CS 577 - Randomized Algorithms Roots & Multiplication & Hashing

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

HASHING

FREIVALD'S ALGORITHM

- Given three matrices *A*, *B*, and *C* of dimensions $n \times n$.
- We want to verify whether $C = A \times B$.
- **Naïve Method:** Compute *A* × *B* and compare with *C*.
- Time Complexity: $O(n^3)$.

- Given three matrices *A*, *B*, and *C* of dimensions $n \times n$.
- We want to verify whether $C = A \times B$.
- **Naïve Method:** Compute *A* × *B* and compare with *C*.
- Time Complexity: $O(n^3)$.

Do we know better method?

- Given three matrices *A*, *B*, and *C* of dimensions $n \times n$.
- We want to verify whether $C = A \times B$.
- **Naïve Method:** Compute *A* × *B* and compare with *C*.
- Time Complexity: $O(n^3)$.

Do we know better method?

- Yeap!: Divide & Conquer: Strassen's Algorithm $O(n^{2.81})$.
- Best Known Algorithm: Vassilevska (2015): $O(n^{2.373})$

- Given three matrices A, B, and C of dimensions $n \times n$.
- We want to verify whether $C = A \times B$.
- **Naïve Method:** Compute *A* × *B* and compare with *C*.
- Time Complexity: $O(n^3)$.

Do we know better method?

- Yeap!: Divide & Conquer: Strassen's Algorithm $O(n^{2.81})$.
- Best Known Algorithm: Vassilevska (2015): $O(n^{2.373})$

Can we randomly check in $O(n^2)$?

Freivald's Algorithm

Freivald's Algorithm for Matrix Multiplication Verification

- Input: Matrices *A*, *B*, *C* of dimensions $n \times n$.
- **2** For *k* iterations:
 - Choose a random vector $r \in \{0,1\}^n$.
 - Compute $s = C \times r$.
 - Compute $q = B \times r$.
 - Compute $t = A \times q$.
 - If *s* ≠ *t*:
 - Return FALSE.

8 Return TRUE.

Freivald's Algorithm

Freivald's Algorithm for Matrix Multiplication Verification

- Input: Matrices *A*, *B*, *C* of dimensions $n \times n$.
- **O For** *k* iterations:
 - Choose a random vector $r \in \{0, 1\}^n$.
 - Compute $s = C \times r$.
 - Compute $q = B \times r$.
 - Compute $t = A \times q$.
 - If *s* ≠ *t*:
 - Return FALSE.

8 Return TRUE.

What is the time complexity of Freivald's Algorithm?

Freivald's Algorithm

Freivald's Algorithm for Matrix Multiplication Verification

1 Input: Matrices *A*, *B*, *C* of dimensions $n \times n$.

For k iterations:

- Compute a random vector $r \in \{0, 1\}^n$. $s = C \times r$, $q = B \times r$, $t = A \times q$.
- Check if $s \stackrel{?}{=} t$:

What is the time complexity of Freivald's Algorithm?

Time Complexity

- Each iteration requires:
 - Matrix-vector multiplication: $O(n^2)$.
- Total time complexity for k iterations: $O(kn^2)$.
- For constant $k = \Theta(1)$, the complexity is $O(n^2)$.

Correctness of the Algorithm

- If $C = A \times B$:
 - The algorithm always returns TRUE.
- If $C \neq A \times B$:
 - There exists at least one *r* such that $A(Br) \neq Cr$.
 - The probability that the algorithm fails to detect the error is at most ¹/₂ per iteration. (Why???)

Probabilistic Analysis

- Let D = AB C and assume $D \neq 0$.
- We want to find the probability Pr(Dr = 0).
- **Observation:** Since *D* ≠ 0, there is at least one non-zero row or column.

Theorem 1

The one-sided error probability is $\leq \frac{1}{2}$

is

Correctness of the Algorithm

What does it mean <u>one-sided error</u>? What kind of casino-algorithm do we have here?

at most $\frac{1}{2}$ per iteration. (Why???)

Probabilistic Analysis

- Let D = AB C and assume $D \neq 0$.
- We want to find the probability Pr(Dr = 0).
- **Observation:** Since *D* ≠ 0, there is at least one non-zero row or column.

Theorem 1

The one-sided error probability is $\leq \frac{1}{2}$

is

Correctness of the Algorithm

What does it mean <u>one-sided error</u>? What kind of casino-algorithm do we have here?

We try to solve a decision problem. One-sided error :

If the answer is Yes, we never fail If the answer is No, there exist a failure probability

This is a Monte-Carlo algorithm.

• **Observation:** Since *D* ≠ 0, there is at least one non-zero row or column.

