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Flow Problems

e Flow Network / Transportation Networks: Connected
directed graph with water flowing / traffic moving
through it.

e Edges have limited capacities.
@ Nodes act as switches directing the flow.

e Many, many problems can be cast as flow problems.
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NEeTwoORrK FLow

Flow Problems

e Flow Network / Transportation Networks: Connected
directed graph with water flowing / traffic moving
through it.

e Edges have limited capacities.
@ Nodes act as switches directing the flow.
e Many, many problems can be cast as flow problems.

Ford-Fulkerson M
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L R Ford Jr.

D. R. Fulkerson
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Frow NETWORK

Basic Flow Network

e Directed graph G = (V,E).

20 10
@ 30 @ e Each edge e has c. > 0.
10 20

@ Sourcese VandsinkteV.
e Internal node V \ {s,t}.
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Basic Flow Network

e Directed graph G = (V,E).

20 10
@ 30 @ e Each edge e has c. > 0.
10 20

@ Sourcese VandsinkteV.
e Internal node V \ {s,t}.

Defining Flow

o Flow starts at s and exits at ¢.

V.
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e Flow function: f : E - R*; f(e) is the flow across edge e.
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Basic Flow Network

e Directed graph G = (V,E).

20 10
@ 30 @ e Each edge e has c. > 0.
10 20

@ Sourcese VandsinkteV.
e Internal node V \ {s,t}.

Defining Flow

o Flow starts at s and exits at ¢.

e Flow function: f : E - R*; f(e) is the flow across edge e.
e Flow Conditions:

@ Capacity: ForeachecE, 0 <f(e) <c..

@ Conservation: For each v e V \ {s,t},
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e into v eoutof v
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e Directed graph G = (V,E).

20 10
@ 30 @ e Each edge e has c. > 0.
10 20

@ Sourcese VandsinkteV.
e Internal node V \ {s,t}.

Defining Flow

o Flow starts at s and exits at ¢.

e Flow function: f : E - R*; f(e) is the flow across edge e.
e Flow Conditions:

@ Capacity: ForeachecE, 0 <f(e) <c..

@ Conservation: For each v e V \ {s,t},

>, fle)=f"@)=f"@)= 3 flo)

e into v eoutof v

e Flow value v(f) = foU(s) = f"(¢).

V.
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MaxiMmuM-FLow PROBLEM

@ 30 z@ Given a flow network G, what is the

maximum flow value, i.e., what is the
flow f that maximizes v(f)?
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MaxiMmuM-FLow PROBLEM

@ 30 @ Given a flow network G, what is the

maximum flow value, i.e., what is the
flow f that maximizes v(f)?

Alternate View: Min-Cut

e A Cut: Partition of V into sets (A, B) withs € A and ¢ € B.
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maximum flow value, i.e., what is the
flow f that maximizes v(f)?

Alternate View: Min-Cut

e A Cut: Partition of V into sets (A, B) withs € A and ¢ € B.

e Flow from s to f must cross the set A to B.

e Cut capacity: ¢(A,B) = Y, outof A Ce
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MaxiMmuM-FLow PROBLEM

@ 30 @ Given a flow network G, what is the

maximum flow value, i.e., what is the
flow f that maximizes v(f)?

Alternate View: Min-Cut

e A Cut: Partition of V into sets (A, B) withs € A and ¢ € B.

e Flow from s to f must cross the set A to B.

e Cut capacity: ¢(A,B) = Y, outof A Ce

@ Minimum-cut of G: The cut (A*, B*) that minimizes
c(A*,B*) for G.
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MaxiMmuM-FLow PROBLEM

@ 30 @ Given a flow network G, what is the

maximum flow value, i.e., what is the
flow f that maximizes v(f)?

Alternate View: Min-Cut

e A Cut: Partition of V into sets (A, B) withs € A and ¢ € B.

e Flow from s to f must cross the set A to B.

e Cut capacity: ¢(A,B) = X, outof A Ce

@ Minimum-cut of G: The cut (A*, B*) that minimizes
c(A*,B*) for G.

@ The min-cut and max-flow are the same value for any flow
network.

v
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DESIGNING THE APPROACH

20 10
@ 30 @ @What is the max-flow value in the J
?
10 20 example?
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DESIGNING THE APPROACH

20 10
@ 30 @ @What is the min-cut value in the J
?
10 20 example?
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DESIGNING THE APPROACH

20%11 20/2(%1 10/0

@ 30 @:>@ 30/20 @

10{% 10/0&20/20

Basic Greedy Approach

e Initialize f(e) = 0 for all edges.

e While there is a path from s to t with available capacity,
push flow equal to the minimum available capacity along
path.
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DESIGNING THE APPROACH

20%11 20/2(%1 10/0

@ 30 @:>@ 30/20 ()

10{% 10/0&20/20

Basic Greedy Approach

e Initialize f(e) = 0 for all edges.

e While there is a path from s to t with available capacity,
push flow equal to the minimum available capacity along
path.

@ We need a mechanism to reverse flow...
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Resipuar. GRAPH

20 10 20 ; ; 10
@ 30 @:>@ 20 10 @
10 20 10 > ﬂ 20

Residual Graph

Given a flow network G and a flow f on G, we define the
residual graph Gy:
@ Same nodes as G.
e For edge (u,v) in E:
e Add edge (u,v) with capacity c. — f (e).
o Add edge (v, u) with capacity f (e).
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AUGMENTING PATH
20 10 20 ; i 10
@ 30 @:>@ 20 10 @
10 20 10 > f 20

e A simple directed path from s to t.

Augmenting Path

@ BOTTLENECK (P, Gf): Minimum residual capacity on
augmenting path P.
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AUGMENTING PATH

20 | 10 20/ \ 10
@ 30 @:>@ 20 10 @
10 | 20 10? %20

Augmenting Path

e A simple directed path from s to .

@ BOTTLENECK (P, Gf): Minimum residual capacity on
augmenting path P.

@List the nodes (separated by commas, i.e. s,u,t) of an
augmenting path in the example residual graph.
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AUGMENTING PATH

20 | 10 20/ \ 10
@ 30 @:>@ 20 10 @
10 | 20 10\ /20

Increasing the Flow along Augmenting Path

@ Push sorTLENECK(P, Gf) = g along path P:

e Pushing g along a directed edge in G, increase flow by 4.
e Pushing g in opposite directed of edge in G, decreases flow

by g.
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Basic Greedy Approach

e Initialize f(e) = 0 for all edges.

e While there is a path from s to t with available capacity,
push flow equal to the minimum available capacity along
path.

@ We need a mechanism to reverse flow...
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DESIGNING THE APPROACH

20 | 10 20/ \ 10
@ 30 @:>@ 20 10 @
10 | 20 10 0

S, ol
e Initialize f (e) = 0 for all edges.

e While Gy contains an augmenting path P:
o Update flow f by BorTLENECK(P, Gf) along P.

Refined Greedy Approach
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ANALYZING THE ALGORITHM

CoNSTANT INCREASE AND TERMINATION

Refined Greedy Approach

Observation 1

Ifall capacities are integers, e Initialize f(e) = O for all edges.

then all f (¢), residual e While Gy contains an augmenting
' path P:

o Update flow f by
BOTTLENECK (P, Gf) along P.

capacities, and v(f ) are
integers at every iteration.

8/39



NEeTwork FLow MiN-Cut  BrearTitE  EDGE-DisjoiNt  IMG SEG  ExTENsiONs SurVEYs FriGHTs Projects MIN-Cost  BasEeBar

ANALYZING THE ALGORITHM

CoNSTANT INCREASE AND TERMINATION

Refined Greedy Approach

Observation 1

If all capacities are integers, e Initialize f(e) = 0 for all edges.

then all f (¢), residual e While Gy contains an augmenting
g path P:

o Update flow f by
BOTTLENECK (P, Gf) along P.

capacities, and v(f) are
integers at every iteration.

