CS 577 - Randomized Algorithms

Roots & Multiplication & Hashing

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin — Madison

Fall 2024

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

FrREIVALD'S ALGORITHM

MATRIX MULTIPLCATION HasHinG

THE PROBLEM

@ Given three matrices A, B, and C of dimensions 7 x 7.
e We want to verify whether C = A x B.

e Naive Method: Compute A x B and compare with C.
e Time Complexity: O(1).

1/24

MATRIX MULTIPLCATION HasHinG

THE PROBLEM

@ Given three matrices A, B, and C of dimensions 7 x 7.
e We want to verify whether C = A x B.

e Naive Method: Compute A x B and compare with C.
e Time Complexity: O(1).

®Do we know better method? J

1/24

MATRIX MULTIPLCATION HasHING

THE PROBLEM

@ Given three matrices A, B, and C of dimensions 7 x 7.
e We want to verify whether C = A x B.

e Naive Method: Compute A x B and compare with C.
e Time Complexity: O(1).

®Do we know better method? J

e Yeap!: Divide & Conquer: Strassen’s Algorithm O(n>81).

@ Best Known Algorithm: Vassilevska (2015): O(n*37)

1/24

MATRIX MULTIPLCATION HasHING

THE PROBLEM

@ Given three matrices A, B, and C of dimensions 7 x 7.
e We want to verify whether C = A x B.

e Naive Method: Compute A x B and compare with C.
e Time Complexity: O(1).

®Do we know better method? J

e Yeap!: Divide & Conquer: Strassen’s Algorithm O(n>81).

@ Best Known Algorithm: Vassilevska (2015): O(n*37)

@Can we randomly check in O(n?)? J

1/24

MATRIX MULTIPLCATION HasHING

FrREIVALD'S ALGORITHM

Freivald’s Algorithm for Matrix Multiplication

Verification

© Input: Matrices A, B, C of dimensions n x n.
@ For k iterations:
e Choose a random vector r € {0,1}".

Computes =C xr.
Compute g =B xr.
Compute t = A x g.
Ifs+t:

o Return FALSE.

© Return TRUE.

2/24

MATRIX MULTIPLCATION HasHING

FrREIVALD'S ALGORITHM

Freivald’s Algorithm for Matrix Multiplication

Verification

@ Input: Matrices A, B, C of dimensions n x n.
@ For k iterations:
e Choose a random vector r € {0,1}".

Computes =C xr.
Compute g =B xr.
Compute t = A x g.
If s+t

o Return FALSE.

© Return TRUE.

@What is the time complexity of Freivald’s Algorithm? J

2/24

MATRIX MULTIPLCATION HasHING

FrREIVALD'S ALGORITHM

Freivald’s Algorithm for Matrix Multiplication

Verification

@ Input: Matrices A, B, C of dimensions 7 x n.

© For k iterations:
o Compute a random vector r € {0,1}". s =Cxr,g=Bxr,t =Axq.
o Checkifs=t:

©What is the time complexity of Freivald’s Algorithm? J

Time Complexity

e Each iteration requires:
o Matrix-vector multiplication: O(n?).

e Total time complexity for k iterations: O(kn?).
e For constant k = ©(1), the complexity is O(n?).

2/24

MATRIX MULTIPLCATION HasHING

CORRECTNESS OF THE ALGORITHM
e IfC=AxB:
o The algorithm always returns TRUE.
o If C+AxB:
o There exists at least one r such that A(Br) # Cr.
o The probability that the algorithm fails to detect the error is
at most % per iteration. (Why???)

Probabilistic Analysis
@ Let D =AB-C and assume D # 0.
e We want to find the probability Pr(Dr = 0).

@ Observation: Since D # 0, there is at least one non-zero
row or column.

The one-sided error probability is < %

3/24

MATRIX MULTIPLCATION HasHING

CORRECTNESS OF THE ALGORITHM

©® What does it mean one-sided error?
What kind of casino-algorithm do we have here?

is

at most % per iteration. (Why???)

Probabilistic Analysis
@ Let D =AB-C and assume D # 0.
e We want to find the probability Pr(Dr = 0).

@ Observation: Since D # 0, there is at least one non-zero
row or column.

The one-sided error probability is < %

3/24

MATRIX MULTIPLCATION HasHING

CORRECTNESS OF THE ALGORITHM

©® What does it mean one-sided error?
What kind of casino-algorithm do we have here?

We try to solve a decision problem.

. is
One-sided error :

If the answer is Yes, we never fail .
If the answer is No, there exist a failure probability

This is a Monte-Carlo algorithm.
e Observation: Since ¥ U, there 1S at least one Non-zero

row or column.

The one-sided error probability is < %

3/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

@ Let D = AB - C, and suppose D = 0.
Note: We do not compute the matrix D in

the algorithm; we need it for the analysis!

—d—
p-|%—
L
e Since D # 0, there exists at least one non-zero row vector d

in D.
@ We need to compute the probability that Dr = 0, where
r€{0,1}" is a random vector.

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)
@ Focus on the non-zero row d:

Dr=0 = d-r=0 = Pr[Dr=0]<Pr[d-r=0]

[lustration of S ¢ Q Implies Pr[S] < Pr[Q]

o If S ¢ Q, then the event S is entirely contained within Q.

o Therefore, the probability of S cannot exceed the probability of
Q:
Pr[S] < Pr[Q]

Q

Q

(s)

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)

@ Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:
n
d-r=diri+---+dyry, = Zdﬂ’i
i=1

@ Since d # 0, 3 at least one index j* such that dj+ # 0.

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+duyry =Y diri
i-1

e Sinced # 0, 3 at least one index j* such that d;+ # 0.

