CS 577 - Computational Intractability

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

coNP PSPACE

COMPUTATIONAL INTRACTABILITY

NP

Easy Problems

- Problems that can be solved by efficient algorithms.
- Polynomial running time.
- Complexity class: P

Easy Problems

- Problems that can be solved by efficient algorithms.
- Polynomial running time.
- Complexity class: P

Hard Problems

• Problems for which we do not know how to solve efficiently.

Easy Problems

- Problems that can be solved by efficient algorithms.
- Polynomial running time.
- Complexity class: P

Hard Problems

- Problems for which we do not know how to solve efficiently.
- NP-hard

Easy Problems

- Problems that can be solved by efficient algorithms.
- Polynomial running time.
- Complexity class: P

Hard Problems

- Problems for which we do not know how to solve efficiently.
- NP-hard
- NP-complete

coNP PSPACE

DECISION PROBLEM

Optimization:

Bipartite Matching

Given a bipartite graph *G*, find the largest matching.

Ταχονομύ

coNP PSPACE

DECISION PROBLEM

Optimization:

Bipartite Matching

Given a bipartite graph *G*, find the largest matching.

Decision Problem

• binary output: yes / no answer.

Decision:

Bipartite Matching

Given a bipartite graph *G*, is there a matching of size $\geq k$?

NP-complete

Ταχονομύ

coNP PSPACE

DECISION PROBLEM

Optimization:

Bipartite Matching

Given a bipartite graph *G*, find the largest matching.

Decision:

Bipartite Matching

Given a bipartite graph *G*, is there a matching of size $\geq k$?

Optimization to Decision

- Solve the optimization version.
- If the solution of size $\geq k$, return yes.

NP-complete

Ταχονομύ

DECISION PROBLEM

Optimization:

Bipartite Matching

Given a bipartite graph *G*, find the largest matching.

Decision:

Bipartite Matching

Given a bipartite graph *G*, is there a matching of size $\geq k$?

Decision to Optimization

- Upper bound on maximum matching is $N = \min(|A|, |B|)$.
- For *k* = *N* to 0, return first *k* that returns yes.

NP-complete

Ταχονομύ

coNP PSPACE

DECISION PROBLEM

Optimization:

Bipartite Matching

Given a bipartite graph *G*, find the largest matching.

Decision:

Bipartite Matching

Given a bipartite graph *G*, is there a matching of size $\geq k$?

Decision to Optimization

- Upper bound on maximum matching is $N = \min(|A|, |B|)$.
- For *k* = *N* to 0, return first *k* that returns yes. (Or, binary search between [0, *N*].)

Taxonomy

coNP PSPACE

Reductions

Ταχονομύ

coNP PSPACE

POLYNOMIAL-TIME REDUCTION

Problem Reduction: $Y \leq_p X$

• Consider any instance of problem *Y*.

NP

• Assume we have a black-box solver for problem X.

coNP PSPACE

POLYNOMIAL-TIME REDUCTION

Problem Reduction: $Y \leq_p X$

• Consider any instance of problem *Y*.

NP

- Assume we have a black-box solver for problem X.
- Efficiently transform an instance of problem *Y* into a polynomial number of instances of *X* that we solve (black-box solver) for problem *X* and aggregate efficiently to solve *Y*.

Taxonomy

coNP PSPACE

POLYNOMIAL-TIME REDUCTION

Problem Reduction: $Y \leq_p X$

- Consider any instance of problem *Y*.
- Assume we have a black-box solver for problem *X*.
- Efficiently transform an instance of problem *Y* into a polynomial number of instances of *X* that we solve (black-box solver) for problem *X* and aggregate efficiently to solve *Y*.

Y is polynomial-time reducible to *X*

Suppose $Y \leq_p X$. If X is solvable in polynomial time, then Y can be solved in polynomial time.

coNP PSPACE

POLYNOMIAL-TIME REDUCTION

Problem Reduction: $Y \leq_p X$

- Consider any instance of problem *Y*.
- Assume we have a black-box solver for problem X.
- Efficiently transform an instance of problem *Y* into a polynomial number of instances of *X* that we solve (black-box solver) for problem *X* and aggregate efficiently to solve *Y*.

Y is polynomial-time reducible to *X*

Suppose $Y \leq_p X$. If X is solvable in polynomial time, then Y can be solved in polynomial time.

X is at least as hard as Y

Suppose $Y \leq_p X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Given a graph *G* and a number *k*.

Independent Set (IS)

- Does *G* contain an IS of size ≥ *k*?
- $S \subseteq V$ is <u>independent</u> if no 2 nodes in *S* are adjacent.

Vertex Cover (VC)

- Does *G* contain a vertex cover of size ≤ *k*?
- *S* ⊆ *V* is vertex cover if every edge is incident to at least 1 node in *S*.

Given a graph *G* and a number *k*.

Independent Set (IS)

- Does *G* contain an IS of size ≥ *k*?
- $S \subseteq V$ is <u>independent</u> if no 2 nodes in *S* are adjacent.

Vertex Cover (VC)

- Does *G* contain a vertex cover of size ≤ *k*?
- *S* ⊆ *V* is vertex cover if every edge is incident to at least 1 node in *S*.

What is size of the largest independent set?

Taxonomy

coNP PSPACE

Independent Set \iff Vertex Cover

Given a graph *G* and a number *k*.

Independent Set (IS)

- Does *G* contain an IS of size ≥ *k*?
- $S \subseteq V$ is <u>independent</u> if no 2 nodes in *S* are adjacent.

Vertex Cover (VC)

- Does *G* contain a vertex cover of size ≤ *k*?
- *S* ⊆ *V* is vertex cover if every edge is incident to at least 1 node in *S*.

What is size of the smallest vertex cover?

Given a graph *G* and a number *k*.

Independent Set (IS)

- Does *G* contain an IS of size ≥ *k*?
- $S \subseteq V$ is <u>independent</u> if no 2 nodes in *S* are adjacent.

Vertex Cover (VC)

- Does *G* contain a vertex cover of size ≤ *k*?
- *S* ⊆ *V* is vertex cover if every edge is incident to at least 1 node in *S*.

Theorem 1

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

Given a graph *G* and a number *k*.

Independent Set (IS)

- Does *G* contain an IS of size ≥ *k*?
- $S \subseteq V$ is <u>independent</u> if no 2 nodes in *S* are adjacent.

Vertex Cover (VC)

- Does *G* contain a vertex cover of size ≤ *k*?
- *S* ⊆ *V* is vertex cover if every edge is incident to at least 1 node in *S*.

Theorem 1

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

Proof.

⇒: Suppose *S* is an IS. For any edge (u, v), at most one of $\{u, v\} \in S$. Hence, one of $\{u, v\} \in V \setminus S$.

Given a graph *G* and a number *k*.

Independent Set (IS)

- Does *G* contain an IS of size ≥ *k*?
- $S \subseteq V$ is <u>independent</u> if no 2 nodes in *S* are adjacent.

Vertex Cover (VC)

- Does *G* contain a vertex cover of size ≤ *k*?
- *S* ⊆ *V* is vertex cover if every edge is incident to at least 1 node in *S*.

Theorem 1

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement $V \setminus S$ is a vertex cover.

Proof.

⇐: Suppose $V \setminus S$ is a VC. Any edge (u, v) with both $\in S$ would contradict that $V \setminus S$ is a VC.

Ταχονομύ

coNP PSPACE

PACKING AND COVERING PROBLEMS

Packing Problem

Independent Set

• Goal is to pack as many vertices as possible without violating edge constraints.

Covering Problem

Vertex Cover

• Goal is to cover all the edges in the graph using as few vertices as possible.

Set Cover (SC)

Problem Definition

- A universe *U* of *n* elements.
- A collection of subsets of *U*: *S*₁, *S*₂, ..., *S*_m.
- A number *k*.
- Goal: Does there exist a collection of at most *k* of the subsets whose unions equal *U*.

Theorem 2

 $VC \leq_p SC$

Theorem 2 VC \leq_p SC

Proof.

• D: For the proof, do we assume a VC or a SC black-box?

Theorem 2

 $VC \leq_p SC$

Proof.

• Assume that we have a black-box solver for SC.

Theorem 2

 $VC \leq_p SC$

Proof.

- Assume that we have a black-box solver for SC.
- Consider an arbitrary instance of VC on G = (V, E).
 - Set U = E.
 - For each vertex $v \in V$:

Create a set consisting of each edge incident to *v*.

Theorem 2

 $VC \leq_p SC$

Proof.

