
CS 577 - Graph Algorithms Part (A)

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin – Madison

Fall 2024

Shortest Path Shortest Path Again MST Clustering

Shortest Path

Shortest Path Shortest Path Again MST Clustering

Finding the Shortest Path
Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e, ℓe ≥ 0 is the length of the edge.

What is the shortest path from s to each other node?

Edsger Dijkstra, 1956
Dijkstra’s shortest path fame

1/25

Shortest Path Shortest Path Again MST Clustering

Finding the Shortest Path
Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e, ℓe ≥ 0 is the length of the edge.

What is the shortest path from s to each other node?

Edsger Dijkstra, 1956
Dijkstra’s shortest path fame

1/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one incoming edge originating
from a node in S with the smallest

d′(v) = min
e=(u,v)∶u∈S

{d(u) + ℓe}

Append v to S and define d(v) = d′(v).
end

How is it greedy?
Which technique to prove optimality?

2/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one incoming edge originating
from a node in S with the smallest

d′(v) = min
e=(u,v)∶u∈S

{d(u) + ℓe}

Append v to S and define d(v) = d′(v).
end
How is it greedy?

Which technique to prove optimality?

2/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one incoming edge originating
from a node in S with the smallest

d′(v) = min
e=(u,v)∶u∈S

{d(u) + ℓe}

Append v to S and define d(v) = d′(v).
end
How is it greedy?
Which technique to prove optimality?

2/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s

Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.

By induction on the size of S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.

Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s

Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.

By induction on the size of S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.

Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s

Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.
By induction on the size of S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.

Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s
Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.
By induction on the size of S.

For ∣S∣ = 1, the claim follows trivially as S = {s}.

By the induction hypothesis, for ∣S∣ = k, Pu is the shortest
s − u path for all u ∈ S.
In step k + 1, we add v.

By definition, Pv is shortest path connected to S by one edge.

Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s
Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.
By induction on the size of S.

For ∣S∣ = 1, the claim follows trivially as S = {s}.
By the induction hypothesis, for ∣S∣ = k, Pu is the shortest
s − u path for all u ∈ S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.

Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s

Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.
By induction on the size of S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.

Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s

Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.
By induction on the size of S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.
Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.

Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Correctness of Dijkstra’s

Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.
By induction on the size of S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.
Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.

3/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s Observations
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Negative edge
weights,
where does it
fail?

It is graph
exploration,
what kind of
exploration?

Weighted
(continu-
ous) BFS

4/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s Observations
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Negative edge
weights,
where does it
fail?
It is graph

exploration,
what kind of
exploration?

Weighted
(continu-
ous) BFS

4/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s Observations
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Negative edge
weights,
where does it
fail?
It is graph

exploration,
what kind of
exploration?

Weighted
(continu-
ous) BFS

4/25

Shortest Path Shortest Path Again MST Clustering

Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop?

n − 1
Key
Operations:
Finding the min:
Overall: O(mn)
How can we
get O(m logn)?
How can we get
O(n + n logn)?

5/25

Shortest Path Shortest Path Again MST Clustering

Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop? n − 1

Key
Operations:
Finding the min:
Overall: O(mn)
How can we
get O(m logn)?
How can we get
O(n + n logn)?

5/25

Shortest Path Shortest Path Again MST Clustering

Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop? n − 1
Key
Operations:
Finding the min:

Overall: O(mn)
How can we
get O(m logn)?
How can we get
O(n + n logn)?

5/25

Shortest Path Shortest Path Again MST Clustering

Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop? n − 1
Key
Operations:
Finding the min:
Easy in O(m)

Overall: O(mn)
How can we
get O(m logn)?
How can we get
O(n + n logn)?

5/25

Shortest Path Shortest Path Again MST Clustering

Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop? n − 1
Key
Operations:
Finding the min:
Easy in O(m)
Overall: O(mn)

How can we
get O(m logn)?
How can we get
O(n + n logn)?

5/25

Shortest Path Shortest Path Again MST Clustering

Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop? n − 1
Key
Operations:
Finding the min:
Easy in O(m)
Overall: O(mn)
How can we
get O(m logn)?

How can we get
O(n + n logn)?

5/25

Shortest Path Shortest Path Again MST Clustering

Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u)+ ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop? n − 1
Key
Operations:
Finding the min:
Easy in O(m)
Overall: O(mn)
How can we
get O(m logn)?
How can we get
O(n + n logn)?

