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@ Problems that can be solved by efficient algorithms.
@ Polynomial running time.

e Complexity class: P

Hard Problems
@ Problems for which we do not know how to solve
efficiently.
@ NP-hard

@ NP-complete
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DecisioN PROBLEM

Optimization:

Bipartite Matching

Given a bipartite graph G,
find the largest matching.
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Optimization: Decision:
Bipartite Matching Bipartite Matching
—
Given a bipartite graph G, Given a bipartite graph G, is
find the largest matching. there a matching of size > k?

Optimization to Decision

@ Solve the optimization version.

o If the solution of size > k, return yes.
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' ' ' Bipartite Matchi
Bipartite Matching — ipartite Matching
Given a bipartite graph G, Given a bipartite graph G, is
find the largest matching. there a matching of size > k?
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e Upper bound on maximum matching is N = min(|A|,|B]).
@ For k = N to 0, return first k that returns yes.
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DecisioN PROBLEM

Optimization: Decision:
' ' ' Bipartite Matchi
Bipartite Matching — ipartite Matching
Given a bipartite graph G, Given a bipartite graph G, is
find the largest matching. there a matching of size > k?

Decision to Optimization

e Upper bound on maximum matching is N = min(|A|,|B]).

@ For k = N to 0, return first k that returns yes.
(Or, binary search between [0, N].)
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Problem Reduction: Y <, X

e Consider any instance of problem Y.

@ Assume we have a black-box solver for problem X.
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Y is polynomial-time reducible to X

Suppose Y <, X. If X is solvable in polynomial time, then Y can
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PorynomMiAL-TIME REpucTION
Problem Reduction: Y < X

e Consider any instance of problem Y.

@ Assume we have a black-box solver for problem X.

e Efficiently transform an instance of problem Y into a
polynomial number of instances of X that we solve
(black-box solver) for problem X and aggregate efficiently
to solve Y.

A\

Y is polynomial-time reducible to X

Suppose Y <, X. If X is solvable in polynomial time, then Y can
be solved in polynomial time.

.

X is atleastashard as Y

Suppose Y <, X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.
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INDEPENDENT SET < VERTEX COVER

Given a graph G and a number k.

Independent Set (IS) Vertex Cover (VC)

@ Does G contain an IS of @ Does G contain a vertex
size > k? cover of size < k?

@ Sc Visindependent if e S c V is vertex cover if
no 2 nodes in S are every edge is incident
adjacent. to at least 1 node in S.
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adjacent.
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@ Does G contain a vertex
cover of size < k?

@ S c V is vertex cover if

every edge is incident
to at least 1 node in S.

@What is size of the largest
independent set?
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Given a graph G and a number k.
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Given a graph G and a number k.

Independent Set (IS) Vertex Cover (VC)

@ Does G contain an IS of @ Does G contain a vertex
size > k? cover of size < k?

@ Sc Visindependent if e S c V is vertex cover if
no 2 nodes in S are every edge is incident
adjacent. to at least 1 node in S.

Let G = (V,E) be a graph. Then S is an independent set if and only if

its complement V \ S is a vertex cover.
V.

=: Suppose S is an IS. For any edge (u,v), at most one of
{u,v} € S. Hence, one of {u,v} e V\S.
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INDEPENDENT SET <= VERTEX COVER
Given a graph G and a number k.

Independent Set (IS) Vertex Cover (VC)

@ Does G contain an IS of @ Does G contain a vertex
size > k? cover of size < k?

@ Sc Visindependent if e S c V is vertex cover if
no 2 nodes in S are every edge is incident
adjacent. to at least 1 node in S.

Let G = (V,E) be a graph. Then S is an independent set if and only if

its complement V \ S is a vertex cover.
V.

«<: Suppose V \ Sisa VC. Any edge (u,v) with both € S would
contradict that V \ Sisa VC. O
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PackiNG AND COVERING PROBLEMS

Packing Problem Covering Problem

Independent Set Vertex Cover
@ Goal is to pack as many @ Goal is to cover all the
vertices as possible edges in the graph
without violating edge using as few vertices as
constraints. possible.
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Set Cover (SC)

Problem Definition

@ A universe U of n
elements.

@ A collection of subsets of
U: $1,S5,...,54.
@ A number k.

@ Goal: Does there exist a
collection of at most k of
the subsets whose unions
equal U.
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Repuction: VErTEX Cover (VC) to SET CovERr (SC)

VC <, SC

e &: For the proof, do we assume a VC or a SC black-box?
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VC <, SC

@ Assume that we have a black-box solver for SC.
e Consider an arbitrary instance of VC on G = (V,E).

e SetU =E.
e For each vertexv e V:
Create a set consisting of each edge incident to v.
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@ Assume that we have a black-box solver for SC.

e Consider an arbitrary instance of VC on G = (V,E).
e SetU =E.
e For each vertex v e V:
Create a set consisting of each edge incident to v.
@ Direct correspondence between VC and SC.
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Set PackinG (SP)

Problem Definition

@ A universe U of n
elements.

@ A collection of subsets of
u: 51,52,. ..,Sm.
@ A number k.

@ Goal: Does there exist a
collection of at least k of the
subsets that don’t intersect. |
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Set PackinG (SP)

Problem Definition

@ A universe U of n
elements.

@ A collection of subsets of
u: 51,52,. ..,Sm.
@ A number k.

@ Goal: Does there exist a
collection of at least k of the
subsets that don’t intersect. |

Exercise: Show that IS <, SP
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@ A set of boolean terms/literals: X : x1,...,x.
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SATISFIABILITY PROBLEM (SAT)
@: What values will satisfy the example?

