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Matrix Multiplcation Hashing

Freivald’s Algorithm



Matrix Multiplcation Hashing

The Problem

Given three matrices A, B, and C of dimensions n × n.
We want to verify whether C = A × B.
Naïve Method: Compute A × B and compare with C.
Time Complexity: O(n3).

Do we know better method?

Yeap!: Divide & Conquer: Strassen’s Algorithm O(n2.81).
Best Known Algorithm: Vassilevska (2015): O(n2.373)

Can we randomly check in O(n2)?
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Matrix Multiplcation Hashing

Freivald’s Algorithm

Freivald’s Algorithm for Matrix Multiplication
Verification

1 Input: Matrices A, B, C of dimensions n × n.
2 For k iterations:

Choose a random vector r ∈ {0,1}n.
Compute s = C × r.
Compute q = B × r.
Compute t = A × q.
If s ≠ t:

Return FALSE.
3 Return TRUE.
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Matrix Multiplcation Hashing

Freivald’s Algorithm
Freivald’s Algorithm for Matrix Multiplication
Verification

1 Input: Matrices A, B, C of dimensions n × n.
2 For k iterations:

Compute a random vector r ∈ {0, 1}n. s = C × r, q = B × r, t = A × q.
Check if s ?= t :

What is the time complexity of Freivald’s Algorithm?

Time Complexity
Each iteration requires:

Matrix-vector multiplication: O(n2).
Total time complexity for k iterations: O(kn2).
For constant k = Θ(1), the complexity is O(n2).
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Matrix Multiplcation Hashing

Correctness of the Algorithm
If C = A × B:

The algorithm always returns TRUE.
If C ≠ A × B:

There exists at least one r such that A(Br) ≠ Cr.
The probability that the algorithm fails to detect the error is
at most 1

2 per iteration. (Why???)

Probabilistic Analysis
Let D = AB −C and assume D ≠ 0.
We want to find the probability Pr(Dr = 0).
Observation: Since D ≠ 0, there is at least one non-zero
row or column.

Theorem 1
The one-sided error probability is ≤ 1

2
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What does it mean one-sided error?
What kind of casino-algorithm do we have here?
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Correctness of the Algorithm
If C = A × B:

The algorithm always returns TRUE.
If C ≠ A × B:

There exists at least one r such that A(Br) ≠ Cr.
The probability that the algorithm fails to detect the error is
at most 1

2 per iteration. (Why???)

Probabilistic Analysis
Let D = AB −C and assume D ≠ 0.
We want to find the probability Pr(Dr = 0).
Observation: Since D ≠ 0, there is at least one non-zero
row or column.

Theorem 1
The one-sided error probability is ≤ 1

2

What does it mean one-sided error?
What kind of casino-algorithm do we have here?

We try to solve a decision problem.
One-sided error :
⎧⎪⎪⎨⎪⎪⎩

If the answer is Yes, we never fail
If the answer is No, there exist a failure probability

This is a Monte-Carlo algorithm.
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Let D = AB −C, and suppose D ≠ 0.
Note: We do not compute the matrix D in
the algorithm; we need it for the analysis!

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

—d1—
—d2—
⋮

—dn—

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Since D ≠ 0, there exists at least one non-zero row vector d
in D.
We need to compute the probability that Dr = 0, where
r ∈ {0,1}n is a random vector.
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)
Focus on the non-zero row d:

Dr = 0 Ô⇒ d ⋅ r = 0 Ô⇒ Pr[Dr = 0] ≤ Pr[d ⋅ r = 0]

Illustration of S ⊆ Q Implies Pr[S] ≤ Pr[Q]
If S ⊆ Q, then the event S is entirely contained within Q.

Therefore, the probability of S cannot exceed the probability of
Q:

Pr[S] ≤ Pr[Q]

Ω
Q

S
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.
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where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Why do we care about that specific rj∗?
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Although unlikely, the matrix D could be such that all rows are
zero except one. For example:

D =
⎡⎢⎢⎢⎢⎢⎣

5 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
In this case, only the term d1r1 survives in d ⋅ r.
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (4,−5,1,2) and r = (1,1,1,0).
What is d ⋅ r?
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (4,−5,1,2) and r = (1,1,1,0).
What is d ⋅ r?
Answer: d ⋅ r = 4(1) + (−5)(1) + 1(1) + 2(0) = 0
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (4,5,2,1) and r = (0,1,1,0).
What is d ⋅ r?
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (4,5,2,1) and r = (0,1,1,0).
What is d ⋅ r?
Answer: d ⋅ r = 4(0) + 5(1) + 2(1) + 1(0) = 7
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (7,0,0,0) and r = (1,1,1,0).
What is d ⋅ r?
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (7,0,0,0) and r = (1,1,1,0).
What is d ⋅ r?
Answer: d ⋅ r = 7 ⋅ 1 = 7

4/24



Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (7,0,0,0) and r = (0,1,1,0).
What is d ⋅ r?