5/25

Shortest Path Shortest Path Again MST Clustering

Shortest Path-Negative
Side of the Moon

Shortest Path Shortest Path Again MST Clustering

Shortest Path
Going Negative

Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e = (i, j), cij is the weight of the edge, and the are no cycles
with negative weight.

What is the shortest path from s to each other node?

Richard Bellman L R Ford Jr.

6/25

Shortest Path Shortest Path Again MST Clustering

Shortest Path
Going Negative

Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e = (i, j), cij is the weight of the edge, and the are no cycles
with negative weight.

What is the shortest path from s to each other node?

Richard Bellman L R Ford Jr.

6/25

Shortest Path Shortest Path Again MST Clustering

Shortest Path
Going Negative

Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e = (i, j), cij is the weight of the edge, and the are no cycles
with negative weight.

What is the shortest path from s to each other node?

Why no negative cycles?

6/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one incoming edge originating
from a node in S with the smallest

d′(v) = min
e=(u,v)∶u∈S

d(u) + ℓe

Append v to S and define d(v) = d′(v).
end
return S

Negative Problem

Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem

Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s
Negative Problem

Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

A B

C

3

-2
2

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem
Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem
Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.

Solution in new graph is not guaranteed to be optimal in
original graph.

7/25

Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem
Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.

Dichotomy:

Use ≤ i − 1 edges.
Use ≤ i edges.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.

Dichotomy:

Use ≤ i − 1 edges.
Use ≤ i edges.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.

Dichotomy:

Use ≤ i − 1 edges.
Use ≤ i edges.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Where is the shortest path from s to t in the solution

matrix?

Dichotomy:

Use ≤ i − 1 edges.
Use ≤ i edges.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Solution: M[n − 1][s]

Dichotomy:

Use ≤ i − 1 edges.
Use ≤ i edges.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Solution: M[n − 1][s]

Dichotomy:

Use ≤ i − 1 edges.
Use ≤ i edges.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Solution: M[n − 1][s]

Dichotomy:
Use ≤ i − 1 edges.
Use ≤ i edges.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Solution: M[n − 1][s]

Dichotomy:
Use ≤ i − 1 edges.
Use ≤ i edges.

Build the Bellman equation.

8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford
Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Solution: M[n − 1][s]

Dichotomy:
Use ≤ i − 1 edges.
Use ≤ i edges.

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}} ,

where cvw =∞ if no edge from v to w.
8/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
of Cells:

O(n2).
Cost per cell:

O(n).

Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.

Overall: O (n∑v∈V ηv) = O(mn).

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
of Cells: O(n2).

Cost per cell:

O(n).

Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.

Overall: O (n∑v∈V ηv) = O(mn).

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
of Cells: O(n2).

Cost per cell:

O(n).
Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.

Overall: O (n∑v∈V ηv) = O(mn).

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
of Cells: O(n2).
Cost per cell: O(n).

Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.

Overall: O (n∑v∈V ηv) = O(mn).

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
of Cells: O(n2).
Cost per cell: O(n).
Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.

Overall: O (n∑v∈V ηv) = O(mn).

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
of Cells: O(n2).
Cost per cell: O(n).
Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.

Overall: O (n∑v∈V ηv) = O(mn).

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
of Cells: O(n2).
Cost per cell: O(n).
Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.
Overall: O (n∑v∈V ηv) = O(mn).

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes, m edges
Overall: O (n∑v∈V ηv) = O(mn).

Space Saving: O(n).
To build row i:

We only need i − 1 values for each node.
M[v] =min{M[v],minw∈V{M[w] + cvw}} for each i.

Recovery of actual path:

An additional array first[v] that
maintains the first hop from v to t.

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes, m edges
Overall: O (n∑v∈V ηv) = O(mn).

Space Saving: O(n).
To build row i:

We only need i − 1 values for each node.
M[v] =min{M[v],minw∈V{M[w] + cvw}} for each i.

Recovery of actual path:

An additional array first[v] that
maintains the first hop from v to t.

9/25

Shortest Path Shortest Path Again MST Clustering

Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes, m edges
Overall: O (n∑v∈V ηv) = O(mn).