- Assume that we have a black-box solver for SC.
- Consider an arbitrary instance of VC on G = (V, E).
 - Set U = E.
 - For each vertex $v \in V$:

Create a set consisting of each edge incident to *v*.

• Direct correspondence between VC and SC.

•
$$VC \le k \iff SC \le k$$

Taxonomy

Set Packing (SP)

Problem Definition

- A universe *U* of *n* elements.
- A collection of subsets of *U*: *S*₁, *S*₂, ..., *S*_m.
- A number *k*.
- Goal: Does there exist a collection of at least *k* of the subsets that don't intersect.

Taxonomy

Set Packing (SP)

Exercise: Show that IS \leq_p SP

Problem Definition

- A universe *U* of *n* elements.
- A collection of subsets of *U*: *S*₁, *S*₂, ..., *S*_m.
- A number *k*.
- Goal: Does there exist a collection of at least *k* of the subsets that don't intersect.

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3

 $\text{IS} \leq_p \text{SP}$

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3

 $\mathrm{IS} \leq_p \mathrm{SP}$

Proof.

• Assume that we have a black-box solver for SP.

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3

 $\mathrm{IS} \leq_p \mathrm{SP}$

Proof.

- Assume that we have a black-box solver for SP.
- Consider an arbitrary instance of IS on G = (V, E).
 - Set U = E.
 - For each vertex $v \in V$:

Create a set consisting of each edge incident to v.

Reduction: Independent Set (IS) to Set Packing (SP)

Theorem 3

 $\mathrm{IS} \leq_p \mathrm{SP}$

Proof.

- Assume that we have a black-box solver for SP.
- Consider an arbitrary instance of IS on G = (V, E).
 - Set U = E.
 - For each vertex $v \in V$:

Create a set consisting of each edge incident to v.

- Direct correspondence between IS and SP.
 - $\text{IS} \ge k \iff \text{SP} \ge k$

Satisfiability Problem (SAT)

$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$

Preliminaries

• A set of boolean terms/literals: $X : x_1, \ldots, x_n$.

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})$

- A set of boolean terms/literals: $X : x_1, \ldots, x_n$.
- For a given variable *x_i*, *x_i* is the assigned value and *x_i* is the negation of the assigned value.

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})$

- A set of boolean terms/literals: $X : x_1, \ldots, x_n$.
- For a given variable *x_i*, *x_i* is the assigned value and *x_i* is the negation of the assigned value.
- A clause C_j is a <u>disjunction</u> of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})$

- A set of boolean terms/literals: $X : x_1, \ldots, x_n$.
- For a given variable *x_i*, *x_i* is the assigned value and *x_i* is the negation of the assigned value.
- A clause C_j is a <u>disjunction</u> of (distinct) terms, e.g., $(x_1 \lor \overline{x_2})$.
- Length of C_j is the # of terms in C_j .

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})$

- A set of boolean terms/literals: $X : x_1, \ldots, x_n$.
- For a given variable *x_i*, *x_i* is the assigned value and *x_i* is the negation of the assigned value.
- A clause C_j is a <u>disjunction</u> of (distinct) terms, e.g., $(x_1 \lor \overline{x_2})$.
- Length of C_j is the # of terms in C_j .
- A collection/conjunction of *k* clauses: $C : C_1 \land C_2 \land \cdot \land C_k$.

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})$

- A set of boolean terms/literals: $X : x_1, \ldots, x_n$.
- For a given variable *x_i*, *x_i* is the assigned value and *x_i* is the negation of the assigned value.
- A clause C_j is a <u>disjunction</u> of (distinct) terms, e.g., $(x_1 \lor \overline{x_2})$.
- Length of C_j is the # of terms in C_j .
- A collection/<u>conjunction</u> of *k* clauses: $C : C_1 \land C_2 \land \cdot \land C_k$.
- Truth assignment function *v* : *X* → {0,1}, assigns values to the terms and returns the conjunction of the clauses.

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})$

- A set of boolean terms/literals: $X : x_1, \ldots, x_n$.
- For a given variable *x_i*, *x_i* is the assigned value and *x_i* is the negation of the assigned value.
- A clause C_j is a <u>disjunction</u> of (distinct) terms, e.g., $(x_1 \lor \overline{x_2})$.
- Length of C_j is the # of terms in C_j .
- A collection/<u>conjunction</u> of *k* clauses: $C : C_1 \land C_2 \land \cdot \land C_k$.
- Truth assignment function *v* : *X* → {0,1}, assigns values to the terms and returns the conjunction of the clauses.
- v is a satisfying assignment if C is 1, i.e., all C_i evaluate to 1.

(*W***)**: What values will satisfy the example?

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3})$

- A set of boolean terms/literals: $X : x_1, \ldots, x_n$.
- For a given variable *x_i*, *x_i* is the assigned value and *x_i* is the negation of the assigned value.
- A clause C_j is a <u>disjunction</u> of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.
- Length of C_j is the # of terms in C_j .
- A collection/<u>conjunction</u> of *k* clauses: $C : C_1 \land C_2 \land \cdot \land C_k$.
- Truth assignment function *v* : *X* → {0,1}, assigns values to the terms and returns the conjunction of the clauses.
- v is a <u>satisfying assignment</u> if C is 1, i.e., all C_i evaluate to 1.

Ταχονομύ

coNP PSPACE

Three Satifiability (3SAT)

SAT Problem

Given a set of literals: $X : x_1, ..., x_n$, and a collection of clauses $C : C_1 \land C_2 \land \cdot \land C_k$, does there exist a satisfying assignment?

Ταχονομύ

coNP PSPACE

Three Satifiability (3SAT)

3SAT Problem

Given a set of literals: $X : x_1, ..., x_n$, and a collection of clauses $C : C_1 \land C_2 \land \cdot \land C_k$, each of length 3, does there exist a satisfying assignment?

Three Satifiability (3SAT)

3SAT Problem

Given a set of literals: $X : x_1, ..., x_n$, and a collection of clauses $C : C_1 \land C_2 \land \cdot \land C_k$, each of length 3, does there exist a satisfying assignment?

Gadgets

Gadgets are often used to show $Y \leq_p X$.

• A subset of problem *X* that represents a component of problem *Y*.

Three Satifiability (3SAT)

3SAT Problem

Given a set of literals: $X : x_1, ..., x_n$, and a collection of clauses $C : C_1 \land C_2 \land \cdot \land C_k$, each of length 3, does there exist a satisfying assignment?

Gadgets

<u>Gadgets</u> are often used to show $Y \leq_p X$.

- A subset of problem *X* that represents a component of problem *Y*.
- A procedure to convert some of the components of *Y* to a piece of problem *X*.

coNP PSPACE

3SAT to Independent Set (IS)

Theorem 4

 $3\mathrm{SAT} \leq_p \mathrm{IS}$

coNP PSPACE

3SAT to Independent Set (IS)

NP

Theorem 4

 $3\mathrm{SAT} \leq_p \mathrm{IS}$

Proof.

• Assume we have a black-box solver for IS.

coNP PSPACE

3SAT to Independent Set (IS)

NP

Theorem 4

 $3\mathrm{SAT} \leq_p \mathrm{IS}$

- Assume we have a black-box solver for IS.
- Transfer any 3SAT to IS:

coNP PSPACE

3SAT to Independent Set (IS)

NP

Theorem 4

 $3SAT \leq_p IS$

- Assume we have a black-box solver for IS.
- Transfer any 3SAT to IS:
 - Clause gadget: k₃ graph

Theorem 4

 $3SAT \leq_p IS$

Proof.

• Assume we have a black-box solver for IS.

NP

- Transfer any 3SAT to IS:
 - Clause gadget: k₃ graph

• Add an edge between $v_{ij} = x_q$ and all $v_{i'j'} = \overline{x_q}$.

3SAT to Independent Set (IS)

Theorem 4

$3\mathrm{SAT} \leq_p \mathrm{IS}$

Proof.

• IS of size $\geq k \iff$ 3SAT is satisfiable.

NP

Theorem 4

$3\mathrm{SAT} \leq_p \mathrm{IS}$

- IS of size $\geq k \iff$ 3SAT is satisfiable.
 - Each node in IS represents a 1 assignment.

NP

Theorem 4

$3\mathrm{SAT} \leq_p \mathrm{IS}$

- IS of size $\geq k \iff$ 3SAT is satisfiable.
 - Each node in IS represents a 1 assignment.
 - Within each gadget, only 1 node can be in IS.