4/24



Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
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Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
Suppose the first row of D is d = (7,0,0,0) and r = (0,1,1,0).
What is d ⋅ r?
Answer: d ⋅ r = 7 ⋅ 0 = 0
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Examples
If d = (12,9,2,5) and r = (r1, r2, r3, r4)with ri ∈ {0,1}, what is
Pr[d ⋅ r = 0]?
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Proof of the Theorem (Detailed)
Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
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Answer: Since each ri is independent,

Pr[d ⋅ r = 0] = 1/24
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)
Thus, we need to compute the probability that dr = 0,
where r ∈ {0,1}n is a random vector.
The dot product is given by:

d ⋅ r = d1r1 + ⋅ ⋅ ⋅ + dnrn =
n
∑
i=1

diri

Since d ≠ 0, ∃ at least one index j∗ such that dj∗ ≠ 0.

Question
Does it matter which row of D is non-zero?

Answer
No, as long as AB ≠ C, then ∃ at least one non-zero row in D.
We are interested in whether d ⋅ r = 0 happens by chance due to
the random choices of r ,
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Matrix Multiplcation Hashing

Proof of the Theorem (Detailed)

Case Analysis of Event {d ⋅ r = 0}:
Since dj∗ ≠ 0, rj∗ affects d ⋅ r.
We can write:

d ⋅ r = dj∗rj∗ + ∑
i≠j∗

diri = 0 Ô⇒ rj∗ = −
∑i≠j∗ diri

dj∗

All ri are uniformly random in {0,1}.
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Matrix Multiplcation Hashing

Visualization of rj∗ and V(d, r)
We illustrate the relationship between rj∗ and

V(d, r) = −
∑i≠j∗ diri

dj∗
.

⋮

−3

−2

−1

0

1

2

⋮

k

rj∗ V(d, r) = −
∑i≠j∗ diri

dj∗

1
2
1
2

Pr[V(d, r) = −3] =?

Pr[V(d, r) = 0] =?

Pr[V(d, r)
= 1] =?

Pr
[V(

d, r
) =

k] =
?
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Matrix Multiplcation Hashing

Proof of the Theorem (Finished)

Let D = AB −C, and suppose D ≠ 0.

One-sided error: D ≠ 0 but Dr = 0

⇓
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Matrix Multiplcation Hashing

Proof of the Theorem (Finished)

We need to compute the probability that Dr = 0, where
r ∈ {0,1}n is a random vector.
Since D ≠ 0, there exists at least one non-zero row vector d
in D.

⇓

We can focus on the non-zero row d:

Dr = 0 Ô⇒ ∃d ∶ d ⋅ r = 0 Ô⇒ Pr[Dr = 0] ≤ Pr[d ⋅ r = 0]

⇓
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Matrix Multiplcation Hashing

Proof of the Theorem (Finished)

We can focus on the non-zero row d:

Dr = 0 Ô⇒ ∃d ∶ d ⋅ r = 0 Ô⇒ Pr[Dr = 0] ≤ Pr[d ⋅ r = 0]

⇓

Since rj∗ is independent of the other ri and takes values 0 or
1 with equal probability, the probability that d ⋅ r = 0 is at
most 1

2 :

Pr(d ⋅ r = 0) ≤ 1
2
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Matrix Multiplcation Hashing

Proof of the Theorem (Finished)

Since rj∗ is independent of the other ri and takes values 0 or
1 with equal probability, the probability that d ⋅ r = 0 is at
most 1

2 :

Pr(d ⋅ r = 0) ≤ 1
2

Can we improve the probability?
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Matrix Multiplcation Hashing

Reducing the Error Probability
By running the algorithm k times:

Pr(Failure) ≤ (1
2
)
k

Choosing an appropriate k, the error probability becomes
negligible.

