
CS 577 - Graph Algorithms Part (A)

Manolis Vlatakis

Department of Computer Sciences
University of Wisconsin – Madison

Fall 2024



Shortest Path Shortest Path Again MST Clustering

Shortest Path



Shortest Path Shortest Path Again MST Clustering

Finding the Shortest Path
Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e, ℓe ≥ 0 is the length of the edge.

What is the shortest path from s to each other node?

Edsger Dijkstra, 1956
Dijkstra’s shortest path fame
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Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one incoming edge originating
from a node in S with the smallest

d′(v) = min
e=(u,v)∶u∈S

{d(u) + ℓe}

Append v to S and define d(v) = d′(v).
end

How is it greedy?
Which technique to prove optimality?
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Correctness of Dijkstra’s

Theorem 1
Consider the S at any point in the execution of Dijkstra’s. For each
u ∈ S, the path Pu is a shortest s − u path.

Proof.

By induction on the size of S.

In step k + 1, we add v.
By definition, Pv is shortest path connected to S by one edge.

Since Pu is a shortest path to u, Pv is the shortest path to v
when considering only the nodes of S.
Moreover, there cannot be a shorter path to v passing
through another node y ∉ S else y that would be added at
k + 1.
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Dijkstra’s Observations
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u) + ℓe}
Append v to S and define
d(v) = d′(v).

end

Negative edge
weights,
where does it
fail?

It is graph
exploration,
what kind of
exploration?

Weighted
(continu-
ous) BFS
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Implementation and Run Time of Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance
value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one
incoming edge originating
from a node in S with the
smallest
d′(v) =mine=(u,v)∶u∈S{d(u) + ℓe}
Append v to S and define
d(v) = d′(v).

end

Number of
iterations of the
loop?

n − 1
Key
Operations:
Finding the min:
Overall: O(mn)
How can we
get O(m logn)?
How can we get
O(n + n logn)?
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Side of the Moon
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Shortest Path
Going Negative

Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e = (i, j), cij is the weight of the edge, and the are no cycles
with negative weight.

What is the shortest path from s to each other node?

Richard Bellman L R Ford Jr.
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Shortest Path
Going Negative

Problem Definition
We have a directed graph G = (V,E), where ∣V∣ = n and ∣E∣ = m
and a node s that has a path to every other node in V. For each
edge e = (i, j), cij is the weight of the edge, and the are no cycles
with negative weight.

What is the shortest path from s to each other node?

Why no negative cycles?
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Dijkstra’s
Algorithm: Dijkstra′s
Let S be the set of explored nodes.
For each u ∈ S, we store a distance value d(u).
Initialize S = {s} and d(s) = 0
while S ≠ V do

Choose v ∉ Swith at least one incoming edge originating
from a node in S with the smallest

d′(v) = min
e=(u,v)∶u∈S

d(u) + ℓe

Append v to S and define d(v) = d′(v).
end
return S

Negative Problem

Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25



Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem

Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25



Shortest Path Shortest Path Again MST Clustering

Dijkstra’s
Negative Problem

Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

A B

C

3

-2
2

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25



Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem
Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25



Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem
Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.

Solution in new graph is not guaranteed to be optimal in
original graph.

7/25



Shortest Path Shortest Path Again MST Clustering

Dijkstra’s

Negative Problem
Lose guarantee that minimum edge between S and V ∖ S is
part of minimum path.

Why not just boost all edges by max negative value plus a
bit (β)?

A path with x edges: Cost increases x ⋅ β.
Solution in new graph is not guaranteed to be optimal in
original graph.

7/25



Shortest Path Shortest Path Again MST Clustering

Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.

Dichotomy:

Use ≤ i − 1 edges.
Use ≤ i edges.

8/25
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Dynamic Program
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Bellman-Ford

Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Solution: M[n − 1][s]

Dichotomy:
Use ≤ i − 1 edges.
Use ≤ i edges.

Build the Bellman equation.

8/25



Shortest Path Shortest Path Again MST Clustering

Bellman-Ford
Observation 1
If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n − 1 edges.

Dynamic Program
2D matrixM of # edges in path × vertices.

M[i][v] is the shortest path from v to t using ≤ i edges.
Solution: M[n − 1][s]

Dichotomy:
Use ≤ i − 1 edges.
Use ≤ i edges.

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}} ,

where cvw = ∞ if no edge from v to w.
8/25
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Bellman-Ford Analysis

M[i][v] =min{M[i − 1][v],min
w∈V
{M[i − 1][w] + cvw}}

Worst Case: n nodes
# of Cells:

O(n2).
Cost per cell:

O(n).

Overall: O(n3).

Worst Case: n nodes, m edges
For each node v, we only need to consider outgoing edges
to w (denoted by ηv).
For every node v, we need to do this calculation for
0 ≤ i ≤ n − 1 lengths.

Overall: O (n∑v∈V ηv) = O(mn).
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Negative Cycles
Observation 2
If there is a negative cycle along the path from s to t, then the shortest
path is −∞.

Observation 3
M[i][v] =M[n − 1][v] for all i > n − 1 and all nodes v if there are no
negative cycles on the paths to t.

Augmented Graph for Negative Cycle Finding
Add a node t with an incoming edge from all other nodes
with cost 0.
Run Bellman-Ford from any node s to t until number of
edges n.
If, for some v,M[n][v] ≠M[n − 1][v], then there is a
negative cycle.
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Minimum Spanning Tree Problem
MST Problem
Let G = (V,E) be a connected graph, where ∣V∣ = n and ∣E∣ = m.
For each edge e, ce > 0 is the cost of the edge.

Find an edge set F ⊆ E with minimum cost that keeps the
graph connected. That is, F should minimize ∑e∈F ce.