(x1vR) A (T V) A (X2 VE3)

Preliminaries
o A set of boolean terms/literals: X : x1,...,x.

e For a given variable x;, x; is the assigned value and X; is the
negation of the assigned value.

@ A clause C; is a disjunction of (distinct) terms, e.g.,

(x1 V7).

Length of C; is the # of terms in C;.

A collection/conjunction of k clauses: C: C; A Co A+ A C.

Truth assignment function v : X — {0, 1}, assigns values to
the terms and returns the conjunction of the clauses.

v is a satisfying assignment if C is 1, i.e., all C; evaluate to 1.

v
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SAT Problem
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C: C1 A Cy A+ A Cy, does there exist a satisfying assignment?
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THREE SATIFIABILITY (3SAT)

3SAT Problem

Given a set of literals: X : x1,...,x,, and a collection of clauses
C : C1 ACy A+ ACy, each of length 3, does there exist a satisfying
assignment?

Gadgets

Gadgets are often used to show Y <, X.

@ A subset of problem X that represents a component of
problem Y.

@ A procedure to convert some of the components of Y to a
piece of problem X.

.
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3SAT 1o INpEPENDENT SET (IS)

Theorem 4
3SAT <, IS
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3SAT 1o INpEPENDENT SET (IS)
Theorem 4
3SAT <, IS
@ Assume we have a black-box solver for IS.

@ Transfer any 3SAT to IS:
o Clause gadget: k3 graph

Conflict

Conflict

Conflict

o Add an edge between v;; = x; and all v;/j = X;.

V.
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@ IS of size > k —= 3SAT is satisfiable.

v
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Conflict

Conflict

Conflict

@ IS of size > k <= 3SAT is satisfiable.
e Each node in IS represents a 1 assignment.

v
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@ IS of size > k —= 3SAT is satisfiable.

e Each node in IS represents a 1 assignment.
e Within each gadget, only 1 node can be in IS.
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3SAT 1o INpEPENDENT SET (IS)
Theorem 4
3SAT <, IS

Conflict

Conflict

Conflict

@ IS of size > k <= 3SAT is satisfiable.
e Each node in IS represents a 1 assignment.
e Within each gadget, only 1 node can be in IS.
o Conflict edges prevent x; and X; both being assigned 1.

v
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TraNsITIVITY OF REDUCTIONS

Observation 1
IfZ<,Y,and Y <, X, then Z <, X.

So,
35AT <, IS <, VC <, SC
and
35AT <, IS <, SP
and

VC <, 1S <, SP.
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ErriciENT CERTIFICATION

Input Formalization

For a problem instance:
@ Let s be a binary string that encodes the input.
@ |s| is the length of s, i.e., the # of bits in s.
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ErriciENT CERTIFICATION

Input Formalization

For a problem instance:
@ Let s be a binary string that encodes the input.
@ |s| is the length of s, i.e., the # of bits in s.

.

Polynomial Run-Time

Algorithm A has a polynomial run-time if run-time is
O(poly(|s|)) in the worst-case, where poly(-) is a polynomial
function.

.

Complexity class P

P is the set of all problems for which there exists an algorithm A
that solves the problem with polynomial run-time.

V
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Efficient Certification

Certifier B(s,t) for a problem P:
@ s is an input instance of P.

e fis a certificate; a proof that s is a yes-instance.
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ErriciENT CERTIFICATION

Efficient Certification

Certifier B(s,t) for a problem P:
@ s is an input instance of P.

e fis a certificate; a proof that s is a yes-instance.
e Efficient:
e For every s, we have s € P iff there exists a ¢, |t| < poly(]s]),
for which B(s, t) returns yes.
o In other words, using t, we can check if s is a yes-instance in
polynomial time.
@ B(s,t) returning no does not mean that s is a no-instance...
only that ¢ is not a valid proof.

e B(s,t) provides a brute-force algorithm: For a given s,
check every possible ¢.

14/43



NTRACTABILITY REDUCTIONS NP NP*AH'HHH AXONOMY PSP[\CE

NP ProBLEMS

Complexity Class NP

@ Non-deterministic, Polynomial time: can be solved in
polynomial time by testing every ¢ simultaneously
(non-deterministic).

@ Set of all problems for which there exists an efficient
certifier.
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NP ProBLEMS

Complexity Class NP

@ Non-deterministic, Polynomial time: can be solved in
polynomial time by testing every ¢ simultaneously
(non-deterministic).

@ Set of all problems for which there exists an efficient
certifier.

e For every p € P, 3 an algorithm A that runs in polynomial
time.

@ B(s,t) for any f returns A(s).
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NP-Complete

Problem X is NP-Complete if:
@ Forall Y eNP, Y <, X.
e X isin NP.

.

Theorem 6

Suppose X € NP-Complete. Then, X is solvable in polynomial time iff
P = NP.

4

<: Suppose P = NP, then by definition of P, X can be solved in
polynomial time.

.

19/43



[NTRACTABILITY REDUCTIONS NP-comprere AXONOMY coNP PSPACE

HarDEsT NP PROBLEMS

Problem X is NP-Complete if:
@ Forall Y eNP, Y <, X.
@ X isin NP.

.

Theorem 6

Suppose X € NP-Complete. Then, X is solvable in polynomial time iff
P =NP.

