-up gadget.
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3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
⇒ For a yes 3SAT, there is a matching that takes the
even/odd tip trebles, leaving at least one tip as part of each
clause gadget treble. The remaining unmatched tips are
match to a clean-up gadget.
⇐ A yes for 3-D Matching from the reduction means that
each clause gadget is part of a selected treble, each variable
gadget has selected the odd or even tips, and the remaining
tips are matched to a clean-up gadget. Each clause will be
satisfied by the tip matched by the clause gadget. The
even/odd selection for each variable guarantees all
variables are assigned 1 or 0.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Graph Colouring

Problem
Given a graph G and a bound k, does
G have a k-colouring?

k-Colour
Colouring of the nodes of a graph such that no adjacent
nodes have the same colour, using at most k colours.

Labelling (partitioning) function f ∶ V → {1, . . . , k} such
that, for every (u,v) ∈ E, f (u) ≠ f (v).
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3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
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3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
1 In NP: Certificate is a colouring of the nodes which can be

verified in polynomial time.
2 Which NP-complete problem?
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3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
1 In NP: Certificate is a colouring of the nodes which can be

verified in polynomial time.
2 NP-complete problem: 3SAT.
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3-Colouring is NP-Complete.

Proof.
3 3SAT ≤p 3 Colouring:

For each clause:
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Numerical Problems

Subset Sum Problem
Given a set of n natural numbers {w1, . . . ,wn} and a targetW, is
there a subset of the numbers that add up toW?

Dynamic Programming Approach
We saw an O(nW) algorithm.
Pseudo-polynomial: W is unbounded, e.g., 2n.
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Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum: Exercise: Try it, but tough.
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3-D Matching: Subsets can be viewed as length 3n bit
vectors with a 1 indicating that item is in the set.

For each treble (i, j, k) from X ×Y ×Z construct a wt:

A digits with 1 at i, n + j, and 2n + k.
For base d, wt = di−1 + dn+j−1 + d2n+k−1.
Set base d = m + 1 to avoid addition carry overs.

SetW = ∑3n−1
0 (m + 1)i which corresponds to have each item

exactly once.
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Constraint Satisfaction Problems

Not All Equal 4SAT (NAE 4SAT)
Given a 4SAT formula, is there an assignment to the literals
such that every clause contains at least one true term and at
least one false term.
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Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

Reduction correctness:

⇒: If 3SAT Φ is true, ∃ an assignment where every clause in
Φ has ≥ 1 true value. Set v = 0 and Φ′ is satisfied.
⇐: If NAE 4SAT is true:

Case 1: v = 0. Each clause in Φ′ has at least 1 term that is not
v set to true Ô⇒ Φ is satisfied.
Case 2: v = 1. Each clause in Φ′ has at least 1 term that is not
v set to false Ô⇒ Φ is satisfied by the complement of the
assignment that satisfies Φ′.
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Taxonomy of Hard Problems
Packing Problems

Independent Set
Set Packing
Clique (in discussion)

Covering Problems
Vertex Cover
Set Cover

Sequencing Problems
TSP
Hamiltonian Cycle
Hamiltonian Path
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Taxonomy of Hard Problems

Partitioning Problems
3-D Matching
Graph Colouring

Numerical Problems
Subset Sum
Knapsack

Constraint Satisfaction Problems
3SAT
CSAT
NAE 4SAT
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Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry
Given an instance s of problem X:

For any t, B(s, t) = yes implies yes-instance.
For all t, B(s, t) = no implies no-instance.

Complimentary Problem
For every problem X, there is a complementary problem X:

For all input s, s ∈ X iff s ∉ X.

Note that, if X ∈ P, then X ∈ P.

40/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry
Given an instance s of problem X:

For any t, B(s, t) = yes implies yes-instance.
For all t, B(s, t) = no implies no-instance.

Complimentary Problem
For every problem X, there is a complementary problem X:

For all input s, s ∈ X iff s ∉ X.

Note that, if X ∈ P, then X ∈ P.

40/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry
Given an instance s of problem X:

For any t, B(s, t) = yes implies yes-instance.
For all t, B(s, t) = no implies no-instance.

Complimentary Problem
For every problem X, there is a complementary problem X:

For all input s, s ∈ X iff s ∉ X.
Note that, if X ∈ P, then X ∈ P.

40/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP

Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Open Question
Does P = NP ∩ coNP?
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Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Proof.
Contra-positive: Prove it!

Open Question
Does P = NP ∩ coNP?
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Beyond Time
Complexity Class PSPACE
Set of all problems that can be solved using polynomial space.

Theorem 16
P ⊆ PSPACE

Theorem 17
NP ⊆ PSPACE
Proof.

For 3SAT, a bit vector can encode an assignment.
We can try all bit vectors with one n-length vector in
memory:

Start with 0 until 2n − 1, adding 1 at each iteration.

Since 3SAT ∈ PSPACE and is NP-complete, for any Y ∈ NP,
Y ≤p 3SAT and solve in PSPACE.
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Prototypical PSPACE Problem

Let Φ(x1, . . . ,xn) be a conjunction of k disjunction of n variables
(like SAT).

Quantified SAT
∃x1∀x2∃x3⋯QnxnΦ(x1, . . . ,xn) (Prenex normal form).
Contingency planning.

Theorem 18
QSAT is PSPACE-complete.
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