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Network Flow
Flow Problems

Flow Network / Transportation Networks: Connected
directed graph with water flowing / traffic moving
through it.
Edges have limited capacities.
Nodes act as switches directing the flow.
Many, many problems can be cast as flow problems.

Ford-Fulkerson Method (1956)

L R Ford Jr.
D. R. Fulkerson
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Basic Flow Network
Directed graph G = (V,E).
Each edge e has ce ≥ 0.
Source s ∈ V and sink t ∈ V.
Internal node V ∖ {s, t}.

Defining Flow

Flow starts at s and exits at t.
Flow function: f ∶ E→ R+; f (e) is the flow across edge e.
Flow Conditions:

i Capacity: For each e ∈ E, 0 ≤ f (e) ≤ ce.
ii Conservation: For each v ∈ V ∖ {s, t},

∑
e into v

f (e) = f in(v) = f out(v) = ∑
e out of v

f (e)

Flow value v(f ) = f out(s) = f in(t).
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Maximum-Flow Problem
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Max-Flow
Given a flow network G, what is the
maximum flow value, i.e., what is the
flow f that maximizes v(f )?

Alternate View: Min-Cut

A Cut: Partition of V into sets (A,B)with s ∈ A and t ∈ B.
Flow from s to t must cross the set A to B.
Cut capacity: c(A,B) = ∑e out of A ce
Minimum-cut of G: The cut (A∗,B∗) that minimizes
c(A∗,B∗) for G.
The min-cut and max-flow are the same value for any flow
network.
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Designing the Approach
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What is the max-flow value in the
example?
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Designing the Approach
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What is the min-cut value in the
example?
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Basic Greedy Approach
Initialize f (e) = 0 for all edges.
While there is a path from s to t with available capacity,
push flow equal to the minimum available capacity along
path.

We need a mechanism to reverse flow...

4/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Designing the Approach

t

u

s

v
10

10
30

20

20
t

u

s

v
10/0

10/0
30/20

20/20

20/20

Basic Greedy Approach
Initialize f (e) = 0 for all edges.
While there is a path from s to t with available capacity,
push flow equal to the minimum available capacity along
path.
We need a mechanism to reverse flow...

4/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Residual Graph
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Residual Graph
Given a flow network G and a flow f on G, we define the
residual graph Gf :

Same nodes as G.
For edge (u,v) in E:

Add edge (u,v)with capacity ce − f (e).
Add edge (v,u)with capacity f (e).
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Augmenting Path
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Augmenting Path
A simple directed path from s to t.
bottleneck(P,Gf ): Minimum residual capacity on
augmenting path P.
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Augmenting Path
A simple directed path from s to t.
bottleneck(P,Gf ): Minimum residual capacity on
augmenting path P.

List the nodes (separated by commas, i.e. s,u,t) of an
augmenting path in the example residual graph.
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Increasing the Flow along Augmenting Path
Push bottleneck(P,Gf ) = q along path P:

Pushing q along a directed edge in G, increase flow by q.
Pushing q in opposite directed of edge in G, decreases flow
by q.
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Refined Greedy Approach
Initialize f (e) = 0 for all edges.
While Gf contains an augmenting path P:

Update flow f by bottleneck(P,Gf ) along P.
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Analyzing the Algorithm
Constant Increase and Termination

Observation 1
If all capacities are integers,
then all f (e), residual
capacities, and v(f ) are
integers at every iteration.

Refined Greedy Approach
Initialize f (e) = 0 for all edges.
While Gf contains an augmenting
path P:

Update flow f by
bottleneck(P,Gf ) along P.
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Analyzing the Algorithm
Constant Increase and Termination

Observation 1
If all capacities are integers,
then all f (e), residual
capacities, and v(f ) are
integers at every iteration.

Refined Greedy Approach
Initialize f (e) = 0 for all edges.
While Gf contains an augmenting
path P:

Update flow f by
bottleneck(P,Gf ) along P.

What technique should we use to prove the observation?
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Lemma 1

v(f ′) > v(f ), where v(f ′) = v(f ) + bottleneck(P,Gf ) for an
augmenting path P in Gf .

Proof.
By definition of P, first edge of p is an out edge from s that we
increase by bottleneck(P,Gf ) = q. By the law of conservation,
this will give qmore flow.
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v(f ′) > v(f ), where v(f ′) = v(f ) + bottleneck(P,Gf ) for an
augmenting path P in Gf .

Theorem 2

Let C = ∑e out of s ce, the FF method terminates in at most C iterations.

Proof.
From Lemma 1, the flow strictly increases at each iteration.
Hence, the residual capacity out of s decreases by at least 1 at
each iteration.
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Analyzing the Algorithm
Runtime

Observation 2
Since G is connected,
m ≥ Dominating Factor?.

Refined Greedy Approach
Initialize f (e) = 0 for all edges.
While Gf contains an augmenting
path P:

Update flow f by
bottleneck(P,Gf ) along P.

9/39
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Suppose all capacities are integers. Then, runtime of O(mC).

Is this a polynomial bound?

No, it is pseudo-polynomial.
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Initialize f (e) = 0 for all edges.
While Gf contains an augmenting
path P:

Update flow f by
bottleneck(P,Gf ) along P.

Theorem 3
Suppose all capacities are integers. Then, runtime of O(mC).