@Why do we care about that specific rjx? J

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

@ Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:
n
d-r:d1r1 +"’+dnrn = Zdﬂ’i
i=1

@ Since d # 0, 3 at least one index j* such that dj« # 0.

Although unlikely, the matrix D could be such that all rows are
zero except one. For example:

5 00
D= In this case, only the term dyr; survivesind - r.

0 0O
0 0O

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+dury = Y diri
i=1

@ Since d # 0, 3 at least one index j* such that dj+ # 0.

Suppose the first row of D isd = (4,-5,1,2) and r = (1,1,1,0).
Whatisd - r?

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)
e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.
@ The dot product is given by:

n
d-r=diry+-+dury =Y diri
i-1

@ Since d # 0, 3 at least one index j* such that dj+ # 0.

Suppose the first row of D isd = (4,-5,1,2) and r = (1,1,1,0).
Whatisd - r?
Answer: d-r=4(1)+ (-5)(1) +1(1) +2(0) =0

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+dury = Y diri
i=1

@ Since d # 0, 3 at least one index j* such that dj+ # 0.

Suppose the first row of D isd = (4,5,2,1) and r = (0,1,1,0).
Whatisd - r?

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)
e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.
@ The dot product is given by:

n
d-r=diry+-+dury =Y diri
i-1

@ Since d # 0, 3 at least one index j* such that dj+ # 0.

Suppose the first row of D isd = (4,5,2,1) and r = (0,1,1,0).
Whatisd - r?
Answer: d-r=4(0)+5(1) +2(1) +1(0) =7

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+dury = Y diri
i=1

@ Since d # 0, 3 at least one index j* such that dj+ # 0.

Suppose the first row of D isd = (7,0,0,0) and r = (1,1,1,0).
Whatisd - r?

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+duyry = Y dir;
i-1

@ Since d # 0, 3 at least one index j* such that dj* +0.

Suppose the first row of D isd = (7,0,0,0) and r = (1,1,1,0).
Whatisd - r?
Answer:d-r=7-1=7

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+dury = Y diri
i=1

@ Since d # 0, 3 at least one index j* such that dj+ # 0.

Suppose the first row of D isd = (7,0,0,0) and r = (0,1, 1,0).
Whatisd - r?

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+duyry = Y dir;
i-1

@ Since d # 0, 3 at least one index j* such that dj* +0.

Suppose the first row of D isd = (7,0,0,0) and r = (0,1,1,0).
Whatisd - r?
Answer:d-r=7-0=0

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=diri+-+duyry =Y dir;
i=1

@ Since d # 0, 3 at least one index j* such that dj- # 0.

Ifd=(12,9,2,5) and r = (r1,12,73,74) with r; € {0,1}, what is
Pr[d-r=0]?

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=d1r1+---+dnrn :Zdiri
i=1

e Sinced # 0, 3 at least one index j* such that d;+ # 0.

Ifd =(12,9,2,5) and r = (1,72, 73,74) with r; € {0,1}, what is
Pr[d-r=0]?
Answer: Since each r; is independent,

Pr[d-r=0]=1/2*

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=d1r1+---+dnrn :Zdiri
i=1

e Sinced # 0, 3 at least one index j* such that d;+ # 0.

Ifd =(12,9,2,5) and r = (1,72, 73,74) with r; € {0,1}, what is
Pr[d-r=0]?
Answer: Since each r; is independent,

Pr[d-r=0]=1/2*

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=d1r1+---+dnrn :Zdiri
i=1

e Sinced # 0, 3 at least one index j* such that d;+ # 0.

Ifd =(12,9,2,5) and r = (1,72, 73,74) with r; € {0,1}, what is
Pr[d-r=0]?
Answer: Since each r; is independent,

Pr[d-r=0]=1/2*

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d-r=d1r1+---+dnrn :Zdiri
i=1

e Sinced # 0, 3 at least one index j* such that d; # 0.

Does it matter which row of D is non-zero? \

4/24

MATRIX MULTIPLCATION HasHING

Proor oF THE THEOREM (DETAILED)

e Thus, we need to compute the probability that dr = 0,
where r € {0,1}" is a random vector.

@ The dot product is given by:

n
d'r=d1r1+---+dnrn =Zdﬂ’,’
i=1

@ Since d # 0, 3 at least one index j* such that dj« # 0.

Does it matter which row of D is non-zero?

No, as long as AB # C, then 3 at least one non-zero row in D.
We are interested in whether d - ¥ = 0 happens by chance due to
the random choices of r ©

4/24

MATRIX MULTIPLCATION HasHinG

Proor oF THE THEOREM (DETAILED)

e Case Analysis of Event {d-r =0}:
e Since dj» # 0, rj+ affectsd - .

o We can write:
Lisje diti

d'?":di*l"j*-l-Zdﬂ’i:O:Tj*:— i
]'*

i=j*

e Allr; are uniformly random in {0,1}.

4/24

MATRIX MULTIPLCATION HasHinG

VISUALIZATION OF 7+ AND V (d, 1)
e We illustrate the relationship between r;+ and

i#7* £i'r'
V(d,r) = _M_
dj

1 . _0l 2 e diti
T 2] 0 Pr{V(d,r) 0]; Vid,r) - Disje di
1

5/24

MATRIX MULTIPLCATION HasHinG

Proor ofF THE THEOREM (FINISHED)

@ Let D = AB - C, and suppose D = 0.

One-sided error: D # 0 but Dr =0

J

6/24

MATRIX MULTIPLCATION HasHING

Proor ofF THE THEOREM (FINISHED)

e Let D = AB - C, and suppose D # 0.