Theorem 1

The one-sided error probability is $\leq \frac{1}{2}$

Let D = AB - C, and suppose D ≠ 0.
Note: We do not compute the matrix D in the algorithm; we need it for the analysis!

- Since D ≠ 0, there exists at least one non-zero row vector d in D.
- We need to compute the probability that Dr = 0, where $r \in \{0, 1\}^n$ is a random vector.

• Focus on the non-zero row *d*:

$$Dr = 0 \implies d \cdot r = 0 \implies \Pr[Dr = 0] \le \Pr[d \cdot r = 0]$$

Illustration of $S \subseteq Q$ Implies $\Pr[S] \leq \Pr[Q]$

- If $S \subseteq Q$, then the event *S* is entirely contained within *Q*.
- Therefore, the probability of *S* cannot exceed the probability of *Q*:

 $\Pr[S] \leq \Pr[Q]$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Why do we care about that specific r_{j^*} ?

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Although unlikely, the matrix *D* could be such that all rows are zero except one. For example:

$$D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 In this case, only the term $d_1 r_1$ survives in $d \cdot r_1$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (4, -5, 1, 2) and r = (1, 1, 1, 0). What is $d \cdot r$?

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (4, -5, 1, 2) and r = (1, 1, 1, 0). What is $d \cdot r$? Answer: $d \cdot r = 4(1) + (-5)(1) + 1(1) + 2(0) = 0$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (4, 5, 2, 1) and r = (0, 1, 1, 0). What is $d \cdot r$?

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (4, 5, 2, 1) and r = (0, 1, 1, 0). What is $d \cdot r$? Answer: $d \cdot r = 4(0) + 5(1) + 2(1) + 1(0) = 7$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (7, 0, 0, 0) and r = (1, 1, 1, 0). What is $d \cdot r$?

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (7, 0, 0, 0) and r = (1, 1, 1, 0). What is $d \cdot r$? Answer: $d \cdot r = 7 \cdot 1 = 7$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (7, 0, 0, 0) and r = (0, 1, 1, 0). What is $d \cdot r$?

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

Suppose the first row of *D* is d = (7, 0, 0, 0) and r = (0, 1, 1, 0). What is $d \cdot r$? Answer: $d \cdot r = 7 \cdot 0 = 0$

HASHING

Proof of the Theorem (Detailed)

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

If d = (12, 9, 2, 5) and $r = (r_1, r_2, r_3, r_4)$ with $r_i \in \{0, 1\}$, what is $\Pr[d \cdot r = 0]$?

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

If d = (12, 9, 2, 5) and $r = (r_1, r_2, r_3, r_4)$ with $r_i \in \{0, 1\}$, what is $\Pr[d \cdot r = 0]$? Answer: Since each r_i is independent,

 $\Pr[d \cdot r = 0] = 1/2^4$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

If d = (12, 9, 2, 5) and $r = (r_1, r_2, r_3, r_4)$ with $r_i \in \{0, 1\}$, what is $\Pr[d \cdot r = 0]$? Answer: Since each r_i is independent,

 $\Pr[d \cdot r = 0] = 1/2^4$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Examples

If d = (12, 9, 2, 5) and $r = (r_1, r_2, r_3, r_4)$ with $r_i \in \{0, 1\}$, what is $\Pr[d \cdot r = 0]$? Answer: Since each r_i is independent,

 $\Pr[d \cdot r = 0] = 1/2^4$

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Question

Does it matter which row of *D* is non-zero?

- Thus, we need to compute the probability that dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- The dot product is given by:

$$d \cdot r = d_1 r_1 + \dots + d_n r_n = \sum_{i=1}^n d_i r_i$$

• Since $d \neq 0$, \exists at least one index j^* such that $d_{j^*} \neq 0$.

Question

Does it matter which row of *D* is non-zero?

Answer

No, as long as $AB \neq C$, then \exists at least one non-zero row in D. We are interested in whether $d \cdot r = 0$ happens by chance due to the random choices of $r \odot$

- Case Analysis of Event $\{d \cdot r = 0\}$:
 - Since $d_{j^*} \neq 0$, r_{j^*} affects $d \cdot r$.
 - We can write:

$$d\cdot r = d_{j*}r_{j*} + \sum_{i\neq j*} d_ir_i = 0 \implies r_{j*} = -\frac{\sum_{i\neq j*} d_ir_i}{d_{j*}}$$

• All r_i are uniformly random in $\{0, 1\}$.

HASHING

VISUALIZATION OF r_{j^*} and V(d, r)

• We illustrate the relationship between r_{j^*} and $V(d,r) = -\frac{\sum_{i \neq j^*} d_i r_i}{d_{i^*}}$.