A

=: Suppose X can be solved in polynomial time. Then, by
definition of NP-Complete, all problems € NP <, X. Hence,
solvable in polynomial time and € P. O

4
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Theorem 6

Cook (1971) — Levin (1973) Theorem [ Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Leonid Levin
Stephen Cook (2010)

(1968)
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Circurr SatisriABILITY ProBLEM (CSAT)

Problem Definition

@ 3 types of gates: A (AND),
v (OR), and - (NOT).
o Circuit k:
o A DAG (nodes have 0, 1,
or 2 incoming edges).
e Source: Nodes with no
incoming edges; may
have a preset binary

® ) ) value.
&): What is the output with o Every other node is

an input of (1,0,0)? labelled with a gate.
e Output: Result of the
node with no outgoing
edges.

Output:

Inputs:
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Problem Definition

@ 3 types of gates: A (AND),
v (OR), and - (NOT).
o Circuit k:

o A DAG (nodes have 0, 1,
or 2 incoming edges).

e Source: Nodes with no
incoming edges; may
have a preset binary

o~ ) value.
®: Givean input that o Every other node is
satisfies the example. labelled with a gate.
e Output: Result of the
node with no outgoing
edges.

Output:

Inputs:
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[NTRACTABILITY REDUCTIONS NP-comprere AXONOMY coNP PSPACE

First NP-CoMPLETE PROBLEM

Theorem 6

Cook (1971) — Levin (1973) Theorem [ Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

.

Partial Proof.

© Show that CSAT € NP:
o Input size is Q(|V]).
e A single gate can be evaluated in constant time.

e Evaluate a certificate of the inputs can be verified in O(|V|)
time.

.
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Partial Proof.
@ Show that CSAT € NP:

@ Reduce every problem € NP to CSAT:

o Consider an arbitrary problem X € NP.
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First NP-CoMPLETE PROBLEM

Theorem 6

Cook (1971) — Levin (1973) Theorem [ Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

.

Partial Proof.
@ Show that CSAT € NP:

@ Reduce every problem € NP to CSAT:

o Consider an arbitrary problem X € NP.
e We need to show X <, CSAT.
e By definition for X:

@ X has an input of |s| bits.

@ Produces 1 bit of output (yes/no).

o Jan efficient certifier Bx (-, -).

.
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Theorem 6

Cook (1971) — Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
@ Show that CSAT € NP:

@ Reduce every problem € NP to CSAT:

o Consider an arbitrary problem X € NP.
o Reduction to CSAT:

@ Output is 1 when X is yes; otherwise 0.
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Partial Proof.
@ Show that CSAT € NP:

@ Reduce every problem € NP to CSAT:

o Consider an arbitrary problem X € NP.
o Reduction to CSAT:
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@ Sources: |s| + |t| = n + poly(n) bits.
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Cook (1971) — Levin (1973) Theorem [Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
@ Show that CSAT € NP:

@ Reduce every problem € NP to CSAT:
o Consider an arbitrary problem X € NP.
e Reduction to CSAT:
@ Output is 1 when X is yes; otherwise 0.
@ Sources: |s| + |t| = n + poly(n) bits.
o The first n bits are hard-coded to the X instance input.
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Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
@ Show that CSAT € NP:

@ Reduce every problem € NP to CSAT:

o Consider an arbitrary problem X € NP.
o Reduction to CSAT:

@ Output is 1 when X is yes; otherwise 0.

Sources: [s| + || = n + poly(n) bits.

The first n bits are hard-coded to the X instance input.
The poly (1) bits are free and used to find a f such that
Bx (s, t) is yes.
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First NP-CoMPLETE PROBLEM

Theorem 6

Cook (1971) — Levin (1973) Theorem [ Paraphrase]: Circuit
Satisfiability Problem (CSAT) is NP-Complete.

Partial Proof.
@ Show that CSAT € NP:

@ Reduce every problem € NP to CSAT:

o Consider an arbitrary problem X € NP.
e Reduction to CSAT:
@ Output is 1 when X is yes; otherwise 0.
Sources: [s| + || = n + poly (n) bits.
The first n bits are hard-coded to the X instance input.
The poly (1) bits are free and used to find a f such that
Bx (s, t) is yes.
The gates of the circuit are a translation of algorithm Bx.

O

4
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ExampLE: INDEPENDENT SET (k > 2) As Circurr
SATISFIABILITY PROBLEM.

©: Draw the underlying Independent Set graph.
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STRATEGIES FOR PROVING NP-COMPLETENESS

Showing that Problem X is NP-Complete

Cook Reduction:
© Prove that X € NP.
@ Choose a problem Y € NP-Complete.
@ Prove Y <, X.

Typical Step 3

@ Karp Reduction: For an arbitrary instance sy of Y, show
how to construct, in polynomial time, an instance sx of X
such that s, is a yes iff s, is a yes.

Steps:
@ Provide efficient reduction.
@ Prove = if sy is a yes, sx is a yes.
@ Prove «<: if sx is a yes, then sy had to have been a yes.
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3SAT 1s NP-COMPLETE

3SAT is NP-Complete. \

Exercise: Do step 1.

Show that Problem 3SAT is NP-Complete

Cook Reduction:

© Prove that 3SAT e NP.
@ Choose a problem Y € NP-Complete.
@ Prove Y <, 35AT.
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© Use a truth assignment of the literals as a certificate. This
can be verified in polynomial time.
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3SAT 1s NP-COMPLETE

3SAT is NP-Complete.

Show that Problem 3SAT is NP-Complete

Cook Reduction:
© Prove that 35AT € NP.
@ Choose a problem Y € NP-Complete.
© Prove Y <, 35AT.