@What technique should we use to prove the observation? J
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ANALYZING THE ALGORITHM

CoNSTANT INCREASE AND TERMINATION

Refined Greedy Approach

Observation 1

If all capacities are integers, e Initialize f(e) = 0 for all edges.

then all f (¢), residual e While Gy contains an augmenting
g path P:

o Update flow f by
BOTTLENECK (P, Gf) along P.

capacities, and v(f) are
integers at every iteration.

o(f") > v(f), where v(f") = v(f) + BorrLENECK(P, Gf) for an
augmenting path P in Gg.
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ANALYZING THE ALGORITHM
CoNSTANT INCREASE AND TERMINATION

Refined Greedy Approach

Observation 1

If all capacities are integers, e Initialize f(e) = 0 for all edges.

then all f (¢), residual e While Gy contains an augmenting

path P:

e Update flow f by
BOTTLENECK (P, Gy ) along P.

capacities, and v(f) are
integers at every iteration.

v

o(f") > v(f), where v(f") = v(f) + BorrLENECK(P, Gf) for an
augmenting path P in Gy.

\.

By definition of P, first edge of p is an out edge from s that we
increase by BorTLENECK (P, Gf) = g. By the law of conservation,
this will give g4 more flow. O

V
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ANALYZING THE ALGORITHM

CoNSTANT INCREASE AND TERMINATION

Observation 1 Refined Greedy Approach

Ifall capacities are integers, e Initialize f(e) = O for all edges.

then all f (¢), residual e While Gy contains an augmenting
g path P:

o Update flow f by
BOTTLENECK (P, Gf) along P.

capacities, and v(f) are
integers at every iteration.

Let C = ¥, out of s Ce, the FF method terminates in at most C iterations.
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ANALYZING THE ALGORITHM

CoNSTANT INCREASE AND TERMINATION

Refined Greedy Approach

Observation 1

If all capacities are integers, e Initialize f(e) = 0 for all edges.

then all f (¢), residual e While Gy contains an augmenting
' path P:

o Update flow f by
BOTTLENECK (P, Gf) along P.

capacities, and v(f ) are
integers at every iteration.

Let C = ¥, out of s Ce, the FF method terminates in at most C iterations.
v

@What technique?

V.
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ANALYZING THE ALGORITHM
CoNSTANT INCREASE AND TERMINATION

Refined Greedy Approach

Observation 1

If all capacities are integers, e Initialize f(e) = 0 for all edges.
then all f (¢), residual e While Gy contains an augmenting

path P:

e Update flow f by
BOTTLENECK (P, Gy ) along P.

capacities, and v(f) are
integers at every iteration.

Let C = ¥, out of s Ce, the FF method terminates in at most C iterations.

From Lemma 1, the flow strictly increases at each iteration.
Hence, the residual capacity out of s decreases by at least 1 at
each iteration. 0
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ANALYZING THE ALGORITHM
CoNSTANT INCREASE AND TERMINATION

Refined Greedy Approach

Observation 1

If all capacities are integers, e Initialize f(e) = 0 for all edges.

then all f (¢), residual e While Gy contains an augmenting
' path P:

e Update flow f by
BOTTLENECK (P, Gy) along P.

capacities, and v(f ) are
integers at every iteration.

v

o(f") > v(f), where v(f") = v(f) + BorrLENECK(P, Gf) for an
augmenting path P in Gy.

V.

Let C = ¥, out o s Ce, the FF method terminates in at most C iterations.

4
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ANALYZING THE ALGORITHM

RuNTIME

Refined Greedy Approach

Observation 2 o Initialize f(e) = 0 for all edges.
Since G is connected e While Gy contains an augmenting
m 2®Dominating Factor?. path P:

o Update flow f by
BOTTLENECK (P, Gf) along P.
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ANALYZING THE ALGORITHM

RuNTIME

Refined Greedy Approach

e Initialize f(e) = 0 for all edges.

Observation 2

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.
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ANALYZING THE ALGORITHM

RuNTIME

Refined Greedy Approach

Observation 2

e Initialize f(e) = O for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m+n) =O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC). \
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ANALYZING THE ALGORITHM

RuNTIME

Refined Greedy Approach

Observation 2

e Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m+n) = O(m). o Update flow f by

BOTTLENECK (P, Gy) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@I this a polynomial bound? J
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ANALYZING THE ALGORITHM

RuNTIME

Refined Greedy Approach

Observation 2

e Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m+n) = O(m). o Update flow f by

BOTTLENECK (P, Gy) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@Is this a polynomial bound? No, it is pseudo-polynomial. J
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration:
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration:

@ Find an augmenting path: ©How can we do that?
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration:
@ Find an augmenting path: BES or DFS: O(m +n) .
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration:

@ Find an augmenting path: BES or DFS: O(m +n) .

@ Update flow along path P: @Time bound?
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration:

@ Find an augmenting path: BES or DFS: O(m +n) .
© Update flow along path P: O(n).
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration:

@ Find an augmenting path: BES or DFS: O(m +n) .
© Update flow along path P: O(n).

© Build new Gy: @Time bound?
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration:

@ Find an augmenting path: BES or DFS: O(m +n) .
© Update flow along path P: O(n).
© Build new Gy: O(m).
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ANALYZING THE ALGORITHM
RunTivE Refined Greedy Approach

Observation 2

o Initialize f(e) = 0 for all edges.

Since G is connected, e While Gy contains an augmenting
m >n—1. Hence, path P:
O(m +n) = O(m). o Update flow f by

BOTTLENECK (P, Gf) along P.

Suppose all capacities are integers. Then, runtime of O(mC).

@ Theorem 2: termination happens in at most C iterations.
e Work per iteration: Overall: O(m)

@ Find an augmenting path: BES or DFS: O(m +n) .
© Update flow along path P: O(n).
© Build new Gy: O(m). O

9/39
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CHo0sING GOOD AUGMENTING PATHS

100 @ Choose paths with large
@ 1 @ bottlenecks.
100
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100 | 100 @ Choose paths with large

@ 1 @ bottlenecks.

100 | 100 o Let G(A) be a residual graph
with edges of residual capacity

> A.

v
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CHo0sING GOOD AUGMENTING PATHS

100 | 100 @ Choose paths with large
@ 1 @ bottlenecks.
100 | 100 o Let G(A) be a residual graph
with edges of residual capacity
> A.

Scaled Version

e Initialize f (e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

@ While A > 1:
o While G¢(A) contains an augmenting path P:
o Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.
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ANALYZING THE SCALED VERSION

Scaled Version
e Initialize f(e) = 0 for all edges.
o Initialize A := max; (2') such that 2/ < max, oyt of s (Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorrLENECK(P, Gf(A)) along P.
e Set A:=A/2.

N

Termination
@ As before, inner loop always terminates.

@ Outer loop advances to 1.

.
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ANALYZING THE SCALED VERSION

Scaled Version

e Initialize f(e) = O for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-
o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorrLENECK(P, Gf(A)) along P.
e Set A:=A/2.

Advancement

@ As before, inner loop always improves the flow.

@ Since last outer iteration has A = 1, this returns the same
max-flow value as the non-scaled version.
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ANALYZING THE SCALED VERSION

Scaled Version
e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.

A

@ Number of scaling phases: .

.
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ANALYZING THE SCALED VERSION

Scaled Version

e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.

@ Number of scaling phases: 1 +[lg C].

A

.
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ANALYZING THE SCALED VERSION

Scaled Version
e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorTLENECK(P, Gf(A)) along P.
o Set A:= A/2.

@ Number of scaling phases: 1 +[lg C].

A

@ Number of augmenting phases per scaling phases:.

.
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ANALYZING THE SCALED VERSION

Scaled Version
e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.

@ Number of scaling phases: 1 +[lg C].

A

@ Number of augmenting phases per scaling phases:O(1).

.
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ANALYZING THE SCALED VERSION

Scaled Version
e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.

@ Number of scaling phases: 1 +[lg C].

A

@ Number of augmenting phases per scaling phases:O(1).

® Cost per augmentation: .

.
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ANALYZING THE SCALED VERSION

Scaled Version
e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.

@ Number of scaling phases: 1 +[lg C].

A

@ Number of augmenting phases per scaling phases:O(1).
@ Cost per augmentation: O(m).

.
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ANALYZING THE SCALED VERSION

Scaled Version

e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
e Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.

@ Number of scaling phases: 1 +[lg C].

A

@ Number of augmenting phases per scaling phases:O(1).
@ Cost per augmentation: O(m).
e Overall: O(m?logC).