Space Saving: O(n).
To build row i:

We only need i − 1 values for each node.
M[v] =min{M[v],minw∈V{M[w] + cvw}} for each i.

Recovery of actual path: An additional array first[v] that
maintains the first hop from v to t.

9/25

Shortest Path Shortest Path Again MST Clustering

Negative Cycles
Observation 2
If there is a negative cycle along the path from s to t, then the shortest
path is −∞.

Observation 3
M[i][v] =M[n − 1][v] for all i > n − 1 and all nodes v if there are no
negative cycles on the paths to t.

Augmented Graph for Negative Cycle Finding
Add a node t with an incoming edge from all other nodes
with cost 0.
Run Bellman-Ford from any node s to t until number of
edges n.
If, for some v,M[n][v] ≠M[n − 1][v], then there is a
negative cycle.

10/25

Shortest Path Shortest Path Again MST Clustering

Negative Cycles
Observation 2
If there is a negative cycle along the path from s to t, then the shortest
path is −∞.

Observation 3
M[i][v] =M[n − 1][v] for all i > n − 1 and all nodes v if there are no
negative cycles on the paths to t.

Augmented Graph for Negative Cycle Finding
Add a node t with an incoming edge from all other nodes
with cost 0.
Run Bellman-Ford from any node s to t until number of
edges n.
If, for some v,M[n][v] ≠M[n − 1][v], then there is a
negative cycle.

10/25

Shortest Path Shortest Path Again MST Clustering

Negative Cycles
Observation 2
If there is a negative cycle along the path from s to t, then the shortest
path is −∞.

Observation 3
M[i][v] =M[n − 1][v] for all i > n − 1 and all nodes v if there are no
negative cycles on the paths to t.

Augmented Graph for Negative Cycle Finding
Add a node t with an incoming edge from all other nodes
with cost 0.
Run Bellman-Ford from any node s to t until number of
edges n.
If, for some v,M[n][v] ≠M[n − 1][v], then there is a
negative cycle.

10/25

Shortest Path Shortest Path Again MST Clustering

MST

Shortest Path Shortest Path Again MST Clustering

Minimum Spanning Tree Problem
MST Problem
Let G = (V,E) be a connected graph, where ∣V∣ = n and ∣E∣ = m.
For each edge e, ce > 0 is the cost of the edge.

Find an edge set F ⊆ E with minimum cost that keeps the
graph connected. That is, F should minimize ∑e∈F ce.

Observation 4
Let T = (V,F) be a minimum-cost solution to the problem described
above. Then, T is a tree.

Proof.
By the definition of the problem, T must be connected.
By way of contradiction, assume that T has a cycle C.
Remove any edge from C resulting in a graph T′. T′ is still
connect and has a cost less than T.

11/25

Shortest Path Shortest Path Again MST Clustering

Minimum Spanning Tree Problem
MST Problem
Let G = (V,E) be a connected graph, where ∣V∣ = n and ∣E∣ = m.
For each edge e, ce > 0 is the cost of the edge.

Find an edge set F ⊆ E with minimum cost that keeps the
graph connected. That is, F should minimize ∑e∈F ce.

Observation 4
Let T = (V,F) be a minimum-cost solution to the problem described
above. Then, T is a tree.

Proof.
By the definition of the problem, T must be connected.
By way of contradiction, assume that T has a cycle C.
Remove any edge from C resulting in a graph T′. T′ is still
connect and has a cost less than T.

11/25

Shortest Path Shortest Path Again MST Clustering

Minimum Spanning Tree Problem
MST Problem
Let G = (V,E) be a connected graph, where ∣V∣ = n and ∣E∣ = m.
For each edge e, ce > 0 is the cost of the edge.

Find an edge set F ⊆ E with minimum cost that keeps the
graph connected. That is, F should minimize ∑e∈F ce.

Observation 4
Let T = (V,F) be a minimum-cost solution to the problem described
above. Then, T is a tree.

Proof.

By the definition of the problem, T must be connected.
By way of contradiction, assume that T has a cycle C.
Remove any edge from C resulting in a graph T′. T′ is still
connect and has a cost less than T.