V

© Use a truth assignment of the literals as a certificate. This
can be verified in polynomial time.

@ The only NP-Complete problem we know is CSAT.
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@ For an arbitrary circuit k:

e Eachnode v is assigned a variable x,.
e For each gate:
@ NOT: Let u be the input. We need x,, = X5.
— 2 clauses: (X, V Xu) A (X0 V Xi).
@ OR: Let u, w be the inputs. We need x, = x V x4.
— 3 clauses: (X0 VXu) A (X0 VX) A (G V Xy V Xp).
o AND: Let u, w be the inputs. We need x, = x; A x.
— 3 clauses: (X Vv xu) A (X0 V Xw) A (X0 VX V Xep).

e For each constant source s:
— 1 clause: (x;) if 1, and (%) if 0.
e For the output o: 1 clause (x,).
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3SAT 1s NP-COMPLETE

@ For an arbitrary circuit k:

e Each node v is assigned a variable x,.
e For each gate:
o NOT: Let u be the input. We need x,, = X5.
— 2 clauses: (% Vv xu) A (X V Xi).
@ OR: Let u, w be the inputs. We need x, = x; V Xy.
— 3 clauses: (X, VX) A (X0 VX)) A (X0 V Xy V Xi0).
o AND: Let u, w be the inputs. We need x, = x; A xy.
— 3 clauses: (X Vv xu) A (X0 VX)) A (X0 VX V Xep).

For each constant source s:
— 1 clause: (x;) if 1, and (%) if 0.
For the output o: 1 clause (x,).
Convert clauses to length 3:
@ We need 2 variables z; and z; that are always 0 in a satisfying
assignment.
o To ensure this, we need 4 variables: z1, 22, z3, 4.
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3SAT 1s NP-COMPLETE

@ For an arbitrary circuit k:

e Each node v is assigned a variable x,.
e For each gate:
o NOT: Let u be the input. We need x,, = X5.
— 2 clauses: (X, V x,) A (X0 V Xi).
@ OR: Let u, w be the inputs. We need x, = x; V Xy.
— 3 clauses: (%o VXu) A (X0 VX)) A (X V Xy V Xp).
o AND: Let u, w be the inputs. We need x, = x,, A x.
— 3 clauses: (o Vv xu) A (X V Xw) A (X0 VI V Xp).
For each constant source s:
— 1 clause: (x;) if 1, and (%) if 0.
For the output o: 1 clause (x,).
Convert clauses to length 3:
o 4 variables: z1,25,23,24, and 8 clauses fori € {1,2}:
Zivzasvz) A (Zivzavz) A (ZivzavZa) A(ZiVZE VZs).
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3SAT 1s NP-COMPLETE

@ scsar is a yes iff s3saT is a yes:

o =: If scsar is a yes, then the satisfying assignment to the
circuit inputs can be used to calculate the value of each
gate. By the reduction, these value will satisfy all the
clauses of s3gaT.

o < If s3sa7 is a yes, then the assignment of the variables give
the satisfying assignment of the circuit inputs, and the
reduction guarantees that the assigned values for the nodes
match the gate calculations.

O]

25/43



[NTRACTABILITY REDUCTIONS NP-comprere ONOMY coNP PSPACE

3SAT 1s NP-COMPLETE

From our previous reductions
35AT <, IS <, VC <, SC

and
3SAT <, IS <, SP

and the fact that 3SAT is NP-Complete:

The following problems are NP-Complete:

35AT, IS, VC,SC,SP .
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NTRACTABILITY REDUCTIONS NP NP-comrren TAxoNomY coNP PSPACE

SEQUENCING PROBLEMS

Travelling Salesperson
Problem (TSP)
@ A salesperson must visit
cities vy, 0y, . .., Uy.

e Starting at some vy, visit all
cities and return to v;.

e Distance function: d(-,-)
for all pairs of cities (not
necessarily symmetric nor
metric).

e Optimization: What is the
shortest tour?
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SEQUENCING PROBLEMS

Travelling Salesperson
Problem (TSP)
@ A salesperson must visit n
cities v1, 02, ..., Uy.

@ Starting at some vy, visit all
cities and return to v;.

e Distance function: d(-,-)
for all pairs of cities (not
necessarily symmetric nor
metric).

@ Decision: Is there a tour of
length D?
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Problem (TSP)

@ A salesperson must visit n
cities 01,03, . . ., Up. Hamiltonian Cycle

e Starting at some vy, visit all e Graph analogue of TSP.
cities and return to v;. e Hamiltonian cycle: a tour

e Distance function: d(-,-) of the nodes of G that visits
for all pairs of cities (not each node once.
necessarily symmetric nor o Given a digraph G, does it
metric). ) contain a Hamiltonian

cycle?
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SEQUENCING PROBLEMS

@: Does this

raph contain a
Travelling Salesperson &b

Hamiltonian
Problem (TSP) cycle?
@ A salesperson must visit n
cities 01,03, . . ., Up. Hamiltonian Cycle
e Starting at some vy, visit all e Graph analogue of TSP.
cities and return to v;. e Hamiltonian cycle: a tour
e Distance function: d(-,-) of the nodes of G that visits
for all pairs of cities (not each node once.
necessarily symmetric nor o Given a digraph G, does it
metric). ) contain a Hamiltonian
cycle?
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NP-comrren TAxoNomY coNP PSPACE

3SAT <p Hamiltonian

Theorem 8
Hamiltonian Cycle is NP-complete.

@ In NP: A certificate would be a sequence of vertices which
can be verified in polynomial time.