Proof.
Theorem 2: termination happens in at most C iterations.
Work per iteration:

Overall: O(m)

1 Find an augmenting path: BFS or DFS: O(m + n) .
2 Update flow along path P: O(n).
3 Build new Gf : Time bound?
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Choosing Good Augmenting Paths

t

u

s

v
100

100
1

100

100

Idea
Choose paths with large
bottlenecks.

Let Gf (∆) be a residual graph
with edges of residual capacity
≥∆.

Scaled Version
Initialize f (e) = 0 for all edges.
Initialize∆ ∶=maxi (2i) such that 2i ≤maxe out of s(ce).
While∆ ≥ 1:

While Gf (∆) contains an augmenting path P:
Update flow f by bottleneck(P,Gf (∆)) along P.

Set ∆ ∶=∆/2.
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Analyzing the Scaled Version

Scaled Version
Initialize f (e) = 0 for all edges.
Initialize∆ ∶=maxi (2i) such that 2i ≤maxe out of s(ce).
While∆ ≥ 1:

While Gf (∆) contains an augmenting path P:
Update flow f by bottleneck(P,Gf (∆)) along P.

Set ∆ ∶=∆/2.

Termination
As before, inner loop always terminates.
Outer loop advances to 1.
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Analyzing the Scaled Version

Scaled Version
Initialize f (e) = 0 for all edges.
Initialize∆ ∶=maxi (2i) such that 2i ≤maxe out of s(ce).
While∆ ≥ 1:

While Gf (∆) contains an augmenting path P:
Update flow f by bottleneck(P,Gf (∆)) along P.

Set ∆ ∶=∆/2.

Advancement
As before, inner loop always improves the flow.
Since last outer iteration has∆ = 1, this returns the same
max-flow value as the non-scaled version.
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Analyzing the Scaled Version
Scaled Version

Initialize f (e) = 0 for all edges.
Initialize∆ ∶=maxi (2i) such that 2i ≤maxe out of s(ce).
While∆ ≥ 1:

While Gf (∆) contains an augmenting path P:
Update flow f by bottleneck(P,Gf (∆)) along P.

Set ∆ ∶=∆/2.

Runtime
Number of scaling phases: .

Number of augmenting phases per scaling phases:.
Cost per augmentation: .
Overall: O(m2 logC).
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Is this polynomial?
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Analyzing the Scaled Version
Scaled Version

Initialize f (e) = 0 for all edges.
Initialize∆ ∶=maxi (2i) such that 2i ≤maxe out of s(ce).
While∆ ≥ 1:

While Gf (∆) contains an augmenting path P:
Update flow f by bottleneck(P,Gf (∆)) along P.

Set ∆ ∶=∆/2.

Runtime
Number of scaling phases: 1 + ⌈lgC⌉.
Number of augmenting phases per scaling phases:O(m).
Cost per augmentation: O(m).
Overall: O(m2 logC).

Is this polynomial? Yes, because ⌈logC⌉ is the # of bits needed
to encode C. 11/39
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Strongly Polynomial
Definition

Polynomial in the dimensions of the problem, not in the
size of the numerical data.
m and n for max-flow.

Fewest Edges Augmenting Path
O(m2n)

Edmonds-Karp (BFS) 1970
Dinitz 1970

Other Variations
Dinitz 1970: O (min{n 2

3 ,m
1
2}m).

Preflow-Push 1974/1986: O(n3).
Best: Orlin 2013: O(mn)
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Max-Flow and Min-Cut

Recall Cut
A Cut: Partition of V into sets (A,B)with s ∈ A and t ∈ B.
Cut capacity: c(A,B) = ∑e out of A ce.

Lemma 4
Let f be any s − t flow and (A,B) be any s − t cut. Then,

v(f ) = f out(A) − f in(A) = f in(B) − f out(B) .
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Max-Flow and Min-Cut
Lemma 4
Let f be any s − t flow and (A,B) be any s − t cut. Then,

v(f ) = f out(A) − f in(A) = f in(B) − f out(B) .

Proof.
By definition, f out(A) = f in(B) and f in(A) = f out(B).

By definition, v(f ) = f out(s)
= f out(s) − f in(s)
= ∑

v∈A
(f out(v) − f in(v))

Last line follows since ∑v∈A∖{s} (f out(v) − f in(v)) = 0.

∑
v∈A
(f out(v) − f in(v)) = ∑

e out of A
f (e)− ∑

e into A
f (e) = f out(A)−f in(A) .
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Max-Flow and Min-Cut
Lemma 4
Let f be any s − t flow and (A,B) be any s − t cut. Then,

v(f ) = f out(A) − f in(A) = f in(B) − f out(B) .

Lemma 5
Let f be any s − t flow and (A,B) be any s − t cut. Then,
v(f ) ≤ c(A,B).

Proof.

v(f ) = f out(A) − f in(A) ≤ f out(A) = ∑
e out of A

f (e)

≤ ∑
e out of A

ce = c(A,B)

13/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Max-Flow and Min-Cut
Lemma 4
Let f be any s − t flow and (A,B) be any s − t cut. Then,

v(f ) = f out(A) − f in(A) = f in(B) − f out(B) .

Lemma 5
Let f be any s − t flow and (A,B) be any s − t cut. Then,
v(f ) ≤ c(A,B).