NP

Theorem 4

$3\mathrm{SAT} \leq_p \mathrm{IS}$

- IS of size $\geq k \iff$ 3SAT is satisfiable.
 - Each node in IS represents a 1 assignment.
 - Within each gadget, only 1 node can be in IS.
 - Conflict edges prevent x_i and $\overline{x_i}$ both being assigned 1.

coNP PSPACE

Transitivity of Reductions

Observation 1

If $Z \leq_p Y$, and $Y \leq_p X$, then $Z \leq_p X$.

NP-complete

Ταχονομγ

coNP PSPACE

Transitivity of Reductions

NP

Observation 1

If $Z \leq_p Y$, and $Y \leq_p X$, then $Z \leq_p X$.

So,

 $3\text{SAT} \leq_p \text{IS} \leq_p \text{VC} \leq_p \text{SC}$

and

 $3\mathrm{SAT} \leq_p \mathrm{IS} \leq_p \mathrm{SP}$

and

 $VC \leq_p IS \leq_p SP$.

NP

Ταχονομύ

coNP PSPACE

Efficient Certification

Input Formalization

For a problem instance:

- Let *s* be a binary string that encodes the input.
- |s| is the length of *s*, i.e., the # of bits in *s*.

CONP PSPACE

EFFICIENT CERTIFICATION

Input Formalization

For a problem instance:

- Let *s* be a binary string that encodes the input.
- |s| is the length of s, i.e., the # of bits in s.

Polynomial Run-Time

Algorithm *A* has a polynomial run-time if run-time is O(poly(|s|)) in the worst-case, where $\text{poly}(\cdot)$ is a polynomial function.

Complexity class P

P is the set of all problems for which there exists an algorithm A that solves the problem with polynomial run-time.

Ταχονομύ

coNP PSPACE

Efficient Certification

Efficient Certification

- *s* is an input instance of *P*.
- *t* is a certificate; a proof that *s* is a yes-instance.

Ταχονομύ

coNP PSPACE

Efficient Certification

Efficient Certification

- *s* is an input instance of *P*.
- *t* is a certificate; a proof that *s* is a yes-instance.
- Efficient:
 - For every *s*, we have *s* ∈ *P* iff there exists a *t*, |*t*| ≤ poly(|*s*|), for which *B*(*s*, *t*) returns yes.

Ταχονομύ

coNP PSPACE

Efficient Certification

Efficient Certification

- *s* is an input instance of *P*.
- *t* is a certificate; a proof that *s* is a yes-instance.
- Efficient:
 - For every *s*, we have *s* ∈ *P* iff there exists a *t*, |*t*| ≤ poly(|*s*|), for which *B*(*s*, *t*) returns yes.
 - In other words, using *t*, we can check if *s* is a yes-instance in polynomial time.

coNP PSPACE

Efficient Certification

Efficient Certification

- *s* is an input instance of *P*.
- *t* is a certificate; a proof that *s* is a yes-instance.
- Efficient:
 - For every *s*, we have *s* ∈ *P* iff there exists a *t*, |*t*| ≤ poly(|*s*|), for which *B*(*s*, *t*) returns yes.
 - In other words, using *t*, we can check if *s* is a yes-instance in polynomial time.
- B(s,t) returning no does not mean that *s* is a no-instance

Efficient Certification

Efficient Certification

- *s* is an input instance of *P*.
- *t* is a certificate; a proof that *s* is a yes-instance.
- Efficient:
 - For every *s*, we have *s* ∈ *P* iff there exists a *t*, |*t*| ≤ poly(|*s*|), for which *B*(*s*, *t*) returns yes.
 - In other words, using *t*, we can check if *s* is a yes-instance in polynomial time.
- *B*(*s*, *t*) returning no does not mean that *s* is a no-instance... only that *t* is not a valid proof.

Efficient Certification

Efficient Certification

- *s* is an input instance of *P*.
- *t* is a certificate; a proof that *s* is a yes-instance.
- Efficient:
 - For every *s*, we have *s* ∈ *P* iff there exists a *t*, |*t*| ≤ poly(|*s*|), for which *B*(*s*, *t*) returns yes.
 - In other words, using *t*, we can check if *s* is a yes-instance in polynomial time.
- *B*(*s*, *t*) returning no does not mean that *s* is a no-instance... only that *t* is not a valid proof.
- *B*(*s*,*t*) provides a brute-force algorithm: For a given *s*, check every possible *t*.

NP Problems

Complexity Class NP

- Non-deterministic, **P**olynomial time: can be solved in polynomial time by testing every *t* simultaneously (non-deterministic).
- Set of all problems for which there exists an efficient certifier.

NP Problems

Complexity Class NP

- Non-deterministic, **P**olynomial time: can be solved in polynomial time by testing every *t* simultaneously (non-deterministic).
- Set of all problems for which there exists an efficient certifier.

Theorem 5

 $P \subseteq NP$

NP Problems

Complexity Class NP

- Non-deterministic, **P**olynomial time: can be solved in polynomial time by testing every *t* simultaneously (non-deterministic).
- Set of all problems for which there exists an efficient certifier.

Theorem 5

 $P \subseteq NP$

Proof.

D: Which proof technique?

NP Problems

Complexity Class NP

- Non-deterministic, **P**olynomial time: can be solved in polynomial time by testing every *t* simultaneously (non-deterministic).
- Set of all problems for which there exists an efficient certifier.

Theorem 5

 $P \subseteq NP$

- For every $p \in P$, \exists an algorithm *A* that runs in polynomial time.
- B(s,t) for any t returns A(s).

NP NP-complete

Taxonomy

Million Dollar Question: P vs NP $\,$

1 of 7 Clay Mathematics Institute Millennium Prize Problems

coNP PSPACE

NP-COMPLETE

Ταχονομγ

coNP PSPACE

HARDEST NP PROBLEMS

NP-Hard

Problem *X* is NP-Hard if:

- For all $Y \in NP$, $Y \leq_p X$.
- NP-Hard problem may or may not be in NP.

coNP PSPACE

HARDEST NP PROBLEMS

NP-Hard

Problem *X* is NP-Hard if:

- For all $Y \in NP$, $Y \leq_p X$.
- NP-Hard problem may or may not be in NP.

NP-Complete

Problem *X* is NP-Complete if:

- For all $Y \in NP$, $Y \leq_p X$.
- *X* is in NP.

Million Dollar Question: P vs NP $\,$

1 of 7 Clay Mathematics Institute Millennium Prize Problems

Ταχονομγ

coNP PSPACE

HARDEST NP PROBLEMS

NP-Hard

Problem *X* is NP-Hard if:

- For all $Y \in NP$, $Y \leq_p X$.
- NP-Hard problem may or may not be in NP.

NP-Complete

Problem *X* is NP-Complete if:

- For all $Y \in NP$, $Y \leq_p X$.
- *X* is in NP.

coNP PSPACE

HARDEST NP PROBLEMS

NP-Complete

Problem *X* is NP-Complete if:

- For all $Y \in NP$, $Y \leq_p X$.
- *X* is in NP.

Theorem 6

Suppose $X \in NP$ -Complete. Then, X is solvable in polynomial time iff P = NP.

coNP PSPACE

HARDEST NP PROBLEMS

NP-Complete

Problem *X* is NP-Complete if:

- For all $Y \in NP$, $Y \leq_p X$.
- *X* is in NP.

Theorem 6

Suppose $X \in NP$ -Complete. Then, X is solvable in polynomial time iff P = NP.

Proof.

 \Leftarrow : Suppose P = NP, then by definition of *P*, *X* can be solved in polynomial time.

coNP PSPACE

HARDEST NP PROBLEMS

NP-Complete

Problem *X* is NP-Complete if:

- For all $Y \in NP$, $Y \leq_p X$.
- *X* is in NP.

Theorem 6

Suppose $X \in NP$ -Complete. Then, X is solvable in polynomial time iff P = NP.

Proof.

⇒: Suppose *X* can be solved in polynomial time. Then, by definition of NP-Complete, all problems \in NP $\leq_p X$. Hence, solvable in polynomial time and $\in P$.

coNP PSPACE

First NP-Complete Problem

NP

Theorem 6

Cook (1971) – *Levin* (1973) *Theorem* [*Paraphrase*]: *Circuit Satisfiability Problem* (CSAT) *is* NP-*Complete*.

Stephen Cook (1968)

Leonid Levin (2010)

INTRACTABILITY 1

Taxonom

coNP PSPACE

Circuit Satisfiability Problem (CSAT)

Problem Definition

3 types of gates: ∧ (AND),
 ∨ (OR), and ¬ (NOT).

INTRACTABILITY R

NP-complete

Taxonom

coNP PSPACE

Circuit Satisfiability Problem (CSAT)

NP

- 3 types of gates: \land (AND), \lor (OR), and \neg (NOT).
- Circuit *k*:
 - A DAG (nodes have 0, 1, or 2 incoming edges).