Observation 4
Let T = (V,F) be a minimum-cost solution to the problem described
above. Then, T is a tree.

Proof.
By the definition of the problem, T must be connected.
By way of contradiction, assume that T has a cycle C.
Remove any edge from C resulting in a graph T′. T′ is still
connect and has a cost less than T.
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Algorithm Design
What greedy heuristic might work?

Kruskal’s (1956) Algorithm
Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Kruskal’s 1956) Algorithm
Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.
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Prim’s (1957) Algorithm
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Assume Distinct Weights
WLOG (without loss of generality)

Theorem 2
(HW Q2) If all edge weights in a connected graph are distinct, then G
has a unique MST.

Observation 5
All we need is a consistent tie-breaker when ce1 = ce2 for some pair of
edges. I.e. based on the labels of the vertices of e1 ∪ e2.

Assumption: all edge weights are distinct.
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Analyzing MST Heuristics
Lemma 3

Let S ⊂ V be an non-empty proper subset of the nodes, and let
e = (v,w) be the minimum cost edge connecting S and V ∖ S. Then,
every MST contains e.

Proof.
By exchange argument:

Let T be a spanning tree that does not contain e.
Let e′ = (v′,w′), where e′ is in Pv,w ∈ T, v′ ∈ S, and w′ ∈ V ∖S.
Let T′ = T ∖ e′ ∪ e.
T′ is connected as e is a Pv,w ∈ T′.
Since ce < ce′ , cost of T′ is less than T.
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Kruskal’s Algorithm is Optimal
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.

Proof.

Let e = (v,w) be the edge added at any step i.
Since e does not create a cycle, v ∈ S and w ∉ S (WLOG).
As ce is the minimum cost edge, the claim follows from
Lemma 3.
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Prim’s Algorithm is Optimal

Prim’s (1957) Algorithm
Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Theorem 5
Prim’s Algorithm produces an MST.

Proof.

Immediate from Lemma 3.
That is, Prim’s algorithm does exactly what Lemma 3
describes.
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Reverse-Delete is Optimal
Reverse-Delete (Kruskal’s 1956) Algorithm

Sort edges by cost from highest to lowest.
Remove edges unless graph would become disconnected.

How should we prove that it produces an MST?

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Theorem 7
Reverse-Delete Algorithm produces an MST.

Proof.

Let e = (v,w) be an edge removed at any step i.
By definition e, belongs to a cycle C.
As ce is the maximum cost edge of C, the claim follows
from Lemma 6.
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Implementing Prim’s Algorithm
Prim’s (1957) Algorithm

Initialize a node set S with an arbitrary node s.
Keep the least expensive edge as long as it does not create a
cycle.

Key Operations

Retrieve the minimum valued edge between S and V ∖ S.
Prim’s and Dijkstra’s have nearly identical
implementations (but different minimizers)!

Priority Queue (min-heap)
ExtractMin (O(1)): n − 1 times.
ChangeKey (O(log(n))): m times.

Overall: O(m log(n))
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Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations

Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))
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Union-Find / Disjoint-Set
Key Operations

Find(x): Finds the set containing x. (O(logn) can be
O(α(n)))
Union(x,y): Joins two sets x and y. (O(1))

Basic Container

node rank parent

Initializing Data Structure for Kruskal’s
For each node s, create a singleton set. That is each container
has rank 0 and points to itself.

s 0 ⋅
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Union-Find Operations
Find(x): O(logn)

If x.parent points to x, return x.
Else Find(x.parent)
O(logn) requires balanced trees.
O(α(n))with path compression.

Union(x,y): O(1)

(WLOG) x.rank ≥ y.rank:
y.parent = x
If x.rank = y.rank:
x.rank ∶= x.rank + 1

By using rank, we maintain balanced sets if we start with
balanced sets.
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Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
TH: How many Find and Unions?

Find(x): Finds the set containing x.
Union(x,y): Joins two sets x and y.
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Implementing Kruskal’s Algorithm
Kruskal’s (1956) Algorithm

Sort edges by cost from lowest to highest.
Insert edges unless insertion would create a cycle.

Key Operations
Sorting the edges: (O(m logm) and, since m ≤ n2,
O(m logn)).
Maintain sets of connected components that we merge.
Initialize one set per node: O(n).

Union-Find Data Structure
Find(x): 2m times O(logn) (can be O(α(n))).
Union(x,y): n − 1 times O(1).
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Graph Exploration Overview
BFS and DFS

Traverses a graph G starting from some node s.
Builds a tree T.
No guarantee on any distance measure.

Dijktra’s
Traverses a graph starting from some node s.
Builds a tree T.
All s to u paths in T are the shortest such path in G.

MST Algorithms
Explores a graph G edges.
Builds a tree T.
T is minimum cost to connect all nodes in G.
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k-Clustering

Maximizing Spacing Problem
A universe U ∶= {p1, . . . ,pn} of n objects.
Distance function d ∶ U × U → R such that, for all pi,pj ∈ U :

d(pi,pi) = 0
d(pi,pj) > 0
d(pi,pj) = d(pj,pi)

Objective: Partition U into k non-empty groups
C ∶= C1, . . . ,Ck with maximum spacing:

maximize min
Ci,Cj∈C

min
u∈Ci,v∈Cj

d(u,v)
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Algorithm Design
What greedy approach might work?

Algorithm
Build an MST.
Remove k − 1 largest edges.

k-Clusters at max spacing?
Start with a tree, remove k − 1 edges: We get a forest of k
trees.
By definition largest edges are removed so max spacing.

Which MST algorithm?
Kruskal’s (O(m logn)which is O(n2 logn) for clustering):

Merge sets from lowest to most expensive edges.
Stop when we have k sets.
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Image Sources I
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