Proof.

v(f ) = f out(A) − f in(A) ≤ f out(A) = ∑
e out of A

f (e)

≤ ∑
e out of A

ce = c(A,B)

13/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Max-Flow equals Min-Cut

Theorem 6
If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).
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If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).

Proof.
Let A∗ be the set of nodes for which ∃ an s − v path in Gf .
Let B∗ = V ∖A∗.

Consider e = (u,v): Claim f (e) = ce.
Consider e = (u′,v′): Claim f (e) = 0.
Therefore,

v(f ) = f out(A∗) − f in(A∗)
= ∑

e out A∗
ce − 0

= c(A∗,B∗)

14/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Max-Flow equals Min-Cut
Theorem 6
If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).

Proof.
Let A∗ be the set of nodes for which ∃ an s − v path in Gf .
Let B∗ = V ∖A∗.
(A∗,B∗) is an s − t cut:

Partition of V
s ∈ A∗ and t ∈ B∗

Consider e = (u,v): Claim f (e) = ce.
Consider e = (u′,v′): Claim f (e) = 0.
Therefore,

v(f ) = f out(A∗) − f in(A∗)
= ∑

e out A∗
ce − 0

= c(A∗,B∗)

14/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Max-Flow equals Min-Cut
Theorem 6
If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).

Proof.
Let A∗ be the set of nodes for which ∃ an s − v path in Gf .
Let B∗ = V ∖A∗.

Consider e = (u,v): Claim f (e) = ce.
If not, then s − v path in Gf which contradicts definition of
A∗ and B∗.

Consider e = (u′,v′): Claim f (e) = 0.
Therefore,

v(f ) = f out(A∗) − f in(A∗)
= ∑

e out A∗
ce − 0

= c(A∗,B∗)

14/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Max-Flow equals Min-Cut
Theorem 6
If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).

Proof.
Let A∗ be the set of nodes for which ∃ an s − v path in Gf .
Let B∗ = V ∖A∗.

Consider e = (u′,v′): Claim f (e) = 0.
If not, then s − u′ path in Gf which contradicts definition of
A∗ and B∗.

Therefore,
v(f ) = f out(A∗) − f in(A∗)

= ∑
e out A∗

ce − 0

= c(A∗,B∗)

14/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Max-Flow equals Min-Cut
Theorem 6
If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).

Proof.
Let A∗ be the set of nodes for which ∃ an s − v path in Gf .
Let B∗ = V ∖A∗.
Consider e = (u,v): Claim f (e) = ce.
Consider e = (u′,v′): Claim f (e) = 0.
Therefore,

v(f ) = f out(A∗) − f in(A∗)
= ∑

e out A∗
ce − 0

= c(A∗,B∗)

14/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Max-Flow equals Min-Cut

Theorem 6
If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).

Corollary 7
Let f be flow from Gf with no s − t path. Then, v(f ) = c(A∗,B∗) for
minimum cut (A∗,B∗).
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Corollary 7
Let f be flow from Gf with no s − t path. Then, v(f ) = c(A∗,B∗) for
minimum cut (A∗,B∗).

Proof.
By way of contradiction, assume v(f ′) > v(f ). This implies
that v(f ′) > c(A∗,B∗)which contradicts Lemma 5.

By way of contradiction, assume c(A,B) < c(A∗,B∗). This
implies that c(A,B) < v(f )which contradicts Lemma 5.
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Max-Flow equals Min-Cut

Theorem 6
If f is a s − t flow such that there is no s − t path in Gf , then there is an
s − t cut (A∗,B∗) in G for which v(f ) = c(A∗,B∗).

Corollary 7
Let f be flow from Gf with no s − t path. Then, v(f ) = c(A∗,B∗) for
minimum cut (A∗,B∗).

Corollary 8
Ford-Fulkerson method produces the maximum flow since it terminate
when residual graph has no s − t paths.
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Finding the Min-Cut

Theorem 9
Given a maximum flow f , an s − t cut of minimum capacity can be
found in O(m) time.

Proof.
Construct residual graph Gf (O(m) time).
BFS or DFS from s to determine A∗ (O(m + n) time).
B∗ = V ∖A∗ (O(n) time).

15/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Finding the Min-Cut

Theorem 9
Given a maximum flow f , an s − t cut of minimum capacity can be
found in O(m) time.

Proof.
Construct residual graph Gf (O(m) time).
BFS or DFS from s to determine A∗ (O(m + n) time).
B∗ = V ∖A∗ (O(n) time).

15/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Bipartite Matching



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Bipartite Matching Problem

Definition
Bipartite Graph G = (V = X ∪Y,E).
All edges go between X and Y.
Matching: M ⊆ E s.t. a node appears in
only one edge.
Goal: Find largest matching
(cardinality).

Reduction to Max-Flow Problem

16/39
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Bipartite Matching Problem
Definition

Bipartite Graph G = (V = X ∪Y,E).
All edges go between X and Y.
Matching: M ⊆ E s.t. a node appears in
only one edge.
Goal: Find largest matching
(cardinality).