INTRACTABILITY RI

NP-complete

Taxonomy

coNP PSPACE

Circuit Satisfiability Problem (CSAT)

- 3 types of gates: \land (AND), \lor (OR), and \neg (NOT).
- Circuit *k*:
 - A DAG (nodes have 0, 1, or 2 incoming edges).
 - Source: Nodes with no incoming edges; may have a preset binary value.

INTRACTABILITY RE

NP-complete

Taxonom

coNP PSPACE

Circuit Satisfiability Problem (CSAT)

- 3 types of gates: \land (AND), \lor (OR), and \neg (NOT).
- Circuit *k*:
 - A DAG (nodes have 0, 1, or 2 incoming edges).
 - Source: Nodes with no incoming edges; may have a preset binary value.
 - Every other node is labelled with a gate.

INTRACTABILITY RE

Taxonomy

coNP PSPACE

Circuit Satisfiability Problem (CSAT)

- 3 types of gates: \land (AND), \lor (OR), and \neg (NOT).
- Circuit *k*:
 - A DAG (nodes have 0, 1, or 2 incoming edges).
 - Source: Nodes with no incoming edges; may have a preset binary value.
 - Every other node is labelled with a gate.
 - Output: Result of the node with no outgoing edges.

coNP PSPACE

Circuit Satisfiability Problem (CSAT)

B: What is the output with an input of (1,0,0)?

- 3 types of gates: \land (AND), \lor (OR), and \neg (NOT).
- Circuit *k*:
 - A DAG (nodes have 0, 1, or 2 incoming edges).
 - Source: Nodes with no incoming edges; may have a preset binary value.
 - Every other node is labelled with a gate.
 - Output: Result of the node with no outgoing edges.

NP-complete

Taxonomy

coNP PSPACE

Circuit Satisfiability Problem (CSAT)

②: Give an input that satisfies the example.

- 3 types of gates: \land (AND), \lor (OR), and \neg (NOT).
- Circuit *k*:
 - A DAG (nodes have 0, 1, or 2 incoming edges).
 - Source: Nodes with no incoming edges; may have a preset binary value.
 - Every other node is labelled with a gate.
 - Output: Result of the node with no outgoing edges.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
 - Input size is $\Omega(|V|)$.
 - A single gate can be evaluated in constant time.
 - Evaluate a certificate of the inputs can be verified in *O*(|*V*|) time.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - We need to show $X \leq_p CSAT$.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - We need to show $X \leq_p CSAT$.
 - By definition for *X*:
 - *X* has an input of |s| bits.
 - Produces 1 bit of output (yes/no).
 - \exists an efficient certifier $B_X(\cdot, \cdot)$.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - Reduction to CSAT:

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - Reduction to CSAT:
 - Output is 1 when *X* is yes; otherwise 0.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - Reduction to CSAT:
 - Output is 1 when *X* is yes; otherwise 0.
 - Sources: |s| + |t| = n + poly(n) bits.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - Reduction to CSAT:
 - Output is 1 when *X* is yes; otherwise 0.
 - Sources: |s| + |t| = n + poly(n) bits.
 - The first *n* bits are hard-coded to the *X* instance input.

coNP PSPACE

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - Reduction to CSAT:
 - Output is 1 when *X* is yes; otherwise 0.
 - Sources: |s| + |t| = n + poly(n) bits.
 - The first *n* bits are hard-coded to the *X* instance input.
 - The poly(*n*) bits are free and used to find a *t* such that $B_X(s,t)$ is yes.

First NP-Complete Problem

Theorem 6

Cook (1971) – Levin (1973) Theorem [Paraphrase]: Circuit Satisfiability Problem (CSAT) is NP-Complete.

- Show that $CSAT \in NP$:
- **2** Reduce every problem $\in NP$ to CSAT:
 - Consider an arbitrary problem $X \in NP$.
 - Reduction to CSAT:
 - Output is 1 when *X* is yes; otherwise 0.
 - Sources: |s| + |t| = n + poly(n) bits.
 - The first *n* bits are hard-coded to the *X* instance input.
 - The poly(*n*) bits are free and used to find a *t* such that $B_X(s,t)$ is yes.
 - The gates of the circuit are a translation of algorithm B_X .

coNP PSPACE

Example: Independent Set $(k \ge 2)$ as Circuit Satisfiability Problem.

coNP PSPACE

Example: Independent Set $(k \ge 2)$ as Circuit Satisfiability Problem.

E: Draw the underlying Independent Set graph.

coNP PSPACE

Strategies for Proving NP-Completeness

NP

Showing that Problem *X* is NP-Complete

Cook Reduction:

- Prove that $X \in NP$.
- **2** Choose a problem $Y \in NP$ -Complete.
- Prove $Y \leq_p X$.

Strategies for Proving NP-Completeness

Showing that Problem *X* is NP-Complete

Cook Reduction:

- Prove that $X \in NP$.
- **2** Choose a problem $Y \in NP$ -Complete.

• Prove
$$Y \leq_p X$$
.

Typical Step 3

- Karp Reduction: For an arbitrary instance s_Y of Y, show how to construct, in polynomial time, an instance s_X of X such that s_y is a yes iff s_x is a yes. Steps:
 - Provide efficient reduction.
 - **2** Prove \Rightarrow : if s_Y is a yes, s_X is a yes.
 - Prove \Leftarrow : if s_X is a yes, then s_Y had to have been a yes.

coNP PSPACE

3SAT IS NP-COMPLETE

Theorem 7

3SAT is NP-Complete.

coNP PSPACE

3SAT IS NP-COMPLETE

Theorem 7

3SAT is NP-Complete.

Exercise: Do step 1.

Show that Problem 3SAT is NP-Complete

Cook Reduction:

- Prove that $3SAT \in NP$.
- ② Choose a problem Y ∈ NP-Complete.
- Prove $Y \leq_p 3SAT$.

3SAT IS NP-COMPLETE

Theorem 7

3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete

Cook Reduction:

- Prove that $3SAT \in NP$.
- ② Choose a problem Y ∈ NP-Complete.
- Prove $Y \leq_p 3SAT$.

Proof.

• Use a truth assignment of the literals as a certificate. This can be verified in polynomial time.

coNP PSPACE

3SAT IS NP-COMPLETE

Theorem 7

3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete

Cook Reduction:

- Prove that $3SAT \in NP$.
- ② Choose a problem Y ∈ NP-Complete.
- Prove $Y \leq_p 3SAT$.

Proof.

- Use a truth assignment of the literals as a certificate. This can be verified in polynomial time.
- The only NP-Complete problem we know is CSAT.

coNP PSPACE

3SAT IS NP-COMPLETE

Proof.

• For an arbitrary circuit *k*:

coNP PSPACE

3SAT IS NP-COMPLETE

Proof.

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .

3SAT IS NP-COMPLETE

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .
 - For each gate:
 - NOT: Let *u* be the input. We need $x_u = \overline{x_v}$.
 - $\rightarrow 2 \text{ clauses: } (x_v \vee x_u) \wedge (\overline{x_v} \vee \overline{x_u}).$

Ταχονομγ

coNP PSPACE

3SAT IS NP-COMPLETE

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .
 - For each gate:
 - NOT: Let *u* be the input. We need $x_u = \overline{x_v}$.
 - \rightarrow 2 clauses: $(x_v \lor x_u) \land (\overline{x_v} \lor \overline{x_u})$.
 - OR: Let u, w be the inputs. We need $x_v = x_u \vee x_w$.
 - $\rightarrow 3 \text{ clauses: } (x_v \vee \overline{x_u}) \land (x_v \vee \overline{x_w}) \land (\overline{x_v} \lor x_u \lor x_w).$

3SAT IS NP-COMPLETE

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .
 - For each gate:
 - NOT: Let *u* be the input. We need $x_u = \overline{x_v}$.
 - \rightarrow 2 clauses: $(x_v \lor x_u) \land (\overline{x_v} \lor \overline{x_u})$.
 - OR: Let u, w be the inputs. We need $x_v = x_u \lor x_w$.
 - $\rightarrow 3 \text{ clauses: } (x_v \vee \overline{x_u}) \land (x_v \vee \overline{x_w}) \land (\overline{x_v} \lor x_u \lor x_w).$
 - AND: Let u, w be the inputs. We need $x_v = x_u \wedge x_w$.
 - $\rightarrow 3 \text{ clauses: } (\overline{x_v} \lor x_u) \land (\overline{x_v} \lor x_w) \land (x_v \lor \overline{x_u} \lor \overline{x_w}).$