Proof of the Theorem (Finished)

• Let
$$D = AB - C$$
, and suppose $D \neq 0$.

One-sided error: $D \neq 0$ but Dr = 0

↓

Proof of the Theorem (Finished)

• Let D = AB - C, and suppose $D \neq 0$.

```
One-sided error: D \neq 0 but Dr = 0
```

₽

- We need to compute the probability that Dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- Since *D* ≠ 0, there exists at least one non-zero row vector *d* in *D*.

₽

Proof of the Theorem (Finished)

- We need to compute the probability that Dr = 0, where $r \in \{0, 1\}^n$ is a random vector.
- Since D ≠ 0, there exists at least one non-zero row vector d in D.

↓

• We can focus on the non-zero row *d*:

 $Dr = 0 \implies \exists d : d \cdot r = 0 \implies \Pr[Dr = 0] \le \Pr[d \cdot r = 0]$
Proof of the Theorem (Finished)

• We can focus on the non-zero row *d*:

$$Dr = 0 \implies \exists d : d \cdot r = 0 \implies \Pr[Dr = 0] \le \Pr[d \cdot r = 0]$$

↓

Since r_{j*} is independent of the other r_i and takes values 0 or 1 with equal probability, the probability that d ⋅ r = 0 is at most ¹/₂:

$$\Pr(d \cdot r = 0) \le \frac{1}{2}$$

Proof of the Theorem (Finished)

Since r_{j*} is independent of the other r_i and takes values 0 or 1 with equal probability, the probability that d ⋅ r = 0 is at most ¹/₂:

$$\Pr(d \cdot r = 0) \le \frac{1}{2}$$

Can we improve the probability?

HASHING

Reducing the Error Probability

• By running the algorithm *k* times:

$$\Pr(\text{Failure}) \leq \left(\frac{1}{2}\right)^k$$

• Choosing an appropriate *k*, the error probability becomes negligible.

HASHING

REDUCING THE ERROR PROBABILITY

• By running the algorithm *k* times:

$$\Pr(\text{Failure}) \leq \left(\frac{1}{2}\right)^k$$

• Choosing an appropriate *k*, the error probability becomes negligible.

Homework: Assume that you have two super-large polynomials $d = 10^{10}$ in the forms:

$$\begin{cases} P(x) = a_d x^d + a_{d-1} + \dots + a_1 x + a_0 \\ Q(x) = (x - r_1) \dots (x - r_d) \end{cases}$$

• Give me a deterministic algorithm for verifying P(x) = Q(x) with minimal evaluations of *P*, *Q*.

Reducing the Error Probability

• By running the algorithm *k* times:

$$\Pr(\text{Failure}) \leq \left(\frac{1}{2}\right)^k$$

• Choosing an appropriate *k*, the error probability becomes negligible.

Homework: Assume that you have two super-large polynomials $d = 10^{10}$ in the forms:

$$\begin{cases} P(x) = a_d x^d + a_{d-1} + \dots + a_1 x + a_0 \\ Q(x) = (x - r_1) \dots (x - r_d) \end{cases}$$

- Give me a deterministic algorithm for verifying P(x) = Q(x) with minimal evaluations of P, Q.
- Give me a super simple randomized algorithm ©!!!

The Success Story of Python Dictionaries

Python Dictionaries: Items as (key, value) pairs

Python dictionaries: items are (key, value) pairs Example:

```
d = {'algorithms': 5, 'cool': 42}
```

Operations:

d.items()	#	[('algorithms',	5),	('cool',	42)]
d['cool']	#	42			
d[42]	#	KeyError			
'cool' in d	#	True			
42 in d	#	False			

Note:

Python set is really dict where items are keys

Dictionary

Given a universe *U* of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in *S* is efficient.

Dictionary

Given a universe *U* of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in *S* is efficient.

Dictionary

Given a universe *U* of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in *S* is efficient.

Dictionary Operations

• CREATE: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.

Dictionary

Given a universe *U* of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in *S* is efficient.

- CREATE: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.
- INSERT(u): Adds $u \in U$ to the dictionary (S).

Dictionary

Given a universe *U* of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in *S* is efficient.

- CREATE: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.
- INSERT(u): Adds $u \in U$ to the dictionary (S).
- Delete(u): Remove u from S.

Dictionary

Given a universe *U* of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in *S* is efficient.

- CREATE: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.
- INSERT(u): Adds $u \in U$ to the dictionary (S).
- Delete(u): Remove u from S.
- LOOKUP(*u*): Determine if *u* is in *S*; if so retrieve *u*.

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications.

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems,

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases,

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google,

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google, compilers,

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums,

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks,

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, cryptography,

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, cryptography, web caching, etc.

