
CS 577 - Computational Intractability

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin – Madison

Fall 2024



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Computational
Intractability



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Computational Intractability

Easy Problems
Problems that can be solved by efficient algorithms.
Polynomial running time.
Complexity class: P

Hard Problems
Problems for which we do not know how to solve
efficiently.

NP-hard
NP-complete

1/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Computational Intractability

Easy Problems
Problems that can be solved by efficient algorithms.
Polynomial running time.
Complexity class: P

Hard Problems
Problems for which we do not know how to solve
efficiently.

NP-hard
NP-complete

1/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Computational Intractability

Easy Problems
Problems that can be solved by efficient algorithms.
Polynomial running time.
Complexity class: P

Hard Problems
Problems for which we do not know how to solve
efficiently.
NP-hard

NP-complete

1/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Computational Intractability

Easy Problems
Problems that can be solved by efficient algorithms.
Polynomial running time.
Complexity class: P

Hard Problems
Problems for which we do not know how to solve
efficiently.
NP-hard
NP-complete

1/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Decision Problem

Optimization:

Bipartite Matching
Given a bipartite graph G,
find the largest matching.

⇐⇒

Decision:

Bipartite Matching
Given a bipartite graph G, is
there a matching of size ≥ k?

Decision Problem
binary output: yes / no answer.

Optimization to Decision
Solve the optimization version.
If the solution of size ≥ k, return yes.

2/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Decision Problem

Optimization:

Bipartite Matching
Given a bipartite graph G,
find the largest matching.

⇐⇒

Decision:

Bipartite Matching
Given a bipartite graph G, is
there a matching of size ≥ k?

Decision Problem
binary output: yes / no answer.

Optimization to Decision
Solve the optimization version.
If the solution of size ≥ k, return yes.

2/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Decision Problem

Optimization:

Bipartite Matching
Given a bipartite graph G,
find the largest matching.

⇐⇒

Decision:

Bipartite Matching
Given a bipartite graph G, is
there a matching of size ≥ k?

Decision Problem
binary output: yes / no answer.

Optimization to Decision
Solve the optimization version.
If the solution of size ≥ k, return yes.

2/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Decision Problem
Optimization:

Bipartite Matching
Given a bipartite graph G,
find the largest matching.

⇐⇒

Decision:

Bipartite Matching
Given a bipartite graph G, is
there a matching of size ≥ k?

Decision Problem
binary output: yes / no answer.

Decision to Optimization
Upper bound on maximum matching is N =min(∣A∣, ∣B∣).
For k = N to 0, return first k that returns yes.

(Or, binary search between [0,N].)

2/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Decision Problem
Optimization:

Bipartite Matching
Given a bipartite graph G,
find the largest matching.

⇐⇒

Decision:

Bipartite Matching
Given a bipartite graph G, is
there a matching of size ≥ k?

Decision Problem
binary output: yes / no answer.

Decision to Optimization
Upper bound on maximum matching is N =min(∣A∣, ∣B∣).
For k = N to 0, return first k that returns yes.
(Or, binary search between [0,N].)

2/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reductions



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Polynomial-Time Reduction
Problem Reduction: Y ≤p X

Consider any instance of problem Y.
Assume we have a black-box solver for problem X.

Efficiently transform an instance of problem Y into a
polynomial number of instances of X that we solve
(black-box solver) for problem X and aggregate efficiently
to solve Y.

Y is polynomial-time reducible to X
Suppose Y ≤p X. If X is solvable in polynomial time, then Y can
be solved in polynomial time.

X is at least as hard as Y
Suppose Y ≤p X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

3/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Polynomial-Time Reduction
Problem Reduction: Y ≤p X

Consider any instance of problem Y.
Assume we have a black-box solver for problem X.
Efficiently transform an instance of problem Y into a
polynomial number of instances of X that we solve
(black-box solver) for problem X and aggregate efficiently
to solve Y.

Y is polynomial-time reducible to X
Suppose Y ≤p X. If X is solvable in polynomial time, then Y can
be solved in polynomial time.

X is at least as hard as Y
Suppose Y ≤p X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

3/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Polynomial-Time Reduction
Problem Reduction: Y ≤p X

Consider any instance of problem Y.
Assume we have a black-box solver for problem X.
Efficiently transform an instance of problem Y into a
polynomial number of instances of X that we solve
(black-box solver) for problem X and aggregate efficiently
to solve Y.

Y is polynomial-time reducible to X
Suppose Y ≤p X. If X is solvable in polynomial time, then Y can
be solved in polynomial time.

X is at least as hard as Y
Suppose Y ≤p X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

3/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Polynomial-Time Reduction
Problem Reduction: Y ≤p X

Consider any instance of problem Y.
Assume we have a black-box solver for problem X.
Efficiently transform an instance of problem Y into a
polynomial number of instances of X that we solve
(black-box solver) for problem X and aggregate efficiently
to solve Y.

Y is polynomial-time reducible to X
Suppose Y ≤p X. If X is solvable in polynomial time, then Y can
be solved in polynomial time.

X is at least as hard as Y
Suppose Y ≤p X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

3/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover

Given a graph G and a number k.
Independent Set (IS)

Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover
Given a graph G and a number k.

Independent Set (IS)
Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

What is size of the largest
independent set?

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover
Given a graph G and a number k.

Independent Set (IS)
Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

What is size of the
smallest vertex cover?

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover
Given a graph G and a number k.

Independent Set (IS)
Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

Theorem 1
Let G = (V,E) be a graph. Then S is an independent set if and only if
its complement V ∖ S is a vertex cover.

Proof.
⇒: Suppose S is an IS. For any edge (u,v), at most one of
{u,v} ∈ S. Hence, one of {u,v} ∈ V ∖ S.

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover
Given a graph G and a number k.

Independent Set (IS)
Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

Theorem 1
Let G = (V,E) be a graph. Then S is an independent set if and only if
its complement V ∖ S is a vertex cover.

Proof.
⇒: Suppose S is an IS. For any edge (u,v), at most one of
{u,v} ∈ S. Hence, one of {u,v} ∈ V ∖ S.

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Independent Set ⇐⇒ Vertex Cover
Given a graph G and a number k.

Independent Set (IS)
Does G contain an IS of
size ≥ k?
S ⊆ V is independent if
no 2 nodes in S are
adjacent.

Vertex Cover (VC)
Does G contain a vertex
cover of size ≤ k?
S ⊆ V is vertex cover if
every edge is incident
to at least 1 node in S.

Theorem 1
Let G = (V,E) be a graph. Then S is an independent set if and only if
its complement V ∖ S is a vertex cover.

Proof.
⇐: Suppose V ∖ S is a VC. Any edge (u,v)with both ∈ Swould
contradict that V ∖ S is a VC.

4/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Packing and Covering Problems

Packing Problem
Independent Set

Goal is to pack as many
vertices as possible
without violating edge
constraints.

Covering Problem
Vertex Cover

Goal is to cover all the
edges in the graph
using as few vertices as
possible.

5/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Set Cover (SC)

Problem Definition
A universe U of n
elements.
A collection of subsets of
U: S1,S2, . . . ,Sm.
A number k.
Goal: Does there exist a
collection of at most k of
the subsets whose unions
equal U.

6/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Vertex Cover (VC) to Set Cover (SC)

Theorem 2
VC ≤p SC

Proof.

Consider an arbitrary instance of VC on G = (V,E).
Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between VC and SC.
VC ≤ k ⇐⇒ SC ≤ k

7/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Vertex Cover (VC) to Set Cover (SC)

Theorem 2
VC ≤p SC

Proof.
: For the proof, do we assume a VC or a SC black-box?