11/25

Shortest Path Shortest Path Again MST Clustering

Minimum Spanning Tree Problem
MST Problem
Let G = (V,E) be a connected graph, where ∣V∣ = n and ∣E∣ = m.
For each edge e, ce > 0 is the cost of the edge.

Find an edge set F ⊆ E with minimum cost that keeps the
graph connected. That is, F should minimize ∑e∈F ce.

Observation 4
Let T = (V,F) be a minimum-cost solution to the problem described
above. Then, T is a tree.

Proof.
By the definition of the problem, T must be connected.
By way of contradiction, assume that T has a cycle C.
Remove any edge from C resulting in a graph T′. T′ is still
connect and has a cost less than T.

11/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
What greedy heuristic might work?

Kruskal’s (1956) Algorithm
Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Kruskal’s 1956) Algorithm
Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

12/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
What greedy heuristic might work?

Kruskal’s (1956) Algorithm
Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Kruskal’s 1956) Algorithm
Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

12/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
What greedy heuristic might work?

Kruskal’s (1956) Algorithm
Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Jarník’s (1929), Kruskal’s (1956), Prim’s (1957),
Loberman and Weinberger (1957), Dijkstra’s (1958)
Algorithm

Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Kruskal’s 1956) Algorithm
Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

12/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
What greedy heuristic might work?

Kruskal’s (1956) Algorithm
Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Kruskal’s 1956) Algorithm
Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

12/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
What greedy heuristic might work?

Kruskal’s (1956) Algorithm
Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Kruskal’s (1956) Algorithm
Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

12/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
What greedy heuristic might work?

Kruskal’s (1956) Algorithm
Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Reverse-Delete (Kruskal’s 1956) Algorithm
Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

12/25

Shortest Path Shortest Path Again MST Clustering

Assume Distinct Weights
WLOG (without loss of generality)

Theorem 2
(HW Q2) If all edge weights in a connected graph are distinct, then G
has a unique MST.

Observation 5
All we need is a consistent tie-breaker when ce1 = ce2 for some pair of
edges. I.e. based on the labels of the vertices of e1 ∪ e2.

Assumption: all edge weights are distinct.

13/25

Shortest Path Shortest Path Again MST Clustering

Assume Distinct Weights
WLOG (without loss of generality)

Theorem 2
(HW Q2) If all edge weights in a connected graph are distinct, then G
has a unique MST.

Observation 5
All we need is a consistent tie-breaker when ce1 = ce2 for some pair of
edges. I.e. based on the labels of the vertices of e1 ∪ e2.

Assumption: all edge weights are distinct.

13/25

Shortest Path Shortest Path Again MST Clustering

Assume Distinct Weights
WLOG (without loss of generality)

Theorem 2
(HW Q2) If all edge weights in a connected graph are distinct, then G
has a unique MST.

Observation 5
All we need is a consistent tie-breaker when ce1 = ce2 for some pair of
edges. I.e. based on the labels of the vertices of e1 ∪ e2.

Assumption: all edge weights are distinct.

13/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.

By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.

Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.

Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.

T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.

Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.

14/25

Shortest Path Shortest Path Again MST Clustering

Kruskal’s Algorithm is Optimal
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.

Proof.

Let e = (v,w) be the edge added at any step i.
Since e does not create a cycle, v ∈ S and w ∉ S (WLOG).
As ce is the minimum cost edge, the claim follows from
Lemma 3.

15/25

Shortest Path Shortest Path Again MST Clustering

Kruskal’s Algorithm is Optimal
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.

Proof.

Let e = (v,w) be the edge added at any step i.
Since e does not create a cycle, v ∈ S and w ∉ S (WLOG).
As ce is the minimum cost edge, the claim follows from
Lemma 3.

15/25

Shortest Path Shortest Path Again MST Clustering

Kruskal’s Algorithm is Optimal
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.

Proof.
Let e = (v,w) be the edge added at any step i.

Since e does not create a cycle, v ∈ S and w ∉ S (WLOG).
As ce is the minimum cost edge, the claim follows from
Lemma 3.

15/25

Shortest Path Shortest Path Again MST Clustering

Kruskal’s Algorithm is Optimal
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.

Proof.
Let e = (v,w) be the edge added at any step i.
Since e does not create a cycle, v ∈ S and w ∉ S (WLOG).

As ce is the minimum cost edge, the claim follows from
Lemma 3.