DICTIONARY INTERFACE.

- Create(): initialize a dictionary with $S = \emptyset$.
- Insert(u): add element $u \in U$ to S.
- Delete(u): delete u from S (if u is currently in S).
- Lookup(u): is u in S?

Challenge. Universe *U* can be extremely large, so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, cryptography, web caching, etc.

Can we implement CREATE-INSERT-DELETE-LOOKUP in $\Theta(1)$ on expectation?

HASHING

The Solution of Day :

Hashing A Randomized Data Type

Definition

A function that converts some input value into a hash value.

- Input: A large universe of values *U*. Typically, assume $|U| \gg n$.
- Output: A hash value for $u \in U$ to $\{0, 1, 2, \dots, n-1\}$.

Definition

A function that converts some input value into a hash value.

- Input: A large universe of values *U*. Typically, assume $|U| \gg n$.
- Output: A hash value for $u \in U$ to $\{0, 1, 2, \dots, n-1\}$.

Why?

Typically used to generate keys for a dictionary data structure.

Motivation

• The values in *U* may be huge. Ex: Blog posts.

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ and build a smaller key.

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ and build a smaller key.

Hashing

- <u>Hash Table</u>: a *n*-length array *H* to store the values.
- Hash Function: Map $u \in U$ to an index in H; $\overline{h: U \rightarrow [0..n-1]}$

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ and build a smaller key.

Hashing

- <u>Hash Table</u>: a *n*-length array *H* to store the values.
- <u>Hash Function</u>: Map $u \in U$ to an index in *H*; $\overline{h: U \rightarrow [0..n-1]}$

Dictionary Hashing

• \mathfrak{E} Let $u, v \in U$. Say $|U| \gg n$, can h(u) = h(v)?

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ and build a smaller key.

Hashing

- <u>Hash Table</u>: a *n*-length array *H* to store the values.
- Hash Function: Map $u \in U$ to an index in H; $\overline{h: U \to [0..n-1]}$

Dictionary Hashing

- ELet $u, v \in U$. Say $|U| \gg n$, can h(u) = h(v)? Yes.
- Collision: h(u) = h(v) At H[i] is a linked-list (bucket) to store any values where h(u) = i.

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ and build a smaller key.

Hashing

- <u>Hash Table</u>: a *n*-length array *H* to store the values.
- <u>Hash Function</u>: Map $u \in U$ to an index in *H*; $\overline{h: U \rightarrow [0..n-1]}$

Dictionary Hashing

- Collision: $h(u) = h(v) \operatorname{At} H[i]$ is a linked-list (bucket) to store any values where h(u) = i.
- Say |S| = n, what is the worst-case number of comparisons to LOOKUP(u)?

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ and build a smaller key.

Hashing

- <u>Hash Table</u>: a *n*-length array *H* to store the values.
- <u>Hash Function</u>: Map $u \in U$ to an index in *H*; $\overline{h: U \rightarrow [0..n-1]}$

Dictionary Hashing

- Collision: $h(u) = h(v) \operatorname{At} H[i]$ is a linked-list (bucket) to store any values where h(u) = i.
- Say |S| = n, what is the worst-case number of comparisons to LOOKUP(u)? O(n)

HASHING

Example of Bucketing

BIRTHDAY PARADOX FOR RANDOM HASHING

How probable is to have the first collision after n elements

• **Problem:** In a group of *n* elements, what is the probability that at least two items map to the same bucket?
- **Problem:** In a group of *n* elements, what is the probability that at least two items map to the same bucket?
- **Restatement:** In a group of *n* people, what is the probability that at least two people share the same birthday?

- **Problem:** In a group of *n* elements, what is the probability that at least two items map to the same bucket?
- **Restatement:** In a group of *n* people, what is the probability that at least two people share the same birthday?
- Assumption: Each bucket is equally likely.

- **Problem:** In a group of *n* elements, what is the probability that at least two items map to the same bucket?
- **Restatement:** In a group of *n* people, what is the probability that at least two people share the same birthday?
- Assumption: Each bucket is equally likely.
- **Restatement:** Each day of the year is equally likely for a birthday (ignoring leap years).

- **Problem:** In a group of *n* elements, what is the probability that at least two items map to the same bucket?
- **Restatement:** In a group of *n* people, what is the probability that at least two people share the same birthday?
- Assumption: Each bucket is equally likely.
- **Restatement:** Each day of the year is equally likely for a birthday (ignoring leap years).
- **Paradox:** Even with just $\Theta(\sqrt{n})$ people, the probability of a shared birthday exceeds 50%.