.
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ANALYZING THE SCALED VERSION
Scaled Version
e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, oyt of s(Ce)-

@ While A > 1:
o While G¢(A) contains an augmenting path P:
o Update flow f by sorTLENECK(P, Gf(A)) along P.
e Set A:=A/2.

® Number of scaling phases: 1+ [IgC].

A

® Number of augmenting phases per scaling phases:O(m).
@ Cost per augmentation: O(m).
e Overall: O(m?*1ogC).

\

@Is this polynomial?
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ANALYZING THE SCALED VERSION
Scaled Version

e Initialize f(e) = 0 for all edges.
o Initialize A := max; (Zi) such that 2/ < max, gyt of s(Ce)-

o While A > 1:
o While G¢(A) contains an augmenting path P:
o Update flow f by sorrLENECK(P, Gf(A)) along P.
o Set A:=A/2. )

® Number of scaling phases: 1+ [1gC].

@ Number of augmenting phases per scaling phases:O(11).
@ Cost per augmentation: O(m).
e Overall: O(m?*logC).

v

@Is this polynomial? Yes, because [log C] is the # of bits needed
to encode C. 11/39
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STRONGLY POLYNOMIAL

Definition

@ Polynomial in the dimensions of the problem, not in the
size of the numerical data.

e m and n for max-flow.

12/39



NEeTwork FLow MiN-Cur  BreartitE  EpGe-Disjoint  IMG SEG KTENSIONS SURVEYS FrLiGHTS Projects MiIN-Cost BaseBar

STRONGLY POLYNOMIAL

Definition

@ Polynomial in the dimensions of the problem, not in the
size of the numerical data.

e m and n for max-flow.

Fewest Edges Augmenting Path

O(m?n)
e Edmonds-Karp (BFS) 1970
e Dinitz 1970

.

N
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STRONGLY POLYNOMIAL

Definition

@ Polynomial in the dimensions of the problem, not in the
size of the numerical data.

e m and n for max-flow. )

Fewest Edges Augmenting Path

O(m?n)
e Edmonds-Karp (BFS) 1970
e Dinitz 1970

.

Other Variations
@ Dinitz 1970: O (min {n§ , ma } m)
o Preflow-Push 1974/1986: O(n3).
@ Best: Orlin 2013: O(mn)

4 12/39
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Max-FLow anD MIN-CuT

@ A Cut: Partition of V into sets (A,B) withse€ A and t € B.
o Cut capacity: c(A,B) = X out of A Ce-
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Max-FLow anD MIN-CuT

@ A Cut: Partition of V into sets (A,B) withse€ A and t € B.
o Cut capacity: c(A,B) = X out of A Ce-

Let f be any s — t flow and (A, B) be any s — t cut. Then,
o(f) =f"(A) - f"(A) = f"(B) - f™(B) .
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Max-FLow anD MIN-CuT

Let f be any s — t flow and (A, B) be any s — t cut. Then,
o(f) =f"(A) -f"(A) = f"(B) - f"(B) .

e By definition, fo"*(A) = f™(B) and f™(A) = f°*(B).

v
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Max-FLow anD MIN-CuT

Let f be any s — t flow and (A, B) be any s — t cut. Then,
o(f) =f"(A) -f"(A) = f"(B) - f"(B) .
(Proof.
e By definition, fo"*(A) = f™(B) and f™(A) = f°*(B).
e By definition, o(f) = f°"!(s)
=f(s) - f"(s)
= (f(@) -f"(2)

veA

v
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Max-FLow anD MIN-CuT

Let f be any s — t flow and (A, B) be any s — t cut. Then,
o(f) =f"(A) -f"(A) = f"(B) - f"(B) .
(Proof.
e By definition, fo"*(A) = f™(B) and f™(A) = f°*(B).
e By definition, o(f) = f°"!(s)
=f(s) - f"(s)
= (f(@) -f"(2)

veA

o Last line follows since Yyea.(s) (F*(v) - f™(v)) = 0.
> (M@ @)= Y fle)= Y fle)=fM(A)-fM(A).

veA e out of A e into A
]

v
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Max-FLow anD MIN-CuT

Let f be any s — t flow and (A, B) be any s —t cut. Then,
0(F) = f(A) ~f"(A) = F"(B) - f (B) .

A

Let f be any s — t flow and (A, B) be any s —t cut. Then,
u(f) <c(A,B).

.
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Max-FLow anD MIN-CuT

Let f be any s — t flow and (A, B) be any s —t cut. Then,
0(F) = f(A) ~f"(A) = F"(B) - f (B) .

A\

Let f be any s — t flow and (A, B) be any s —t cut. Then,
u(f) <c(A,B).

.

o(f) =f"(A) - A) <fMA) = X fle)

e outof A

< > c=c(A,B) O

e out of A

13/39
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in G, then there is an
s —tcut (A*,B*) in G for which v(f) = c(A*,B*).
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in Gy, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

@ Let A" be the set of nodes for which 3 an s — v path in Gy.
Let B* =V N A",
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in Gy, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

@ Let A* be the set of nodes for which 3 an s — v path in Gy.
Let B* =V N\ A™.
e (A*,B*)isans -t cut:
e Partition of V
e seA*and teB*
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in Gy, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

e Let A* be the u, v) is saturate ath m G
Let B>(- _ V N f Residual graph @ p f

e Consider e = (1,v): Claim f(e) = c,.

e If not, then s — v path in G; which contradicts definition of
Ax and B+x.
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in Gy, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

e Let A* be the u, v) is saturate ath m G
Let B>(- _ V N f Residual graph @ p f

e Consider e = (u',7"): Claim f(e) = 0.
o If not, then s — u’ path in Gf which contradicts definition of
Ax and Bx.
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in Gy, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

@ Let A" be the set of nodes for which 3 an s — v path in Gy.
LetB* =V N\ A*.

e Consider e = (1,v): Claim f(e) = c,.

e Consider e = (u',7"): Claim f(e) = 0.

o Therefore, o(f) :fout(A*) —fi“(A*)

= > -0
e out A*

= c(A*,B*)

14/39



NETWORK FLOoW Min-Cutr  Bieartite  Epce-Disjoint MG SEG SIONS SURVEYS FrLIGHTS Projects MIN-Cost BASEBALI

Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in G, then there is an
s —tcut (A*,B*) in G for which v(f) = c(A*, B*).

Let f be flow from Gy with no s — t path. Then, v(f) = c(A*, B*) for
minimum cut (A*,B*).

14/39
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in G, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

Let f be flow from Gy with no s — t path. Then, v(f) = c(A*, B*) for
minimum cut (A*,B*).

A

e By way of contradiction, assume v(f’) > v(f). This implies
that o(f") > c(A*, B*) which contradicts Lemma 5.

A\
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in G, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

Let f be flow from Gy with no s — t path. Then, v(f) = c(A*, B*) for
minimum cut (A*,B*).

A\

e By way of contradiction, assume v(f’) > v(f). This implies
that o(f") > c(A*, B*) which contradicts Lemma 5.

e By way of contradiction, assume c(A, B) < c¢(A*,B*). This
implies that c¢(A, B) < v(f) which contradicts Lemma 5.

O

v

\LL
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Max-FLow eQuaLs MiIN-CuT

Theorem 6

Iff is a s —t flow such that there is no s — t path in Gy, then there is an
s—tcut (A*,B*) in G for which v(f) = c(A*,B*).

Corollary 7

Let f be flow from Gy with no s — t path. Then, v(f) = c(A*, B*) for
minimum cut (A*,B*).

.

Corollary 8

Ford-Fulkerson method produces the maximum flow since it terminate
when residual graph has no s — t paths.

.
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FinpiNG THE MIN-CuT

Theorem 9

Given a maximum flow f, an s — t cut of minimum capacity can be
found in O(m) time.
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FinpiNG THE MIN-CuT

Theorem 9

Given a maximum flow f, an s — t cut of minimum capacity can be
found in O(m) time.

.

e Construct residual graph Gy (O(m) time).
@ BFS or DFS from s to determine A* (O(m + n) time).
@ B* =V N A* (O(n) time).

.
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BipARTITE MATCHING PROBLEM

e Bipartite Graph G=(V = XUY,E).

o All edges go between X and Y.

@ Matching: M ¢ E s.t. a node appears in
only one edge.