15/25

Shortest Path Shortest Path Again MST Clustering

Kruskal’s Algorithm is Optimal
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.

Proof.
Let e = (v,w) be the edge added at any step i.
Since e does not create a cycle, v ∈ S and w ∉ S (WLOG).
As ce is the minimum cost edge, the claim follows from
Lemma 3.

15/25

Shortest Path Shortest Path Again MST Clustering

Prim’s Algorithm is Optimal

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Theorem 5
Prim’s Algorithm produces an MST.

Proof.

Immediate from Lemma 3.
That is, Prim’s algorithm does exactly what Lemma 3
describes.

16/25

Shortest Path Shortest Path Again MST Clustering

Prim’s Algorithm is Optimal

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Theorem 5
Prim’s Algorithm produces an MST.

Proof.

Immediate from Lemma 3.
That is, Prim’s algorithm does exactly what Lemma 3
describes.

16/25

Shortest Path Shortest Path Again MST Clustering

Prim’s Algorithm is Optimal

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Theorem 5
Prim’s Algorithm produces an MST.

Proof.
Immediate from Lemma 3.

That is, Prim’s algorithm does exactly what Lemma 3
describes.

16/25

Shortest Path Shortest Path Again MST Clustering

Prim’s Algorithm is Optimal

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Theorem 5
Prim’s Algorithm produces an MST.

Proof.
Immediate from Lemma 3.
That is, Prim’s algorithm does exactly what Lemma 3
describes.

16/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Reverse-Delete (Kruskal’s 1956) Algorithm

Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

How should we prove that it produces an MST?

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Proof.

Let T be a spanning tree that does contain e.
Let S and V ∖ S be the nodes of the connected components
after removing e from T.
Let e′ be an edge in C that connects S and V ∖ S.
Let T′ = T ∖ e ∪ e′.
T′ is connected as e′ reconnects S and V ∖ S.
Since ce > ce′ , cost of T′ is less than T.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Proof.
Let T be a spanning tree that does contain e.

Let S and V ∖ S be the nodes of the connected components
after removing e from T.
Let e′ be an edge in C that connects S and V ∖ S.
Let T′ = T ∖ e ∪ e′.
T′ is connected as e′ reconnects S and V ∖ S.
Since ce > ce′ , cost of T′ is less than T.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Proof.
Let T be a spanning tree that does contain e.
Let S and V ∖ S be the nodes of the connected components
after removing e from T.

Let e′ be an edge in C that connects S and V ∖ S.
Let T′ = T ∖ e ∪ e′.
T′ is connected as e′ reconnects S and V ∖ S.
Since ce > ce′ , cost of T′ is less than T.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Proof.
Let T be a spanning tree that does contain e.
Let S and V ∖ S be the nodes of the connected components
after removing e from T.
Let e′ be an edge in C that connects S and V ∖ S.

Let T′ = T ∖ e ∪ e′.
T′ is connected as e′ reconnects S and V ∖ S.
Since ce > ce′ , cost of T′ is less than T.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Proof.
Let T be a spanning tree that does contain e.
Let S and V ∖ S be the nodes of the connected components
after removing e from T.
Let e′ be an edge in C that connects S and V ∖ S.
Let T′ = T ∖ e ∪ e′.

T′ is connected as e′ reconnects S and V ∖ S.
Since ce > ce′ , cost of T′ is less than T.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Proof.
Let T be a spanning tree that does contain e.
Let S and V ∖ S be the nodes of the connected components
after removing e from T.
Let e′ be an edge in C that connects S and V ∖ S.
Let T′ = T ∖ e ∪ e′.
T′ is connected as e′ reconnects S and V ∖ S.

Since ce > ce′ , cost of T′ is less than T.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Proof.
Let T be a spanning tree that does contain e.
Let S and V ∖ S be the nodes of the connected components
after removing e from T.
Let e′ be an edge in C that connects S and V ∖ S.
Let T′ = T ∖ e ∪ e′.
T′ is connected as e′ reconnects S and V ∖ S.
Since ce > ce′ , cost of T′ is less than T.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.
Let e = (v,w) be an edge removed at any step i.

By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.
Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.

As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Reverse-Delete is Optimal
Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.
Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.