@ Choose an NP-complete problem: 3SAT.
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3SAT <p Hamiltonian

Theorem 8
Hamiltonian Cycle is NP-complete.

/j(Q\

@ 35AT <, Hamiltonian:

e P; (containing
3k + 2 nodes)
for each X;: left
traversal for 1
and right
traversal for 0.

V.
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3SAT <p Hamiltonian

Theorem 8
Hamiltonian Cycle is NP-complete.

@ 35AT <, Hamiltonian;

Py

o C; for each

clause i: P,
Connect based
on Xx; or Xxj.
...................... P,
Yy
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INTRACTABILITY REDUCTIONS NP NP« OMPLETE TaxoNOMY

3SAT <p Hamiltonian

Theorem 8
Hamiltonian Cycle is NP-complete.

© s3saT is a yes iff Spamiltonian 1S @ yes:

e =: If s3sa7 is a yes, then each clause node can be visited
from one of the paths corresponding to one of the variables
when the path is traversed in the direction of the satisfying
assignment.

o < If spamiltonian 1S @ yes, then every clause node is visited,
and the direction of each path traversal gives a value
assignment for the corresponding variable in s3sat. The
reduction guarantees that value assignment for a variable
the path used to traverse the clause node will be the
assignment of a variable that satisfies the corresponding
clause.
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Theorem 9
Travelling Salesperson (TSP) is NP-complete.
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@ In NP: Certificate that is a tour of the cities.
@ DWhich NP-complete problem?
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TRAVELLING SALESPERSON

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

@ In NP: Certificate that is a tour of the cities.
@ Use Hamiltonian Cycle.

@ Hamiltonian Cycle <, TSP:
Exo: Try to come up with the reduction.

.
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TRAVELLING SALESPERSON

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

@ In NP: Certificate that is a tour of the cities.
@ Use Hamiltonian Cycle.
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@ In NP: Certificate that is a tour of the cities.
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e For each v, make a city.
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Theorem 9
Travelling Salesperson (TSP) is NP-complete.

@ In NP: Certificate that is a tour of the cities.
@ Use Hamiltonian Cycle.

@ Hamiltonian Cycle <, TSP:
Given a graph G = (V,E):
e For each v, make a city.
e For each edge (u,v) € E, define d(u,v) = 1.
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@ Use Hamiltonian Cycle.
@ Hamiltonian Cycle <, TSP:
Given a graph G = (V,E):
e For each v, make a city.
e For each edge (u,v) € E, define d(u,v) = 1.
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TRAVELLING SALESPERSON

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

@ In NP: Certificate that is a tour of the cities.
@ Use Hamiltonian Cycle.
@ Hamiltonian Cycle <, TSP:

Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) € E, define d(u,v) = 1.
For each pair (u,v) ¢ E, define d(u,v) = 2.
Set the tour bound to be 7.
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TRAVELLING SALESPERSON

Theorem 9
Travelling Salesperson (TSP) is NP-complete.

@ In NP: Certificate that is a tour of the cities.
@ Use Hamiltonian Cycle.

@ Hamiltonian Cycle <, TSP:
Given a graph G = (V,E):
For each v, make a city.
For each edge (u,v) € E, define d(u,v) = 1.
For each pair (#,v) ¢ E, define d(u,v) = 2.
Set the tour bound to be 7.
= With a Hamiltonian Cycle in G, the shortest tour will be
length n.

N
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TRAVELLING SALESPERSON

Theorem 9

Travelling Salesperson (TSP) is NP-complete.

@ In NP: Certificate that is a tour of the cities.
@ Use Hamiltonian Cycle.

© Hamiltonian Cycle <, TSP:
Given a graph G = (V,E):

For each v, make a city.

For each edge (u,v) € E, define d(u,v) = 1.

For each pair (#,v) ¢ E, define d(u,v) = 2.

Set the tour bound to be n.

< If the shortest tour is length 7, then no d(u,v) = 2 is used,
so only edges from the graph are used implying a
Hamiltonian cycle in G.
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Exercise: SHow THAT HAMILTONIAN PATH 18
NP-coOMPLETE

Hamiltonian Path

e A simple path in a digraph G that contains all nodes.

@ Another sequencing problem.
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Exercise: SHow THAT HAMILTONIAN PATH 18
NP-coOMPLETE

Theorem 10
Hamiltonian Path is NP-complete

@ In NP: Certificate is a path in G which can be verified in
polynomial time.

@ NP-complete problem: Hamiltonian Cycle.
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@ Hamiltonian Cycle <, Hamiltonian Path:
For G = (V,E) create G’
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Theorem 10
Hamiltonian Path is NP-complete

@ Hamiltonian Cycle <, Hamiltonian Path:
For G = (V,E) create G’
e Choose an arbitrary v e V: V' =V~ {v} u{v',0"}.
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Exercise: SHow THAT HAMILTONIAN PATH 18
NP-coOMPLETE

Theorem 10
Hamiltonian Path is NP-complete

@ Hamiltonian Cycle <, Hamiltonian Path:
For G = (V,E) create G’
e Choose an arbitrary v e V: V' =V~ {v} u{v',0"}.
o Initialize E' = E:
e For each edge (v,w) € E: E' \ {(v,w)} u {(v',w)}.
o For each edge (u,v) € E: E' ~ {(u,v)} u {(u,v")}.
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Exercise: SHow THAT HAMILTONIAN PATH 18
NP-coOMPLETE

Theorem 10
Hamiltonian Path is NP-complete

@ Hamiltonian Cycle <, Hamiltonian Path:
For G = (V,E) create G’
e Choose an arbitrary v e V: V' =V~ {v} u{v',0"}.
o Initialize E’ = E:
e For each edge (v,w) € E: E' \ {(v,w)} u {(v',w)}.
o For each edge (u,v) € E: E' ~ {(u,v)} u {(u,v")}.
o A path v’ — v" means Hamiltonian Cycle.