One-sided error: D # 0but Dr =0

J

@ We need to compute the probability that Dr = 0, where
r € {0,1}" is a random vector.

@ Since D # 0, there exists at least one non-zero row vector d
in D.
U

6/24

MATRIX MULTIPLCATION HasHING

Proor ofF THE THEOREM (FINISHED)

@ We need to compute the probability that Dr = 0, where
re{0,1}" is a random vector.

@ Since D % 0, there exists at least one non-zero row vector d
in D.
U

@ We can focus on the non-zero row d:
Dr=0 = 3d:d-r=0 = Pr[Dr=0]<Pr[d-r=0]

J

6/24

MATRIX MULTIPLCATION HasHING

Proor ofF THE THEOREM (FINISHED)

@ We can focus on the non-zero row d:
Dr=0 = 3d:d-r=0 = Pr[Dr=0]<Pr[d-r=0]

l

e Since ;- is independent of the other r; and takes values 0 or
1 with equal probability, the probability thatd - r = 0 is at
most %:

1
Pr(d-r=0) <~
r(d-r O)S2

6/24

MATRIX MULTIPLCATION HasHinG

Proor ofF THE THEOREM (FINISHED)

@ Since 7+ is independent of the other r; and takes values 0 or
1 with equal probability, the probability that d - r = 0 is at
1.
most 5t

Pr(d-r=0)<

NI -

©Can we improve the probability? J

6/24

MATRIX MULTIPLCATION HasHinG

RepDUCING THE ERROR PROBABILITY
@ By running the algorithm k times:

1 k
Pr(Failure) < (5)

e Choosing an appropriate k, the error probability becomes
negligible.

7/24

MATRIX MULTIPLCATION HasHING

RepDUCING THE ERROR PROBABILITY
@ By running the algorithm k times:

1 k
Pr(Failure) < (E)

e Choosing an appropriate k, the error probability becomes
negligible.

@Homework: Assume that you have two super-large
polynomials d = 10'° in the forms:

{P(x) —axttag_q++ax +ag

Qx)=(x=r1)...(x—1y5)

e Give me a deterministic algorithm for verifying
P(x) = Q(x) with minimal evaluations of P, Q.

7/24

MATRIX MULTIPLCATION HasHING

RepDUCING THE ERROR PROBABILITY
@ By running the algorithm k times:

1 k
Pr(Failure) < (E)

e Choosing an appropriate k, the error probability becomes
negligible.

@Homework: Assume that you have two super-large
polynomials d = 10'° in the forms:

{P(x) —axttag_q++ax +ag

Qx)=(x=r1)...(x—1y5)

e Give me a deterministic algorithm for verifying
P(x) = Q(x) with minimal evaluations of P, Q.

e Give me a super simple randomized algorithm ®!!! 704

THE SuccEss STORY OF
PytHON DICTIONARIES

A

MATRIX MULTIPLCATION HasHing

PyTHON DICTIONARIES: ITEMS AS (KEY, VALUE) PAIRS

Python dictionaries: items are (key, value) pairs
Example:

d = {’algorithms’: 5, ’cool’: 42}

Operations:

d.items () # [(’algorithms’, 5), (’cool’, 42)]
d[’coo0l’] # 42

d[42] # KeyError

cool?’ in d # True

42 in d # False

Note:

Python set is really dict where items are keys

8/24

MATRIX MULTIPLCATIO HasHing

DictioNARY DATA STRUCTURE

Given a universe U of possible elements, maintain a subset
S ¢ U so that inserting, deleting, and searching in S is efficient.

9/24

MATRIX MULTIPLCATION HasHing

DictioNARY DATA STRUCTURE

Given a universe U of possible elements, maintain a subset
S ¢ U so that inserting, deleting, and searching in S is efficient.

Dictionary Operations

.

.

9/24

MATRIX MULTIPLCATION HasHing

DictioNARY DATA STRUCTURE

Given a universe U of possible elements, maintain a subset
S ¢ U so that inserting, deleting, and searching in S is efficient.

.

Dictionary Operations

o CreartE: Initializes a fresh dictionary that can maintain a
subset S of U that is initially empty.

.

9/24

MATRIX MULTIPLCATION HasHing

DictioNARY DATA STRUCTURE

Given a universe U of possible elements, maintain a subset
S ¢ U so that inserting, deleting, and searching in S is efficient.

.

Dictionary Operations

o CreartE: Initializes a fresh dictionary that can maintain a
subset S of U that is initially empty.

@ Insert(u): Adds u € U to the dictionary (S).

.

9/24

MATRIX MULTIPLCATION HasHing

DictioNARY DATA STRUCTURE

Given a universe U of possible elements, maintain a subset
S ¢ U so that inserting, deleting, and searching in S is efficient.

.

Dictionary Operations

o CreartE: Initializes a fresh dictionary that can maintain a
subset S of U that is initially empty.

@ Insert(u): Adds u € U to the dictionary (S).

@ DeLete(#): Remove u from S.

.

9/24

MATRIX MULTIPLCATION HasHing

DictioNARY DATA STRUCTURE

Given a universe U of possible elements, maintain a subset
S ¢ U so that inserting, deleting, and searching in S is efficient.

A

Dictionary Operations

o CreartE: Initializes a fresh dictionary that can maintain a
subset S of U that is initially empty.

@ Insert(u): Adds u € U to the dictionary (S).
@ DeLete(#): Remove u from S.

e Lookur(u): Determine if u is in S; if so retrieve u.

A

9/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications.

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems,

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases,

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases, Google,

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases, Google, compilers,

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases, Google, compilers,
checksums,

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases, Google, compilers,
checksums, P2P networks,

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases, Google, compilers,
checksums, P2P networks, cryptography,

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases, Google, compilers,
checksums, P2P networks, cryptography, web caching, etc.