Reduction to Max-Flow Problem
Goal: Create a flow network based on the the original
problem.
The solution to the flow network must correspond to the
original problem.
The reduction should be efficient.
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Bipartite Graph G = (V = X ∪Y,E).
All edges go between X and Y.
Matching: M ⊆ E s.t. a node appears in
only one edge.
Goal: Find largest matching
(cardinality).

Reduction to Max-Flow Problem
How can the problem be encoded in a graph?
Source/sink: Are they naturally in the graph encoding, or
do additional nodes and edges have to be added?
For each edge: What is the direction? Is it bi-directional?
What is the capacity?
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Bipartite Matching to Flow Network

G G′

Add source connected to all X.
Add sink connected to all Y.
Original edges go from X to Y.
Capacity of all edges is 1.
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Bipartite Matching to Flow Network

G G′

Theorem 10
∣M∗∣ in G is equal to the max-flow of G′, and the edges carrying the
flow correspond to the edges in the maximum matching.
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Bipartite Matching to Flow Network

Theorem 10
∣M∗∣ in G is equal to the max-flow of G′, and the edges carrying the
flow correspond to the edges in the maximum matching.

Proof.
s can send at most 1 unit of flow to each node in X.

Since f in = f out for internal nodes, Y nodes can have at most
1 flow from 1 node in X.
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Bipartite Matching to Flow Network

G G′

Runtime
Assume n = ∣X∣ = ∣Y∣,m = ∣E∣.

Overall: .
Basic FF method bound: O(mC), where C = n.
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Edge-Disjoint Paths
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Edge-Disjoint Paths

Problem
Given a graph G = (V,E) and two distinguished nodes s and t,
find the number of edge-disjoint paths from s to t.

Flow Network
Directed Graph:

s is the source and t is the sink.
Add capacity of 1 to every edge.

Undirected Graph:

For each undirected edge (u,v), convert to 2 directed edges
(u,v) and (v,u).
Apply directed graph transformation.
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Edge-Disjoint Paths Analysis
Observation 3
If there are k edge-disjoint paths in G from s− t, then the max-flow is k
in G′.

Runtime
Basic FF method: O(mC) = O(mn).

Path Decomposition
Let f be a max-flow for this problem. How can we recover
the k edge-disjoint paths?

DFS from s in f along edges e, where f (e) = 1:
1 Find a simple path P from s to t: set flow to 0 along P;

continue DFS from s.
2 Find a path P with a cycle C before reaching t: set flow to 0

along C; continue DFS from start of cycle.

19/39
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Image Segmentation

Problem
Let P be the set of pixels in an image. We would like to separate
P into set A and B, where A are the foreground pixels and B are
the background pixels.
For pixel i:

ai > 0 is the likelihood of i being in the foreground.
bi > 0 is the likelihood of i being in the background.
For each adjacent pixel j: pij = pji is a separation penalty
paid when i and j are not both ∈ A or ∈ B.

Goal
Maximize q(A,B) = ∑i∈A ai +∑j∈B bj −∑i,j∈P∶∣A∩{i,j}∣=1 pij

Let Q = ∑i∈P(ai + bi).
Equivalent goal:
Minimize ∑i∈B ai +∑j∈A bj +∑i,j∈P∶∣A∩{i,j}∣=1 pij.
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Algorithm Design

j

u

q

v

i pij

piu

piq

piv

s
ai

au

aq

av

aj

t
bi

bu

bq

bv

bj

Reduction
How can we represent this problem as a graph? What are
the nodes?

Add a sink t and connect all nodes i with capacity bi to t.
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Reduction
Each pixel becomes a node.
What about the edges?

Add a sink t and connect all nodes i with capacity bi to t.
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Reduction
Each pixel becomes a node.
Add edges between neighbours i and j with capacity pij.
What about source and target?

Add a sink t and connect all nodes i with capacity bi to t.
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Solution
Min-cut will minimize ∑i∈B ai +∑j∈A bj +∑i,j∈P∶∣A∩{i,j}∣=1 pij.

Consider i ∈ A: Foreground and contributes bi to cut.
Consider j ∈ B: Background and contributes ai to cut.
Consider i ∈ A, j ∈ B and i, j adjacent: contributes pij to cut.
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Node Demand and Lower
Bounds



Circulations with Demands

• Suppose we have multiple sources and multiple sinks.

• Each sink wants to get a certain amount of flow
(its demand).

• Each source has a certain amount of flow to give (its supply).

• We can represent supply as negative demand.



Demand Example
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d4 = 0



Constraints

Goal: find a flow f that satisfies:

1 Capacity constraints: For each e 2 E , 0  f (e)  ce .

2 Demand constraints: For each v 2 V ,

f in(v) � f out(v) = dv .

The demand dv is the excess flow that should come into node.



Sources and Sinks

Let S be the set of nodes with negative demands (supply).

Let T be the set of nodes with positive demands (demand).

In order for there to be a feasible flow, we must have:

X

s2S

�ds =
X

t2T

dt

Let D =
P

t2T dt .



Reduction

How can we turn the circulation with demands problem into the
maximum flow problem?

1 Add a new source s⇤ with an edge (s⇤, s) from s⇤ to every
node s 2 S .

2 Add a new sink t⇤ with an edge (t, t⇤) from t⇤ to every node
t 2 T .

The capacity of edges (s⇤, s) = �ds (since ds < 0, this is +ve)

The capacity of edges (t, t⇤) = dt .
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Circulation Reduction Example
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Feasible circulation if and only if there is a flow of value
D =

P
t2T dt .