- **Problem:** In a group of *n* elements, what is the probability that at least two items map to the same bucket?
- **Restatement:** In a group of *n* people, what is the probability that at least two people share the same birthday?
- Assumption: Each bucket is equally likely.
- **Restatement:** Each day of the year is equally likely for a birthday (ignoring leap years).
- **Paradox:** Even with just $\Theta(\sqrt{n})$ people, the probability of a shared birthday exceeds 50%.
- **Restatement:** Even with just 23 people, the probability of a shared birthday exceeds 50%.

- **Probability of no collision:** It's easier to compute the probability that **all** birthdays are different.
- For *n* people:

$$\Pr[\text{all different}] = \frac{365}{365} \times \frac{364}{365} \times \dots \times \frac{365 - n + 1}{365} = \frac{365!}{(365 - n)! \times 365^n}$$

• Probability of at least one collision:

Pr[at least one shared birthday] = 1 - P[all different]

• **Example with** *m* = 23:

 $\Pr[\text{at least one shared birthday}] \approx 1 - 0.493 = 0.507$

• **Conclusion:** With just 23 people, there is over a 50% chance that two people share a birthday.

- **Probability of no collision:** It's easier to compute the probability that **all** birthdays are different.
- For *m* items to *n* buckets:

$$\Pr[\text{all different}] = \frac{n}{n} \times \frac{n-1}{n} \times \dots \times \frac{n-m+1}{n} = \prod_{k=1}^{m-1} (1-\frac{k}{n})$$

- **Probability of no collision:** It's easier to compute the probability that **all** birthdays are different.
- For *m* items to *n* buckets:

$$\Pr[\text{all different}] = \frac{n}{n} \times \frac{n-1}{n} \times \dots \times \frac{n-m+1}{n} = \prod_{k=1}^{m-1} (1-\frac{k}{n})$$

- **Probability of no collision:** It's easier to compute the probability that **all** birthdays are different.
- For *m* items to *n* buckets:

$$\Pr[\text{all different}] = \frac{n}{n} \times \frac{n-1}{n} \times \dots \times \frac{n-m+1}{n} = \prod_{k=1}^{m-1} (1-\frac{k}{n})$$

$$\Pr[\text{all different}] = \prod_{k=1}^{m-1} (1 - \frac{k}{n})$$

- **Probability of no collision:** It's easier to compute the probability that **all** birthdays are different.
- For *m* items to *n* buckets:

$$\Pr[\text{all different}] = \frac{n}{n} \times \frac{n-1}{n} \times \dots \times \frac{n-m+1}{n} = \prod_{k=1}^{m-1} (1-\frac{k}{n})$$

$$\Pr[\text{all different}] = \prod_{k=1}^{m-1} (1 - \frac{k}{n}) \le \prod_{k=1}^{m-1} (e^{-\frac{k}{n}})$$

- **Probability of no collision:** It's easier to compute the probability that **all** birthdays are different.
- For *m* items to *n* buckets:

$$\Pr[\text{all different}] = \frac{n}{n} \times \frac{n-1}{n} \times \dots \times \frac{n-m+1}{n} = \prod_{k=1}^{m-1} (1-\frac{k}{n})$$

$$\Pr[\text{all different}] = \prod_{k=1}^{m-1} (1 - \frac{k}{n}) \le \prod_{k=1}^{m-1} (e^{-\frac{k}{n}}) = (e^{-\frac{\sum_{k=1}^{m-1} k}{n}}) = e^{-\frac{\binom{m}{2}}{n}}$$

- **Probability of no collision:** It's easier to compute the probability that **all** birthdays are different.
- For *m* items to *n* buckets:

$$\Pr[\text{all different}] = \frac{n}{n} \times \frac{n-1}{n} \times \dots \times \frac{n-m+1}{n} = \prod_{k=1}^{m-1} (1-\frac{k}{n})$$

The only inequality that you must know: $1 - x \le e^{-x}$

$$\Pr[\text{all different}] = \prod_{k=1}^{m-1} (1 - \frac{k}{n}) \le \prod_{k=1}^{m-1} (e^{-\frac{k}{n}}) = (e^{-\frac{\sum_{k=1}^{m-1} k}{n}}) = e^{-\frac{\binom{m}{2}}{n}}$$

Probability of at least one collision:
p = Pr[at least one shared birthday] = 1 - P[all different]

$$v \ge 1 - e^{-\frac{\binom{m}{2}}{n}} \ge \frac{1}{2} + \epsilon \Rightarrow m \ge \frac{1 + \sqrt{1 + 8n\left[-\ln\left(\frac{1}{2} - \epsilon\right)\right]}}{2} \approx \Omega(\sqrt{n + \epsilon})$$

16/24

PROBABILITY OF COLLISION VS. NUMBER OF PEOPLE

• **Conclusion:** With at least $\Omega(\sqrt{n+\epsilon})$ items, there is over a $1/2 + \epsilon$ chance that two items maps to same bucket.