17/25

Shortest Path Shortest Path Again MST Clustering

Implementing Prim’s Algorithm
Prim’s (1957) Algorithm

Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Key Operations

Retrieve the minimum valued edge between S and V ∖ S.
Prim’s and Dijkstra’s have nearly identical
implementations (but different minimizers)!

Priority Queue (min-heap)
ExtractMin (O(1)): n − 1 times.
ChangeKey (O(log(n))): m times.

Overall: O(m log(n))

18/25

Shortest Path Shortest Path Again MST Clustering

Implementing Prim’s Algorithm
Prim’s (1957) Algorithm

Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Key Operations
Retrieve the minimum valued edge between S and V ∖ S.

Prim’s and Dijkstra’s have nearly identical
implementations (but different minimizers)!

Priority Queue (min-heap)
ExtractMin (O(1)): n − 1 times.
ChangeKey (O(log(n))): m times.

Overall: O(m log(n))

18/25

Shortest Path Shortest Path Again MST Clustering

Implementing Prim’s Algorithm
Prim’s (1957) Algorithm

Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Key Operations
Retrieve the minimum valued edge between S and V ∖ S.
Prim’s and Dijkstra’s have nearly identical
implementations (but different minimizers)!

Priority Queue (min-heap)
ExtractMin (O(1)): n − 1 times.
ChangeKey (O(log(n))): m times.

Overall: O(m log(n))

18/25

Shortest Path Shortest Path Again MST Clustering

Implementing Prim’s Algorithm
Prim’s (1957) Algorithm

Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Key Operations
Retrieve the minimum valued edge between S and V ∖ S.
Prim’s and Dijkstra’s have nearly identical
implementations (but different minimizers)!

Priority Queue (min-heap)
ExtractMin (O(1)): n − 1 times.
ChangeKey (O(log(n))): m times.

Overall: O(m log(n)) 18/25

Shortest Path Shortest Path Again MST Clustering

Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations

Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

19/25

Shortest Path Shortest Path Again MST Clustering

Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).

Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

19/25

Shortest Path Shortest Path Again MST Clustering

Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.

Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

19/25

Shortest Path Shortest Path Again MST Clustering

Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

19/25

Shortest Path Shortest Path Again MST Clustering

Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

19/25

Shortest Path Shortest Path Again MST Clustering

Union-Find / Disjoint-Set
Key Operations

Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

Basic Container

node rank parent

Initializing Data Structure for Kruskal’s
For each node s, create a singleton set. That is each container
has rank 0 and points to itself.

s 0 ⋅

20/25

Shortest Path Shortest Path Again MST Clustering

Union-Find / Disjoint-Set
Key Operations

Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

Basic Container

node rank parent

Initializing Data Structure for Kruskal’s
For each node s, create a singleton set. That is each container
has rank 0 and points to itself.

s 0 ⋅

20/25

Shortest Path Shortest Path Again MST Clustering

Union-Find / Disjoint-Set
Key Operations

Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

Basic Container

node rank parent

Initializing Data Structure for Kruskal’s
For each node s, create a singleton set. That is each container
has rank 0 and points to itself.

s 0 ⋅

20/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)

(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)

O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)

(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.

O(α(n))with path compression.

Union(x,y): O(1)

(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)

(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)

(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)
(WLOG) x.rank ≥ y.rank:
y.parent = x

If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)
(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)
(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.

21/25

Shortest Path Shortest Path Again MST Clustering

Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
TH: How many Find and Unions?

Find(x): Finds the set containing x.
Union(x,y): Joins two sets x and y.

22/25

Shortest Path Shortest Path Again MST Clustering

Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): 2m times O(logn) (can be O(α(n))).
Union(x,y): n − 1 times O(1).

22/25

Shortest Path Shortest Path Again MST Clustering

Graph Exploration Overview
BFS and DFS

Traverses a graph G starting from some node s.
Builds a tree T.
No guarantee on any distance measure.

Dijktra’s
Traverses a graph starting from some node s.
Builds a tree T.
All s to u paths in T are the shortest such path in G.

MST Algorithms
Explores a graph G edges.
Builds a tree T.
T is minimum cost to connect all nodes in G.

23/25

Shortest Path Shortest Path Again MST Clustering

Graph Exploration Overview
BFS and DFS

Traverses a graph G starting from some node s.
Builds a tree T.
No guarantee on any distance measure.