A\
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PARTITIONING PROBLEMS

3-D Matching

e Given 3 disjoint sets: X, Y, Z (each of size n).
@ Asetof m>ntreblesT c X xY x Z.

@ Does there exist a set of n trebles from T so that each item
is in exactly one of these trebles?
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3-D Matching is NP-Complete. \
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3-D Matching is NP-Complete. \

@ In NP: Certificate is a set of trebles which can be verified in
polynomial time.

@ DWhich NP-complete problem?
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3-D MaAtcHING 1s NP-CoMPLETE

3-D Matching is NP-Complete. \

@ In NP: Certificate is a set of trebles which can be verified in
polynomial time.

@ Use 3SAT.
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3-D MaAtcHING 1s NP-CoMPLETE

3-D Matching is NP-Complete.

@ 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:
e Variable x; gadget:

o Core:
Ai=A{d, ... dy}. O

o Tips: Ol 1O
Bi={bi,... by} @) @)

° tJI: = (‘111:7a11:+17b;) for Coreet Q9 \
j=1,2,...,2k (add O/ Tips
mod 2k).
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3-D MaAtcHING 1s NP-CoMPLETE

3-D Matching is NP-Complete.

@ 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:
o Clause C; gadget:
e Add P; = {p;,p/} w1th trebles (p],p]{, bh;_y) if x; and (pj, v}, by)

if X;.
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3-D Matching is NP-Complete.

© 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:

e Counting cores: covered by even/odd choice.
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3-D Matching is NP-Complete.

© 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:

e Counting cores: covered by even/odd choice.
o Counting tips: n2k

e Even/odd tips cover nk.
o Clauses cover k.
@ (n-1)k uncovered.
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3-D MaAtcHING 1s NP-CoMPLETE

3-D Matching is NP-Complete.

© 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:

e Counting cores: covered by even/odd choice.
o Counting tips: n2k

e Even/odd tips cover nk.
o Clauses cover k.
@ (n-1)k uncovered.

e (n-1)k clean-up gadgets:
o Qi ={q:,q;} with treble (g:,4;,b) for every tip b.
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3-D MaAtcHING 1s NP-CoMPLETE

3-D Matching is NP-Complete.

© 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:

e Counting cores: covered by even/odd choice.
o Counting tips: n2k

e Even/odd tips cover nk.
o Clauses cover k.
@ (n-1)k uncovered.

e (n-1)k clean-up gadgets:
o Qi ={q:,q;} with treble (g:,4;,b) for every tip b.
o What are the 3 sets? ‘ ‘
X =) even U AP UAGi3Y = {4) oaa} U {P]} G132 = (b))
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3-D MaAtcHING 1s NP-CoMPLETE

3-D Matching is NP-Complete.

@ 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:

e = For a yes 35AT, there is a matching that takes the
even/odd tip trebles, leaving at least one tip as part of each
clause gadget treble. The remaining unmatched tips are
match to a clean-up gadget.
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3-D MaAtcHING 1s NP-CoMPLETE

3-D Matching is NP-Complete.

@ 35AT <, 3-D Matching:
Consider an arbitrary 3SAT:

e = For a yes 35AT, there is a matching that takes the
even/odd tip trebles, leaving at least one tip as part of each
clause gadget treble. The remaining unmatched tips are
match to a clean-up gadget.

e < A yes for 3-D Matching from the reduction means that
each clause gadget is part of a selected treble, each variable
gadget has selected the odd or even tips, and the remaining
tips are matched to a clean-up gadget. Each clause will be
satisfied by the tip matched by the clause gadget. The
even/odd selection for each variable guarantees all
variables are assigned 1 or 0.
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GraPH COLOURING

Given a graph G and a bound k, does
G have a k-colouring?
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Given a graph G and a bound k, does
G have a k-colouring?

e Colouring of the nodes of a graph such that no adjacent
nodes have the same colour, using at most k colours.
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GraPH COLOURING

Given a graph G and a bound k, does
G have a k-colouring?

e Colouring of the nodes of a graph such that no adjacent
nodes have the same colour, using at most k colours.

e Labelling (partitioning) functionf : V - {1,...,k} such
that, for every (u,v) € E, f(u) #f(v).
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3-Colouring is NP-Complete. \
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3-Colouring is NP-Complete. \

© In NP: Certificate is a colouring of the nodes which can be
verified in polynomial time.

@ DWhich NP-complete problem?
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3-Colouring is NP-Complete. \

@ In NP: Certificate is a colouring of the nodes which can be
verified in polynomial time.

@ NP-complete problem: 3SAT.
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@ 35AT g, 3 Colouring:
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3-Colouring is NP-Complete.

@ 35AT g, 3 Colouring:

e For each literal: Nodes v; and 7;.
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3-CoLoURING 18 NP-COMPLETE

3-Colouring is NP-Complete.

@ 35AT g, 3 Colouring:

e For each literal: Nodes v; and 7;.

e Nodes T (true), F (false), and B (base).
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3-CoLoURING 18 NP-COMPLETE

3-Colouring is NP-Complete.

