CS 577 - Graph Algorithms Part (A)

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

Shortest Path

Finding the Shortest Path

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node *s* that has a path to every other node in *V*. For each edge e, $\ell_e \ge 0$ is the length of the edge.

• What is the shortest path from *s* to each other node?

Finding the Shortest Path

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node *s* that has a path to every other node in *V*. For each edge e, $\ell_e \ge 0$ is the length of the edge.

• What is the shortest path from *s* to each other node?

Edsger Dijkstra, 1956 Dijkstra's shortest path fame

Dijkstra's

Algorithm: *Dijkstra's*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v): u \in S} \{d(u) + \ell_e\}$ Append *v* to *S* and define d(v) = d'(v). end

Dijkstra's

Algorithm: *Dijkstra's*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v): u \in S} \{d(u) + \ell_e\}$ Append *v* to *S* and define d(v) = d'(v). end

How is it greedy?

Dijkstra's

Algorithm: *Dijkstra's*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v): u \in S} \{d(u) + \ell_e\}$ Append v to S and define d(v) = d'(v). end

How is it greedy? Which technique to prove optimality?

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Proof.

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Proof.

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Proof.

By induction on the size of *S*.

• For |S| = 1, the claim follows trivially as $S = \{s\}$.

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Proof.

- For |S| = 1, the claim follows trivially as $S = \{s\}$.
- By the induction hypothesis, for |S| = k, P_u is the shortest s u path for all $u \in S$.

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Proof.

- In step k + 1, we add v.
 - By definition, *P*_v is shortest path connected to *S* by one edge.

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Proof.

- In step k + 1, we add v.
 - By definition, *P*_v is shortest path connected to *S* by one edge.
 - Since *P_u* is a shortest path to *u*, *P_v* is the shortest path to *v* when considering only the nodes of *S*.

Correctness of Dijkstra's

Theorem 1

Consider the *S* at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u is a shortest s - u path.

Proof.

- In step k + 1, we add v.
 - By definition, *P*_v is shortest path connected to *S* by one edge.
 - Since *P_u* is a shortest path to *u*, *P_v* is the shortest path to *v* when considering only the nodes of *S*.
 - Moreover, there cannot be a shorter path to *v* passing through another node *y* ∉ *S* else *y* that would be added at *k* + 1.

DIJKSTRA'S OBSERVATIONS

Algorithm: Dijkstra's

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0
while S \neq V do
   Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
    d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}
   Append v to S and define
    d(v) = d'(v).
end
```

 Negative edge weights, where does it fail?

DIJKSTRA'S OBSERVATIONS

Algorithm: Dijkstra's

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0
while S \neq V do
   Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
    d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}
   Append v to S and define
    d(v) = d'(v).
end
```

- Negative edge weights, where does it fail?
- DIt is graph exploration, what kind of exploration?

DIJKSTRA'S OBSERVATIONS

Algorithm: Dijkstra's

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}$ Append v to S and define d(v) = d'(v).

- Negative edge weights, where does it fail?
- DIt is graph exploration, what kind of exploration?
 - Weighted (continuous) BFS

Algorithm: Dijkstra's

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0
while S \neq V do
   Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
    d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}
   Append v to S and define
    d(v) = d'(v).
end
```

• Dumber of iterations of the loop?

Algorithm: Dijkstra's

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0
while S \neq V do
   Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
    d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}
   Append v to S and define
    d(v) = d'(v).
```

• ₽Number of iterations of the loop? *n* − 1

Algorithm: Dijkstra's

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0
while S \neq V do
   Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
    d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}
   Append v to S and define
    d(v) = d'(v).
end
```

- ♥Number of iterations of the loop? *n* − 1
- Key Operations: *Finding the min*:

Algorithm: Dijkstra's

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0
while S \neq V do
   Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
    d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}
   Append v to S and define
    d(v) = d'(v).
```

- 🖗 Number of iterations of the loop? n-1
- Key **Operations:** Finding the min: Easy in O(m)

Algorithm: Dijkstra's

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}$ Append v to S and define d(v) = d'(v).