Notes

Intuition:

• Capacity of edges (s⇤, s) limit the supply for source nodes s.

• Capacity of edges (t, t⇤) require that dt flow reaches each t.

Hence, we can use max-flow to find these circulations.



Lower Bounds

Another extension: what if we want lower bounds on what flow
goes through some edges?

In other words, we want to require that some edges are used.

Goal: find a flow f that satisfies:

1 Capacity constraints: For each e 2 E , `e  f (e)  ce .

2 Demand constraints: For each v 2 V ,

f in(v) � f out(v) = dv .



Lower Bounds

Suppose we defined an initial flow f0 by setting the flow along each
edge equal to the lower bound. In other words: f0(e) = `e .

This flow satisfies the capacity constraints, but not the demand
constraints.

Define: Lv = f in
0 (v) � f out

0 (v).

Recall that the demand constraints say that f in(v) � f out(v) = dv .
Hence, Lv is equal to the amount of the demand that f0 satisfies at
node v .



New Graph

For each node, our flow f0 satisfies Lv of its demand, hence we
have:

New demand constraints:

f in(v) � f out(v) = dv � Lv

Also, f0 uses some of the edge capacities already, so we have:

New capacity constraints:

0  f (e)  ce � `e

These constraints give a standard instance of the circulation
problem.



Lower Bound Example
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(a) Small instance where one edge 
has a lower bound.  This makes 

the most obvious flow not feasible.

(b) After transformation, we have 
an equivalent instance with no 

lower bounds.



Reduction:

Given a circulation instance G with lower bounds, we:

1 subtract `e from the capacity of each edge e, and

2 subtract Lv from the demand of each node v .
(This may create some new “sources” or “sinks”.)

We then solve the circulation problem on this new graph to get a
flow f 0.

To find the flow that satisfies the original constraints, we add `e to
every f 0(e).



Summary

We can e�ciently find a feasible flow for the following general
problem:

Circulations with demands and lower bounds

Given:

• a directed graph G

• a nonnegative lower bound `e for each edge e 2 G

• a nonnegative upper bound ce � `e for each edge e 2 G

• and a demand dv for every node

Find: a flow f such that

• `e  f (e)  ce for every e, and

• f in(v) � f out(v) = dv for every v .



Serial Reductions. . .

We designed the algorithm for this general problem by reducing
Circulation with Lower Bounds problem to the
Circulation without Lower Bounds problem. We in turn
reduced that problem to the Max Flow problem.
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Flow Network Extension
Adding Node Demand

Flow Network with Demand
Each node has a demand dv:

if dv < 0: a source that demands f in(v) − f out(v) = dv.
if dv = 0: internal node (f in(v) − f out(v) = 0).
if dv > 0: a sink that demands f in(v) − f out(v) = dv.

S is the set of sources (dv < 0).
T is the set of sinks (dv > 0).

Flow Conditions
i Capacity: For each e ∈ E, 0 ≤ f (e) ≤ ce.
ii Conservation: For each v ∈ V, f in(v) − f out(v) = dv.

Goal
Feasibility: Does there exist a flow that satisfies the conditions?
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Each node has a demand dv:
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Feasibility

Goal
Feasibility: Does there exist a flow that satisfies the conditions?

Lemma 10
If there is a feasible flow, then ∑v∈V dv = 0.
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Feasibility

Goal
Feasibility: Does there exist a flow that satisfies the conditions?

Lemma 10
If there is a feasible flow, then ∑v∈V dv = 0.

Proof.
Suppose that f is a feasible flow, then, by definition, for all
v, dv = f in(v) − f out(v).

For every edge e = (u,v), f oute (u) = f ine (v). Hence,
f ine (v) − f oute (u) = 0.
∑v∈V dv = 0.
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Feasibility
Goal
Feasibility: Does there exist a flow that satisfies the conditions?

Lemma 10
If there is a feasible flow, then ∑v∈V dv = 0.

Corollary 11
If there is a feasible flow, then

D = ∑
v∶dv>0∈V

dv = ∑
v∶dv<0∈V

−dv

Not iff
Feasibility Ô⇒ ∑v∈V dv = 0, but ∑v∈V dv = 0 /Ô⇒ feasibility.
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Reduction to Max-Flow

Reduction from G (demands) to G′ (no demands)
Super source s∗: Edges from s∗ to all v ∈ Swith dV < 0 with
capacity −dv.

Super sink t∗: Edges from all v ∈ T with dV > 0 with
capacity dv to t∗.
Maximum flow of D = ∑v∶dv>0∈V dv = ∑v∶dv<0∈V −dv in G′
shows feasibility.
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Another Flow Network Extension
Adding Flow Lower Bound

Adding Lower Bound
For each edge e, define a lower bound ℓe, where 0 ≤ ℓe ≤ ce.

Flow Conditions
i Capacity: For each e ∈ E, ℓe ≤ f (e) ≤ ce.
ii Conservation: For each v ∈ V, f in(v) − f out(v) = dv.

Goal
Feasibility: Does there exist a flow that satisfies the conditions?
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Reduction to Only Demand

Step 1: Reduction from G (demand + LB) to G′ (demand)
Consider an f0 that sets all edge flows to ℓe:
Lv = f in0 (v) − f out0 (v) .

if Lv = dv: Condition is satisfied.
if Lv ≠ dv: Imbalance.