Dijktra’s
Traverses a graph starting from some node s.
Builds a tree T.
All s to u paths in T are the shortest such path in G.

MST Algorithms
Explores a graph G edges.
Builds a tree T.
T is minimum cost to connect all nodes in G.

23/25

Shortest Path Shortest Path Again MST Clustering

Graph Exploration Overview
BFS and DFS

Traverses a graph G starting from some node s.
Builds a tree T.
No guarantee on any distance measure.

Dijktra’s
Traverses a graph starting from some node s.
Builds a tree T.
All s to u paths in T are the shortest such path in G.

MST Algorithms
Explores a graph G edges.
Builds a tree T.
T is minimum cost to connect all nodes in G.

23/25

Shortest Path Shortest Path Again MST Clustering

Clustering

Shortest Path Shortest Path Again MST Clustering

k-Clustering

Maximizing Spacing Problem
A universe U ∶= {p1, . . . ,pn} of n objects.
Distance function d ∶ U × U → R such that, for all pi,pj ∈ U :

d(pi,pi) = 0
d(pi,pj) > 0
d(pi,pj) = d(pj,pi)

Objective: Partition U into k non-empty groups
C ∶= C1, . . . ,Ck with maximum spacing:

maximize min
Ci,Cj∈C

min
u∈Ci,v∈Cj

d(u,v)

24/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
What greedy approach might work?

Algorithm
Build an MST.
Remove k − 1 largest edges.

k-Clusters at max spacing?
Start with a tree, remove k − 1 edges: We get a forest of k
trees.
By definition largest edges are removed so max spacing.

Which MST algorithm?
Kruskal’s (O(m logn)which is O(n2 logn) for clustering):

Merge sets from lowest to most expensive edges.
Stop when we have k sets.

25/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
Algorithm

Build an MST.
Remove k − 1 largest edges.

k-Clusters at max spacing?
Start with a tree, remove k − 1 edges: We get a forest of k
trees.
By definition largest edges are removed so max spacing.

Which MST algorithm?
Kruskal’s (O(m logn)which is O(n2 logn) for clustering):

Merge sets from lowest to most expensive edges.
Stop when we have k sets.

25/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
Algorithm

Build an MST.
Remove k − 1 largest edges.

k-Clusters at max spacing?
Start with a tree, remove k − 1 edges: We get a forest of k
trees.
By definition largest edges are removed so max spacing.

Which MST algorithm?
Kruskal’s (O(m logn)which is O(n2 logn) for clustering):

Merge sets from lowest to most expensive edges.
Stop when we have k sets.

25/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
Algorithm

Build an MST.
Remove k − 1 largest edges.

k-Clusters at max spacing?
Start with a tree, remove k − 1 edges: We get a forest of k
trees.
By definition largest edges are removed so max spacing.

Which MST algorithm?

Kruskal’s (O(m logn)which is O(n2 logn) for clustering):
Merge sets from lowest to most expensive edges.
Stop when we have k sets.

25/25

Shortest Path Shortest Path Again MST Clustering

Algorithm Design
Algorithm

Build an MST.
Remove k − 1 largest edges.

k-Clusters at max spacing?
Start with a tree, remove k − 1 edges: We get a forest of k
trees.
By definition largest edges are removed so max spacing.

Which MST algorithm?
Kruskal’s (O(m logn)which is O(n2 logn) for clustering):

Merge sets from lowest to most expensive edges.
Stop when we have k sets.

25/25

Appendix References

Appendix

Appendix References

References

Appendix References

Image Sources I

https://medium.com/neurosapiens/
2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/
08/biografia-de-lester-randolph-ford-jr/

http://www.sequence-alignment.com/

https://medium.com/koderunners/
genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6

https://brand.wisc.edu/web/logos/
26/25

https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/
http://www.sequence-alignment.com/
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6
https://brand.wisc.edu/web/logos/

Appendix References

Image Sources II

https://www.pngfind.com/mpng/mTJmbx_
spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/

https://www.pngfind.com/mpng/xhJRmT_
cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/

27/25

https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/
https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/

	Shortest Path
	Shortest Path-Negative Side of the Moon
	MST
	Clustering
	Appendix
	Appendix
	References