@ Goal: Find largest matching
(cardinality).
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BipARTITE MATCHING PROBLEM

e Bipartite Graph G=(V =X UY,E).
o All edges go between X and Y.

@ Matching: M ¢ E s.t. a node appears in

only one edge.

@ Goal: Find largest matching
(cardinality).

Reduction to Max-Flow Problem

@ Goal: Create a flow network based on the the original
problem.

@ The solution to the flow network must correspond to the
original problem.

@ The reduction should be efficient.

16/39
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BirArTITE MATCHING PROBLEM
e Bipartite Graph G=(V =X UY,E).
o All edges go between X and Y.

@ Matching: M ¢ E s.t. a node appears in
only one edge.

@ Goal: Find largest matching
(cardinality).

Reduction to Max-Flow Problem
e How can the problem be encoded in a graph?

@ Source/sink: Are they naturally in the graph encoding, or
do additional nodes and edges have to be added?

@ For each edge: What is the direction? Is it bi-directional?
What is the capacity?

16/39
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BipArRTITE MATCHING TO FLOW NETWORK

G o

@ Add source connected to all X.
@ Add sink connected to all Y.

@ Original edges go from X to Y.
e Capacity of all edges is 1.

17/39
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BipArRTITE MATCHING TO FLOW NETWORK

Theorem 10

|M*| in G is equal to the max-flow of G', and the edges carrying the
flow correspond to the edges in the maximum matching.
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BipArRTITE MATCHING TO FLOW NETWORK

Theorem 10

|M*| in G is equal to the max-flow of G', and the edges carrying the
flow correspond to the edges in the maximum matching.

N

@ s can send at most 1 unit of flow to each node in X.

N
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BipArRTITE MATCHING TO FLOW NETWORK

Theorem 10

|M*| in G is equal to the max-flow of G', and the edges carrying the
flow correspond to the edges in the maximum matching.

N

@ s can send at most 1 unit of flow to each node in X.

e Since f™ = f°U for internal nodes, Y nodes can have at most
1 flow from 1 node in X.

O

v

17/39
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BipArRTITE MATCHING TO FLOW NETWORK

e Assumen = |X|=|Y|,m = |E|.
e Overall: O(mn).
@ Basic FF method bound: O(mC), where C = n.

17/39



EpGEe-DisjoiNnT PATHS



Min-Cutr  BrearTitE  EDGE-DisjoiNt  ImG SEG T SIONS SURVEYS FLiGHTs Projects MIN-

Epcge-DisjoinT PATHS

Given a graph G = (V, E) and two distinguished nodes s and ¢,
find the number of edge-disjoint paths from s to ¢.
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Epcge-DisjoinT PATHS

Given a graph G = (V,E) and two distinguished nodes s and ¢,
find the number of edge-disjoint paths from s to ¢.

@ Directed Graph:

e sis the source and ¢ is the sink.
o Add capacity of 1 to every edge.
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Epcge-DisjoinT PATHS

Given a graph G = (V,E) and two distinguished nodes s and ¢,
find the number of edge-disjoint paths from s to ¢.

@ Directed Graph:

e sis the source and ¢ is the sink.
o Add capacity of 1 to every edge.

@ Undirected Graph:
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Epcge-DisjoinT PATHS

Given a graph G = (V,E) and two distinguished nodes s and ¢,
find the number of edge-disjoint paths from s to ¢.

@ Directed Graph:
e sis the source and ¢ is the sink.
o Add capacity of 1 to every edge.
@ Undirected Graph:
e For each undirected edge (u,v), convert to 2 directed edges
(u,v) and (v,u).
o Apply directed graph transformation.
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EpcGe-DisjoinT PATHS ANALYSIS

Observation 3

If there are k edge-disjoint paths in G from s — t, then the max-flow is k
inG'.
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EpcGe-DisjoinT PATHS ANALYSIS

Observation 3

If there are k edge-disjoint paths in G from s — t, then the max-flow is k
inG'.

e Basic FF method: O(mC) = O(mn).

Path Decomposition

@ Let f be a max-flow for this problem. How can we recover
the k edge-disjoint paths?
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EpcGe-DisjoinT PATHS ANALYSIS

Observation 3

If there are k edge-disjoint paths in G from s — t, then the max-flow is k
inG'.

e Basic FF method: O(mC) = O(mn).

Path Decomposition

@ Let f be a max-flow for this problem. How can we recover
the k edge-disjoint paths?
e DFS from s in f along edges e, where f (¢) = 1:
@ Find a simple path P from s to t: set flow to 0 along P;
continue DFS from s.
@ Find a path P with a cycle C before reaching t: set flow to 0
along C; continue DFS from start of cycle.

19/39



IMAGE SEGMENTATION



NEerwork FLow Min-Cut  BiparTiTE  EpGe-DisjoiNt IMG SEG  ExTEnsions Surveys FriGHTs Projects MiIN-Cost  BaseBarL*

IMAGE SEGMENTATION

Let P be the set of pixels in an image. We would like to separate
P into set A and B, where A are the foreground pixels and B are
the background pixels.

For pixel i:

@ a; > 0 is the likelihood of i being in the foreground.
@ b; > 0 is the likelihood of i being in the background.

@ For each adjacent pixel j: p;; = pji is a separation penalty
paid when i and j are not both € A or € B.
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IMAGE SEGMENTATION

Let P be the set of pixels in an image.

For pixel i:
@ g; > 0 is the likelihood of i being in the foreground.
@ b; > 0 is the likelihood of i being in the background.

@ For each adjacent pixel j: p; = pj; is a separation penalty
paid when i and j are not both € A or € B.

e Maximize q(A,B) = Yica i + Xje bj — Xi jepyAn(ijy=1 Pi
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IMAGE SEGMENTATION

Let P be the set of pixels in an image.

For pixel i:
@ g; > 0 is the likelihood of i being in the foreground.
@ b; > 0 is the likelihood of i being in the background.

@ For each adjacent pixel j: p; = pj; is a separation penalty
paid when i and j are not both € A or € B.

e Maximize q(A,B) = Yica i + Xje bj — Xi jepyAn(ijy=1 Pi
o Let Q=3,p(a;+b;). Expressq(A,B) using Q.
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IMAGE SEGMENTATION

Let P be the set of pixels in an image.
For pixel i:
@ ;> 0 is the likelihood of i being in the foreground.
@ b; > 0 is the likelihood of i being in the background.
@ For each adjacent pixel j: p; = p;i is a separation penalty
paid when i and j are not both € A or € B.

A

o Maximize q(A,B) = Yica i + Xje bj — Xi jepyan(ij}-1 Pi
o Let Q=>;p(a;i+b).
q(A,B) = Q - Yicp i — Ljea bj = Xi jepiangijyl-1 Pii
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IMAGE SEGMENTATION

Let P be the set of pixels in an image.
For pixel i:
@ ;> 0 is the likelihood of i being in the foreground.
@ b; > 0 is the likelihood of i being in the background.
@ For each adjacent pixel j: p; = p;i is a separation penalty
paid when i and j are not both € A or € B.

A

o Maximize q(A,B) = Yica i + Xje bj — Xi jepyan(ij}-1 Pi
o LetQ=Y,p(a;+b).

q(A,B) = Q - Yicp i — Ljea bj = Xi jepiangijyl-1 Pii
e Equivalent goal:

Minimize ¥ ;g ;i + Yjea bj + Xi jepangiji|-1 Pij-
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ALGORITHM DESIGN

@ How can we represent this problem as a graph? What are
the nodes?
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ALGORITHM DESIGN

O,
@ O O
®

@ Each pixel becomes a node.
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ALGORITHM DESIGN

O,
@ O O
®

@ Each pixel becomes a node.
e What about the edges?
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®

ALGORITHM DESIGN

@ Each pixel becomes a node.
@ Add edges between neighbours i and j with capacity pj;.
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©

Piu

(@) pu »é} pi (i)

Piv

®

ALGORITHM DESIGN

@ Each pixel becomes a node.
@ Add edges between neighbours i and j with capacity pj;.
@ What about source and target?
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@ Each pixel becomes a node.
@ Add edges between neighbours i and j with capacity pj;.
@ Add a source s and connect to all nodes i with capacity a;.
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ALGORITHM DESIGN