10/24

MATRIX MULTIPLCATION HasHing

DictioNaRYy DATA STRUCTURE
DicTIONARY INTERFACE.

@ CrEATE(): INITIALIZE A DICTIONARY WITH S = .

@ InserT(U): ADD ELEMENT 4 € U TO S.

@ DeLETE(U): DELETE U FROM S (IF U IS CURRENTLY IN S).

@ Lookup(u): 15U IN S?

Challenge. Universe U can be extremely large, so defining an
array of size |U]| is infeasible. J

Applications. File systems, databases, Google, compilers,
checksums, P2P networks, cryptography, web caching, etc.

@Can we implement CReATE-INSERT-DELETE-LOOKUP in ©(1)
on expectation?

10/24

THE SoLuTtIiON OF DAY :

HAsHING

A Ranpomizep Data Type

MATRIX MULTIPLCATIO HasHing

HasHiNnG

Definition
A function that converts some input value into a hash value.

e Input: A large universe of values U. Typically, assume
|u| > n.

@ Output: A hash value foru e U to {0,1,2,...,n-1}.

11/24

MATRIX MULTIPLCATION HasHing

HasHiNnG

Definition
A function that converts some input value into a hash value.

e Input: A large universe of values U. Typically, assume
|u| > n.

@ Output: A hash value foru e U to {0,1,2,...,n-1}.

Typically used to generate keys for a dictionary data structure.

11/24

MATRIX MULTIPLCATIO HasHing

HasHiNnG

@ The values in U may be huge. Ex: Blog posts.

12/24

MATRIX MULTIPLCATIO HasHing

HasHiNnG

@ The values in U may be huge. Ex: Blog posts.
@ Take a value u € U and build a smaller key.

12/24

MATRIX MULTIPLCATIO HasHing

HasHiNnG

@ The values in U may be huge. Ex: Blog posts.
@ Take a value u € U and build a smaller key.

\.

e Hash Table: a n-length array H to store the values.

e Hash Function: Map u € U to an index in H;
h:U—-[0.n-1]

.

12/24

MATRIX MULTIPLCATION HasHing

HasHiNnG

@ The values in U may be huge. Ex: Blog posts.
@ Take a value u € U and build a smaller key.

.

e Hash Table: a n-length array H to store the values.

e Hash Function: Map u € U to an index in H;
h:U—-[0.n-1]

4

Dictionary Hashing

o DLetu,vell. Say |U| > n, can h(u) = h(v)?

12/24

MATRIX MULTIPLCATION HasHing

HasHiNnG

@ The values in U may be huge. Ex: Blog posts.
@ Take a value u € U and build a smaller key.

.

e Hash Table: a n-length array H to store the values.
e Hash Function: Map u € U to an index in H;
h:U—-[0.n-1]

4

Dictionary Hashing

o DLetu,vell. Say |U| > n, can h(u) = h(v)? Yes.
e Collision: h(u) = h(v) — At H[i] is a linked-list (bucket) to
store any values where h(u) = i.

12/24

MATRIX MULTIPLCATION HasHing

HasHiNnG

@ The values in U may be huge. Ex: Blog posts.
@ Take a value u € U and build a smaller key.

.

e Hash Table: a n-length array H to store the values.

e Hash Function: Map u € U to an index in H;
h:U—-[0.n-1]

.

Dictionary Hashing
e Collision: h(u) = h(v) — At H[i] is a linked-list (bucket) to
store any values where h(u) =i.

° @Say |S| = n, what is the worst-case number of
comparisons to Lookup(u)?

A\

12/24

MATRIX MULTIPLCATION HasHing

HasHiNnG

@ The values in U may be huge. Ex: Blog posts.
@ Take a value u € U and build a smaller key.

.

e Hash Table: a n-length array H to store the values.

e Hash Function: Map u € U to an index in H;
h:U—-[0.n-1]

.

Dictionary Hashing
e Collision: h(u) = h(v) — At H[i] is a linked-list (bucket) to
store any values where h(u) =i.

° @Say |S| = n, what is the worst-case number of
comparisons to Lookur(u)? O(n)

A\

12/24

MATRIX MULTIPLCATION HasHing

ExaMPLE OF BUCKETING

a[0] | jocularly }—»‘ seriously ‘

a[l] null

a[2] | suburban |—>| untravelled |—>| considerating

13/24

MATRIX MULTIPLCATION HasHing

BirTHDAY PARADOX FOR RANDOM HASHING

How PROBABLE IS TO HAVE THE FIRST COLLISION AFTER /I ELEMENTS

@ Problem: In a group of n elements, what is the probability
that at least two items map to the same bucket?

14/24

MATRIX MULTIPLCATION HasHing

BirTHDAY PARADOX FOR RANDOM HASHING

How PROBABLE IS TO HAVE THE FIRST COLLISION AFTER /I ELEMENTS

@ Problem: In a group of n elements, what is the probability
that at least two items map to the same bucket?

@ Restatement: In a group of n people, what is the
probability that at least two people share the same
birthday?

14/24

MATRIX MULTIPLCATION HasHing

BirTHDAY PARADOX FOR RANDOM HASHING

How PROBABLE IS TO HAVE THE FIRST COLLISION AFTER /I ELEMENTS

@ Problem: In a group of n elements, what is the probability
that at least two items map to the same bucket?

@ Restatement: In a group of n people, what is the
probability that at least two people share the same
birthday?

e Assumption: Each bucket is equally likely.