For G′:
Each edge e, c′e = ce − ℓe and ℓe = 0.
Each node v, d′v = dv − Lv.

26/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Reduction to Only Demand

Step 1: Reduction from G (demand + LB) to G′ (demand)
Consider an f0 that sets all edge flows to ℓe:
Lv = f in0 (v) − f out0 (v) .

if Lv = dv: Condition is satisfied.
if Lv ≠ dv: Imbalance.

For G′:
Each edge e, c′e = ce − ℓe and ℓe = 0.
Each node v, d′v = dv − Lv. 26/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Reduction to Only Demand

Step 2: Reduction from G′ (demand) to G′′ (no demand)
Super source s∗: Edges from s∗ to all v ∈ Swith dV < 0 with
capacity −dv.
Super sink t∗: Edges from all v ∈ T with dV > 0 with
capacity dv to t∗.
Maximum flow of D = ∑v∶dv>0∈V dv = ∑v∶dv<0∈V −dv in G′
shows feasibility.
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Survey Design
Problem

Study of consumer preferences.
A company, with k products, has a
database of n customer purchase
histories.
Goal: Define a product specific
survey.

Survey Rules

Each customer receives a survey based on their purchases.
Customer i will be asked about at least ci and at most c′i
products.
To be useful, each product must appear in at least pi and at
most p′i surveys.

27/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Survey Design
Problem

Study of consumer preferences.
A company, with k products, has a
database of n customer purchase
histories.
Goal: Define a product specific
survey.

Survey Rules
Each customer receives a survey based on their purchases.

Customer i will be asked about at least ci and at most c′i
products.
To be useful, each product must appear in at least pi and at
most p′i surveys.

27/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Survey Design
Problem

Study of consumer preferences.
A company, with k products, has a
database of n customer purchase
histories.
Goal: Define a product specific
survey.

Survey Rules
Each customer receives a survey based on their purchases.
Customer i will be asked about at least ci and at most c′i
products.

To be useful, each product must appear in at least pi and at
most p′i surveys.

27/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Survey Design
Problem

Study of consumer preferences.
A company, with k products, has a
database of n customer purchase
histories.
Goal: Define a product specific
survey.

Survey Rules
Each customer receives a survey based on their purchases.
Customer i will be asked about at least ci and at most c′i
products.
To be useful, each product must appear in at least pi and at
most p′i surveys.

27/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Survey Design
Problem

Study of consumer preferences.
A company, with k products, has a
database of n customer purchase
histories.
Goal: Define a product specific
survey.

What type of
graph to use?

Survey Rules
Each customer receives a survey based on their purchases.
Customer i will be asked about at least ci and at most c′i
products.
To be useful, each product must appear in at least pi and at
most p′i surveys.
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Algorithm Design
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Algorithm Design

Reduction
Bipartite Graph: Customers to products with min of 0 and
max of 1.
Add swith edges to customer iwith min of ci and max of c′i .
Add twith edges from product j with min pj and max of p′j .
Edge (t, s)with min ∑i ci and max ∑i c′i .
All nodes have a demand of 0.
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Algorithm Design

Solution
Feasibility means it is possible to meet the constraints.
Edge (i, j) carries flow if customer i asked about product j.
Flow (t, s) overall # of questions.
Flow (s, i) # of products evaluated by customer i.
Flow (j, t) # of customers asked about product j.
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Airline Scheduling

Flights: (2 airplanes)
1 Boston (6 am) – Washington DC (7 am)
2 Philadelphia (7 am) – Pittsburgh (8 am)
3 Washington DC (8 am) – Los Angeles (11 am)
4 Philadelphia (11 am) – San Francisco (2 pm)
5 San Francisco (2:15 pm) – Seattle (3:15 pm)
6 Las Vegas (5 pm) – Seattle (6 pm)

Simple Version
Scheduling a fleet of k airplanes.
m flight segments, for segment i:

Origin and departure time.
Destination and arrival time.
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Airline Scheduling
Flights: (2 airplanes)

1 Boston (6 am) – Washington DC (7 am)
2 Philadelphia (7 am) – Pittsburgh (8 am)
3 Washington DC (8 am) – Los Angeles (11 am)
4 Philadelphia (11 am) – San Francisco (2 pm)
5 San Francisco (2:15 pm) – Seattle (3:15 pm)
6 Las Vegas (5 pm) – Seattle (6 pm)

Rules
The same plane can be used for flight i and j if:

i destination is the same as j origin and there is enough
time for maintenance between i arrival and j departure;

Or, there is enough time for maintenance and to fly from i
destination to j origin.

How might you represent this as a graph?
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Algorithm Design

k = 2 planes

Exercise: Reduce to a flow network
Hint: Use lower bounds and demand.
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Algorithm Design

k = 2 planes

Exercise: Reduce to a flow network
Hint: Use lower bounds and demand.

Are s-t new nodes?
What is the max capacity of the edges from G?
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Algorithm Design

k = 2 planes

Exercise: Reduce to a flow network
Hint: Use lower bounds and demand.