Consider an arbitrary instance of VC on G = (V,E).
Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between VC and SC.
VC ≤ k ⇐⇒ SC ≤ k

7/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Vertex Cover (VC) to Set Cover (SC)

Theorem 2
VC ≤p SC

Proof.
Assume that we have a black-box solver for SC.

Consider an arbitrary instance of VC on G = (V,E).
Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between VC and SC.
VC ≤ k ⇐⇒ SC ≤ k

7/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Vertex Cover (VC) to Set Cover (SC)

Theorem 2
VC ≤p SC

Proof.
Assume that we have a black-box solver for SC.
Consider an arbitrary instance of VC on G = (V,E).

Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between VC and SC.
VC ≤ k ⇐⇒ SC ≤ k

7/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Vertex Cover (VC) to Set Cover (SC)

Theorem 2
VC ≤p SC

Proof.
Assume that we have a black-box solver for SC.
Consider an arbitrary instance of VC on G = (V,E).

Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between VC and SC.
VC ≤ k ⇐⇒ SC ≤ k

7/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Set Packing (SP)

Problem Definition
A universe U of n
elements.
A collection of subsets of
U: S1,S2, . . . ,Sm.
A number k.
Goal: Does there exist a
collection of at least k of the
subsets that don’t intersect.

Exercise: Show that IS ≤p SP

8/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Set Packing (SP)

Problem Definition
A universe U of n
elements.
A collection of subsets of
U: S1,S2, . . . ,Sm.
A number k.
Goal: Does there exist a
collection of at least k of the
subsets that don’t intersect.

Exercise: Show that IS ≤p SP

8/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3
IS ≤p SP

Proof.
Assume that we have a black-box solver for SP.

Consider an arbitrary instance of IS on G = (V,E).
Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between IS and SP.
IS ≥ k ⇐⇒ SP ≥ k

9/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3
IS ≤p SP

Proof.
Assume that we have a black-box solver for SP.

Consider an arbitrary instance of IS on G = (V,E).
Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between IS and SP.
IS ≥ k ⇐⇒ SP ≥ k

9/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3
IS ≤p SP

Proof.
Assume that we have a black-box solver for SP.
Consider an arbitrary instance of IS on G = (V,E).

Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between IS and SP.
IS ≥ k ⇐⇒ SP ≥ k

9/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3
IS ≤p SP

Proof.
Assume that we have a black-box solver for SP.
Consider an arbitrary instance of IS on G = (V,E).

Set U = E.
For each vertex v ∈ V:
Create a set consisting of each edge incident to v.

Direct correspondence between IS and SP.
IS ≥ k ⇐⇒ SP ≥ k

9/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.

For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.
For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.

A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.
For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).

Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.
For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.

A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.
For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.

Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.
For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.

v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.
For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Satisfiability Problem (SAT)
: What values will satisfy the example?

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Preliminaries
A set of boolean terms/literals: X ∶ x1, . . . ,xn.
For a given variable xi, xi is the assigned value and xi is the
negation of the assigned value.
A clause Cj is a disjunction of (distinct) terms, e.g.,
(x1 ∨ x2).
Length of Cj is the # of terms in Cj.
A collection/conjunction of k clauses: C ∶ C1 ∧C2 ∧ ⋅ ∧Ck.
Truth assignment function v ∶ X → {0,1}, assigns values to
the terms and returns the conjunction of the clauses.
v is a satisfying assignment if C is 1, i.e., all Ci evaluate to 1.

10/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Three Satifiability (3SAT)

SAT Problem
Given a set of literals: X ∶ x1, . . . ,xn, and a collection of clauses
C ∶ C1 ∧C2 ∧ ⋅ ∧Ck, does there exist a satisfying assignment?

Gadgets
Gadgets are often used to show Y ≤p X.

A subset of problem X that represents a component of
problem Y.

A procedure to convert some of the components of Y to a
piece of problem X.

11/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Three Satifiability (3SAT)

3SAT Problem
Given a set of literals: X ∶ x1, . . . ,xn, and a collection of clauses
C ∶ C1 ∧C2 ∧ ⋅ ∧Ck, each of length 3, does there exist a satisfying
assignment?

Gadgets
Gadgets are often used to show Y ≤p X.

A subset of problem X that represents a component of
problem Y.

A procedure to convert some of the components of Y to a
piece of problem X.

11/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Three Satifiability (3SAT)

3SAT Problem
Given a set of literals: X ∶ x1, . . . ,xn, and a collection of clauses
C ∶ C1 ∧C2 ∧ ⋅ ∧Ck, each of length 3, does there exist a satisfying
assignment?

Gadgets
Gadgets are often used to show Y ≤p X.

A subset of problem X that represents a component of
problem Y.

A procedure to convert some of the components of Y to a
piece of problem X.

11/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Three Satifiability (3SAT)

3SAT Problem
Given a set of literals: X ∶ x1, . . . ,xn, and a collection of clauses
C ∶ C1 ∧C2 ∧ ⋅ ∧Ck, each of length 3, does there exist a satisfying
assignment?

Gadgets
Gadgets are often used to show Y ≤p X.

A subset of problem X that represents a component of
problem Y.
A procedure to convert some of the components of Y to a
piece of problem X.

11/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)

Theorem 4
3SAT ≤p IS

Proof.

Assume we have a black-box solver for IS.
Transfer any 3SAT to IS:

Clause gadget: k3 graph
Add an edge between vij = xq and all vi′j′ = xq.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)

Theorem 4
3SAT ≤p IS

Proof.
Assume we have a black-box solver for IS.

Transfer any 3SAT to IS:

Clause gadget: k3 graph
Add an edge between vij = xq and all vi′j′ = xq.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)

Theorem 4
3SAT ≤p IS

Proof.
Assume we have a black-box solver for IS.
Transfer any 3SAT to IS:

Clause gadget: k3 graph
Add an edge between vij = xq and all vi′j′ = xq.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)
Theorem 4
3SAT ≤p IS

Proof.
Assume we have a black-box solver for IS.
Transfer any 3SAT to IS:

Clause gadget: k3 graph

Add an edge between vij = xq and all vi′j′ = xq.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)
Theorem 4
3SAT ≤p IS

Proof.
Assume we have a black-box solver for IS.
Transfer any 3SAT to IS:

Clause gadget: k3 graph

Add an edge between vij = xq and all vi′j′ = xq.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)
Theorem 4
3SAT ≤p IS

Proof.

IS of size ≥ k ⇐⇒ 3SAT is satisfiable.

Each node in IS represents a 1 assignment.
Within each gadget, only 1 node can be in IS.
Conflict edges prevent xi and xi both being assigned 1.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)
Theorem 4
3SAT ≤p IS

Proof.

IS of size ≥ k ⇐⇒ 3SAT is satisfiable.
Each node in IS represents a 1 assignment.

Within each gadget, only 1 node can be in IS.
Conflict edges prevent xi and xi both being assigned 1.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)
Theorem 4
3SAT ≤p IS

Proof.

IS of size ≥ k ⇐⇒ 3SAT is satisfiable.
Each node in IS represents a 1 assignment.
Within each gadget, only 1 node can be in IS.

Conflict edges prevent xi and xi both being assigned 1.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT to Independent Set (IS)
Theorem 4
3SAT ≤p IS

Proof.

IS of size ≥ k ⇐⇒ 3SAT is satisfiable.
Each node in IS represents a 1 assignment.
Within each gadget, only 1 node can be in IS.
Conflict edges prevent xi and xi both being assigned 1.

12/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Transitivity of Reductions

Observation 1
If Z ≤p Y, and Y ≤p X, then Z ≤p X.

So,
3SAT ≤p IS ≤p VC ≤p SC

and
3SAT ≤p IS ≤p SP

and
VC ≤p IS ≤p SP .