3SAT IS NP-COMPLETE

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .
 - For each gate:
 - NOT: Let *u* be the input. We need $x_u = \overline{x_v}$.
 - \rightarrow 2 clauses: $(x_v \lor x_u) \land (\overline{x_v} \lor \overline{x_u})$.
 - OR: Let u, w be the inputs. We need $x_v = x_u \lor x_w$.
 - $\rightarrow 3 \text{ clauses: } (x_v \vee \overline{x_u}) \land (x_v \vee \overline{x_w}) \land (\overline{x_v} \vee x_u \vee x_w).$
 - AND: Let u, w be the inputs. We need $x_v = x_u \wedge x_w$.
 - $\rightarrow 3 \text{ clauses: } (\overline{x_v} \lor x_u) \land (\overline{x_v} \lor x_w) \land (x_v \lor \overline{x_u} \lor \overline{x_w}).$
 - For each constant source *s*:
 - \rightarrow 1 clause: (x_s) if 1, and ($\overline{x_s}$) if 0.

coNP PSPACE

3SAT IS NP-COMPLETE

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .
 - For each gate:
 - NOT: Let *u* be the input. We need $x_u = \overline{x_v}$.
 - \rightarrow 2 clauses: $(x_v \lor x_u) \land (\overline{x_v} \lor \overline{x_u})$.
 - OR: Let u, w be the inputs. We need $x_v = x_u \lor x_w$.
 - $\rightarrow 3 \text{ clauses: } (x_v \vee \overline{x_u}) \land (x_v \vee \overline{x_w}) \land (\overline{x_v} \lor x_u \lor x_w).$
 - AND: Let u, w be the inputs. We need $x_v = x_u \wedge x_w$.
 - $\rightarrow 3 \text{ clauses: } (\overline{x_v} \lor x_u) \land (\overline{x_v} \lor x_w) \land (x_v \lor \overline{x_u} \lor \overline{x_w}).$
 - For each constant source *s*:
 - \rightarrow 1 clause: (x_s) if 1, and ($\overline{x_s}$) if 0.
 - For the output *o*: 1 clause (*x*_{*o*}).

coNP PSPACE

3SAT IS NP-COMPLETE

Proof.

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .
 - For each gate:
 - NOT: Let *u* be the input. We need $x_u = \overline{x_v}$.
 - \rightarrow 2 clauses: $(x_v \lor x_u) \land (\overline{x_v} \lor \overline{x_u})$.
 - OR: Let u, w be the inputs. We need $x_v = x_u \lor x_w$.
 - $\rightarrow 3 \text{ clauses: } (x_v \vee \overline{x_u}) \land (x_v \vee \overline{x_w}) \land (\overline{x_v} \vee x_u \vee x_w).$
 - AND: Let u, w be the inputs. We need $x_v = x_u \wedge x_w$.

 $\rightarrow 3 \text{ clauses: } (\overline{x_v} \lor x_u) \land (\overline{x_v} \lor x_w) \land (x_v \lor \overline{x_u} \lor \overline{x_w}).$

• For each constant source *s*:

 \rightarrow 1 clause: (x_s) if 1, and ($\overline{x_s}$) if 0.

- For the output o: 1 clause (x_o) .
- Convert clauses to length 3:
 - We need 2 variables z_1 and z_2 that are always 0 in a satisfying assignment.
 - To ensure this, we need 4 variables: z_1, z_2, z_3, z_4 .

NP

3SAT IS NP-COMPLETE

- For an arbitrary circuit *k*:
 - Each node v is assigned a variable x_v .
 - For each gate:
 - NOT: Let *u* be the input. We need $x_u = \overline{x_v}$.
 - \rightarrow 2 clauses: $(x_v \lor x_u) \land (\overline{x_v} \lor \overline{x_u})$.
 - OR: Let u, w be the inputs. We need $x_v = x_u \lor x_w$.
 - $\rightarrow 3 \text{ clauses: } (x_v \lor \overline{x_u}) \land (x_v \lor \overline{x_w}) \land (\overline{x_v} \lor x_u \lor x_w).$
 - AND: Let u, w be the inputs. We need $x_v = x_u \land x_w$. $\rightarrow 3$ clauses: $(\overline{x_v} \lor x_u) \land (\overline{x_v} \lor x_w) \land (x_v \lor \overline{x_u} \lor \overline{x_w})$.
 - For each constant source *s*:
 - \rightarrow 1 clause: (x_s) if 1, and ($\overline{x_s}$) if 0.
 - For the output o: 1 clause (x_o) .
 - Convert clauses to length 3:
 - 4 variables: z_1, z_2, z_3, z_4 , and 8 clauses for $i \in \{1, 2\}$: $(\overline{z_i} \lor z_3 \lor z_4) \land (\overline{z_i} \lor \overline{z_3} \lor z_4) \land (\overline{z_i} \lor z_3 \lor \overline{z_4}) \land (\overline{z_i} \lor \overline{z_3} \lor \overline{z_4}).$

3SAT IS NP-COMPLETE

- s_{CSAT} is a yes iff $s_{3\text{SAT}}$ is a yes:
 - ⇒: If s_{CSAT} is a yes, then the satisfying assignment to the circuit inputs can be used to calculate the value of each gate. By the reduction, these value will satisfy all the clauses of s_{3SAT}.
 - ⇐: If s_{3SAT} is a yes, then the assignment of the variables give the satisfying assignment of the circuit inputs, and the reduction guarantees that the assigned values for the nodes match the gate calculations.

coNP PSPACE

3SAT IS NP-COMPLETE

From our previous reductions

 $3\mathrm{SAT} \leq_p \mathrm{IS} \leq_p \mathrm{VC} \leq_p \mathrm{SC}$

and

 $3SAT \leq_p IS \leq_p SP$

and the fact that 3SAT is NP-Complete:

Corollary 7

The following problems are NP-Complete:

3SAT, IS, VC, SC, SP .

coNP PSPACE

Taxonomy

coNP PSPACE

Sequencing Problems

Travelling Salesperson Problem (TSP)

- A salesperson must visit *n* cities v_1, v_2, \ldots, v_n .
- Starting at some v_1 , visit all cities and return to v_1 .
- Distance function: d(·, ·) for all pairs of cities (not necessarily symmetric nor metric).
- Optimization: What is the shortest tour?

Taxonomy

coNP PSPACE

Sequencing Problems

Travelling Salesperson Problem (TSP)

- A salesperson must visit *n* cities v_1, v_2, \dots, v_n .
- Starting at some v_1 , visit all cities and return to v_1 .
- Distance function: d(·, ·) for all pairs of cities (not necessarily symmetric nor metric).
- Decision: Is there a tour of length *D*?

coNP PSPACE

SEQUENCING PROBLEMS

Travelling Salesperson Problem (TSP)

- A salesperson must visit *n* cities v_1, v_2, \ldots, v_n .
- Starting at some v_1 , visit all cities and return to v_1 .
- Distance function: d(·,·) for all pairs of cities (not necessarily symmetric nor metric).

Hamiltonian Cycle

- Graph analogue of TSP.
- <u>Hamiltonian cycle</u>: a tour of the nodes of *G* that visits each node once.
- Given a digraph *G*, does it contain a Hamiltonian cycle?

NP

Taxonomy

coNP PSPACE

SEQUENCING PROBLEMS

Travelling Salesperson Problem (TSP)

- A salesperson must visit *n* cities v_1, v_2, \ldots, v_n .
- Starting at some *v*₁, visit all cities and return to *v*₁.
- Distance function: d(·, ·) for all pairs of cities (not necessarily symmetric nor metric).

Does this graph contain a Hamiltonian cycle?

Hamiltonian Cycle

- Graph analogue of TSP.
- <u>Hamiltonian cycle</u>: a tour of the nodes of *G* that visits each node once.
- Given a digraph *G*, does it contain a Hamiltonian cycle?

Taxonomy

coNP PSPACE

$3SAT \leq_p Hamiltonian$

Theorem 8

Hamiltonian Cycle is NP-complete.

- In NP: A certificate would be a sequence of vertices which can be verified in polynomial time.
- Choose an NP-complete problem: 3SAT.

NP

$3SAT \leq_p Hamiltonian$

Theorem 8

Hamiltonian Cycle is NP-complete.

Proof.

• 3SAT \leq_p Hamiltonian:

• P_i (containing 3k + 2 nodes) for each X_i : left traversal for 1 and right traversal for 0.

coNP PSPACE

27/43

$3SAT \leq_p Hamiltonian$

Theorem 8

Hamiltonian Cycle is NP-complete.

Proof.