@ Each pixel becomes a node.
@ Add edges between neighbours i and j with capacity pj;.
@ Add a source s and connect to all nodes i with capacity a;.
e Add a sink t and connect all nodes i with capacity b; to t.
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e Min-cut will minimize ¥;cpdi + ¥jea bj + X jepian{i ) |=1 Pij-
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e Min-cut will minimize ¥;cpdi + ¥jea bj + X jepian{i ) |=1 Pij-

e Consider i € A: Foreground and contributes b; to cut.
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ALGORITHM DESIGN

ay /@\
a4 Piu b,
o- Pig e P j

v Piv q % bj

q
a

e Min-cut will minimize ¥;cpdi + ¥jea bj + X jepian{i ) |=1 Pij-
e Consider i € A: Foreground and contributes b; to cut.

e Consider j € B: Background and contributes 4; to cut.
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ALGORITHM DESIGN

ay /®\
a4 Piu b,
o- Pig e P j

v Piv q % bj

q
a

e Min-cut will minimize ¥;cpdi + ¥jea bj + X jepian{i ) |=1 Pij-
e Consider i € A: Foreground and contributes b; to cut.
e Consider j € B: Background and contributes 4; to cut.
e Consideri € A,j € B and 7,j adjacent: contributes p;; to cut.
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NobDE DEMAND AND LOWER
BouNDs



Circulations with Demands

e Suppose we have multiple sources and multiple sinks.

Each sink wants to get a certain amount of flow
(its demand).

Each source has a certain amount of flow to give (its supply).

We can represent supply as negative demand.



supply d1 =-4

l@f % \?
'

supply d2 N demand d5 =3 @



Goal: find a flow f that satisfies:

1 Capacity constraints: For each e € E, 0 < f(e) < ce.

2 Demand constraints: For each v € V,
F(v) — FU%v) = d,.

The demand d, is the excess flow that should come into node.



Sources and Sinks

Let S be the set of nodes with negative demands (supply).

Let T be the set of nodes with positive demands (demand).

In order for there to be a feasible flow, we must have:

D —de=)

seS teT

Let D=3, 7 d.



How can we turn the circulation with demands problem into the
maximum flow problem?



Reduction

How can we turn the circulation with demands problem into the
maximum flow problem?

1 Add a new source s* with an edge (s*,s) from s* to every
node s € S.

2 Add a new sink t* with an edge (¢, t*) from t* to every node
teT.



Reduction

How can we turn the circulation with demands problem into the
maximum flow problem?

1 Add a new source s* with an edge (s*,s) from s* to every
node s € S.

2 Add a new sink t* with an edge (t, t*) from t* to every node
teT.

The capacity of edges (s*,s) = —ds  (since d. < 0, this is +ve)

The capacity of edges (t, t*) = d;.



Circulation Reduction Example

supply dq =-4 7 2

N ©)
supply dy =-7 @ 3 >

demand d5 =3

Feasible circulation if and only if there is a flow of value



Intuition:
o Capacity of edges (s*, s) limit the supply for source nodes s.
o Capacity of edges (t, t*) require that d; flow reaches each t.

Hence, we can use max-flow to find these circulations.



Lower Bounds

Another extension: what if we want lower bounds on what flow
goes through some edges?

In other words, we want to require that some edges are used.

Goal: find a flow f that satisfies:

1 Capacity constraints: For each e € E, /. < f(e) < ce.

2 Demand constraints: For each v € V,

F(v) — F(v) = d,.



Lower Bounds

Suppose we defined an initial flow fy by setting the flow along each
edge equal to the lower bound. In other words: fy(e) = Ce.

This flow satisfies the capacity constraints, but not the demand
constraints.

Define: L, = fi®(v) — f%(v).
Recall that the demand constraints say that fi*(v) — fu(v) = d,.

Hence, L, is equal to the amount of the demand that fy satisfies at
node v.



New Graph

For each node, our flow f; satisfies L, of its demand, hence we
have:

New demand constraints:

fin(v) _ fout(v) =d,— L,

Also, fy uses some of the edge capacities already, so we have:

New capacity constraints:

0<f(e)<ce—Ve

These constraints give a standard instance of the circulation
problem.



(a) Small instance where one edge
has a lower bound. This makes
the most obvious flow not feasible.

(b) After transformation, we have
an equivalent instance with no
lower bounds.



Reduction:

Given a circulation instance G with lower bounds, we:

1 subtract ¢, from the capacity of each edge e, and

2 subtract L, from the demand of each node v.
(This may create some new “sources” or "sinks".)

We then solve the circulation problem on this new graph to get a
flow f'.

To find the flow that satisfies the original constraints, we add £, to
every f'(e).



Summary

We can efficiently find a feasible flow for the following general
problem:

Circulations with demands and lower bounds
Given:

e a directed graph G
e a nonnegative lower bound /. for each edge e € G
® a nonnegative upper bound c. > /. for each edge e € G
e and a demand d, for every node
Find: a flow f such that
o /. < f(e) < ce for every e, and

o fin(v) — fout(y) = d, for every v.




Serial Reductions. ..

We designed the algorithm for this general problem by reducing
CIRCULATION WITH LOWER BOUNDS problem to the
CIRCULATION WITHOUT LOWER BOUNDS problem. We in turn
reduced that problem to the MaXx FLOW problem.
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Frow NETWORK EXTENSION

AppING NoDE DEMAND

Flow Network with Demand

@ Each node has a demand d;:
e if d, < 0: a source that demands f™(v) - f°*(v) = d.
e if d, = 0: internal node (f"(v) - f°"*(v) = 0).
o if d, > 0: a sink that demands f™(v) — f**(v) = d,.

e S is the set of sources (d, < 0).
o T is the set of sinks (d, > 0).
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Frow Nerwork ExTENSION
AppING Nope DEMAND
Flow Network with Demand

o Each node has a demand d,:
e if d, < 0: a source that demands f™(v) - f°*(v) = d.
e if d, = 0: internal node (f"(v) - f°*(v) = 0).
o if d, > 0: a sink that demands f™(v) — f**(v) = d,.

e S is the set of sources (d, < 0).

o T is the set of sinks (d, > 0).

.

Flow Conditions
@ Capacity: ForeacheeE, 0<f(e) <c,.
@ Conservation: For each v € V, f"(v) - fO"(v) = d,.
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Frow Nerwork ExTENSION
AppING Nope DEMAND
Flow Network with Demand

o Each node has a demand d,:
e if d, < 0: a source that demands f™(v) - f°*(v) = d.
e if d, = 0: internal node (f"(v) - f°*(v) = 0).
o if d, > 0: a sink that demands f™(v) — f**(v) = d,.

e S is the set of sources (d, < 0).

o T is the set of sinks (d, > 0).

.

Flow Conditions
@ Capacity: ForeacheeE, 0<f(e) <c,.
@ Conservation: For each v € V, f"(v) - fO"(v) = d,.

V.
Feasibility: Does there exist a flow that satisfies the conditions?
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EXTENSIONS

FeAsIBILITY

Feasibility: Does there exist a flow that satisfies the conditions? \
If there is a feasible flow, then Y.,y dy = 0. \
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FeAsIBILITY

Feasibility: Does there exist a flow that satisfies the conditions?
If there is a feasible flow, then Yy dy = 0.

@ Suppose that f is a feasible flow, then, by definition, for all
v, dy = f(0) = f**(0).
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FeAsIBILITY

Feasibility: Does there exist a flow that satisfies the conditions?
If there is a feasible flow, then Yy dy = 0.

@ Suppose that f is a feasible flow, then, by definition, for all
v, dy =" (v) - f*"(0).

e For every edge e = (u, ), 2" (u) = fi"(v). Hence,
" (0) -2 (1) = 0.
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FeAsIBILITY

Feasibility: Does there exist a flow that satisfies the conditions?
If there is a feasible flow, then Y.,y dy = 0.

° Suppos¢ that f is a feasible flow, then, by definition, for all
v, dy = f(v) - ().

e For every edge e = (u,0), £ (1) = fI"(v). Hence,
f () = £ (u) = 0.