13/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Transitivity of Reductions

Observation 1
If Z ≤p Y, and Y ≤p X, then Z ≤p X.

So,
3SAT ≤p IS ≤p VC ≤p SC

and
3SAT ≤p IS ≤p SP

and
VC ≤p IS ≤p SP .

13/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NP



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Input Formalization
For a problem instance:

Let s be a binary string that encodes the input.
∣s∣ is the length of s, i.e., the # of bits in s.

Polynomial Run-Time
Algorithm A has a polynomial run-time if run-time is
O(poly(∣s∣)) in the worst-case, where poly(⋅) is a polynomial
function.

Complexity class P
P is the set of all problems for which there exists an algorithm A
that solves the problem with polynomial run-time.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Input Formalization
For a problem instance:

Let s be a binary string that encodes the input.
∣s∣ is the length of s, i.e., the # of bits in s.

Polynomial Run-Time
Algorithm A has a polynomial run-time if run-time is
O(poly(∣s∣)) in the worst-case, where poly(⋅) is a polynomial
function.

Complexity class P
P is the set of all problems for which there exists an algorithm A
that solves the problem with polynomial run-time.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Efficient Certification
Certifier B(s, t) for a problem P:

s is an input instance of P.
t is a certificate; a proof that s is a yes-instance.

Efficient:
For every s, we have s ∈ P iff there exists a t, ∣t∣ ≤ poly(∣s∣),
for which B(s, t) returns yes.

In other words, using t, we can check if s is a yes-instance in
polynomial time.

B(s, t) returning no does not mean that s is a no-instance

...
only that t is not a valid proof.

B(s, t) provides a brute-force algorithm: For a given s,
check every possible t.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Efficient Certification
Certifier B(s, t) for a problem P:

s is an input instance of P.
t is a certificate; a proof that s is a yes-instance.
Efficient:

For every s, we have s ∈ P iff there exists a t, ∣t∣ ≤ poly(∣s∣),
for which B(s, t) returns yes.

In other words, using t, we can check if s is a yes-instance in
polynomial time.

B(s, t) returning no does not mean that s is a no-instance

...
only that t is not a valid proof.

B(s, t) provides a brute-force algorithm: For a given s,
check every possible t.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Efficient Certification
Certifier B(s, t) for a problem P:

s is an input instance of P.
t is a certificate; a proof that s is a yes-instance.
Efficient:

For every s, we have s ∈ P iff there exists a t, ∣t∣ ≤ poly(∣s∣),
for which B(s, t) returns yes.
In other words, using t, we can check if s is a yes-instance in
polynomial time.

B(s, t) returning no does not mean that s is a no-instance

...
only that t is not a valid proof.

B(s, t) provides a brute-force algorithm: For a given s,
check every possible t.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Efficient Certification
Certifier B(s, t) for a problem P:

s is an input instance of P.
t is a certificate; a proof that s is a yes-instance.
Efficient:

For every s, we have s ∈ P iff there exists a t, ∣t∣ ≤ poly(∣s∣),
for which B(s, t) returns yes.
In other words, using t, we can check if s is a yes-instance in
polynomial time.

B(s, t) returning no does not mean that s is a no-instance

...
only that t is not a valid proof.
B(s, t) provides a brute-force algorithm: For a given s,
check every possible t.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Efficient Certification
Certifier B(s, t) for a problem P:

s is an input instance of P.
t is a certificate; a proof that s is a yes-instance.
Efficient:

For every s, we have s ∈ P iff there exists a t, ∣t∣ ≤ poly(∣s∣),
for which B(s, t) returns yes.
In other words, using t, we can check if s is a yes-instance in
polynomial time.

B(s, t) returning no does not mean that s is a no-instance...
only that t is not a valid proof.

B(s, t) provides a brute-force algorithm: For a given s,
check every possible t.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Efficient Certification

Efficient Certification
Certifier B(s, t) for a problem P:

s is an input instance of P.
t is a certificate; a proof that s is a yes-instance.
Efficient:

For every s, we have s ∈ P iff there exists a t, ∣t∣ ≤ poly(∣s∣),
for which B(s, t) returns yes.
In other words, using t, we can check if s is a yes-instance in
polynomial time.

B(s, t) returning no does not mean that s is a no-instance...
only that t is not a valid proof.
B(s, t) provides a brute-force algorithm: For a given s,
check every possible t.

14/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NP Problems
Complexity Class NP

Non-deterministic, Polynomial time: can be solved in
polynomial time by testing every t simultaneously
(non-deterministic).
Set of all problems for which there exists an efficient
certifier.

Theorem 5
P ⊆ NP

Proof.

For every p ∈ P, ∃ an algorithm A that runs in polynomial
time.
B(s, t) for any t returns A(s).

15/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NP Problems
Complexity Class NP

Non-deterministic, Polynomial time: can be solved in
polynomial time by testing every t simultaneously
(non-deterministic).
Set of all problems for which there exists an efficient
certifier.

Theorem 5
P ⊆ NP

Proof.

For every p ∈ P, ∃ an algorithm A that runs in polynomial
time.
B(s, t) for any t returns A(s).

15/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NP Problems
Complexity Class NP

Non-deterministic, Polynomial time: can be solved in
polynomial time by testing every t simultaneously
(non-deterministic).
Set of all problems for which there exists an efficient
certifier.

Theorem 5
P ⊆ NP

Proof.
: Which proof technique?

For every p ∈ P, ∃ an algorithm A that runs in polynomial
time.
B(s, t) for any t returns A(s).

15/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NP Problems
Complexity Class NP

Non-deterministic, Polynomial time: can be solved in
polynomial time by testing every t simultaneously
(non-deterministic).
Set of all problems for which there exists an efficient
certifier.

Theorem 5
P ⊆ NP

Proof.
For every p ∈ P, ∃ an algorithm A that runs in polynomial
time.
B(s, t) for any t returns A(s).

15/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Million Dollar Question: P vs NP
1 of 7 Clay Mathematics Institute Millennium Prize Problems

16/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NP-complete



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Hardest NP Problems

NP-Hard
Problem X is NP-Hard if:

For all Y ∈ NP, Y ≤p X.
NP-Hard problem may or may not be in NP.

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.

17/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Hardest NP Problems

NP-Hard
Problem X is NP-Hard if:

For all Y ∈ NP, Y ≤p X.
NP-Hard problem may or may not be in NP.

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.

17/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Million Dollar Question: P vs NP
1 of 7 Clay Mathematics Institute Millennium Prize Problems

18/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Hardest NP Problems

NP-Hard
Problem X is NP-Hard if:

For all Y ∈ NP, Y ≤p X.
NP-Hard problem may or may not be in NP.

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.

19/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Hardest NP Problems

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.

Theorem 6
Suppose X ∈ NP-Complete. Then, X is solvable in polynomial time iff
P = NP.

Proof.
⇐: Suppose P = NP, then by definition of P, X can be solved in
polynomial time.

19/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Hardest NP Problems

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.

Theorem 6
Suppose X ∈ NP-Complete. Then, X is solvable in polynomial time iff
P = NP.

Proof.
⇐: Suppose P = NP, then by definition of P, X can be solved in
polynomial time.

19/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Hardest NP Problems

NP-Complete
Problem X is NP-Complete if:

For all Y ∈ NP, Y ≤p X.
X is in NP.

Theorem 6
Suppose X ∈ NP-Complete. Then, X is solvable in polynomial time iff
P = NP.

Proof.
⇒: Suppose X can be solved in polynomial time. Then, by
definition of NP-Complete, all problems ∈ NP ≤p X. Hence,
solvable in polynomial time and ∈ P.