14/24

MATRIX MULTIPLCATION HasHing

BirTHDAY PARADOX FOR RANDOM HASHING

How PROBABLE IS TO HAVE THE FIRST COLLISION AFTER /I ELEMENTS

@ Problem: In a group of n elements, what is the probability
that at least two items map to the same bucket?

@ Restatement: In a group of n people, what is the
probability that at least two people share the same
birthday?

e Assumption: Each bucket is equally likely.

@ Restatement: Each day of the year is equally likely for a
birthday (ignoring leap years).

14/24

MATRIX MULTIPLCATION HasHing

BirTHDAY PARADOX FOR RANDOM HASHING

How PROBABLE IS TO HAVE THE FIRST COLLISION AFTER /I ELEMENTS

@ Problem: In a group of n elements, what is the probability
that at least two items map to the same bucket?

@ Restatement: In a group of n people, what is the
probability that at least two people share the same
birthday?

e Assumption: Each bucket is equally likely.

@ Restatement: Each day of the year is equally likely for a
birthday (ignoring leap years).

e Paradox: Even with just © (/1) people, the probability of a
shared birthday exceeds 50%.

14/24

MATRIX MULTIPLCATION HasHing

BirTHDAY PARADOX FOR RANDOM HASHING

How PROBABLE IS TO HAVE THE FIRST COLLISION AFTER /I ELEMENTS

Problem: In a group of n elements, what is the probability
that at least two items map to the same bucket?

Restatement: In a group of n people, what is the
probability that at least two people share the same
birthday?

Assumption: Each bucket is equally likely.

Restatement: Each day of the year is equally likely for a
birthday (ignoring leap years).

Paradox: Even with just ©(1/n) people, the probability of a
shared birthday exceeds 50%.

Restatement: Even with just 23 people, the probability of a
shared birthday exceeds 50%.

14/24

MATRIX MULTIPLCATION HasHing

CALCULATING THE PROBABILITY

e Probability of no collision: It’s easier to compute the
probability that all birthdays are different.

e For n people:

365 364 365 n+1l 365!
365 365 365 (365 n)! x 365"

Pr[all different] =

e Probability of at least one collision:
Pr[at least one shared birthday| = 1 — P[all different]
e Example with m = 23:
Pr[at least one shared birthday] ~ 1 - 0.493 = 0.507
e Conclusion: With just 23 people, there is over a 50%

chance that two people share a birthday.

15/24

MATRIX MULTIPLCATION HasHing

CALCULATING THE PROBABILITY
e Probability of no collision: It’s easier to compute the
probability that all birthdays are different.
o For m items to n buckets:

n-1 n-m+1

xeox ——— = T](1-2)

n n i1 n

Pr[all different] = Z x

16/24

MATRIX MULTIPLCATION HasHing

CALCULATING THE PROBABILITY
e Probability of no collision: It’s easier to compute the
probability that all birthdays are different.
o For m items to n buckets:

n-1 n-m+1

xeox ——— = T](1-2)

n n i1 n

Pr[all different] = Z x

X

The only inequality that you must know: 1 -x <e”

16/24

MATRIX MULTIPLCATION HasHing

CALCULATING THE PROBABILITY

e Probability of no collision: It’s easier to compute the
probability that all birthdays are different.
o For m items to n buckets:

- _ m=1
Pr[all different] = Z x nn L X oo X % =T]@- %)
k=1

X

16/24

MATRIX MULTIPLCATION HasHing

CALCULATING THE PROBABILITY

e Probability of no collision: It’s easier to compute the
probability that all birthdays are different.
o For m items to n buckets:

- _ m=1
Pr[all different] = Z x nn L X oo X % =T]@- %)
k=1

X

16/24

MATRIX MULTIPLCATION HasHing

CALCULATING THE PROBABILITY

e Probability of no collision: It’s easier to compute the
probability that all birthdays are different.
o For m items to n buckets:

- _ m=1
Pr[all different] = Z x nn L X oo X % =T]@- %)
k=1

X

The only inequality that you must know: 1 -x <e”

Tig'k (2)

m-1 m-=1
Prall different] = [] (1 - E) <J] (3‘5) =(e"n)=e n
k=1 k=1

16/24

MATRIX MULTIPLCATION HasHing

CALCULATING THE PROBABILITY

e Probability of no collision: It’s easier to compute the
probability that all birthdays are different.
o For m items to n buckets:

- _ m=1
Pr[all different] = Z x nn L X oo X % =T]@- %)
k=1

X

The only inequality that you must know: 1 -x <e”

ok (%)

m-1 m-=1
Prall different] = [] (1 - E) <J] (6—5) =(e 0w)=e n
k=1 k=1

e Probability of at least one collision:
p = Pr[at least one shared birthday]| = 1 — P[all different]

m 1+ 1+8n|:—1n ——e]
pzl—e‘@z te=>m2 \ (2) ~Q(Vn+e)

2 16/24

MATRIX MULTIPLCATION

HasHing

ProBaBILITY OF COLLISION vs. NUMBER OF PEOPLE

@ Conclusion: With at least (/1 + €) items, there is overa 1/2 + ¢
chance that two items maps to same bucket.

Probability of Birthday Collision

1

0.8

0.6

0.4

0.2

10

20 30 40
m (number of people)

50

60

17/24

MATRIX MULTIPLCATIO HasHing

Hasu FuncTtioN DEesiGN

Good Hash Function

e Compact and efficient.

@ Minimize the collisions.

18/24

MATRIX MULTIPLCATION HasHing

Hasu FuncTtioN DEesiGN

Good Hash Function

e Compact and efficient.

@ Minimize the collisions.

Some ideas for hash functions

@ Hash as a prefix: Collisions can result from similar
prefixes. E.g. many phrases in English start with “The”.