In the example, how many edges out from s?
In the example, how many edges in to t?
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Algorithm Design
k = 2 planes

Reduction
Units of flow correspond to airplanes.
Each edge of a flight has capacity (1,1).
Each edge between flights has capacity of (0,1).
Add node s with edges to all origins with capacity of (0,1).
Add node twith edges from all destinations with cap (0,1).
Edge (s, t)with a min of 0 and a max of k.
Demand: ds = −k,dt = k,dv = 0∀v ∈ V ∖ {s, t}.
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Project Selection

Use Min-Cut to solve this
problem.

Problem
Set of projects: P.
Each i ∈ P: profit pi (which can be negative).
Directed graph G encoding precedence constraints.
Feasible set of projects A: profit(A) = ∑i∈A pi.
Goal: Find A∗ that maximizes profit.
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Algorithm Design

Reduction
Use Min-Cut

Add s with edge to every
project i with pi > 0 and
capacity pi.
Add t with edge from every
project i with pi < 0 and
capacity −pi.
C = ∑i∈P∶pi>0 pi
For edges of G, capacity is∞
(or C + 1).
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Algorithm Design

Reduction
Use Min-Cut
Add s with edge to every
project i with pi > 0 and
capacity pi.
Add t with edge from every
project i with pi < 0 and
capacity −pi.
C = ∑i∈P∶pi>0 pi
: What is the capacity of the

cut ({s},P ∪ {t})?

For edges of G, capacity is∞
(or C + 1).
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Algorithm Design

Reduction
Use Min-Cut
Add s with edge to every
project i with pi > 0 and
capacity pi.
Add t with edge from every
project i with pi < 0 and
capacity −pi.
Max-flow is ≤ C = ∑i∈P∶pi>0 pi
which is the capacity
({s},P ∪ {t})

For edges of G, capacity is∞
(or C + 1).
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Algorithm Analysis

Observation 4
If c(A′,B′) ≤ C, then A = A′ ∖ {s}
satisfies precedence as edges of G have
capacity > C.

Lemma 12
Let (A′,B′) be a cut satisfies
precedence; then
c(A′,B′) = C −∑i∈A pi.

Proof.
Consider the different edges:
(i, t): −pi for i ∈ A. (s, i): pi for i ∉ A.

c(A′,B′) = ∑i∈A∶pi<0 −pi +C −∑i∈A∶pi>0 pi = C −∑i∈A pi

33/39
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Algorithm Analysis

Theorem 12
If (A′,B′) is a min-cut in G′, then
A = A′ ∖ {s} is an optimal solution.

Proof.
Obs: c(A′,B′) = C −∑i∈A pi
means feasible.

c(A′,B′) = C − profit(A)
⇐⇒ profit(A) = C − c(A′,B′)
Given that c(A′,B′) is a
minimum, profit is
maximized as C is a constant.
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Min-Cost Max Flow
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Flow Network with Cost

t

u

s

v
10/$5

10/$2
30/$0

20/$6

20/$6

Flow Network with Cost
Directed graph G = (V,E).
Each edge e has ce ≥ 0 and a cost
$e ≥ 0.

$e is the cost per unit of flow.

Defining Flow
Flow starts at s and exits at t.
Flow function: f ∶ E→ R+; f (e) is the flow across edge e.
Flow Conditions:

i Capacity: For each e ∈ E, 0 ≤ f (e) ≤ ce.
ii Conservation: For each v ∈ V ∖ {s, t},

∑
e into v

f (e) = f in(v) = f out(v) = ∑
e out of v

f (e)

Flow value v(f ) = f out(s) = f in(t).
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Flow Network with Cost

t

u

s

v
10/$5

10/$2
30/$0

20/$6

20/$6

Min-Cost Max-Flow
Given a flow network G, what is the
flow f of minimum cost that
maximizes v(f )?

Greedy Approach
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Flow Network with Cost

t

u

s

v
10/$5

10/$2
30/$0

20/$6

20/$6

Min-Cost Max-Flow
Given a flow network G, what is the
flow f of minimum cost that
maximizes v(f )?

Greedy Approach
How do we make this give us the min-cost max-flow?

Initialize f (e) = 0 for all edges.
While Gf contains an augmenting path P:

Update flow f by bottleneck(P,Gf ) along P.
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Negative costs and it is possible to show that there will be
no negative cycles.
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the weights to remove negative costs and use Dijkstra’s to
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Why is Boston eliminated?
Case analysis:

Boston must win its 2 remaining games.

New York must lose its 2 remaining games.
This leaves TOR vs BAL: So one of Toronto or Baltimore
will end with 93 wins.
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Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR

NYY vs BAL

Why is Boston eliminated?
Analytical approach:

Boston can finish with ≤ 92 wins.

Currently, other 3 teams have 274 combined wins with 3
remaining games between them:

Overall, at the end, there will be 277 combined wins
between the other 3 teams.
Average of 92 1/3 wins which implies that one team will
have at least 92 1/3 Ô⇒ 93 wins.
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Baseball Elimination

Problem
A set S of teams.
For each team x ∈ S: wx is the # of wins.
For each pair x,y ∈ S: gxy is # of games left btw x and y.
Goal: Decide if team z has been eliminated.
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Algorithm Design

Let m be the max # of
wins for z,
S′ = S ∖ {z}, and
g∗ = ∑x,y∈S′ gxy.