19/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem

Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Stephen Cook
(1968)

Leonid Levin
(2010)

20/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Circuit Satisfiability Problem (CSAT)

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).

Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).
Source: Nodes with no
incoming edges; may
have a preset binary
value.
Every other node is
labelled with a gate.
Output: Result of the
node with no outgoing
edges.

21/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Circuit Satisfiability Problem (CSAT)

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).
Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).

Source: Nodes with no
incoming edges; may
have a preset binary
value.
Every other node is
labelled with a gate.
Output: Result of the
node with no outgoing
edges.

21/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Circuit Satisfiability Problem (CSAT)

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).
Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).
Source: Nodes with no
incoming edges; may
have a preset binary
value.

Every other node is
labelled with a gate.
Output: Result of the
node with no outgoing
edges.

21/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Circuit Satisfiability Problem (CSAT)

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).
Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).
Source: Nodes with no
incoming edges; may
have a preset binary
value.
Every other node is
labelled with a gate.

Output: Result of the
node with no outgoing
edges.

21/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Circuit Satisfiability Problem (CSAT)

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).
Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).
Source: Nodes with no
incoming edges; may
have a preset binary
value.
Every other node is
labelled with a gate.
Output: Result of the
node with no outgoing
edges.

21/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Circuit Satisfiability Problem (CSAT)

: What is the output with
an input of (1,0,0)?

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).
Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).
Source: Nodes with no
incoming edges; may
have a preset binary
value.
Every other node is
labelled with a gate.
Output: Result of the
node with no outgoing
edges.

21/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Circuit Satisfiability Problem (CSAT)

: Give an input that
satisfies the example.

Problem Definition
3 types of gates: ∧ (AND),
∨ (OR), and ¬ (NOT).
Circuit k:

A DAG (nodes have 0, 1,
or 2 incoming edges).
Source: Nodes with no
incoming edges; may
have a preset binary
value.
Every other node is
labelled with a gate.
Output: Result of the
node with no outgoing
edges.

21/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem

Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:

Input size is Ω(∣V∣).
A single gate can be evaluated in constant time.
Evaluate a certificate of the inputs can be verified in O(∣V∣)
time.

2 Reduce every problem ∈ NP to CSAT:

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem

Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.

We need to show X ≤p CSAT.
By definition for X:

X has an input of ∣s∣ bits.
Produces 1 bit of output (yes/no).
∃ an efficient certifier BX(⋅, ⋅).

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem

Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
We need to show X ≤p CSAT.

By definition for X:
X has an input of ∣s∣ bits.
Produces 1 bit of output (yes/no).
∃ an efficient certifier BX(⋅, ⋅).

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem

Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
We need to show X ≤p CSAT.
By definition for X:

X has an input of ∣s∣ bits.
Produces 1 bit of output (yes/no).
∃ an efficient certifier BX(⋅, ⋅).

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem
Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
Reduction to CSAT:

Output is 1 when X is yes; otherwise 0.
Sources: ∣s∣ + ∣t∣ = n + poly(n) bits.
The first n bits are hard-coded to the X instance input.
The poly(n) bits are free and used to find a t such that
BX(s, t) is yes.
The gates of the circuit are a translation of algorithm BX .

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem
Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
Reduction to CSAT:

Output is 1 when X is yes; otherwise 0.

Sources: ∣s∣ + ∣t∣ = n + poly(n) bits.
The first n bits are hard-coded to the X instance input.
The poly(n) bits are free and used to find a t such that
BX(s, t) is yes.
The gates of the circuit are a translation of algorithm BX .

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem
Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
Reduction to CSAT:

Output is 1 when X is yes; otherwise 0.
Sources: ∣s∣ + ∣t∣ = n + poly(n) bits.

The first n bits are hard-coded to the X instance input.
The poly(n) bits are free and used to find a t such that
BX(s, t) is yes.
The gates of the circuit are a translation of algorithm BX .

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem
Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
Reduction to CSAT:

Output is 1 when X is yes; otherwise 0.
Sources: ∣s∣ + ∣t∣ = n + poly(n) bits.
The first n bits are hard-coded to the X instance input.

The poly(n) bits are free and used to find a t such that
BX(s, t) is yes.
The gates of the circuit are a translation of algorithm BX .

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem
Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
Reduction to CSAT:

Output is 1 when X is yes; otherwise 0.
Sources: ∣s∣ + ∣t∣ = n + poly(n) bits.
The first n bits are hard-coded to the X instance input.
The poly(n) bits are free and used to find a t such that
BX(s, t) is yes.

The gates of the circuit are a translation of algorithm BX .

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

First NP-Complete Problem
Theorem 6
Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
1 Show that CSAT ∈ NP:
2 Reduce every problem ∈ NP to CSAT:

Consider an arbitrary problem X ∈ NP.
Reduction to CSAT:

Output is 1 when X is yes; otherwise 0.
Sources: ∣s∣ + ∣t∣ = n + poly(n) bits.
The first n bits are hard-coded to the X instance input.
The poly(n) bits are free and used to find a t such that
BX(s, t) is yes.
The gates of the circuit are a translation of algorithm BX .

22/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Example: Independent Set (k ≥ 2) as Circuit
Satisfiability Problem.

23/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Example: Independent Set (k ≥ 2) as Circuit
Satisfiability Problem.

: Draw the underlying Independent Set graph.
23/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Strategies for Proving NP-Completeness
Showing that Problem X is NP-Complete
Cook Reduction:

1 Prove that X ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p X.

Typical Step 3
3 Karp Reduction: For an arbitrary instance sY of Y, show

how to construct, in polynomial time, an instance sX of X
such that sy is a yes iff sx is a yes.
Steps:

1 Provide efficient reduction.
2 Prove⇒: if sY is a yes, sX is a yes.
3 Prove⇐: if sX is a yes, then sY had to have been a yes.

24/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Strategies for Proving NP-Completeness
Showing that Problem X is NP-Complete
Cook Reduction:

1 Prove that X ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p X.

Typical Step 3
3 Karp Reduction: For an arbitrary instance sY of Y, show

how to construct, in polynomial time, an instance sX of X
such that sy is a yes iff sx is a yes.
Steps:

1 Provide efficient reduction.
2 Prove⇒: if sY is a yes, sX is a yes.
3 Prove⇐: if sX is a yes, then sY had to have been a yes.

24/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Theorem 7
3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete
Cook Reduction:

1 Prove that 3SAT ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p 3SAT.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Theorem 7
3SAT is NP-Complete.

Exercise: Do step 1.

Show that Problem 3SAT is NP-Complete
Cook Reduction:

1 Prove that 3SAT ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p 3SAT.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete
Theorem 7
3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete
Cook Reduction:

1 Prove that 3SAT ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p 3SAT.

Proof.
1 Use a truth assignment of the literals as a certificate. This

can be verified in polynomial time.

2 The only NP-Complete problem we know is CSAT.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete
Theorem 7
3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete
Cook Reduction:

1 Prove that 3SAT ∈ NP.
2 Choose a problem Y ∈ NP-Complete.
3 Prove Y ≤p 3SAT.

Proof.
1 Use a truth assignment of the literals as a certificate. This

can be verified in polynomial time.
2 The only NP-Complete problem we know is CSAT.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.

For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete
Proof.

3 For an arbitrary circuit k:
Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).
Convert clauses to length 3:

We need 2 variables z1 and z2 that are always 0 in a satisfying
assignment.
To ensure this, we need 4 variables: z1, z2, z3, z4.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 For an arbitrary circuit k:

Each node v is assigned a variable xv.
For each gate:

NOT: Let u be the input. We need xu = xv.
→ 2 clauses: (xv ∨ xu) ∧ (xv ∨ xu).