③ 3SAT \leq_p Hamiltonian;

C_i for each clause *i*:
 Connect based on *x_i* or *x_i*.

coNP PSPACE

$3SAT \leq_p Hamiltonian$

Theorem 8

Hamiltonian Cycle is NP-complete.

- s_{3SAT} is a yes iff $s_{\text{Hamiltonian}}$ is a yes:
 - \Rightarrow : If s_{3SAT} is a yes, then each clause node can be visited from one of the paths corresponding to one of the variables when the path is traversed in the direction of the satisfying assignment.
 - \Leftarrow : If $s_{\text{Hamiltonian}}$ is a yes, then every clause node is visited, and the direction of each path traversal gives a value assignment for the corresponding variable in $s_{3\text{SAT}}$. The reduction guarantees that value assignment for a variable the path used to traverse the clause node will be the assignment of a variable that satisfies the corresponding clause.

Taxonomy

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

Proof.

• In NP: Certificate that is a tour of the cities.

Taxonomy

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Which NP-complete problem?

Ταχονομγ

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- **2** Use Hamiltonian Cycle.
- Item Hamiltonian Cycle ≤_p TSP:
 Exo: Try to come up with the reduction.

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Use Hamiltonian Cycle.
- S Hamiltonian Cycle \leq_p TSP: Given a graph G = (V, E):

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Use Hamiltonian Cycle.
- Hamiltonian Cycle \leq_p TSP: Given a graph G = (V, E):
 - For each *v*, make a city.

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Use Hamiltonian Cycle.
- Solution Hamiltonian Cycle \leq_p TSP: Given a graph G = (V, E):
 - For each *v*, make a city.
 - For each edge $(u, v) \in E$, define d(u, v) = 1.

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Use Hamiltonian Cycle.
- Hamiltonian Cycle \leq_p TSP: Given a graph G = (V, E):
 - For each *v*, make a city.
 - For each edge $(u, v) \in E$, define d(u, v) = 1.
 - For each pair $(u, v) \notin E$, define d(u, v) = 2.

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Use Hamiltonian Cycle.
- Hamiltonian Cycle \leq_p TSP: Given a graph G = (V, E):
 - For each *v*, make a city.
 - For each edge $(u, v) \in E$, define d(u, v) = 1.
 - For each pair $(u, v) \notin E$, define d(u, v) = 2.
 - Set the tour bound to be *n*.

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Use Hamiltonian Cycle.
- S Hamiltonian Cycle \leq_p TSP: Given a graph G = (V, E):
 - For each *v*, make a city.
 - For each edge $(u, v) \in E$, define d(u, v) = 1.
 - For each pair $(u, v) \notin E$, define d(u, v) = 2.
 - Set the tour bound to be *n*.
 - ⇒ With a Hamiltonian Cycle in *G*, the shortest tour will be length *n*.

coNP PSPACE

TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

- In NP: Certificate that is a tour of the cities.
- Use Hamiltonian Cycle.
- Solution Hamiltonian Cycle \leq_p TSP: Given a graph G = (V, E):
 - For each *v*, make a city.
 - For each edge $(u, v) \in E$, define d(u, v) = 1.
 - For each pair $(u, v) \notin E$, define d(u, v) = 2.
 - Set the tour bound to be *n*.
 - ← If the shortest tour is length *n*, then no *d*(*u*, *v*) = 2 is used, so only edges from the graph are used implying a Hamiltonian cycle in *G*.

Taxonomy

coNP PSPACE

Exercise: Show that Hamiltonian Path is NP-complete

Hamiltonian Path

- A simple path in a digraph *G* that contains all nodes.
- Another sequencing problem.

coNP PSPACE

Exercise: Show that Hamiltonian Path is NP-complete

Theorem 10

Hamiltonian Path is NP-complete

- In NP: Certificate is a path in *G* which can be verified in polynomial time.
- **2** NP-complete problem: Hamiltonian Cycle.

coNP PSPACE

Exercise: Show that Hamiltonian Path is NP-complete

Theorem 10

Hamiltonian Path is NP-complete

Proof.

• Hamiltonian Cycle \leq_p Hamiltonian Path: For G = (V, E) create G':

Taxonomy

coNP PSPACE

Exercise: Show that Hamiltonian Path is NP-complete

Theorem 10

Hamiltonian Path is NP-complete

- Hamiltonian Cycle \leq_p Hamiltonian Path: For G = (V, E) create G':
 - Choose an arbitrary $v \in V$: $V' = V \setminus \{v\} \cup \{v', v''\}$.

Exercise: Show that Hamiltonian Path is NP-complete

Theorem 10

Hamiltonian Path is NP-complete

- Hamiltonian Cycle \leq_p Hamiltonian Path: For G = (V, E) create G':
 - Choose an arbitrary $v \in V$: $V' = V \setminus \{v\} \cup \{v', v''\}$.
 - Initialize E' = E:
 - For each edge $(v, w) \in E$: $E' \setminus \{(v, w)\} \cup \{(v', w)\}$.
 - For each edge $(u, v) \in E$: $E' \setminus \{(u, v)\} \cup \{(u, v'')\}$.

Exercise: Show that Hamiltonian Path is NP-complete

Theorem 10

Hamiltonian Path is NP-complete

- Hamiltonian Cycle \leq_p Hamiltonian Path: For G = (V, E) create G':
 - Choose an arbitrary $v \in V$: $V' = V \setminus \{v\} \cup \{v', v''\}$.
 - Initialize E' = E:
 - For each edge $(v, w) \in E$: $E' \setminus \{(v, w)\} \cup \{(v', w)\}$.
 - For each edge $(u, v) \in E$: $E' \setminus \{(u, v)\} \cup \{(u, v'')\}$.
 - A path $v' \rightarrow v''$ means Hamiltonian Cycle.

coNP PSPACE

Partitioning Problems

3-D Matching

- Given 3 disjoint sets: *X*, *Y*, *Z* (each of size *n*).
- A set of $m \ge n$ trebles $T \subseteq X \times Y \times Z$.
- Does there exist a set of *n* trebles from *T* so that each item is in exactly one of these trebles?

NP NP-complete

Ταχονομύ

coNP PSPACE

3-D Matching is NP-Complete

Theorem 11

3-D Matching is NP-Complete.

coNP PSPACE

3-D Matching is NP-Complete

Theorem 11

3-D Matching is NP-Complete.

- In NP: Certificate is a set of trebles which can be verified in polynomial time.
- Which NP-complete problem?

NP NP-complete

Taxonomy

coNP PSPACE

3-D Matching is NP-Complete

Theorem 11

3-D Matching is NP-Complete.

- In NP: Certificate is a set of trebles which can be verified in polynomial time.
- Use 3SAT.

3-D MATCHING IS NP-COMPLETE

Theorem 11

3-D Matching is NP-Complete.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - Variable *x_i* gadget:
 - Core: $A_i = \{a_1^i, \dots, a_{2k}^i\}.$
 - Tips: $B_i = \{b_1^i, \dots, b_{2k}^i\}.$
 - $t_j^i = (a_j^i, a_{j+1}^i, b_j^i)$ for $j = 1, 2, \dots, 2k$ (add mod 2k).

coNP PSPACE

3-D MATCHING IS NP-COMPLETE

Theorem 11

3-D Matching is NP-Complete.

Proof.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - Clause *C_j* gadget:
 - Add $P_j = \{p_j, p'_j\}$ with trebles: $(p_j, p'_j, b^{i_{j-1}}_{2j-1})$ if x_i and $(p_j, p'_j, b^{i_{j}}_{2j})$ if $\overline{x_i}$.

Variable 2

leaves the corresponding tip free.

3-D MATCHING IS NP-COMPLETE

Theorem 11

3-D Matching is NP-Complete.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - Counting cores: covered by even/odd choice.

3-D MATCHING IS NP-COMPLETE

Theorem 11

3-D Matching is NP-Complete.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - Counting cores: covered by even/odd choice.
 - Counting tips: *n*2*k*
 - Even/odd tips cover *nk*.
 - Clauses cover k.
 - (n-1)k uncovered.

3-D MATCHING IS NP-COMPLETE

Theorem 11

3-D Matching is NP-Complete.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - Counting cores: covered by even/odd choice.
 - Counting tips: *n*2*k*
 - Even/odd tips cover *nk*.
 - Clauses cover k.
 - (n-1)k uncovered.
 - (n-1)k clean-up gadgets:
 - $Q_i = \{q_i, q'_i\}$ with treble (q_i, q'_i, b) for every tip *b*.

3-D MATCHING IS NP-COMPLETE

Theorem 11

3-D Matching is NP-Complete.