Homework: Assume that you have two super-large
polynomials d = 1010 in the forms:

⎧⎪⎪⎨⎪⎪⎩

P(x) = adxd + ad−1 + ⋅ ⋅ ⋅ + a1x + a0
Q(x) = (x − r1) . . . (x − rd)

Give me a deterministic algorithm for verifying
P(x) = Q(x)with minimal evaluations of P,Q.
Give me a super simple randomized algorithm ,!!!
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Matrix Multiplcation Hashing

The Success Story of
Python Dictionaries



Matrix Multiplcation Hashing

Python Dictionaries: Items as (key, value) pairs
Python dictionaries: items are (key, value) pairs
Example:
d = {’algorithms ’: 5, ’cool’: 42}

Operations:
d.items() # [(’ algorithms ’, 5), (’cool ’, 42)]
d[’cool’] # 42
d[42] # KeyError
’cool’ in d # True
42 in d # False

Note:
# Python set is really dict where items are keys
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Matrix Multiplcation Hashing

Dictionary Data Structure

Dictionary
Given a universe U of possible elements, maintain a subset
S ⊆ U so that inserting, deleting, and searching in S is efficient.

Dictionary Operations

Create: Initializes a fresh dictionary that can maintain a
subset S of U that is initially empty.
Insert(u): Adds u ∈ U to the dictionary (S).
Delete(u): Remove u from S.
Lookup(u): Determine if u is in S; if so retrieve u.
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Matrix Multiplcation Hashing

Dictionary Data Structure
Dictionary Interface.

Create(): initialize a dictionary with S = ∅.
Insert(u): add element u ∈ U to S.
Delete(u): delete u from S (if u is currently in S).
Lookup(u): is u in S?

Challenge. Universe U can be extremely large, so defining an
array of size ∣U∣ is infeasible.

Applications. File systems, databases, Google, compilers,
checksums, P2P networks, cryptography, web caching, etc.

Can we implement Create-Insert-Delete-Lookup in Θ(1)
on expectation?
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Dictionary Data Structure
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The Solution of Day :

Hashing
A Randomized Data Type



Matrix Multiplcation Hashing

Hashing

Definition
A function that converts some input value into a hash value.

Input: A large universe of values U. Typically, assume
∣U∣ ≫ n.
Output: A hash value for u ∈ U to {0,1,2, . . . ,n − 1}.

Why?
Typically used to generate keys for a dictionary data structure.
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Matrix Multiplcation Hashing

Hashing
Motivation

The values in U may be huge. Ex: Blog posts.

Take a value u ∈ U and build a smaller key.

Hashing
Hash Table: a n-length array H to store the values.
Hash Function: Map u ∈ U to an index in H;
h ∶ U → [0..n − 1]

Dictionary Hashing

Collision: h(u) = h(v) – At H[i] is a linked-list (bucket) to
store any values where h(u) = i.
Say ∣S∣ = n, what is the worst-case number of

comparisons to Lookup(u)?

O(n)
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Example of Bucketing
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Matrix Multiplcation Hashing

Birthday Paradox for Random hashing
How probable is to have the first collision after n elements

Problem: In a group of n elements, what is the probability
that at least two items map to the same bucket?

Restatement: In a group of n people, what is the
probability that at least two people share the same
birthday?
Assumption: Each bucket is equally likely.
Restatement: Each day of the year is equally likely for a
birthday (ignoring leap years).
Paradox: Even with just Θ(

√
n) people, the probability of a

shared birthday exceeds 50%.
Restatement: Even with just 23 people, the probability of a
shared birthday exceeds 50%.
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Matrix Multiplcation Hashing

Calculating the Probability
Probability of no collision: It’s easier to compute the
probability that all birthdays are different.
For n people:

Pr[all different] = 365
365
×364
365
×⋅ ⋅ ⋅×365 − n + 1

365
= 365!
(365 − n)! × 365n

Probability of at least one collision:

Pr[at least one shared birthday] = 1 − P[all different]

Example with m = 23:

Pr[at least one shared birthday] ≈ 1 − 0.493 = 0.507

Conclusion: With just 23 people, there is over a 50%
chance that two people share a birthday.
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n
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× ⋅ ⋅ ⋅ × n −m + 1

n
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m−1
∏
k=1
(1 − k

n
)

The only inequality that you must know: 1 − x ≤ e−x

Pr[all different] =
m−1
∏
k=1
(1 − k

n
) ≤

m−1
∏
k=1
(e−

k
n ) = (e−

∑m−1
k=1 k
n ) = e−

(m2)
n

Probability of at least one collision:
p = Pr[at least one shared birthday] = 1 − P[all different]

p ≥ 1 − e−
(m2)
n ≥ 1

2 + ϵ⇒ m ≥
1+

¿
ÁÁÁÀ1+8n

⎡⎢⎢⎢⎢⎣
− ln
⎛
⎝
1
2
−ϵ
⎞
⎠

⎤⎥⎥⎥⎥⎦
2 ≈ Ω(

√
n + ϵ)
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Matrix Multiplcation Hashing

Probability of Collision vs. Number of People
Conclusion: With at least Ω(

√
n + ϵ) items, there is over a 1/2 + ϵ

chance that two items maps to same bucket.
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Matrix Multiplcation Hashing

Hash Function Design

Good Hash Function
Compact and efficient.
Minimize the collisions.