OR: Let u,w be the inputs. We need xv = xu ∨ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

AND: Let u,w be the inputs. We need xv = xu ∧ xw.
→ 3 clauses: (xv ∨ xu) ∧ (xv ∨ xw) ∧ (xv ∨ xu ∨ xw).

For each constant source s:
→ 1 clause: (xs) if 1, and (xs) if 0.

For the output o: 1 clause (xo).
Convert clauses to length 3:

4 variables: z1, z2, z3, z4, and 8 clauses for i ∈ {1, 2}:
(zi ∨ z3 ∨ z4) ∧ (zi ∨ z3 ∨ z4) ∧ (zi ∨ z3 ∨ z4) ∧ (zi ∨ z3 ∨ z4).

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

Proof.
3 sCSAT is a yes iff s3SAT is a yes:

⇒: If sCSAT is a yes, then the satisfying assignment to the
circuit inputs can be used to calculate the value of each
gate. By the reduction, these value will satisfy all the
clauses of s3SAT.
⇐: If s3SAT is a yes, then the assignment of the variables give
the satisfying assignment of the circuit inputs, and the
reduction guarantees that the assigned values for the nodes
match the gate calculations.

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT is NP-Complete

From our previous reductions

3SAT ≤p IS ≤p VC ≤p SC

and
3SAT ≤p IS ≤p SP

and the fact that 3SAT is NP-Complete:

Corollary 7
The following problems are NP-Complete:

3SAT, IS,VC,SC,SP .

25/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Taxonomy of
NP-completeness



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Sequencing Problems

Travelling Salesperson
Problem (TSP)

A salesperson must visit n
cities v1,v2, . . . ,vn.
Starting at some v1, visit all
cities and return to v1.
Distance function: d(⋅, ⋅)
for all pairs of cities (not
necessarily symmetric nor
metric).
Optimization: What is the
shortest tour?

Hamiltonian Cycle
Graph analogue of TSP.
Hamiltonian cycle: a tour
of the nodes of G that visits
each node once.
Given a digraph G, does it
contain a Hamiltonian
cycle?

26/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Sequencing Problems

Travelling Salesperson
Problem (TSP)

A salesperson must visit n
cities v1,v2, . . . ,vn.
Starting at some v1, visit all
cities and return to v1.
Distance function: d(⋅, ⋅)
for all pairs of cities (not
necessarily symmetric nor
metric).
Decision: Is there a tour of
length D?

Hamiltonian Cycle
Graph analogue of TSP.
Hamiltonian cycle: a tour
of the nodes of G that visits
each node once.
Given a digraph G, does it
contain a Hamiltonian
cycle?

26/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Sequencing Problems

Travelling Salesperson
Problem (TSP)

A salesperson must visit n
cities v1,v2, . . . ,vn.
Starting at some v1, visit all
cities and return to v1.
Distance function: d(⋅, ⋅)
for all pairs of cities (not
necessarily symmetric nor
metric).

Hamiltonian Cycle
Graph analogue of TSP.
Hamiltonian cycle: a tour
of the nodes of G that visits
each node once.
Given a digraph G, does it
contain a Hamiltonian
cycle?

26/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Sequencing Problems

Travelling Salesperson
Problem (TSP)

A salesperson must visit n
cities v1,v2, . . . ,vn.
Starting at some v1, visit all
cities and return to v1.
Distance function: d(⋅, ⋅)
for all pairs of cities (not
necessarily symmetric nor
metric).

: Does this
graph contain a
Hamiltonian
cycle?

Hamiltonian Cycle
Graph analogue of TSP.
Hamiltonian cycle: a tour
of the nodes of G that visits
each node once.
Given a digraph G, does it
contain a Hamiltonian
cycle?

26/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT ≤p Hamiltonian

Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
1 In NP: A certificate would be a sequence of vertices which

can be verified in polynomial time.
2 Choose an NP-complete problem: 3SAT.

27/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT ≤p Hamiltonian
Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
3 3SAT ≤p Hamiltonian:

Pi (containing
3k + 2 nodes)
for each Xi: left
traversal for 1
and right
traversal for 0.

27/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT ≤p Hamiltonian
Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
3 3SAT ≤p Hamiltonian:

Ci for each
clause i:
Connect based
on xi or xi.

27/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3SAT ≤p Hamiltonian
Theorem 8
Hamiltonian Cycle is NP-complete.

Proof.
3 s3SAT is a yes iff sHamiltonian is a yes:

⇒: If s3SAT is a yes, then each clause node can be visited
from one of the paths corresponding to one of the variables
when the path is traversed in the direction of the satisfying
assignment.
⇐: If sHamiltonian is a yes, then every clause node is visited,
and the direction of each path traversal gives a value
assignment for the corresponding variable in s3SAT. The
reduction guarantees that value assignment for a variable
the path used to traverse the clause node will be the
assignment of a variable that satisfies the corresponding
clause.

27/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.

1 In NP: Certificate that is a tour of the cities.
2

3 Hamiltonian Cycle ≤p TSP:

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.

2

3 Hamiltonian Cycle ≤p TSP:

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Which NP-complete problem?

3 Hamiltonian Cycle ≤p TSP:

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Exo: Try to come up with the reduction.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):

For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.

For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.

For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.

Set the tour bound to be n.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson
Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.
⇒With a Hamiltonian Cycle in G, the shortest tour will be
length n.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Travelling Salesperson
Theorem 9
Travelling Salesperson (TSP) is NP-complete.

Proof.
1 In NP: Certificate that is a tour of the cities.
2 Use Hamiltonian Cycle.
3 Hamiltonian Cycle ≤p TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) ∈ E, define d(u,v) = 1.
For each pair (u,v) ∉ E, define d(u,v) = 2.
Set the tour bound to be n.
⇐ If the shortest tour is length n, then no d(u,v) = 2 is used,
so only edges from the graph are used implying a
Hamiltonian cycle in G.

28/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Exercise: Show that Hamiltonian Path is
NP-complete

Hamiltonian Path
A simple path in a digraph G that contains all nodes.
Another sequencing problem.

29/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Exercise: Show that Hamiltonian Path is
NP-complete

Theorem 10
Hamiltonian Path is NP-complete

Proof.
1 In NP: Certificate is a path in G which can be verified in

polynomial time.
2 NP-complete problem: Hamiltonian Cycle.

29/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Exercise: Show that Hamiltonian Path is
NP-complete

Theorem 10
Hamiltonian Path is NP-complete

Proof.
3 Hamiltonian Cycle ≤p Hamiltonian Path:

For G = (V,E) create G′:

Choose an arbitrary v ∈ V: V′ = V ∖ {v} ∪ {v′,v′′}.
Initialize E′ = E:

For each edge (v,w) ∈ E: E′ ∖ {(v,w)} ∪ {(v′,w)}.
For each edge (u, v) ∈ E: E′ ∖ {(u, v)} ∪ {(u, v′′)}.

A path v′ → v′′ means Hamiltonian Cycle.

29/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Exercise: Show that Hamiltonian Path is
NP-complete

Theorem 10
Hamiltonian Path is NP-complete

Proof.
3 Hamiltonian Cycle ≤p Hamiltonian Path:

For G = (V,E) create G′:
Choose an arbitrary v ∈ V: V′ = V ∖ {v} ∪ {v′,v′′}.

Initialize E′ = E:
For each edge (v,w) ∈ E: E′ ∖ {(v,w)} ∪ {(v′,w)}.
For each edge (u, v) ∈ E: E′ ∖ {(u, v)} ∪ {(u, v′′)}.

A path v′ → v′′ means Hamiltonian Cycle.