@ 35AT g, 3 Colouring:

e For each literal: Nodes v; and 7;.
e Nodes T (true), F (false), and B (base).
e Edges: (v;,7:),(vi,B),(7:,B).
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3-CoLoURING 18 NP-COMPLETE

3-Colouring is NP-Complete.

@ 35AT g, 3 Colouring:

e For each literal: Nodes v; and 7;.

e Nodes T (true), F (false), and B (base).
e Edges: (v;,7:),(vi, B),(7:, B).

e Edges: (T,F),(F,B),(T,B).
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3-CoLoURING 18 NP-COMPLETE

3-Colouring is NP-Complete.

@ 35AT g, 3 Colouring:
For each clause:

colored if one of v, U, or v

The top node can only be
3
does not get the False color.J
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NuMERICAL PROBLEMS

Subset Sum Problem

Given a set of n natural numbers {wy, ..., w,} and a target W, is
there a subset of the numbers that add up to W?
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NuMERICAL PROBLEMS

Subset Sum Problem

Given a set of n natural numbers {wy, ..., w,} and a target W, is
there a subset of the numbers that add up to W?

Dynamic Programming Approach

e We saw an O(nW) algorithm.
@ Pseudo-polynomial: W is unbounded, e.g., 2".
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Subset Sum is NP-Complete. \
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Subset Sum is NP-Complete. \

@ In NP: Certificate is a subset of the numbers which can be
verified in polynomial time.

@ DWhich NP-complete problem?
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SusseTr SuM 1s NP-COMPLETE

Subset Sum is NP-Complete. \

@ In NP: Certificate is a subset of the numbers which can be
verified in polynomial time.

@ NP-complete problem: 3-D Matching.
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SusseTr SuM 1s NP-COMPLETE

Subset Sum is NP-Complete. \

@ 3-D Matching <, Subset Sum: Exercise: Try it, but tough.
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SusseTr SuM 1s NP-COMPLETE

Subset Sum is NP-Complete.

@ 3-D Matching <, Subset Sum:

e 3-D Matching: Subsets can be viewed as length 37 bit
vectors with a 1 indicating that item is in the set.
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@ 3-D Matching <, Subset Sum:
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vectors with a 1 indicating that item is in the set.
e For each treble (i,],k) from X x Y x Z construct a wy:
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Subset Sum is NP-Complete.

@ 3-D Matching <, Subset Sum:

e 3-D Matching: Subsets can be viewed as length 37 bit
vectors with a 1 indicating that item is in the set.
e For each treble (i,],k) from X x Y x Z construct a wy:
o A digits with 1 ati, n +j, and 2n + k.
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Subset Sum is NP-Complete.

@ 3-D Matching <, Subset Sum:

e 3-D Matching: Subsets can be viewed as length 37 bit
vectors with a 1 indicating that item is in the set.
e For each treble (i,],k) from X x Y x Z construct a wy:
o A digits with 1 ati, n +j, and 2n + k.
e Forbased, w; = d=! + d"1=1 + g2r+k—1,
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SusseTr SuM 1s NP-COMPLETE

Subset Sum is NP-Complete.

@ 3-D Matching <, Subset Sum:

e 3-D Matching: Subsets can be viewed as length 37 bit
vectors with a 1 indicating that item is in the set.
e For each treble (i,],k) from X x Y x Z construct a wy:
o A digits with 1 ati, n +j, and 2n + k.
e Forbased, w; = d=! + d"1=1 + g2r+k—1,
@ Setbased = m + 1 to avoid addition carry overs.
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SusseTr SuM 1s NP-COMPLETE

Subset Sum is NP-Complete.

@ 3-D Matching <, Subset Sum:

e 3-D Matching: Subsets can be viewed as length 37 bit
vectors with a 1 indicating that item is in the set.
e For each treble (i,],k) from X x Y x Z construct a wy:
o A digits with 1 ati, n +j, and 2n + k.
e Forbased, w; = d=! + d"1=1 + g2r+k—1,
@ Setbased = m + 1 to avoid addition carry overs.

o Set W = £ (m +1)" which corresponds to have each item
exactly once.

O

o
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CONSTRAINT SATISFACTION PROBLEMS

Not All Equal 45AT (NAE 4SAT)

Given a 4SAT formula, is there an assignment to the literals
such that every clause contains at least one true term and at
least one false term.
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Theorem 14
NAE 4SAT is NP-Complete.
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Theorem 14
NAE 4SAT is NP-Complete.

@ In NP: Certificate is an assignment of values to the literals
which can be verified in polynomial time.
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NAE 4SAT 1s NP-CoOMPLETE

Theorem 14
NAE 4SAT is NP-Complete.

@ In NP: Certificate is an assignment of values to the literals
which can be verified in polynomial time.

@ NP-complete problem: 3SAT.
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Theorem 14
NAE 4SAT is NP-Complete.

© 35AT <, NAE 4SAT:
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NAE 4SAT 1s NP-CoOMPLETE

Theorem 14
NAE 4SAT is NP-Complete.

© 35AT <, NAE 4SAT:

e Add a literal v to every 3SAT clause of ® to create a
NEA - 4SAT formula @'.
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NAE 4SAT 1s NP-CoOMPLETE
Theorem 14
NAE 4SAT is NP-Complete.

© 35AT <, NAE 4SAT:

o Add a literal v to every 3SAT clause of ® to create a
NEA - 4SAT formula ®'.

Reduction correctness:
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© 35AT <, NAE 4SAT:

o Add a literal v to every 3SAT clause of ® to create a
NEA - 4SAT formula ®'.