18/24

MATRIX MULTIPLCATION HasHing

Hasu FuncTtioN DEesiGN

Good Hash Function

e Compact and efficient.

@ Minimize the collisions.

Some ideas for hash functions

@ Hash as a prefix: Collisions can result from similar
prefixes. E.g. many phrases in English start with “The”.

e u mod n: Risk of collision can be large especially if say 7 is
a power of 2.

18/24

MATRIX MULTIPLCATION HasHing

Hasu FuncTtioN DEesiGN

Good Hash Function

e Compact and efficient.

@ Minimize the collisions.

Some ideas for hash functions

@ Hash as a prefix: Collisions can result from similar
prefixes. E.g. many phrases in English start with “The”.

e u mod n: Risk of collision can be large especially if say 7 is
a power of 2.

e u mod p, where p is a prime: Less risk than n especially if p
is not tiny, but p ~ n.

v

18/24

Ranpom Hasa Function
h(x) : Return a value from 0 to n — 1 UAR.

Given h(x), the probability that h(u) = h(v) for any u,v € U is @2

19/24

MATRIX MULTIPLCATIO HasHing

Ranpom Hasa Function
h(x) : Return a value from 0 to n — 1 UAR.

Given h(x), the probability that h(u) = h(v) for any u,v e U is 1/n. \

19/24

HasHing

Ranpom Hasa Function
h(x) : Return a value from 0 to n — 1 UAR.

Given h(x), the probability that h(u) = h(v) for any u,v e U is 1/n.

e There are n? possible pairs of values (h(u),h(v)). Exactly n
of them have h(u) = h(v), Hence, Pr[h(u) = h(v)] = & = 1.

n2 n

19/24

MATRIX MULTIPLCATION HasHing

Ranpom Hasa Function
h(x) : Return a value from 0 to n — 1 UAR.

Given h(x), the probability that h(u) = h(v) for any u,v e U is 1/n.

e There are n? possible pairs of values (h(u),h(v)). Exactly n
of them have h(u) = h(v), Hence, Pr[h(u) = h(v)] = & = 1.

n2 n

e Alternate proof: Since h(u) and h(v) are independent:
e Fix h(u). What is the probability that h(u) = h(v)?

19/24

HasHing

Ranpom Hasa Function
h(x) : Return a value from 0 to n — 1 UAR.

Given h(x), the probability that h(u) = h(v) for any u,v e U is 1/n.

e There are n? possible pairs of values (h(u),h(v)). Exactly n
of them have h(u) = h(v), Hence, Pr[h(u) = h(v)] = & = 1.

n2 n

e Alternate proof: Since h(u) and h(v) are independent:
e Fix h(u). What is the probability that h(u) = h(v)?
o Pr[h(v) =xh(u) =x] =+

19/24

MATRIX MULTIPLCATION HasHing

Ranpom Hasa Function
h(x) : Return a value from 0 to n — 1 UAR.

Given h(x), the probability that h(u) = h(v) for any u,v e U is 1/n.

e There are n? possible pairs of values (h(u),h(v)). Exactly n
of them have h(u) = h(v), Hence, Pr[h(u) = h(v)] = & = 1.

n2 n

e Alternate proof: Since h(u) and h(v) are independent:
e Fix h(u). What is the probability that h(u) = h(v)?
o Pr[h(v) =xh(u) =x] =+

What is the problem with this random hash function?

19/24

MATRIX MULTIPLCATION HasHing

Ranpom Hasa Function
h(x) : Return a value from 0 to n — 1 UAR.

Given h(x), the probability that h(u) = h(v) for any u,v e U is 1/n.

e There are n? possible pairs of values (h(u),h(v)). Exactly n
of them have h(u) = h(v), Hence, Pr[h(u) = h(v)] = & = 1.

n2 n

e Alternate proof: Since h(u) and h(v) are independent:
e Fix h(u). What is the probability that h(u) = h(v)?
o Pr[h(v) =xh(u) =x] =+

What is the problem with this random hash function?
For a dictionary, DeLeTe(u) and Lookur(u) won’t work since
h(u) returns a random value!

19/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Let #H be a class of functions such that:
e Universal property of H: For any pair of values u,v € U, the

probability that a randomly chosen £ has a collision for any
u,vis at most 1/n

:l*—‘

Pr [k(u) = h(v)] <

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Let #H be a class of functions such that:

e Universal property of H: For any pair of values u,v € U, the
probability that a randomly chosen £ has a collision for any
u,vis at most 1/n

Pr [h(u) h(v)] <

:l*—‘

e Each & € H is represented compactly and can be computed
efficiently.

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION
Definition
Let H be a class of functions such that:

@ Universal property of H: For any pair of values u,v € U, the
probability that a randomly chosen / has a collision for any
u,v is at most 1/n

Pr[h(u) = h(0)] <

S =

e Each h € H is represented compactly and can be computed
efficiently.

MaxkeDictioNaRrY: Given H, choose I from H UAR for the
dictionary.

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let #H be a class of functions such that:

e Universal property of H: For any pair of values u,v € U, the
probability that a randomly chosen / has a collision for any
u,v is at most 1/n

Pr[h(u) = h(0)] <

S =

e Each /i € H is represented compactly and can be computed
efficiently.

@What is the expected number of collisions??? J

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Let H be a universal class of hash functions mapping U to [0..n —1].
Let S c U be of size < n. The expected number of elements s € S where
h(s) = h(u) for any u € U when h is chosen UAR from H is < 1.

o Fix u € U. Let X; be a random variable that is 1 if
h(s) = h(u); 0 otherwise.

.