Proof.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - Counting cores: covered by even/odd choice.
 - Counting tips: *n*2*k*
 - Even/odd tips cover *nk*.
 - Clauses cover k.
 - (n-1)k uncovered.
 - (*n* 1)*k* clean-up gadgets:
 - $Q_i = \{q_i, q'_i\}$ with treble (q_i, q'_i, b) for every tip *b*.
 - What are the 3 sets?

 $X = \{a^i_{j \text{ even}}\} \cup \{p_j\} \cup \{q_i\}, Y = \{a^i_{j \text{ odd}}\} \cup \{p'_j\} \cup \{q'_i\}, Z = \{b^i_j\}.$

3-D Matching is NP-Complete

Theorem 11

3-D Matching is NP-Complete.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - ⇒ For a yes 3SAT, there is a matching that takes the even/odd tip trebles, leaving at least one tip as part of each clause gadget treble. The remaining unmatched tips are match to a clean-up gadget.

3-D Matching is NP-Complete

Theorem 11

3-D Matching is NP-Complete.

- $3SAT \leq_p 3$ -D Matching: Consider an arbitrary 3SAT:
 - ⇒ For a yes 3SAT, there is a matching that takes the even/odd tip trebles, leaving at least one tip as part of each clause gadget treble. The remaining unmatched tips are match to a clean-up gadget.
 - ← A yes for 3-D Matching from the reduction means that each clause gadget is part of a selected treble, each variable gadget has selected the odd or even tips, and the remaining tips are matched to a clean-up gadget. Each clause will be satisfied by the tip matched by the clause gadget. The even/odd selection for each variable guarantees all variables are assigned 1 or 0.

NP-comp

Ταχονομγ

coNP PSPACE

Graph Colouring

Problem

Given a graph *G* and a bound *k*, does *G* have a *k*-colouring?

coNP PSPACE

GRAPH COLOURING

Problem

Given a graph *G* and a bound *k*, does *G* have a *k*-colouring?

k-Colour

• Colouring of the nodes of a graph such that no adjacent nodes have the same colour, using at most *k* colours.

coNP PSPACE

Graph Colouring

Problem

Given a graph *G* and a bound *k*, does *G* have a *k*-colouring?

k-Colour

- Colouring of the nodes of a graph such that no adjacent nodes have the same colour, using at most *k* colours.
- Labelling (partitioning) function $f : V \rightarrow \{1, ..., k\}$ such that, for every $(u, v) \in E$, $f(u) \neq f(v)$.

NP NP-complete

Ταχονομύ

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

- In NP: Certificate is a colouring of the nodes which can be verified in polynomial time.
- Which NP-complete problem?

NP

Taxonomy

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

- In NP: Certificate is a colouring of the nodes which can be verified in polynomial time.
- NP-complete problem: 3SAT.

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

Proof.

③ 3SAT \leq_p 3 Colouring:

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

- **3**SAT \leq_p 3 Colouring:
 - For each literal: Nodes v_i and $\overline{v_i}$.

NP

Taxonomy

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

Proof.

3SAT \leq_p 3 Colouring:

- For each literal: Nodes v_i and $\overline{v_i}$.
- Nodes *T* (true), *F* (false), and *B* (base).

NP

Taxonomy

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

Proof.

3SAT \leq_p 3 Colouring:

- For each literal: Nodes v_i and $\overline{v_i}$.
- Nodes *T* (true), *F* (false), and *B* (base).
- Edges: $(v_i, \overline{v_i}), (v_i, B), (\overline{v_i}, B)$.

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

Proof.

3SAT \leq_p 3 Colouring:

- For each literal: Nodes v_i and $\overline{v_i}$.
- Nodes *T* (true), *F* (false), and *B* (base).
- Edges: $(v_i, \overline{v_i}), (v_i, B), (\overline{v_i}, B)$.
- Edges: (T, F), (F, B), (T, B).

Ταχονομγ

coNP PSPACE

3-Colouring is NP-Complete

Theorem 12

3-Colouring is NP-Complete.

NP

Taxonomy

coNP PSPACE

Numerical Problems

Subset Sum Problem

Given a set of *n* natural numbers $\{w_1, \ldots, w_n\}$ and a target *W*, is there a subset of the numbers that add up to *W*?

Ταχονομύ

coNP PSPACE

NUMERICAL PROBLEMS

Subset Sum Problem

Given a set of *n* natural numbers $\{w_1, ..., w_n\}$ and a target *W*, is there a subset of the numbers that add up to *W*?

Dynamic Programming Approach

- We saw an O(nW) algorithm.
- Pseudo-polynomial: *W* is unbounded, e.g., 2^{*n*}.

Ταχονομύ

coNP PSPACE

Subset Sum is NP-Complete

Theorem 13

Subset Sum is NP-Complete.

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- In NP: Certificate is a subset of the numbers which can be verified in polynomial time.
- Which NP-complete problem?

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- In NP: Certificate is a subset of the numbers which can be verified in polynomial time.
- NP-complete problem: 3-D Matching.

coNP PSPACE

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

Proof.

③ 3-D Matching \leq_p Subset Sum: Exercise: Try it, but tough.

Ταχονομγ

coNP PSPACE

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- **③** 3-D Matching \leq_p Subset Sum:
 - 3-D Matching: Subsets can be viewed as length 3*n* bit vectors with a 1 indicating that item is in the set.

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- **③** 3-D Matching \leq_p Subset Sum:
 - 3-D Matching: Subsets can be viewed as length 3*n* bit vectors with a 1 indicating that item is in the set.
 - For each treble (i, j, k) from $X \times Y \times Z$ construct a w_t :

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- **③** 3-D Matching \leq_p Subset Sum:
 - 3-D Matching: Subsets can be viewed as length 3*n* bit vectors with a 1 indicating that item is in the set.
 - For each treble (i, j, k) from $X \times Y \times Z$ construct a w_t :
 - A digits with 1 at i, n + j, and 2n + k.

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- **3**-D Matching \leq_p Subset Sum:
 - 3-D Matching: Subsets can be viewed as length 3*n* bit vectors with a 1 indicating that item is in the set.
 - For each treble (i, j, k) from $X \times Y \times Z$ construct a w_t :
 - A digits with 1 at *i*, *n* + *j*, and 2*n* + *k*.
 For base *d*, w_t = dⁱ⁻¹ + d^{n+j-1} + d^{2n+k-1}.

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- **3**-D Matching \leq_p Subset Sum:
 - 3-D Matching: Subsets can be viewed as length 3*n* bit vectors with a 1 indicating that item is in the set.
 - For each treble (i, j, k) from $X \times Y \times Z$ construct a w_t :
 - A digits with 1 at *i*, *n* + *j*, and 2*n* + *k*.
 For base *d*, w_i = dⁱ⁻¹ + d^{n+j-1} + d^{2n+k-1}.

 - Set base d = m + 1 to avoid addition carry overs.

SUBSET SUM IS NP-COMPLETE

Theorem 13

Subset Sum is NP-Complete.

- **3**-D Matching \leq_p Subset Sum:
 - 3-D Matching: Subsets can be viewed as length 3*n* bit vectors with a 1 indicating that item is in the set.
 - For each treble (i, j, k) from $X \times Y \times Z$ construct a w_t :
 - A digits with 1 at *i*, *n* + *j*, and 2*n* + *k*.
 For base *d*, *w*_t = dⁱ⁻¹ + d^{n+j-1} + d^{2n+k-1}.

 - Set base d = m + 1 to avoid addition carry overs.
 - Set $W = \sum_{0}^{3n-1} (m+1)^{i}$ which corresponds to have each item exactly once.

coNP PSPACE

Constraint Satisfaction Problems

Not All Equal 4SAT (NAE 4SAT)

Given a 4SAT formula, is there an assignment to the literals such that every clause contains at least one true term and at least one false term.

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

Proof. In NP:

Taxonomy

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

- In NP: Certificate is an assignment of values to the literals which can be verified in polynomial time.
- 2

Taxonomy

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

- In NP: Certificate is an assignment of values to the literals which can be verified in polynomial time.
- In NP-complete problem: 3SAT.

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

NP

Taxonomy

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

- **3**SAT \leq_p NAE 4SAT:
 - Add a literal v to every 3SAT clause of Φ to create a NEA 4SAT formula Φ' .

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

Proof.

- **3**SAT \leq_p NAE 4SAT:
 - Add a literal v to every 3SAT clause of Φ to create a NEA 4SAT formula Φ' .

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

Proof.

- **3**SAT \leq_p NAE 4SAT:
 - Add a literal v to every 3SAT clause of Φ to create a NEA 4SAT formula Φ' .