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

Some ideas for hash functions

• Hash as a prefix: Collisions can result from similar prefixes. E.g. many phrases in English start with "The".

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

Some ideas for hash functions

- Hash as a prefix: Collisions can result from similar prefixes. E.g. many phrases in English start with "The".
- *u* mod *n*: Risk of collision can be large especially if say *n* is a power of 2.

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

Some ideas for hash functions

- Hash as a prefix: Collisions can result from similar prefixes. E.g. many phrases in English start with "The".
- *u* mod *n*: Risk of collision can be large especially if say *n* is a power of 2.
- $u \mod p$, where p is a prime: Less risk than n especially if p is not tiny, but $p \approx n$.

RANDOM HASH FUNCTION

h(x): Return a value from 0 to n - 1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is \mathfrak{D} ?

RANDOM HASH FUNCTION

h(x): Return a value from 0 to n - 1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

h(x): Return a value from 0 to n - 1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

Proof.

• There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.

h(x): Return a value from 0 to n - 1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?

h(x): Return a value from 0 to n - 1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?
 - $\Pr[h(v) = x | h(u) = x] = \frac{1}{n}$.

h(x): Return a value from 0 to n - 1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

Proof.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?
 - $\Pr[h(v) = x | h(u) = x] = \frac{1}{n}$.

What is the problem with this random hash function?

h(x): Return a value from 0 to n - 1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

Proof.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?
 - $\Pr[h(v) = x | h(u) = x] = \frac{1}{n}$.

What is the problem with this random hash function? For a dictionary, Delete(u) and Lookup(u) won't work since h(u) returns a random value!

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let \mathcal{H} be a class of functions such that:

• Universal property of \mathcal{H} : For any pair of values $u, v \in U$, the probability that a randomly chosen *h* has a collision for any u, v is at most 1/n

$$\Pr_{h\sim\mathcal{H}}[h(u)=h(v)]\leq\frac{1}{n}.$$

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let \mathcal{H} be a class of functions such that:

• Universal property of \mathcal{H} : For any pair of values $u, v \in U$, the probability that a randomly chosen *h* has a collision for any u, v is at most 1/n

$$\Pr_{h\sim\mathcal{H}}[h(u)=h(v)]\leq\frac{1}{n}.$$

• Each $h \in \mathcal{H}$ is represented compactly and can be computed efficiently.

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let ${\mathcal H}$ be a class of functions such that:

• Universal property of \mathcal{H} : For any pair of values $u, v \in U$, the probability that a randomly chosen *h* has a collision for any u, v is at most 1/n

$$\Pr_{h\sim\mathcal{H}}[h(u)=h(v)]\leq\frac{1}{n}.$$

• Each $h \in \mathcal{H}$ is represented compactly and can be computed efficiently.

MAKEDICTIONARY: Given \mathcal{H} , choose h from \mathcal{H} UAR for the dictionary.

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let \mathcal{H} be a class of functions such that:

• Universal property of \mathcal{H} : For any pair of values $u, v \in U$, the probability that a randomly chosen *h* has a collision for any u, v is at most 1/n

$$\Pr_{h\sim\mathcal{H}}[h(u)=h(v)]\leq\frac{1}{n}.$$

• Each $h \in \mathcal{H}$ is represented compactly and can be computed efficiently.

What is the expected number of collisions???

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n - 1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

Proof.

• Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n - 1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n - 1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{s \in S} X_s\right] = \sum_{s \in S} \mathbb{E}[X_s]$$

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n - 1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.
- By linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{s \in S} X_s\right] = \sum_{s \in S} \mathbb{E}[X_s]$$

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n - 1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.
- By linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{s\in S} X_s\right] = \sum_{s\in S} \mathbb{E}[X_s] \le |S| \cdot \frac{1}{n} \le 1 .$$

Designing a Universal Class of Hash Functions

Can we implement CREATE-INSERT-DELETE-LOOKUP in $\Theta(1) = 1 + \alpha = 1 + \frac{|\text{universe}|}{|\text{buckets}|}$ on expectation?

Defining \mathcal{H}

• Choose a prime $p \approx n$.

Designing a Universal Class of Hash Functions

Can we implement CREATE-INSERT-DELETE-LOOKUP in $\Theta(1) = 1 + \alpha = 1 + \frac{|\text{universe}|}{|\text{buckets}|}$ on expectation?

Defining \mathcal{H}

- Choose a prime $p \approx n$.
- Bootstrapping: All values in *U* are associated with a vector coordinate $x = (x_1, x_2, ..., x_r)$ for some *r*, where $0 \le x_i < p$.