29/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Exercise: Show that Hamiltonian Path is
NP-complete

Theorem 10
Hamiltonian Path is NP-complete

Proof.
3 Hamiltonian Cycle ≤p Hamiltonian Path:

For G = (V,E) create G′:
Choose an arbitrary v ∈ V: V′ = V ∖ {v} ∪ {v′,v′′}.
Initialize E′ = E:

For each edge (v,w) ∈ E: E′ ∖ {(v,w)} ∪ {(v′,w)}.
For each edge (u, v) ∈ E: E′ ∖ {(u, v)} ∪ {(u, v′′)}.

A path v′ → v′′ means Hamiltonian Cycle.

29/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Exercise: Show that Hamiltonian Path is
NP-complete

Theorem 10
Hamiltonian Path is NP-complete

Proof.
3 Hamiltonian Cycle ≤p Hamiltonian Path:

For G = (V,E) create G′:
Choose an arbitrary v ∈ V: V′ = V ∖ {v} ∪ {v′,v′′}.
Initialize E′ = E:

For each edge (v,w) ∈ E: E′ ∖ {(v,w)} ∪ {(v′,w)}.
For each edge (u, v) ∈ E: E′ ∖ {(u, v)} ∪ {(u, v′′)}.

A path v′ → v′′ means Hamiltonian Cycle.

29/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Partitioning Problems

3-D Matching
Given 3 disjoint sets: X,Y,Z (each of size n).
A set of m ≥ n trebles T ⊆ X ×Y ×Z.
Does there exist a set of n trebles from T so that each item
is in exactly one of these trebles?

30/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.
1 In NP: Certificate is a set of trebles which can be verified in

polynomial time.
2 Which NP-complete problem?

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.
1 In NP: Certificate is a set of trebles which can be verified in

polynomial time.
2 Use 3SAT.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Variable xi gadget:

Core:
Ai = {ai1, . . . , ai2k}.
Tips:
Bi = {bi1, . . . , bi2k}.
tij = (aij, aij+1, bij) for
j = 1, 2, . . . , 2k (add
mod 2k).

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Clause Cj gadget:

Add Pj = {pj, p′j}with trebles: (pj, p′j , bi2j−1) if xi and (pj, p′j , bi2j)
if xi.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Counting cores: covered by even/odd choice.

Counting tips: n2k
Even/odd tips cover nk.
Clauses cover k.
(n − 1)k uncovered.

(n − 1)k clean-up gadgets:
Qi = {qi, q′i}with treble (qi, q′i , b) for every tip b.

What are the 3 sets?
X = {aij even} ∪ {pj} ∪ {qi},Y = {aij odd} ∪ {p′j} ∪ {q′i},Z = {bij}.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Counting cores: covered by even/odd choice.
Counting tips: n2k

Even/odd tips cover nk.
Clauses cover k.
(n − 1)k uncovered.

(n − 1)k clean-up gadgets:
Qi = {qi, q′i}with treble (qi, q′i , b) for every tip b.

What are the 3 sets?
X = {aij even} ∪ {pj} ∪ {qi},Y = {aij odd} ∪ {p′j} ∪ {q′i},Z = {bij}.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Counting cores: covered by even/odd choice.
Counting tips: n2k

Even/odd tips cover nk.
Clauses cover k.
(n − 1)k uncovered.

(n − 1)k clean-up gadgets:
Qi = {qi, q′i}with treble (qi, q′i , b) for every tip b.

What are the 3 sets?
X = {aij even} ∪ {pj} ∪ {qi},Y = {aij odd} ∪ {p′j} ∪ {q′i},Z = {bij}.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
Counting cores: covered by even/odd choice.
Counting tips: n2k

Even/odd tips cover nk.
Clauses cover k.
(n − 1)k uncovered.

(n − 1)k clean-up gadgets:
Qi = {qi, q′i}with treble (qi, q′i , b) for every tip b.

What are the 3 sets?
X = {aij even} ∪ {pj} ∪ {qi},Y = {aij odd} ∪ {p′j} ∪ {q′i},Z = {bij}.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete

Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
⇒ For a yes 3SAT, there is a matching that takes the
even/odd tip trebles, leaving at least one tip as part of each
clause gadget treble. The remaining unmatched tips are
match to a clean-up gadget.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-D Matching is NP-Complete
Theorem 11
3-D Matching is NP-Complete.

Proof.
3 3SAT ≤p 3-D Matching:

Consider an arbitrary 3SAT:
⇒ For a yes 3SAT, there is a matching that takes the
even/odd tip trebles, leaving at least one tip as part of each
clause gadget treble. The remaining unmatched tips are
match to a clean-up gadget.
⇐ A yes for 3-D Matching from the reduction means that
each clause gadget is part of a selected treble, each variable
gadget has selected the odd or even tips, and the remaining
tips are matched to a clean-up gadget. Each clause will be
satisfied by the tip matched by the clause gadget. The
even/odd selection for each variable guarantees all
variables are assigned 1 or 0.

31/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Graph Colouring

Problem
Given a graph G and a bound k, does
G have a k-colouring?

k-Colour
Colouring of the nodes of a graph such that no adjacent
nodes have the same colour, using at most k colours.

Labelling (partitioning) function f ∶ V → {1, . . . , k} such
that, for every (u,v) ∈ E, f (u) ≠ f (v).

32/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Graph Colouring

Problem
Given a graph G and a bound k, does
G have a k-colouring?

k-Colour
Colouring of the nodes of a graph such that no adjacent
nodes have the same colour, using at most k colours.

Labelling (partitioning) function f ∶ V → {1, . . . , k} such
that, for every (u,v) ∈ E, f (u) ≠ f (v).

32/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Graph Colouring

Problem
Given a graph G and a bound k, does
G have a k-colouring?

k-Colour
Colouring of the nodes of a graph such that no adjacent
nodes have the same colour, using at most k colours.
Labelling (partitioning) function f ∶ V → {1, . . . , k} such
that, for every (u,v) ∈ E, f (u) ≠ f (v).

32/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
1 In NP: Certificate is a colouring of the nodes which can be

verified in polynomial time.
2 Which NP-complete problem?

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
1 In NP: Certificate is a colouring of the nodes which can be

verified in polynomial time.
2 NP-complete problem: 3SAT.

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
3 3SAT ≤p 3 Colouring:

For each literal: Nodes vi and vi.

Nodes T (true), F (false), and B (base).

Edges: (vi,vi),(vi,B),(vi,B).
Edges: (T,F),(F,B),(T,B).

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
3 3SAT ≤p 3 Colouring:

For each literal: Nodes vi and vi.

Nodes T (true), F (false), and B (base).

Edges: (vi,vi),(vi,B),(vi,B).
Edges: (T,F),(F,B),(T,B).

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
3 3SAT ≤p 3 Colouring:

For each literal: Nodes vi and vi.

Nodes T (true), F (false), and B (base).

Edges: (vi,vi),(vi,B),(vi,B).
Edges: (T,F),(F,B),(T,B).

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
3 3SAT ≤p 3 Colouring:

For each literal: Nodes vi and vi.

Nodes T (true), F (false), and B (base).

Edges: (vi,vi),(vi,B),(vi,B).

Edges: (T,F),(F,B),(T,B).

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete

Theorem 12
3-Colouring is NP-Complete.

Proof.
3 3SAT ≤p 3 Colouring:

For each literal: Nodes vi and vi.

Nodes T (true), F (false), and B (base).

Edges: (vi,vi),(vi,B),(vi,B).
Edges: (T,F),(F,B),(T,B).

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

3-Colouring is NP-Complete
Theorem 12
3-Colouring is NP-Complete.

Proof.
3 3SAT ≤p 3 Colouring:

For each clause:

33/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Numerical Problems

Subset Sum Problem
Given a set of n natural numbers {w1, . . . ,wn} and a targetW, is
there a subset of the numbers that add up toW?