@ Yoy dy=0.
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FeAsIBILITY

Feasibility: Does there exist a flow that satisfies the conditions? \
If there is a feasible flow, then Yy dy = 0. \

If there is a feasible flow, then

D= 3 dy= Y -dy
v:dy>0eV v:dy<0eV
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FeAsIBILITY

Feasibility: Does there exist a flow that satisfies the conditions?
If there is a feasible flow, then Yy dy = 0.

If there is a feasible flow, then

D= 3 dy= Y -dy
v:dy>0eV v:dy<0eV

Feasibility = Y,y dy =0, but ¥,y dy =0 =5 feasibility.
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EXTENSIONS

RepuctioN To Max-FLow

Reduction from G (demands) to G’ (no demands)

@ Super source s*: Edges from s* to all v € S with dy < 0 with
capacity —dy.
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@ Super source s*: Edges from s* to all v € S with dy < 0 with
capacity —dy.

@ Super sink t*: Edges from all v € T with dy > 0 with
capacity d, to t*.

24/39



EXTENSIONS

RepuctioN To Max-FLow

Reduction from G (demands) to G’ (no demands)

@ Super source s*: Edges from s* to all v € S with dy < 0 with
capacity —dy.

@ Super sink t*: Edges from all v € T with dy > 0 with
capacity d, to t*.

e Maximum flow of D = Y ,.1 s0cv @0 = Xy, <0ev —do in G
shows feasibility.
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EXTENSIONS

ANOTHER FLOowW NETWORK EXTENSION

AppING FLow Lower Bounp

Adding Lower Bound

@ For each edge ¢, define a lower bound /,, where 0 </, < c,.
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ANOTHER FLOowW NETWORK EXTENSION

AppING FLow Lower Bounp

Adding Lower Bound

@ For each edge ¢, define a lower bound /,, where 0 </, < c,.

Flow Conditions

@ Capacity: ForeachecE, {, <f(e) < ce.
© Conservation: For each v € V,fi“(v) - fOUut(v) = dy.
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ANOTHER FLOowW NETWORK EXTENSION

AppING FLow Lower Bounp

Adding Lower Bound

@ For each edge ¢, define a lower bound /,, where 0 </, < c,.

Flow Conditions
@ Capacity: ForeachecE, {, <f(e) < ce.
© Conservation: For each v € V,fi“(v) - fOUut(v) = dy.

Feasibility: Does there exist a flow that satisfies the conditions? \
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RepuctioN To ONLY DEMAND

Eliminating a lower
bound from an edge

Lower bound of 2

Step 1: Reduction from G (demand + LB) to G’ (demand)

e Consider an fj that sets all edge flows to /,:
Lo = fo"(0) = f5*(0) -
e if L, = d,: Condition is satisfied.
o if L, # d,: Imbalance.
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RepuctioN To ONLY DEMAND

Eliminating a lower
bound from an edge

Lower bound of 2

Step 1: Reduction from G (demand + LB) to G’ (demand)

e Consider an fj that sets all edge flows to /,:
Ly = fo"(0) - f*(0) .
e if L, = d,: Condition is satisfied.
o if L, # d,: Imbalance.
e For G”:
e Eachedgee, ¢, =c.— ¢ and ¢, = 0.
e Eachnode v, d, =d, - L,.
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EXTENSIONS

RepuctioN To ONLY DEMAND

Step 2: Reduction from G’ (demand) to G” (no demand)

@ Super source s*: Edges from s* to all v € S with dy < 0 with
capacity —dy.

@ Super sink t*: Edges from all v € T with dy > 0 with
capacity d, to t*.

e Maximum flow of D = Y4 0ev do = Yo, <0ev —do in G
shows feasibility.
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SURVEYS

SURVEY DESIGN

@ Study of consumer preferences.

@ A company, with k products, has a
database of n customer purchase
histories.

IR

@ Goal: Define a product specific
survey.

.
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SURVEY DESIGN

@ Study of consumer preferences.

@ A company, with k products, has a
database of n customer purchase
histories.

@ Goal: Define a product specific

IR

.

survey.

@ Each customer receives a survey based on their purchases.
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ExTENSIONS SURVEYs FLIGHTS

MiN-Cut  BreartiTE  EpGE-Disjoint  IMG SEG

SURVEY DESIGN

@ Study of consumer preferences.

@ A company, with k products, has a
database of n customer purchase
histories.

@ Goal: Define a product specific

IR

.

survey.

@ Each customer receives a survey based on their purchases.
e Customer i will be asked about at least ¢; and at most ¢]

products.
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SURVEY DESIGN

@ Study of consumer preferences.

@ A company, with k products, has a
database of n customer purchase
histories.

@ Goal: Define a product specific
survey.

.

@ Each customer receives a survey based on their purchases.

e Customer i will be asked about at least ¢; and at most ¢]
products.

@ To be useful, each product must appear in at least p; and at
most p; surveys.
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SURVEY DESIGN

@ Study of consumer preferences.

@ A company, with k products, has a
database of n customer purchase

histories. ©What type of
@ Goal: Define a product specific graph to use?
survey.

.

@ Each customer receives a survey based on their purchases.

e Customer i will be asked about at least ¢; and at most ¢]
products.

@ To be useful, each product must appear in at least p; and at
most p; surveys.
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ALGORITHM DESIGN

Customers Products
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ALGORITHM DESIGN

Customers Products

@ Bipartite Graph: Customers to products with min of 0 and
max of 1.

e Add s with edges to customer i with min of ¢; and max of c].
o Add t with edges from product j with min p; and max of p;.

e Edge (t,s) with min }; ¢; and max Y, c].

o All nodes have a demand of 0.
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ALGORITHM DESIGN

Customers Products

Feasibility means it is possible to meet the constraints.

Edge (i,/) carries flow if customer i asked about product ;.
Flow (t,s) overall # of questions.
Flow (s, i) # of products evaluated by customer i.

Flow (j, t) # of customers asked about product j.

28/39
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AIRLINE SCHEDULING

Flights: (2 airplanes)

© Boston (6 am) — Washington DC (7 am)

@ Philadelphia (7 am) — Pittsburgh (8 am)

© Washington DC (8 am) — Los Angeles (11 am)
@ Philadelphia (11 am) — San Francisco (2 pm)
© San Francisco (2:15 pm) — Seattle (3:15 pm)

O Las Vegas (5 pm) — Seattle (6 pm)

Simple Version

@ Scheduling a fleet of k airplanes.
e m flight segments, for segment i:

e Origin and departure time.
o Destination and arrival time.
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AIRLINE SCHEDULING
Flights: (2 airplanes)

© Boston (6 am) — Washington DC (7 am)

@ Philadelphia (7 am) — Pittsburgh (8 am)

© Washington DC (8 am) — Los Angeles (11 am)
@ Philadelphia (11 am) — San Francisco (2 pm)
© San Francisco (2:15 pm) — Seattle (3:15 pm)

O Las Vegas (5 pm) — Seattle (6 pm)

The same plane can be used for flight i and j if:

@ i destination is the same as j origin and there is enough
time for maintenance between i arrival and j departure;
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AIRLINE SCHEDULING
Flights: (2 airplanes)

© Boston (6 am) — Washington DC (7 am)

@ Philadelphia (7 am) — Pittsburgh (8 am)

© Washington DC (8 am) — Los Angeles (11 am)
@ Philadelphia (11 am) — San Francisco (2 pm)
© San Francisco (2:15 pm) — Seattle (3:15 pm)

O Las Vegas (5 pm) — Seattle (6 pm)

The same plane can be used for flight i and j if:
@ i destination is the same as j origin and there is enough
time for maintenance between i arrival and j departure;

@ Or, there is enough time for maintenance and to fly from i
destination to j origin.
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AIRLINE SCHEDULING
Flights: (2 airplanes)

© Boston (6 am) — Washington DC (7 am)

@ Philadelphia (7 am) — Pittsburgh (8 am)

© Washington DC (8 am) — Los Angeles (11 am)
@ Philadelphia (11 am) — San Francisco (2 pm)
© San Francisco (2:15 pm) — Seattle (3:15 pm)

O Las Vegas (5 pm) — Seattle (6 pm)

The same plane can be used for flight i and j if:
@ i destination is the same as j origin and there is enough
time for maintenance between i arrival and j departure;

@ Or, there is enough time for maintenance and to fly from i
destination to j origin.