•
$$r \approx \frac{\log |Universe|}{\log |Buckets|}$$
 for unique *x* per item in *U*.

Designing a Universal Class of Hash Functions

Can we implement CREATE-INSERT-DELETE-LOOKUP in $\Theta(1) = 1 + \alpha = 1 + \frac{|\text{universe}|}{|\text{buckets}|}$ on expectation?

Defining \mathcal{H}

- Choose a prime $p \approx n$.
- Bootstrapping: All values in *U* are associated with a vector coordinate $x = (x_1, x_2, ..., x_r)$ for some *r*, where $0 \le x_i < p$.
 - $r \approx \frac{\log |Universe|}{\log |Buckets|}$ for unique *x* per item in *U*.
- Let A be the set of all vectors of the form $a = (a_1, a_2, ..., a_r)$, where $0 \le a_i < p$.
Designing a Universal Class of Hash Functions

Can we implement CREATE-INSERT-DELETE-LOOKUP in $\Theta(1) = 1 + \alpha = 1 + \frac{|\text{universe}|}{|\text{buckets}|}$ on expectation?

Defining \mathcal{H}

- Choose a prime $p \approx n$.
- Bootstrapping: All values in *U* are associated with a vector coordinate $x = (x_1, x_2, ..., x_r)$ for some *r*, where $0 \le x_i < p$.

•
$$r \approx \frac{\log |Universe|}{\log |Buckets|}$$
 for unique *x* per item in *U*.

- Let A be the set of all vectors of the form $a = (a_1, a_2, ..., a_r)$, where $0 \le a_i < p$.
- \mathcal{H} contains $h_a(x) = (\sum_{i=1}^r a_i x_i) \mod p$ for all $a \in \mathcal{A}$.

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer $z \not\equiv 0 \mod p$ *, and any two integers* α, β *, if* $\alpha z \equiv \beta z \mod p$ *, then* $\alpha \equiv \beta \mod p$ *.*

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer $z \not\equiv 0 \mod p$ *, and any two integers* α, β *, if* $\alpha z \equiv \beta z \mod p$ *, then* $\alpha \equiv \beta \mod p$ *.*

Proof.

Suppose $\alpha z \equiv \beta z \mod p$:

•
$$\iff z(\alpha - \beta) \equiv 0 \mod p$$

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer $z \not\equiv 0 \mod p$ *, and any two integers* α, β *, if* $\alpha z \equiv \beta z \mod p$ *, then* $\alpha \equiv \beta \mod p$ *.*

Proof.

Suppose $\alpha z \equiv \beta z \mod p$:

•
$$\iff z(\alpha - \beta) \equiv 0 \mod p$$

• *z* is not divisible by *p*, so $(\alpha - \beta) \equiv 0 \mod p$.

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer $z \not\equiv 0 \mod p$ *, and any two integers* α, β *, if* $\alpha z \equiv \beta z \mod p$ *, then* $\alpha \equiv \beta \mod p$ *.*

Proof.

Suppose $\alpha z \equiv \beta z \mod p$:

•
$$\iff z(\alpha - \beta) \equiv 0 \mod p$$

- *z* is not divisible by *p*, so $(\alpha \beta) \equiv 0 \mod p$.
- Hence, $\alpha \equiv \beta \mod p$.

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer $z \not\equiv 0 \mod p$ *, and any two integers* α, β *, if* $\alpha z \equiv \beta z \mod p$ *, then* $\alpha \equiv \beta \mod p$ *.*

Theorem 5 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer $z \not\equiv 0 \mod p$ *, and any two integers* α, β *, if* $\alpha z \equiv \beta z \mod p$ *, then* $\alpha \equiv \beta \mod p$ *.*

Theorem 5 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

Proof.

• Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$

Lemma 4 (Technical Lemma - Inverse at modulo)

For any prime p and any integer $z \not\equiv 0 \mod p$ *, and any two integers* α, β *, if* $\alpha z \equiv \beta z \mod p$ *, then* $\alpha \equiv \beta \mod p$ *.*

Theorem 5 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

- Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$
- We need to show that $\Pr[h_a(x) = h_a(y)] \le 1/p$ for a randomly chosen $a \in A$.

Theorem 4 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

- Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$
- Let *j* be an index such that $x_j \neq y_j$.