Some ideas for hash functions

Hash as a prefix: Collisions can result from similar
prefixes. E.g. many phrases in English start with “The”.
u mod n: Risk of collision can be large especially if say n is
a power of 2.
u mod p, where p is a prime: Less risk than n especially if p
is not tiny, but p ≈ n.
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Matrix Multiplcation Hashing

Random Hash Function
h(x) ∶ Return a value from 0 to n − 1 UAR.

Lemma 2
Given h(x), the probability that h(u) = h(v) for any u,v ∈ U is ?

Proof.
There are n2 possible pairs of values (h(u),h(v)). Exactly n
of them have h(u) = h(v), Hence, Pr[h(u) = h(v)] = n

n2 =
1
n .

Alternate proof: Since h(u) and h(v) are independent:
Fix h(u). What is the probability that h(u) = h(v)?

Pr[h(v) = x∣h(u) = x] = 1
n .

What is the problem with this random hash function?
For a dictionary, Delete(u) and Lookup(u) won’t work since
h(u) returns a random value!
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Matrix Multiplcation Hashing

Universal Class of Hash Functions
Randomly choosing a hash function

Definition
LetH be a class of functions such that:

Universal property ofH: For any pair of values u,v ∈ U, the
probability that a randomly chosen h has a collision for any
u,v is at most 1/n

Pr
h∼H
[h(u) = h(v)] ≤ 1

n
.

Each h ∈ H is represented compactly and can be computed
efficiently.

20/24



Matrix Multiplcation Hashing

Universal Class of Hash Functions
Randomly choosing a hash function

Definition
LetH be a class of functions such that:

Universal property ofH: For any pair of values u,v ∈ U, the
probability that a randomly chosen h has a collision for any
u,v is at most 1/n

Pr
h∼H
[h(u) = h(v)] ≤ 1

n
.

Each h ∈ H is represented compactly and can be computed
efficiently.

20/24



Matrix Multiplcation Hashing

Universal Class of Hash Functions
Randomly choosing a hash function

Definition
LetH be a class of functions such that:

Universal property ofH: For any pair of values u,v ∈ U, the
probability that a randomly chosen h has a collision for any
u,v is at most 1/n

Pr
h∼H
[h(u) = h(v)] ≤ 1
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.

Each h ∈ H is represented compactly and can be computed
efficiently.

MakeDictionary: GivenH, choose h fromH UAR for the
dictionary.
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Universal Class of Hash Functions
Randomly choosing a hash function

Definition
LetH be a class of functions such that:

Universal property ofH: For any pair of values u,v ∈ U, the
probability that a randomly chosen h has a collision for any
u,v is at most 1/n

Pr
h∼H
[h(u) = h(v)] ≤ 1

n
.

Each h ∈ H is represented compactly and can be computed
efficiently.

What is the expected number of collisions???
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Universal Class of Hash Functions
Randomly choosing a hash function

Theorem 3
LetH be a universal class of hash functions mapping U to [0..n − 1].
Let S ⊆ U be of size ≤ n. The expected number of elements s ∈ S where
h(s) = h(u) for any u ∈ U when h is chosen UAR fromH is ≤ 1.

Proof.
Fix u ∈ U. Let Xs be a random variable that is 1 if
h(s) = h(u); 0 otherwise.

Let X = ∑s∈SXs.

By linearity of expectation:

E[X] = E [∑
s∈S

Xs] = ∑
s∈S

E[Xs]

≤ ∣S∣ ⋅ 1
n
≤ 1 .
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Matrix Multiplcation Hashing

Designing a Universal Class of Hash Functions

Can we implement Create-Insert-Delete-Lookup in
Θ(1) = 1 + α = 1 + ∣universe∣∣buckets∣

on expectation?

Defining H
Choose a prime p ≈ n.

Bootstrapping: All values in U are associated with a vector
coordinate x = (x1,x2, . . . ,xr) for some r, where 0 ≤ xi < p.

r ≈ log ∣Universe∣
log ∣Buckets∣ for unique x per item in U.

Let A be the set of all vectors of the form a = (a1, a2, . . . , ar),
where 0 ≤ ai < p.
H contains ha(x) = (∑r

i=1 aixi) mod p for all a ∈ A.
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Matrix Multiplcation Hashing

Analyze our definition of H

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z /≡ 0 mod p, and any two integers
α,β, if αz ≡ βz mod p, then α ≡ β mod p.
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Analyze our definition of H
Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer z /≡ 0 mod p, and any two integers
α,β, if αz ≡ βz mod p, then α ≡ β mod p.