Reduction correctness:

o =:If 3SAT @ is true, 3 an assignment where every clause in
® has > 1 true value. Set v = 0 and @’ is satisfied.
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NAE 4SAT 1s NP-CoOMPLETE
Theorem 14
NAE 4SAT is NP-Complete.

© 35AT <, NAE 4SAT:

o Add a literal v to every 3SAT clause of ® to create a
NEA - 4SAT formula ®'.
Reduction correctness:
o =:If 3SAT @ is true, 3 an assignment where every clause in

® has > 1 true value. Set v = 0 and @’ is satisfied.
o «: If NAE 4SAT is true:
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NAE 4SAT 1s NP-CoOMPLETE
Theorem 14
NAE 4SAT is NP-Complete.

© 3SAT <p NAE 4SAT:
o Add a literal v to every 3SAT clause of ® to create a
NEA - 4SAT formula ®’.
Reduction correctness:

o =:If 3SAT @ is true, 3 an assignment where every clause in
® has > 1 true value. Set v = 0 and @’ is satisfied.
o <: If NAE 4SAT is true:
e Case 1: v = 0. Each clause in ®' has at least 1 term that is not
v set to true = @ is satisfied.

37/43



INTRACTABILITY REDUCTIONS NP NP« OMPLETE TaxoNOMY

NAE 4SAT 1s NP-CoOMPLETE
Theorem 14
NAE 4SAT is NP-Complete.

© 35AT <, NAE 4SAT:

o Add a literal v to every 3SAT clause of ® to create a
NEA - 4SAT formula @’

Reduction correctness:

o =:If 3SAT @ is true, 3 an assignment where every clause in
® has > 1 true value. Set v = 0 and @’ is satisfied.
o <: If NAE 4SAT is true:
e Case 1: v = 0. Each clause in ®' has at least 1 term that is not
v set to true == @ is satisfied.
e Case 2: v = 1. Each clause in ®’ has at least 1 term that is not
v set to false = & is satisfied by the complement of the
assignment that satisfies ®’.
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TaxonomMmy o HARD PROBLEMS

Packing Problems

e Independent Set

@ Set Packing

e Clique (in discussion)

Covering Problems

@ Vertex Cover

@ Set Cover )

Sequencing Problems

e TSP
e Hamiltonian Cycle

o Hamiltonian Path

A
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TaxonomMmy o HARD PROBLEMS

Partitioning Problems
e 3-D Matching
@ Graph Colouring

.

Numerical Problems

@ Subset Sum

e Knapsack

Constraint Satisfaction Problems

e 3SAT
e CSAT
o NAE 4SAT

.

.
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AsyMMETRY OF NP

Efficient Certifier Asymmetry

Given an instance s of problem X:
e For any ¢, B(s,t) = yes implies yes-instance.

e For all t, B(s,t) = no implies no-instance.
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AsyMMETRY OF NP

Efficient Certifier Asymmetry

Given an instance s of problem X:
e For any ¢, B(s,t) = yes implies yes-instance.

e For all t, B(s,t) = no implies no-instance.

Complimentary Problem

For every problem X, there is a complementary problem X:
e For all inputs,se X iffs ¢ X.
@ Note that, if X € P, then X € P.
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Complexity Class coNP
A problem X € coNP iff X € NP.
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Complexity Class coNP
A problem X e coNP iff X € NP.

Open Question
Does NP = coNP?

If NP # coNP, then P # NP. \

Contra-positive: Prove it!
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coNP

Complexity Class coNP

A problem X € coNP iff X € NP.
Open Question

Does NP = coNP?

If NP # coNP, then P # NP.

Contra-positive: Assume P = NP:
@ XeNP—->XeP—>XeP—XeNP— X ecoNP.
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coNP

Complexity Class coNP

A problem X € coNP iff X € NP.
Open Question

Does NP = coNP?

If NP # coNP, then P # NP.

Contra-positive: Assume P = NP:
@ XeNP—>XeP—>XeP— XeNP— X e coNP.
@ XecoNP > XeNP > XeP—>XeP - XeNP.
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Complexity Class coNP
A problem X € coNP iff X € NP.

Open Question
Does NP = coNP?

If NP # coNP, then P # NP. \

Open Question
Does P = NP n coNP?
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Set of all problems that can be solved using polynomial space.
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BeyonD TIME
Complexity Class PSPACE

Set of all problems that can be solved using polynomial space.
Theorem 16
P ¢ PSPACE

NP ¢ PSPACE

e For 3SAT, a bit vector can encode an assignment.

@ We can try all bit vectors with one n-length vector in
memory:

e Start with 0 until 2" - 1, adding 1 at each iteration.
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BeyonD TIME
Complexity Class PSPACE

Set of all problems that can be solved using polynomial space.
Theorem 16
P ¢ PSPACE

NP ¢ PSPACE

e For 3SAT, a bit vector can encode an assignment.

@ We can try all bit vectors with one n-length vector in
memory:

e Start with 0 until 2" - 1, adding 1 at each iteration.

@ Since 3SAT € PSPACE and is NP-complete, for any Y € NP,
Y <, 3SAT and solve in PSPACE. ]
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Protoryricar PSPACE ProBLEM

Let ®(x1,...,x,) be a conjunction of k disjunction of n variables
(like SAT).

Quantified SAT

@ dx1VxpIxs--Qux, ®(x1,...,%,) (Prenex normal form).
e Contingency planning.

Theorem 18
QSAT is PSPACE-complete.
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