Theorem 4 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

- Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$
- Let *j* be an index such that $x_j \neq y_j$.
- Define $a := \{ arb fix a_i for i \neq j \}, a_j defined later.$

Theorem 4 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

- Let *j* be an index such that $x_j \neq y_j$.
- Define $a := \{ arb \text{ fix } a_i \text{ for } i \neq j \}, a_j \text{ defined later.}$
- Consider $h_a(x) = h_a(y)$:

$$\sum_{i=1}^{r} a_i x_i \equiv \sum_{i=1}^{r} a_i y_i \iff a_j (x_j - y_j) \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod p \quad (1)$$

Theorem 4 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

Proof.

- Let *j* be an index such that $x_j \neq y_j$.
- Define $a := \{ arb \text{ fix } a_i \text{ for } i \neq j \}, a_j \text{ defined later.}$
- Consider $h_a(x) = h_a(y)$:

$$\sum_{i=1}^{r} a_i x_i \equiv \sum_{i=1}^{r} a_i y_i \iff a_j (x_j - y_j) \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod p \quad (1)$$

• Lemma 4 shows there is a single value for a_j to satisfy (1).

Theorem 4 (Our Main Theorem)

The class of linear functions \mathcal{H} as defined previously is universal.

Proof.

- Let *j* be an index such that $x_j \neq y_j$.
- Define $a := \{ arb \text{ fix } a_i \text{ for } i \neq j \}, a_j \text{ defined later.}$
- Consider $h_a(x) = h_a(y)$:

$$\sum_{i=1}^r a_i x_i \equiv \sum_{i=1}^r a_i y_i \iff a_j (x_j - y_j) \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod p \quad (1)$$

Lemma 4 shows there is a single value for a_j to satisfy (1).
So, Pr[h_a(x) = h_a(y)] ≤ ¹/_n.

Universe of Items

What is the maximum load in a bucket of the hash table on expectation?

Let h be chosen from a universal hash family and let L be the maximum load of any slot. Then $\Pr\left[L > t\sqrt{\binom{m}{2}/n}\right] \le 1/t^2$ for $t \ge 1$.

Let
$$C = \sum_{x,y \in S, x \neq y} C_{x,y}$$
 be the total number of collisions.
• $\mathbb{E}[C] \leq {m \choose 2}/n.$

- **Observation:** $C \ge {\binom{L}{2}}$. Why?
- $L > \rho$ implies $C > \rho^2/2$.

• By Markov
$$\Pr\left[C > t^2\binom{m}{2}/n\right] \le \frac{\mathbb{E}[C]}{t^2\binom{m}{2}/n} \le \frac{1}{t^2}.$$

• Hence
$$\Pr\left[L > t\sqrt{\binom{m}{2}/n}\right] \le \frac{1}{t^2}$$
.

What is the maximum load in a bucket of the hash table on expectation?

Let h be chosen from a universal hash family and let L be the maximum load of any slot. Then $\mathbb{E}[L] = O\left(\sqrt{\frac{\binom{m}{2}}{n}}\right)$.

L is a non-negative random variable in range. Hence

• Define
$$\beta = \sqrt{\frac{\binom{m}{2}}{n}} = \sqrt{\frac{m(m-1)}{2n}}$$
 and rewrite the inequality:
 $\Pr[L > t\beta] \le \frac{1}{t^2}.$

• Use the expectation formula:

$$\mathbb{E}[L] = \int_0^\infty \Pr[L > x] \, dx \quad \text{and} \quad \Pr[L > x] \le \min\left(1, \left(\frac{\beta}{x}\right)^2\right).$$

23/24

What is the maximum load in a bucket of the hash table on expectation?

Let h be chosen from a universal hash family and let L be the maximum load of any slot. Then $\mathbb{E}[L] = O\left(\sqrt{\frac{\binom{m}{2}}{n}}\right)$.

• Split the integral:

$$\mathbb{E}[L] \leq \int_0^\beta 1\,dx + \int_\beta^m \left(\frac{\beta}{x}\right)^2 dx.$$

• Calculate the integrals:

•
$$\int_0^\beta 1 \, dx = \beta.$$

• $\int_\beta^m \left(\frac{\beta}{x}\right)^2 dx = \beta^2 \left(\frac{1}{\beta} - \frac{1}{m}\right) = \beta \left(1 - \frac{\beta}{m}\right).$

What is the maximum load in a bucket of the hash table on expectation?

Let h be chosen from a universal hash family and let L be the maximum load of any slot. Then $\mathbb{E}[L] = O\left(\sqrt{\frac{\binom{m}{2}}{n}}\right)$.

• Combine results:

$$\mathbb{E}[L] \leq \beta + \beta \left(1 - \frac{\beta}{m}\right) = 2\beta - \frac{\beta^2}{m} \leq 2\beta.$$

Conclusion:

$$\mathbb{E}[L] \leq 2\sqrt{\frac{\binom{m}{2}}{n}}.$$

Appendix

References

Image Sources I