How might you represent this as a graph?
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FrigHTS

ALGORITHM DESIGN

SEA 6

k =2 planes

Exercise: Reduce to a flow network

Hint: Use lower bounds and demand.
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ALGORITHM DESIGN

SEA 6

k = 2 planes

Exercise: Reduce to a flow network

Hint: Use lower bounds and demand.
@ Are s-t new nodes?
@ What is the max capacity of the edges from G?
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ALGORITHM DESIGN

SEA 6

k = 2 planes

Exercise: Reduce to a flow network

Hint: Use lower bounds and demand.
® In the example, how many edges out from s?

® In the example, how many edges in to t?
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ALGORITHM DESIGN

k =2 planes

BOS6 DCAZ7-"DCAS

Units of flow correspond to airplanes.

Each edge of a flight has capacity (1,1).

Each edge between flights has capacity of (0,1).

Add node s with edges to all origins with capacity of (0,1).
Add node t with edges from all destinations with cap (0, 1).
Edge (s,t) with a min of 0 and a max of k.

Demand: d; = -k,d; = k,d, = 0Vo e V \ {s, t}.
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ProjecT SELECTION

Q

Projects

Set of projects: P.
Each i € P: profit p; (which can be negative).
Directed graph G encoding precedence constraints.

Feasible set of projects A: PROFIT(A) = Y e Pi-

Goal: Find A* that maximizes profit.

V.
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ProjecT SELECTION

Q

Projects

Use Min-Cut to solve this
problem.

Set of projects: P.
Each i € P: profit p; (which can be negative).
Directed graph G encoding precedence constraints.

Feasible set of projects A: PROFIT(A) = Y e Pi-

Goal: Find A* that maximizes profit.

V.
31/39
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ALGORITHM DESIGN

@ Use Min-Cut

Projects with
positive value
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ALGORITHM DESIGN

@ Use Min-Cut

e Add s with edge to every
project i with p; > 0 and
capacity p;.

Projects with
positive value
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e Add t with edge from every
project i with p; <0 and
capacity —p;.

(Reduction ]
N e Use Min-Cut
_ e Add s with edge to every
O project i with p; > 0 and
() capacity p;.
‘ .

Projects with
positive value
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e Add t with edge from every
project i with p; <0 and
capacity —p;.

e C= ZieP:ppO pi

() capacity p;.
@

o Reduction
0 e Use Min-Cut
_ e Add s with edge to every
O roject i with p; > 0 and
proj p
@

Projects with
positive value

32/39



NEeTWORK Frow Min-Cut  BiparTiTE  EDGE-Disjoint ImG SEG  ExTeEnsions Surveys FricHTs Projects MiIn-Cost  BASEBAT

ALGORITHM DESIGN

e Projects with o Use Mln-Cut
negative value
@ 0 e Add s with edge to every
_ project i with p; > 0 and
. Projects Capacity Pi-
@

e Add t with edge from every
project i with p; <0 and
capacity —p;.

o C= ZieP:pi>0 pi
©: What is the capacity of the
cut ({s},Pu{t})?
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NETWORK FLow

MiN-Cut  BreartiTE  EpGE-Disjoint  IMG SEG

EXTENSIONS SURVEYS

FLicats Projects Min-Cost BasgeBaLt

ALGORITHM DESIGN

0 Projects with
negative value
‘ ‘ . Projects

Projects with
positive value

e Use Min-Cut

e Add s with edge to every
project i with p; > 0 and
capacity p;.

e Add t with edge from every
project i with p; <0 and
capacity —p;.

o Max-flowis < C = ZieP:ppO pi
which is the capacity

({s}, Pu{t})
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e Add t with edge from every
project i with p; <0 and
capacity —p;.

o Max-flow is < C = Yiepyp50 Pi -

(Reduction |
N e Use Min-Cut
_ e Add s with edge to every
O project i with p; > 0 and
() capacity p;.
‘.

@ For edges of G, capacity is oo
(orC+1).

Projects with
positive value
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ALGORITHM ANALYSIS

Observation 4

Ifc(A",B") <C, then A=A"\{s}
satisfies precedence as edges of G have
capacity > C.

subset of
projects
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Observation 4

Ifc(A",B") <C, then A=A"\{s}
satisfies precedence as edges of G have
capacity > C.

Let (A, B") be a cut satisfies
precedence; then
c(A",B") =C~Yicapi-

subset of
projects
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ALGORITHM ANALYSIS

Observation 4

Ifc(A",B") <C, then A=A"\{s}
satisfies precedence as edges of G have
capacity > C.

Let (A, B") be a cut satisfies
R precedence; then

projects

c(A",B")=C-Yiapi

Consider the different edges:
e (i,t): —piforieA. @ (s,i): pifori¢A.
¢(A",B') = Ticapi<o —Pi + C = Tieap>oPi = C = Lieapi O
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ALGORITHM ANALYSIS

If (A',B') is a min-cut in G, then
A = A’ \ {s} is an optimal solution.

subset of
projects
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ALGORITHM ANALYSIS

If (A',B') is a min-cut in G, then
A = A’ \ {s} is an optimal solution.

.

o Obs: c(A',B') = C - Tieapi
means feasible.
c(A’,B") = C - proFIT(A)
‘ < prorFiT(A) =C-c(A",B")
et of e Given that c(A’,B") isa
minimum, profit is
maximized as C is a constant.

O

.
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Frow Nerwork witH Cost

20/%6 ] 10/52 Flow Network with Cost
e Directed graph G = (V,E).
@ 30/30 @ @ Each edge e has c, > 0 and a cost
10/$5V£0/$6 $, > 0.
o $, is the cost per unit of flow.
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Frow Nerwork witH Cost

20/96 | 10/%2 Flow Network with Cost
e Directed graph G = (V,E).
@ 30/30 @ @ Each edge e has c, > 0 and a cost
10/%$5 | 20/%6 $. > 0.
o $, is the cost per unit of flow.

Defining Flow

o Flow starts at s and exits at ¢.

e Flow function: f : E - R*; f(e) is the flow across edge e.
e Flow Conditions:

@ Capacity: ForeachecE, 0 <f(e) <c..

@ Conservation: For each v e V \ {s,t},

>, fle)=f"@) =f"@) = 3 flo)

e into v eoutof v

e Flow value v(f) = fU(s) = fin(¢).

v
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Frow Nerwork witH Cost

20/ $§110/ $2

@ 30/%$0 Given a flow network G, what is the
flow f of minimum cost that
10/ $,5 :l 2,0/ 36 maximizes v(f)?
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Frow Nerwork witH Cost

20/ $$0/ $2

@ 30/$0 @ Given a flow network G, what is the
10/%$5 | 20/%6 flow f of minimum cost that
ﬁ& /$ maximizes v(f)?

Greedy Approach

How do we make this give us the min-cost max-flow?

e Initialize f(e) = 0 for all edges.
e While Gy contains an augmenting path P:
o Update flow f by orTLENECK(P, Gf) along P.
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BASEBALL

Frow Nerwork witH Cost

20/%6 | 10/$2 Min-Cost Max-Flow
@ 30/$0 @ Given a flow network G, what is the
10/%5 | 20/%6 flow f of minimum cost that
ﬁ& /% maximizes v(f)?
Greedy Approach

e Initialize f(e) = 0 for all edges.
e While Gy contains an augmenting path:

e Find the cheapest augmenting path P
o Update flow f by orTLENECK(P, Gf) along P.

Note: In Gr, let ¢’ be the reverse edge of e. The $, = —$,.
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Frow Nerwork witH Cost

Greedy Approach

e Initialize f(e) = 0 for all edges.
e While Gy contains an augmenting path:
o Find the cheapest augmenting path P
o Update flow f by BorTLENECK(P, Gf) along P.

Note: In Gr, let ¢’ be the reverse edge of e. The $. = —%,.

A

How do we find the cheapest augmenting path?

. |
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Frow Nerwork witH Cost

Greedy Approach

e Initialize f(e) = 0 for all edges.
e While Gy contains an augmenting path:
o Find the cheapest augmenting path P
o Update flow f by BorTLENECK(P, Gf) along P.

Note: In Gr, let ¢’ be the reverse edge of e. The $. = —%,.

A

How do we find the cheapest augmenting path?