Dynamic Programming Approach
We saw an O(nW) algorithm.
Pseudo-polynomial: W is unbounded, e.g., 2n.

34/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Numerical Problems

Subset Sum Problem
Given a set of n natural numbers {w1, . . . ,wn} and a targetW, is
there a subset of the numbers that add up toW?

Dynamic Programming Approach
We saw an O(nW) algorithm.
Pseudo-polynomial: W is unbounded, e.g., 2n.

34/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
1 In NP: Certificate is a subset of the numbers which can be

verified in polynomial time.
2 Which NP-complete problem?

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
1 In NP: Certificate is a subset of the numbers which can be

verified in polynomial time.
2 NP-complete problem: 3-D Matching.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum: Exercise: Try it, but tough.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum:

3-D Matching: Subsets can be viewed as length 3n bit
vectors with a 1 indicating that item is in the set.

For each treble (i, j, k) from X ×Y ×Z construct a wt:

A digits with 1 at i, n + j, and 2n + k.
For base d, wt = di−1 + dn+j−1 + d2n+k−1.
Set base d = m + 1 to avoid addition carry overs.

SetW = ∑3n−1
0 (m + 1)i which corresponds to have each item

exactly once.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum:

3-D Matching: Subsets can be viewed as length 3n bit
vectors with a 1 indicating that item is in the set.
For each treble (i, j, k) from X ×Y ×Z construct a wt:

A digits with 1 at i, n + j, and 2n + k.
For base d, wt = di−1 + dn+j−1 + d2n+k−1.
Set base d = m + 1 to avoid addition carry overs.

SetW = ∑3n−1
0 (m + 1)i which corresponds to have each item

exactly once.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum:

3-D Matching: Subsets can be viewed as length 3n bit
vectors with a 1 indicating that item is in the set.
For each treble (i, j, k) from X ×Y ×Z construct a wt:

A digits with 1 at i, n + j, and 2n + k.

For base d, wt = di−1 + dn+j−1 + d2n+k−1.
Set base d = m + 1 to avoid addition carry overs.

SetW = ∑3n−1
0 (m + 1)i which corresponds to have each item

exactly once.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum:

3-D Matching: Subsets can be viewed as length 3n bit
vectors with a 1 indicating that item is in the set.
For each treble (i, j, k) from X ×Y ×Z construct a wt:

A digits with 1 at i, n + j, and 2n + k.
For base d, wt = di−1 + dn+j−1 + d2n+k−1.

Set base d = m + 1 to avoid addition carry overs.
SetW = ∑3n−1

0 (m + 1)i which corresponds to have each item
exactly once.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum:

3-D Matching: Subsets can be viewed as length 3n bit
vectors with a 1 indicating that item is in the set.
For each treble (i, j, k) from X ×Y ×Z construct a wt:

A digits with 1 at i, n + j, and 2n + k.
For base d, wt = di−1 + dn+j−1 + d2n+k−1.
Set base d = m + 1 to avoid addition carry overs.

SetW = ∑3n−1
0 (m + 1)i which corresponds to have each item

exactly once.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Subset Sum is NP-Complete

Theorem 13
Subset Sum is NP-Complete.

Proof.
3 3-D Matching ≤p Subset Sum:

3-D Matching: Subsets can be viewed as length 3n bit
vectors with a 1 indicating that item is in the set.
For each treble (i, j, k) from X ×Y ×Z construct a wt:

A digits with 1 at i, n + j, and 2n + k.
For base d, wt = di−1 + dn+j−1 + d2n+k−1.
Set base d = m + 1 to avoid addition carry overs.

Set W = ∑3n−1
0 (m + 1)i which corresponds to have each item

exactly once.

35/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Constraint Satisfaction Problems

Not All Equal 4SAT (NAE 4SAT)
Given a 4SAT formula, is there an assignment to the literals
such that every clause contains at least one true term and at
least one false term.

36/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete

Theorem 14
NAE 4SAT is NP-Complete.

Proof.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete

Theorem 14
NAE 4SAT is NP-Complete.

Proof.
1 In NP:
2

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete

Theorem 14
NAE 4SAT is NP-Complete.

Proof.
1 In NP: Certificate is an assignment of values to the literals

which can be verified in polynomial time.
2

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete

Theorem 14
NAE 4SAT is NP-Complete.

Proof.
1 In NP: Certificate is an assignment of values to the literals

which can be verified in polynomial time.
2 NP-complete problem: 3SAT.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete

Theorem 14
NAE 4SAT is NP-Complete.

Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete

Theorem 14
NAE 4SAT is NP-Complete.

Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete
Theorem 14
NAE 4SAT is NP-Complete.

Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

Reduction correctness:

⇒: If 3SAT Φ is true, ∃ an assignment where every clause in
Φ has ≥ 1 true value. Set v = 0 and Φ′ is satisfied.
⇐: If NAE 4SAT is true:

Case 1: v = 0. Each clause in Φ′ has at least 1 term that is not
v set to true Ô⇒ Φ is satisfied.
Case 2: v = 1. Each clause in Φ′ has at least 1 term that is not
v set to false Ô⇒ Φ is satisfied by the complement of the
assignment that satisfies Φ′.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete
Theorem 14
NAE 4SAT is NP-Complete.

Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

Reduction correctness:
⇒: If 3SAT Φ is true, ∃ an assignment where every clause in
Φ has ≥ 1 true value. Set v = 0 and Φ′ is satisfied.

⇐: If NAE 4SAT is true:

Case 1: v = 0. Each clause in Φ′ has at least 1 term that is not
v set to true Ô⇒ Φ is satisfied.
Case 2: v = 1. Each clause in Φ′ has at least 1 term that is not
v set to false Ô⇒ Φ is satisfied by the complement of the
assignment that satisfies Φ′.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete
Theorem 14
NAE 4SAT is NP-Complete.

Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

Reduction correctness:
⇒: If 3SAT Φ is true, ∃ an assignment where every clause in
Φ has ≥ 1 true value. Set v = 0 and Φ′ is satisfied.
⇐: If NAE 4SAT is true:

Case 1: v = 0. Each clause in Φ′ has at least 1 term that is not
v set to true Ô⇒ Φ is satisfied.
Case 2: v = 1. Each clause in Φ′ has at least 1 term that is not
v set to false Ô⇒ Φ is satisfied by the complement of the
assignment that satisfies Φ′.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete
Theorem 14
NAE 4SAT is NP-Complete.

Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

Reduction correctness:
⇒: If 3SAT Φ is true, ∃ an assignment where every clause in
Φ has ≥ 1 true value. Set v = 0 and Φ′ is satisfied.
⇐: If NAE 4SAT is true:

Case 1: v = 0. Each clause in Φ′ has at least 1 term that is not
v set to true Ô⇒ Φ is satisfied.

Case 2: v = 1. Each clause in Φ′ has at least 1 term that is not
v set to false Ô⇒ Φ is satisfied by the complement of the
assignment that satisfies Φ′.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

NAE 4SAT is NP-Complete
Theorem 14
NAE 4SAT is NP-Complete.

Proof.
3 3SAT ≤p NAE 4SAT:

Add a literal v to every 3SAT clause of Φ to create a
NEA − 4SAT formula Φ′.

Reduction correctness:
⇒: If 3SAT Φ is true, ∃ an assignment where every clause in
Φ has ≥ 1 true value. Set v = 0 and Φ′ is satisfied.
⇐: If NAE 4SAT is true:

Case 1: v = 0. Each clause in Φ′ has at least 1 term that is not
v set to true Ô⇒ Φ is satisfied.
Case 2: v = 1. Each clause in Φ′ has at least 1 term that is not
v set to false Ô⇒ Φ is satisfied by the complement of the
assignment that satisfies Φ′.