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Let H be a universal class of hash functions mapping U to [0..n —1].
Let S c U be of size < n. The expected number of elements s € S where
h(s) = h(u) for any u € U when h is chosen UAR from H is < 1.

o Fix u € U. Let X; be a random variable that is 1 if
h(s) = h(u); 0 otherwise.
o Let X =Y 5 Xs.

.

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Let H be a universal class of hash functions mapping U to [0..n —1].
Let S c U be of size < n. The expected number of elements s € S where
h(s) = h(u) for any u € U when h is chosen UAR from H is < 1.

o Fix u € U. Let X; be a random variable that is 1 if
h(s) = h(u); 0 otherwise.
o Let X =Y 5 Xs.

E[X] =E[ZX] - S E[X;]

seS seS

.

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Let H be a universal class of hash functions mapping U to [0..n —1].
Let S c U be of size < n. The expected number of elements s € S where
h(s) = h(u) for any u € U when h is chosen UAR from H is < 1.

o Fix u € U. Let X; be a random variable that is 1 if
h(s) = h(u); 0 otherwise.

o Let X = Y5 Xs.

e By linearity of expectation:

E[X] =E[ZX] - S E[X;]

seS seS

.

20/24

MATRIX MULTIPLCATION HasHing

UnN1vERrsAaL Crass or HasH FuncTiONs

RANDOMLY CHOOSING A HASH FUNCTION

Let H be a universal class of hash functions mapping U to [0..n —1].
Let S c U be of size < n. The expected number of elements s € S where
h(s) = h(u) for any u € U when h is chosen UAR from H is < 1.

o Fix u € U. Let X; be a random variable that is 1 if
h(s) = h(u); 0 otherwise.

o Let X = Y5 Xs.

e By linearity of expectation:

]E[X]:E[ZX]=2]E[Xs]s|5|-%sl.

seS seS O

.

20/24

MATRIX MULTIPLCATION HasHing

DEesiGNING A UN1vERSAL Crass orF HasH FuNcTiONS

@Can we implement Create-INserT-DELETE-LOOKUP in
_ _ |universe|
O(l)=1+a=1+ uckets|
on expectation?

Defining H

@ Choose a prime p ~ .

21/24

MATRIX MULTIPLCATION HasHing

DEesiGNING A UN1vERSAL Crass orF HasH FuNcTiONS

@Can we implement Create-INserT-DELETE-LOOKUP in
|universe|
O(l)=1+a=1+ uckets|
on expectation?

Defining H

@ Choose a prime p ~ .
@ Bootstrapping: All values in U are associated with a vector

coordinate x = (x1,x2, ..., ;) for some r, where 0 < x; < p.
_, log|Universe| q q n
o 1N o Buckers] for unique x per item in U.

21/24

MATRIX MULTIPLCATION HasHing

DEesiGNING A UN1vERSAL Crass orF HasH FuNcTiONS

@Can we implement Create-INserT-DELETE-LOOKUP in
_ _ |universe|
6(1) =l+a=1 + [buckets|
on expectation?

Defining H

@ Choose a prime p ~ .
@ Bootstrapping: All values in U are associated with a vector

coordinate x = (x1,x2, ..., ;) for some r, where 0 < x; < p.
_, log|Universe| q q n
o 1N o Buckers] for unique x per item in U.

o Let A be the set of all vectors of the form a = (a1,4az,...,4a,),
where 0 <a; <p.

21/24

MATRIX MULTIPLCATION HasHing

DEesiGNING A UN1vERSAL Crass orF HasH FuNcTiONS

@Can we implement Create-INserT-DELETE-LOOKUP in
_ _ |universe|
6(1) =l+a=1 + [buckets|
on expectation?

Defining H

@ Choose a prime p ~ .
@ Bootstrapping: All values in U are associated with a vector

coordinate x = (x1,x2, ..., ;) for some r, where 0 < x; < p.
_, log|Universe| q q n
o 1N o Buckers] for unique x per item in U.

o Let A be the set of all vectors of the form a = (a1,4az,...,4a,),
where 0 <a; <p.

e 7 contains h,(x) = (X/_yaix;) mod p for alla € A.

21/24

MATRIX MULTIPLCATIO HasHing

ANALYZE OUR DEFINITION OF H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z# 0 mod p, and any two integers
o, B, if az = fz mod p, then o = f mod p.

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z # 0 mod p, and any two integers
a, B, if az = fz mod p, then o = § mod p.

Suppose az = 5z mod p:

.

¢ — z(a-£)=0 modp

A

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z # 0 mod p, and any two integers
a, B, if az = fz mod p, then o = § mod p.

Suppose az = 5z mod p:

.

¢ — z(a-£)=0 modp
e zis not divisible by p, so (o —) =0 mod p.

.

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z # 0 mod p, and any two integers
a, B, if az = fz mod p, then o = § mod p.

Suppose az = 5z mod p:

.

¢ — z(a-£)=0 modp
e zis not divisible by p, so (o —) =0 mod p.
e Hence, a = 8 mod p.

.

22/24

MATRIX MULTIPLCATIO HasHing

ANALYZE OUR DEFINITION OF H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z# 0 mod p, and any two integers
o, B, if az = fz mod p, then o = § mod p.

Theorem 5 (Our Main Theorem)

The class of linear functions H as defined previously is universal.

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z# 0 mod p, and any two integers
o, B, if az = fz mod p, then o = § mod p.

Theorem 5 (Our Main Theorem)

The class of linear functions H as defined previously is universal.

o Letx = (x1,x2,...,%) and vy = (y1,Y2,...,Y,) be two distinct

log U])
logn

elements of U. (r ~

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z# 0 mod p, and any two integers
o, B, if az = fz mod p, then o = § mod p.