Theorem 5 (Our Main Theorem)
The class of linear functionsH as defined previously is universal.

Proof.
Let x = (x1,x2, . . . ,xr) and y = (y1,y2, . . . ,yr) be two distinct
elements of U. (r ≈ log ∣U∣

log n )

Let j be an index such that xj ≠ yj.
Define a ∶= {arb fix ai for i ≠ j}, aj defined later.
Consider ha(x) = ha(y):

r
∑
i=1

aixi ≡
r
∑
i=1

aiyi ⇐⇒ aj(xj − yj) ≡ ∑
i≠j

ai(yi − xi) mod p (1)

Lemma 4 shows there is a single value for aj to satisfy (1).
So, Pr[ha(x) = ha(y)] ≤ 1

p .
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Matrix Multiplcation Hashing

Maximum Load for Universal Hash Function

Universe of Items

k1
k2

k3
k4
⋮

0
1
2
3
4
5
6
7
8
9

Hash Table

k1 k2 k3

k4

What is the maximum load in a bucket of the hash table on
expectation?
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Maximum Load for Universal Hash Function
What is the maximum load in a bucket of the hash table on

expectation?

Let h be chosen from a universal hash family and let L be the
maximum load of any slot. Then Pr[L > t

√
(m2)/n] ≤ 1/t

2 for t ≥ 1.

Let C = ∑x,y∈S,x≠y Cx,y be the total number of collisions.
1 E[C] ≤ (m2)/n.
2 Observation: C ≥ (L2). Why?
3 L > ρ implies C > ρ2/2.

4 By Markov Pr[C > t2(m2)/n] ≤
E[C]

t2(m2)/n
≤ 1

t2 .

5 Hence Pr[L > t
√
(m2)/n] ≤

1
t2 .
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Maximum Load for Universal Hash Function
What is the maximum load in a bucket of the hash table on

expectation?

Let h be chosen from a universal hash family and let L be the

maximum load of any slot. Then E[L] = O(
√
(m2)
n ).

L is a non-negative random variable in range. Hence

Define β =

√
(m2)
n
=
√

m(m − 1)
2n

and rewrite the inequality:

Pr[L > tβ] ≤ 1
t2
.

Use the expectation formula:

E[L] = ∫
∞

0
Pr[L > x]dx and Pr[L > x] ≤min(1,(β

x
)
2
) .
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Maximum Load for Universal Hash Function
What is the maximum load in a bucket of the hash table on

expectation?

Let h be chosen from a universal hash family and let L be the

maximum load of any slot. Then E[L] = O(
√
(m2)
n ).

Split the integral:

E[L] ≤ ∫
β

0
1dx + ∫

m

β
(β
x
)
2
dx.

Calculate the integrals:
∫

β
0 1dx = β.

∫
m
β (

β

x
)
2
dx = β2 ( 1

β
− 1
m
) = β (1 − β

m
).
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Maximum Load for Universal Hash Function

What is the maximum load in a bucket of the hash table on
expectation?

Let h be chosen from a universal hash family and let L be the

maximum load of any slot. Then E[L] = O(
√
(m2)
n ).

Combine results:

E[L] ≤ β + β (1 − β

m
) = 2β − β2

m
≤ 2β.

Conclusion:

E[L] ≤ 2

¿
ÁÁÀ(m2)

n
.
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Maximum Load for Universal Hash Function

What is the maximum load in a bucket of the hash table on
expectation?

Universe of Items

k1
k2

k3
k4
⋮

0
1
2
3
4
5
6
7
8
9

Main Hash Table

0 1 2

k1 k2 k3

Secondary Hash Table

k4

What if we create a tree of hash-maps?
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Maximum Load for Universal Hash Function

What is the maximum load in a bucket of the hash table on
expectation?

Universe of Items

k1
k2

k3
k4
⋮

0
1
2
3
4
5
6
7
8
9

Main Hash Table

0 1 2

k1 k2 k3

Secondary Hash Table

k4

Runtime: O(1 + log∣buckets∣ ∣Universe∣)
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Maximum Load for Universal Hash Function

What is the maximum load in a bucket of the hash table on
expectation?

Universe of Items

k1
k2

k3
k4
⋮

0
1
2
3
4
5
6
7
8
9

Main Hash Table

0 1 2

k1 k2 k3

Secondary Hash Table

k4

Runtime: O(1 + logn(m)) = Θ(1) when n ≈
√
n.
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