Reduction correctness:

• \Rightarrow : If 3SAT Φ is true, \exists an assignment where every clause in Φ has ≥ 1 true value. Set v = 0 and Φ' is satisfied.

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

Proof.

- **3**SAT \leq_p NAE 4SAT:
 - Add a literal v to every 3SAT clause of Φ to create a NEA 4SAT formula Φ' .

- \Rightarrow : If 3SAT Φ is true, \exists an assignment where every clause in Φ has ≥ 1 true value. Set v = 0 and Φ' is satisfied.
- \Leftarrow : If NAE 4SAT is true:

coNP PSPACE

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

Proof.

- **3**SAT \leq_p NAE 4SAT:
 - Add a literal v to every 3SAT clause of Φ to create a NEA 4SAT formula Φ' .

- \Rightarrow : If 3SAT Φ is true, \exists an assignment where every clause in Φ has ≥ 1 true value. Set v = 0 and Φ' is satisfied.
- \Leftarrow : If NAE 4SAT is true:
 - Case 1: v = 0. Each clause in Φ' has at least 1 term that is not v set to true ⇒ Φ is satisfied.

NAE 4SAT IS NP-COMPLETE

Theorem 14

NAE 4SAT is NP-Complete.

Proof.

- **3**SAT \leq_p NAE 4SAT:
 - Add a literal v to every 3SAT clause of Φ to create a NEA 4SAT formula Φ' .

- \Rightarrow : If 3SAT Φ is true, \exists an assignment where every clause in Φ has ≥ 1 true value. Set v = 0 and Φ' is satisfied.
- \Leftarrow : If NAE 4SAT is true:
 - Case 1: v = 0. Each clause in Φ' has at least 1 term that is not v set to true $\implies \Phi$ is satisfied.
 - Case 2: v = 1. Each clause in Φ' has at least 1 term that is not v set to false ⇒ Φ is satisfied by the complement of the assignment that satisfies Φ'.

coNP PSPACE

TAXONOMY OF HARD PROBLEMS

Packing Problems

- Independent Set
- Set Packing
- Clique (in discussion)

Covering Problems

- Vertex Cover
- Set Cover

Sequencing Problems

- TSP
- Hamiltonian Cycle
- Hamiltonian Path

Taxonomy

coNP PSPACE

TAXONOMY OF HARD PROBLEMS

Partitioning Problems

- 3-D Matching
- Graph Colouring

Numerical Problems

- Subset Sum
- Knapsack

Constraint Satisfaction Problems

- 3SAT
- CSAT
- NAE 4SAT

NP-com

Taxonomy

coNP PSPACE

coNP

NP

Ταχονομύ

coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry

Given an instance *s* of problem *X*:

- For any t, B(s, t) = yes implies yes-instance.
- For all t, B(s, t) = no implies no-instance.

coNP PSPACE

Asymmetry of NP

Efficient Certifier Asymmetry

Given an instance *s* of problem *X*:

- For any t, B(s, t) = yes implies yes-instance.
- For all t, B(s, t) = no implies no-instance.

Complimentary Problem

For every problem *X*, there is a complementary problem \overline{X} :

• For all input $s, s \in X$ iff $s \notin \overline{X}$.

Asymmetry of NP

Efficient Certifier Asymmetry

Given an instance *s* of problem *X*:

- For any t, B(s, t) = yes implies yes-instance.
- For all t, B(s, t) = no implies no-instance.

Complimentary Problem

For every problem *X*, there is a complementary problem \overline{X} :

- For all input $s, s \in X$ iff $s \notin \overline{X}$.
- Note that, if $X \in P$, then $\overline{X} \in P$.

Complexity Class coNP

A problem $X \in \text{coNP}$ iff $\overline{X} \in \text{NP}$.

Complexity Class coNP

A problem $X \in \text{coNP}$ iff $\overline{X} \in \text{NP}$.

Open Question

Does NP = coNP?

NP

Complexity Class coNP

A problem $X \in \text{coNP}$ iff $\overline{X} \in \text{NP}$.

Open Question

Does NP = coNP?

Theorem 15

If NP \neq coNP, *then* P \neq NP.

NP

coNP

Complexity Class coNP

A problem $X \in \text{coNP}$ iff $\overline{X} \in \text{NP}$.

Open Question

Does NP = coNP?

Theorem 15

If NP \neq coNP, *then* P \neq NP.

Proof.

Contra-positive: Prove it!

coNP

Complexity Class coNP

A problem $X \in \text{coNP}$ iff $\overline{X} \in \text{NP}$.

Open Question

Does NP = coNP?

Theorem 15

If NP \neq coNP, *then* P \neq NP.

Proof.

Contra-positive: Assume P = NP:

• $X \in NP \rightarrow X \in P \rightarrow \overline{X} \in P \rightarrow \overline{X} \in NP \rightarrow X \in coNP$.

coNP

Complexity Class coNP

A problem $X \in \text{coNP}$ iff $\overline{X} \in \text{NP}$.

Open Question

Does NP = coNP?

Theorem 15

If NP \neq coNP, *then* P \neq NP.

Proof.

Contra-positive: Assume P = NP:

- $X \in NP \to X \in P \to \overline{X} \in P \to \overline{X} \in NP \to X \in coNP$.
- $X \in \text{coNP} \rightarrow \overline{X} \in \text{NP} \rightarrow \overline{X} \in \text{P} \rightarrow X \in \text{P} \rightarrow X \in \text{NP}.$

Complexity Class coNP

A problem $X \in \text{coNP}$ iff $\overline{X} \in \text{NP}$.

Open Question

Does NP = coNP?

Theorem 15

If NP \neq coNP, *then* P \neq NP.

Open Question

Does $P = NP \cap coNP$?

coNP PSPACE

PSPACE

coNP PSPACE

Beyond Time

Complexity Class PSPACE

Set of all problems that can be solved using polynomial space.

coNP PSPACE

Beyond Time

Complexity Class PSPACE

Set of all problems that can be solved using polynomial space.

Theorem 16

 $P \subseteq PSPACE$

coNP PSPACE

Beyond Time

Complexity Class PSPACE

Set of all problems that can be solved using polynomial space.

Theorem 16

 $P \subseteq PSPACE$

Theorem 17

 $NP \subseteq PSPACE$

coNP PSPACE

Beyond Time

Complexity Class PSPACE

Set of all problems that can be solved using polynomial space.

Theorem 16

 $P \subseteq PSPACE$

Theorem 17

 $NP \subseteq PSPACE$

- For 3SAT, a bit vector can encode an assignment.
- We can try all bit vectors with one *n*-length vector in memory:
 - Start with 0 until 2^{*n*} 1, adding 1 at each iteration.

coNP PSPACE

Beyond Time

Complexity Class PSPACE

Set of all problems that can be solved using polynomial space.

Theorem 16

 $P \subseteq PSPACE$

Theorem 17

 $NP \subseteq PSPACE$

- For 3SAT, a bit vector can encode an assignment.
- We can try all bit vectors with one *n*-length vector in memory:
 - Start with 0 until 2^{*n*} 1, adding 1 at each iteration.
- Since 3SAT \in PSPACE and is NP-complete, for any $Y \in$ NP, $Y \leq_p$ 3SAT and solve in PSPACE.

Taxonomy

coNP PSPACE

PROTOTYPICAL PSPACE PROBLEM

Let $\Phi(x_1, ..., x_n)$ be a conjunction of k disjunction of n variables (like SAT).

PROTOTYPICAL PSPACE PROBLEM

Let $\Phi(x_1, ..., x_n)$ be a conjunction of *k* disjunction of *n* variables (like SAT).

Quantified SAT

- $\exists x_1 \forall x_2 \exists x_3 \cdots Q_n x_n \Phi(x_1, \dots, x_n)$ (Prenex normal form).
- Contingency planning.

PROTOTYPICAL PSPACE PROBLEM

Let $\Phi(x_1, ..., x_n)$ be a conjunction of *k* disjunction of *n* variables (like SAT).

Quantified SAT

- $\exists x_1 \forall x_2 \exists x_3 \cdots Q_n x_n \Phi(x_1, \dots, x_n)$ (Prenex normal form).
- Contingency planning.

Theorem 18

QSAT is PSPACE-complete.

Appendix

References

Image Sources I

https://en.wikipedia.org/wiki/Leonid_Levin

https://en.wikipedia.org/wiki/Stephen_Cook

//en.wikipedia.org/wiki/Graph_coloring

https://en.wikipedia.org/wiki/ NP-completeness#/media/File: P_np_np-complete_np-hard.svg

ONSIN https://brand.wisc.edu/web/logos/