Theorem 5 (Our Main Theorem)

The class of linear functions H as defined previously is universal.

o Letx = (x1,x2,...,%) and vy = (y1,Y2,...,Y,) be two distinct

elements of U. (r ~ l‘fg—“’[l)
ogn

e We need to show that Pr[h,(x) = h,(y)] <1/p for a
randomly chosen a € A.

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H
Theorem 4 (Our Main Theorem)
The class of linear functions H as defined previously is universal.

e Letx=(x1,x2,...,%) and v = (y1,Y2,...,Yr) be two distinct
log |U|

lfgn)

@ Let;j be an index such that x; # y;.

elements of U. (r »

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H
Theorem 4 (Our Main Theorem)
The class of linear functions H as defined previously is universal.

e Letx=(x1,x2,...,%) and v = (y1,Y2,...,Yr) be two distinct
log |U|

lfgn)

@ Let;j be an index such that x; # y;.

elements of U. (r »

o Define a := {arb fix a; for i # j}, a; defined later.

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Theorem 4 (Our Main Theorem)

The class of linear functions H as defined previously is universal.

@ Letj be an index such that x; # y;.
@ Define a := {arb fix a; for i # j}, a; defined later.
e Consider h,(x) = hy(y):

Zaxl=2a1yl <~ aj(xj—yj) = > ai(yi—x;) modp (1)

=1 i#]

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Theorem 4 (Our Main Theorem)

The class of linear functions H as defined previously is universal.

@ Letj be an index such that x; # y;.
@ Define a := {arb fix a; for i # j}, a; defined later.
e Consider h,(x) = hy(y):

T T
Yoaixi= Y aiy; < aj(xj-y;) = Y. ai(yi—x;) modp (1)

i=1 i=1 i+

e Lemma 4 shows there is a single value for 4; to satisfy (1).

22/24

MATRIX MULTIPLCATION HasHing

ANALYZE OUR DEFINITION OF H

Theorem 4 (Our Main Theorem)

The class of linear functions H as defined previously is universal.

@ Letj be an index such that x; # y;.
@ Define a := {arb fix a; for i # j}, a; defined later.
e Consider h,(x) = hy(y):

Zaxl=2a1yl <~ aj(xj—yj) = > ai(yi—x;) modp (1)

=1 i#]

e Lemma 4 shows there is a single value for 4; to satisfy (1).
@ So, Pr[h,(x) = hy(y)] < %.

O

V

22/24

MATRIX MULTIPLCATION HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

Hash Table

- [[
&

Universe of Items

@What is the maximum load in a bucket of the hash table on
expectation?

23/24

MATRIX MULTIPLCATION HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

@What is the maximum load in a bucket of the hash table on
expectation?

Let h be chosen from a universal hash family and let L be the
maximum load of any slot. Then Pr[L >t/ (’;’)/n] <1/t fort > 1.

Let C = ¥y yes,x+y Cx,y be the total number of collisions.
@ E[C] < (%)/n.
@ Observation: C > (5). Why?
@ L > pimplies C > p?/2.

© By Markov Pr[C > tz(r;)/n] < tz('g)/n

© Hence Pr[L > t\/W] < tlZ

23/24

MATRIX MULTIPLCATION HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

@What is the maximum load in a bucket of the hash table on
expectation?

Let h be chosen from a universal hash family and let L be the
maximum load of any slot. Then E[L] = O (@)

n

Lisa non-negative random variable in range. Hence

@ Define = \/ =\/—— m(m D) and rewrite the inequality:

Pr[L > t8] < t_
@ Use the expectation formula:

E[L]:foooPr[L>x]dx and Pr[L>x]£min(1,(—)2).

HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

@What is the maximum load in a bucket of the hash table on
expectation?

Let h be chosen from a universal hash family and let L be the
maximum load of any slot. Then E[L] = O (@)

n

e Split the integral:

L]Sfoﬁlder/ﬂm(g)zdx.

o Calculate the integrals:
° jO ldx = B

(2o (ol

23/24

MATRIX MULTIPLCATION HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

@What is the maximum load in a bucket of the hash table on
expectation?

Let h be chosen from a universal hash family and let L be the

n

maximum load of any slot. Then E[L] = O (@)

@ Combine results:

Bl <p+5(1-2) =25~ <2

m

Conclusion:

23/24

MATRIX MULTIPLCATION

HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

@What is the maximum load in a bucket of the hash table on
expectation?

Main Hash Table
0

Secondary Hash Table
0 1 2

1
2

TT1
e

@ What if we create a tree of hash-maps? J

Universe of Items

23/24

MATRIX MULTIPLCATION

HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

@What is the maximum load in a bucket of the hash table on
expectation?

Main Hash Table
0

Secondary Hash Table
0 1 2

1
2

1 1]
] o

Runtime: O(1 + logpckess| Universe|) J

Universe of Items

23/24

MATRIX MULTIPLCATION HasHing

Maximum LoaD rFor UN1VERsSAL HasH FuNcTiON

@What is the maximum load in a bucket of the hash table on
expectation?

Main Hash Table
0

Secondary Hash Table
0 1 2

1 1]
] o

Runtime: O(1 +log,(m)) = ©(1) when n ~ \/n.)

Universe of Items

23/24

MATRIX MULTIPLCATION HasHing

APPENDIX

REFERENCES

APPENDI REFERENCES

IMAGE SouRrces 1

WISCONSIN https://brand.wisc.edu/web/logos/

25/24

https://brand.wisc.edu/web/logos/

	Freivald's Algorithm
	The Success Story of Python Dictionaries = [width=0.25]python.jpeg=
	The Solution of Day : Hashing A Randomized Data Type

	Appendix
	Appendix
	References