@ Bellman-Ford shortest path

.
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Frow Nerwork witH Cost

Greedy Approach

e Initialize f(e) = 0 for all edges.
e While Gy contains an augmenting path:
o Find the cheapest augmenting path P
o Update flow f by BorTLENECK(P, Gf) along P.

Note: In Gr, let ¢’ be the reverse edge of e. The $. = —%,.

A

How do we find the cheapest augmenting path?

@ Bellman-Ford shortest path

e Negative costs and it is possible to show that there will be
no negative cycles.

.
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BASEBALL

Frow Nerwork witH Cost

Greedy Approach

e Initialize f(e) = 0 for all edges.
e While Gy contains an augmenting path:
o Find the cheapest augmenting path P
o Update flow f by BorTLENECK(P, Gf) along P.

Note: In Gr, let ¢’ be the reverse edge of e. The $,» = —$,.

A

How do we find the cheapest augmenting path?

@ Bellman-Ford shortest path
e Negative costs and it is possible to show that there will be
no negative cycles.
@ Special Case for Flow Networks: It is possible to modify
the weights to remove negative costs and use Dijkstra’s to
improve the runtime.

.
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
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@: Is Boston Eliminated?
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

@: Is Boston Eliminated? Yes.
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

Why is Boston eliminated?

Case analysis:

@ Boston must win its 2 remaining games.
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

Why is Boston eliminated?

Case analysis:
@ Boston must win its 2 remaining games.

@ New York must lose its 2 remaining games.
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

Why is Boston eliminated?

Case analysis:
@ Boston must win its 2 remaining games.
@ New York must lose its 2 remaining games.

@ This leaves TOR vs BAL: So one of Toronto or Baltimore
will end with 93 wins.
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

Analytical approach:

@ Boston can finish with < 92 wins.

V.
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

Why is Boston eliminated?

Analytical approach:
@ Boston can finish with < 92 wins.

@ Currently, other 3 teams have 274 combined wins with 3
remaining games between them:

V.
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BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

Why is Boston eliminated?

Analytical approach:

@ Boston can finish with < 92 wins.

@ Currently, other 3 teams have 274 combined wins with 3

remaining games between them:

o Overall, at the end, there will be 277 combined wins

between the other 3 teams.

V
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Min-Cost  BaseBaLr*

BaseBaLL ELIMINATION

Wins Games Left
New York 92 NYY vs TOR
Toronto 91 TOR vs BAL
Baltimore 91 BAL vs BOS
Boston 90 BOS vs TOR
NYY vs BAL

Why is Boston eliminated?

Analytical approach:

@ Boston can finish with < 92 wins.

@ Currently, other 3 teams have 274 combined wins with 3

remaining games between them:

o Overall, at the end, there will be 277 combined wins

between the other 3 teams.

e Average of 92 1/3 wins which implies that one team will

have at least 92 1/3 — 93 wins.

V
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BaseBaLL ELIMINATION

@ A set S of teams.

o For each team x € S: w, is the # of wins.
@ For each pair x,y € S: gy, is # of games left btw x and y.
o Goal: Decide if team z has been eliminated.
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ALGORITHM DESIGN

The set T= {NY, Toronto}
proves Boston is
eliminated.

Let m be the max # of
wins for z,

§" =S8~ {z},and

g* = Zx,yeS’ 8xy-

@ Nodes:

e Source s, sink t.
e v, foreachx e S’
e uy, for each pair x,y € S'.
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ALGORITHM DESIGN

proves Boston is
eliminated.

The set T= {NY, Toronlo}}

Let m be the max # of
wins for z,

§" =S8~ {z},and

g* = Zx,yeS’ 8xy-

e For each v,: (vy,t) with capacity m — wy.
e For each u,,:

o (s,uy) with capacity gxy.
o (Uyy,vy) and (uxy, vy) with capacity co (or gxy).
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ALGORITHM DESIGN

The set T= {NY, Toronto}
proves Boston is
eliminated.

Let m be the max # of
wins for z,
§"=5~{z},and

g* = Zx,yes’ 8xy-

e v(f) = ¢*: zis not eliminated.

38/39



MIN-Cut  BrearTiTE  EDGE-DisjoiNt  IMG SEG  ExTENsIONs SURVEYs FriGHTs Projects Min-Cost BaseBaLL*

ALGORITHM DESIGN

proves Boston is
eliminated.

The set T={NY, Torontoq

Let m be the max # of

wins for z,
S§"'=S5~{z},and
g = Zx,yeS’ Sxy-

e v(f) =g": zis not eliminated.

o(f)=g" =f"(t) < Y (m—wy) =m|S'| = 3 wy

xeS’ xeS’
= > Gy <mS|- ) wy
x,yeS’ xeS’
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ALGORITHM DESIGN

The set T= {NY, Toronto}
proves Boston is
eliminated.

Let m be the max # of
wins for z,
§"=5~{z},and

g* = Zx,yes’ 8xy-

e v(f) = ¢*: zis not eliminated.
e v(f) < g*: zis eliminated.
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SoLuTION CHARACTERIZATION

proves Boston is
eliminated.

The set T={NY, Toronto}}

Let m be the max # of
wins for z,
S'=5~{z},and
g* = Zx,yeS’gxy'

Suppose z has been eliminated. Then, there is a set of items T < S’
such that: m|T| < ¥ yet 8y + XxeT Wy
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SoLuTION CHARACTERIZATION

P

Let m be the max # of wins for z,
§"=5~{z},and g" = ¥y yes' Qxy-

Suppose z has been eliminated. Then, there is a set of items T < S’
such that: m|T| < YxyeT Sxy T LoxeT Wx

V.

e Let (A, B) be a min-cut with
c(A,B)=g¢'< min{zx’yesl Sxy» Loxes M — Wy}
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SoLuTION CHARACTERIZATION

Let m be the max # of wins for z,
§"=5~{z},and g" = ¥y yes' Qxy-

Suppose z has been eliminated. Then, there is a set of items T < S’
such that: m|T| < YxyeT Sxy T LoxeT Wx

V.

e Let (A, B) be a min-cut with
c(A,B)=g¢'< min{zx’yesl Sxy» Loxes M — Wy}
o Consider auy, € A,xeT,and y ¢ T (WLOG).

o Contradiction: ¢(y,, ) = oo.
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§"=5~{z},and g" = ¥y yes' Qxy-

Suppose z has been eliminated. Then, there is a set of items T < S’
such that: m|T| < YxyeT Sxy T LoxeT Wx

V.

e Let (A, B) be a min-cut with
c(A,B) =g' <min{Y, yes §ry, Lxess M — Wy }.
@ Considerauy, ¢ A,and x,y e T.
o Contradiction: c(A U {uy}, B\ {1ty }) = (A, B) - gy
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SoLuTION CHARACTERIZATION

(The set T={NY, Toronto}
proves Boston is

Let m be the max # of wins for z,
§'=5\{z},and g" = ¥y yes' Suy-

Suppose z has been eliminated. Then, there is a set of items T < S’
such that: m|T| < ¥y et §xy + LxeT Wx

.

e Let (A, B) be a min-cut with
c(A,B) =g <min{Yy yesr Gxy» Lxesr M — Wy}
° C(Aa B) = g, = m|T| — YxeT Wy + Zx,yéTgxy

.
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SoLuTION CHARACTERIZATION

P

Let m be the max # of wins for z,
§"=5~{z},and g" = ¥y yes' Qxy-

Suppose z has been eliminated. Then, there is a set of items T < S’
such that: m|T| < YxyeT Sxy T LoxeT Wr

.

@ Let (A, B) be a min-cut with
c(A,B)=¢'< min{zwesf Sxys Lxes' M — Wy .
° C(A, B) = g’ = m|T| - erT Wy +g* - Zx,yETgx]/
~— 0> m|T| = ZXET Wy — Zx,yeTgx}/ as g’ < g*

.

39/39



NETWORK FLow MIN-Cut  BrearTiTE  EDGE-DisjoiNt  IMG SEG  ExTENsIONs SURVEYs FriGHTs Projects Min-Cost BaseBaLL*

SoLuTION CHARACTERIZATION

P

Let m be the max # of wins for z,
§"=5~{z},and g" = ¥y yes' Qxy-

Suppose z has been eliminated. Then, there is a set of items T < S’
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.

@ Let (A, B) be a min-cut with
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