37/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Taxonomy of Hard Problems
Packing Problems

Independent Set
Set Packing
Clique (in discussion)

Covering Problems
Vertex Cover
Set Cover

Sequencing Problems
TSP
Hamiltonian Cycle
Hamiltonian Path

38/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Taxonomy of Hard Problems

Partitioning Problems
3-D Matching
Graph Colouring

Numerical Problems
Subset Sum
Knapsack

Constraint Satisfaction Problems
3SAT
CSAT
NAE 4SAT

39/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry
Given an instance s of problem X:

For any t, B(s, t) = yes implies yes-instance.
For all t, B(s, t) = no implies no-instance.

Complimentary Problem
For every problem X, there is a complementary problem X:

For all input s, s ∈ X iff s ∉ X.

Note that, if X ∈ P, then X ∈ P.

40/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry
Given an instance s of problem X:

For any t, B(s, t) = yes implies yes-instance.
For all t, B(s, t) = no implies no-instance.

Complimentary Problem
For every problem X, there is a complementary problem X:

For all input s, s ∈ X iff s ∉ X.

Note that, if X ∈ P, then X ∈ P.

40/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry
Given an instance s of problem X:

For any t, B(s, t) = yes implies yes-instance.
For all t, B(s, t) = no implies no-instance.

Complimentary Problem
For every problem X, there is a complementary problem X:

For all input s, s ∈ X iff s ∉ X.
Note that, if X ∈ P, then X ∈ P.

40/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP

Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Open Question
Does P = NP ∩ coNP?

41/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP

Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Open Question
Does P = NP ∩ coNP?

41/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP

Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Open Question
Does P = NP ∩ coNP?

41/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP
Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Proof.
Contra-positive: Prove it!

Open Question
Does P = NP ∩ coNP?

41/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP
Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Proof.
Contra-positive: Assume P = NP:

X ∈ NP → X ∈ P → X ∈ P → X ∈ NP → X ∈ coNP.

X ∈ coNP → X ∈ NP → X ∈ P → X ∈ P → X ∈ NP.

Open Question
Does P = NP ∩ coNP?

41/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP
Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Proof.
Contra-positive: Assume P = NP:

X ∈ NP → X ∈ P → X ∈ P → X ∈ NP → X ∈ coNP.
X ∈ coNP → X ∈ NP → X ∈ P → X ∈ P → X ∈ NP.

Open Question
Does P = NP ∩ coNP?

41/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

coNP

Complexity Class coNP

A problem X ∈ coNP iff X ∈ NP.

Open Question
Does NP = coNP?

Theorem 15
If NP ≠ coNP, then P ≠ NP.

Open Question
Does P = NP ∩ coNP?

41/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

PSPACE



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Beyond Time
Complexity Class PSPACE
Set of all problems that can be solved using polynomial space.

Theorem 16
P ⊆ PSPACE

Theorem 17
NP ⊆ PSPACE
Proof.

For 3SAT, a bit vector can encode an assignment.
We can try all bit vectors with one n-length vector in
memory:

Start with 0 until 2n − 1, adding 1 at each iteration.

Since 3SAT ∈ PSPACE and is NP-complete, for any Y ∈ NP,
Y ≤p 3SAT and solve in PSPACE.

42/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Beyond Time
Complexity Class PSPACE
Set of all problems that can be solved using polynomial space.

Theorem 16
P ⊆ PSPACE

Theorem 17
NP ⊆ PSPACE
Proof.

For 3SAT, a bit vector can encode an assignment.
We can try all bit vectors with one n-length vector in
memory:

Start with 0 until 2n − 1, adding 1 at each iteration.

Since 3SAT ∈ PSPACE and is NP-complete, for any Y ∈ NP,
Y ≤p 3SAT and solve in PSPACE.

42/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Beyond Time
Complexity Class PSPACE
Set of all problems that can be solved using polynomial space.

Theorem 16
P ⊆ PSPACE

Theorem 17
NP ⊆ PSPACE

Proof.
For 3SAT, a bit vector can encode an assignment.
We can try all bit vectors with one n-length vector in
memory:

Start with 0 until 2n − 1, adding 1 at each iteration.

Since 3SAT ∈ PSPACE and is NP-complete, for any Y ∈ NP,
Y ≤p 3SAT and solve in PSPACE.

42/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Beyond Time
Complexity Class PSPACE
Set of all problems that can be solved using polynomial space.

Theorem 16
P ⊆ PSPACE

Theorem 17
NP ⊆ PSPACE
Proof.

For 3SAT, a bit vector can encode an assignment.
We can try all bit vectors with one n-length vector in
memory:

Start with 0 until 2n − 1, adding 1 at each iteration.

Since 3SAT ∈ PSPACE and is NP-complete, for any Y ∈ NP,
Y ≤p 3SAT and solve in PSPACE.

42/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Beyond Time
Complexity Class PSPACE
Set of all problems that can be solved using polynomial space.

Theorem 16
P ⊆ PSPACE

Theorem 17
NP ⊆ PSPACE
Proof.

For 3SAT, a bit vector can encode an assignment.
We can try all bit vectors with one n-length vector in
memory:

Start with 0 until 2n − 1, adding 1 at each iteration.
Since 3SAT ∈ PSPACE and is NP-complete, for any Y ∈ NP,
Y ≤p 3SAT and solve in PSPACE.

42/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Prototypical PSPACE Problem

Let Φ(x1, . . . ,xn) be a conjunction of k disjunction of n variables
(like SAT).

Quantified SAT
∃x1∀x2∃x3⋯QnxnΦ(x1, . . . ,xn) (Prenex normal form).
Contingency planning.

Theorem 18
QSAT is PSPACE-complete.

43/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Prototypical PSPACE Problem

Let Φ(x1, . . . ,xn) be a conjunction of k disjunction of n variables
(like SAT).

Quantified SAT
∃x1∀x2∃x3⋯QnxnΦ(x1, . . . ,xn) (Prenex normal form).
Contingency planning.

Theorem 18
QSAT is PSPACE-complete.

43/43



Intractability Reductions NP NP-complete Taxonomy coNP PSPACE

Prototypical PSPACE Problem

Let Φ(x1, . . . ,xn) be a conjunction of k disjunction of n variables
(like SAT).

Quantified SAT
∃x1∀x2∃x3⋯QnxnΦ(x1, . . . ,xn) (Prenex normal form).
Contingency planning.

Theorem 18
QSAT is PSPACE-complete.

43/43



Appendix References

Appendix



Appendix References

References



Appendix References

Image Sources I

https://en.wikipedia.org/wiki/Leonid_Levin

https://en.wikipedia.org/wiki/Stephen_Cook

https:
//en.wikipedia.org/wiki/Graph_coloring

https://en.wikipedia.org/wiki/
NP-completeness#/media/File:
P_np_np-complete_np-hard.svg

https://brand.wisc.edu/web/logos/
44/43

https://en.wikipedia.org/wiki/Leonid_Levin
https://en.wikipedia.org/wiki/Stephen_Cook
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/NP-completeness#/media/File:P_np_np-complete_np-hard.svg
https://en.wikipedia.org/wiki/NP-completeness#/media/File:P_np_np-complete_np-hard.svg
https://en.wikipedia.org/wiki/NP-completeness#/media/File:P_np_np-complete_np-hard.svg
https://brand.wisc.edu/web/logos/

	Computational Intractability
	Reductions
	NPNPNPNP
	NPNPNPNP-complete
	Taxonomy of NPNPNPNP-completeness
	coNPcoNPcoNPcoNP
	PSPACEPSPACEPSPACEPSPACE
	Appendix
	Appendix
	References