Reduction
Nodes:

Source s, sink t.
vx for each x ∈ S′.
uxy for each pair x,y ∈ S′.

38/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Algorithm Design

Let m be the max # of
wins for z,
S′ = S ∖ {z}, and
g∗ = ∑x,y∈S′ gxy.

Reduction
Edges:

For each vx: (vx, t)with capacity m −wx.
For each uxy:

(s,uxy)with capacity gxy.
(uxy, vx) and (uxy, vy)with capacity∞ (or gxy).
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Let m be the max # of
wins for z,
S′ = S ∖ {z}, and
g∗ = ∑x,y∈S′ gxy.

Solution
v(f ) = g∗: z is not eliminated.

v(f ) = g∗ = f in(t) ≤ ∑
x∈S′
(m −wx) = m∣S′∣ − ∑

x∈S′
wx

⇐⇒ ∑
x,y∈S′

gxy ≤ m∣S′∣ − ∑
x∈S′

wx

v(f ) < g∗: z is eliminated.
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Solution Characterization

Let m be the max # of
wins for z,
S′ = S ∖ {z}, and
g∗ = ∑x,y∈S′ gxy.

Theorem 13
Suppose z has been eliminated. Then, there is a set of items T ⊆ S′
such that: m∣T∣ < ∑x,y∈T gxy +∑x∈T wx
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Proof.
Let (A,B) be a min-cut with
c(A,B) = g′ ≤min{∑x,y∈S′ gxy,∑x∈S′ m −wx}.

Consider a uxy ∈ A,x ∈ T, and y ∉ T (WLOG).
Contradiction: c(uxy,y) =∞.
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S′ = S ∖ {z}, and g∗ = ∑x,y∈S′ gxy.

Theorem 13
Suppose z has been eliminated. Then, there is a set of items T ⊆ S′
such that: m∣T∣ < ∑x,y∈T gxy +∑x∈T wx

Proof.
Let (A,B) be a min-cut with
c(A,B) = g′ ≤min{∑x,y∈S′ gxy,∑x∈S′ m −wx}.
Consider a uxy ∉ A, and x,y ∈ T.

Contradiction: c(A ∪ {uxy},B ∖ {uxy}) = c(A,B) − gxy.
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c(A,B) = g′ ≤min{∑x,y∈S′ gxy,∑x∈S′ m −wx}.
c(A,B) = g′ = m∣T∣ −∑x∈T wx + g∗ −∑x,y∈T gxy
⇐⇒ 0 > m∣T∣ −∑x∈T wx −∑x,y∈T gxy as g′ < g∗

39/39



Network Flow Min-Cut Bipartite Edge-Disjoint Img Seg Extensions Surveys Flights Projects Min-Cost Baseball*

Solution Characterization

Letm be the max # of wins for z,
S′ = S ∖ {z}, and g∗ = ∑x,y∈S′ gxy.

Theorem 13
Suppose z has been eliminated. Then, there is a set of items T ⊆ S′
such that: m∣T∣ < ∑x,y∈T gxy +∑x∈T wx

Proof.
Let (A,B) be a min-cut with
c(A,B) = g′ ≤min{∑x,y∈S′ gxy,∑x∈S′ m −wx}.
c(A,B) = g′ = m∣T∣ −∑x∈T wx + g∗ −∑x,y∈T gxy
⇐⇒ m∣T∣ < ∑x∈T wx +∑x,y∈T gxy

39/39



Appendix References

Appendix



Appendix References

References



Appendix References

Image Sources I

https://upload.wikimedia.org/wikipedia/en/
2/25/Delbert_Ray_Fulkerson.png

https://angelberh7.wordpress.com/2014/10/
08/biografia-de-lester-randolph-ford-jr/

https://getthematic.com/insights/
customer-survey-design/

https:
//hexaware.com/industries/travel/airlines/

40/39

https://upload.wikimedia.org/wikipedia/en/2/25/Delbert_Ray_Fulkerson.png
https://upload.wikimedia.org/wikipedia/en/2/25/Delbert_Ray_Fulkerson.png
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
https://getthematic.com/insights/customer-survey-design/
https://getthematic.com/insights/customer-survey-design/
https://hexaware.com/industries/travel/airlines/
https://hexaware.com/industries/travel/airlines/


Appendix References

Image Sources II

http://bluejayhunter.com/2010/01/
which-team-was-better-92-or-93-blue.html

https://brand.wisc.edu/web/logos/

https://learnopencv.com/wp-content/uploads/
2019/06/semantic-segmentation-examples.png

41/39

http://bluejayhunter.com/2010/01/which-team-was-better-92-or-93-blue.html
http://bluejayhunter.com/2010/01/which-team-was-better-92-or-93-blue.html
https://brand.wisc.edu/web/logos/
https://learnopencv.com/wp-content/uploads/2019/06/semantic-segmentation-examples.png
https://learnopencv.com/wp-content/uploads/2019/06/semantic-segmentation-examples.png

	Network Flow
	Minimum Cut
	Bipartite Matching
	Edge-Disjoint Paths
	Image Segmentation
	Node Demand and Lower Bounds
	Survey Design
	Airline Scheduling
	Project Selection
	Min-Cost Max Flow
	Baseball Elimination
	Appendix
	Appendix
	References