- ♥Number of iterations of the loop? *n* − 1
- Key Operations: *Finding the min*: Easy in O(m)
- Overall: *O*(*mn*)

Algorithm: Dijkstra's

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}$ Append v to S and define d(v) = d'(v).

- ℗Number of iterations of the loop? *n* − 1
- Key Operations: *Finding the min*: Easy in O(m)
- Overall: *O*(*mn*)
- How can we get $O(m \log n)$?

Algorithm: Dijkstra's

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v):u\in S} \{d(u) + \ell_e\}$ Append v to S and define d(v) = d'(v).

• ♥Number of iterations of the loop? *n* − 1

- Key Operations: *Finding the min*: Easy in O(m)
- Overall: *O*(*mn*)
- How can we get $O(m \log n)$?
- How can we get $O(n + n \log n)$?

Shortest Path-Negative Side of the Moon

Shortest Path

GOING NEGATIVE

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node *s* that has a path to every other node in *V*. For each edge e = (i, j), c_{ij} is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

Shortest Path

GOING NEGATIVE

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node *s* that has a path to every other node in *V*. For each edge e = (i, j), c_{ij} is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

Richard Bellman

L R Ford Jr.

Shortest Path

GOING NEGATIVE

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node *s* that has a path to every other node in *V*. For each edge e = (i, j), c_{ij} is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

Why no negative cycles?

Dijkstra's

Algorithm: *Dijkstra's*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value d(u). Initialize $S = \{s\}$ and d(s) = 0while $S \neq V$ do Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min_{e=(u,v):u\in S} d(u) + \ell_e$ Append v to S and define d(v) = d'(v). end return S

Dijkstra's

Negative Problem

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between *S* and $V \setminus S$ is part of minimum path.

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between *S* and $V \setminus S$ is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between *S* and $V \setminus S$ is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

• A path with *x* edges: Cost increases $x \cdot \beta$.

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between *S* and $V \setminus S$ is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

- A path with *x* edges: Cost increases $x \cdot \beta$.
- Solution in new graph is not guaranteed to be optimal in original graph.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 *edges.*

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

Dynamic Program

• 2D matrix *M* of # edges in path × vertices.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

- 2D matrix *M* of # edges in path × vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

- 2D matrix *M* of # edges in path × vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Where is the shortest path from s to t in the solution matrix?

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

- 2D matrix *M* of # edges in path × vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: *M*[*n* − 1][*s*]

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

- 2D matrix *M* of # edges in path × vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: *M*[*n* − 1][*s*]
- Dichotomy:

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

- 2D matrix *M* of # edges in path × vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: M[n-1][s]
- Dichotomy:
 - Use $\leq i 1$ edges.
 - Use $\leq i$ edges.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

Dynamic Program

- 2D matrix *M* of # edges in path × vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: *M*[*n* − 1][*s*]
- Dichotomy:
 - Use $\leq i 1$ edges.
 - Use $\leq i$ edges.

Build the Bellman equation.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n - 1 edges.

Dynamic Program

- 2D matrix *M* of # edges in path × vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: *M*[*n* − 1][*s*]
- Dichotomy:
 - Use $\leq i 1$ edges.
 - Use $\leq i$ edges.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\},\$$

where $c_{vw} = \infty$ if no edge from v to w.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

• 🖗 # of Cells:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

• # of Cells: $O(n^2)$.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- 🕄 Cost per cell:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).
- Overall: $O(n^3)$.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).
- Overall: $O(n^3)$.

Worst Case: *n* nodes, *m* edges

- For each node *v*, we only need to consider outgoing edges to *w* (denoted by η_v).
- For every node v, we need to do this calculation for $0 \le i \le n 1$ lengths.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).
- Overall: $O(n^3)$.

Worst Case: *n* nodes, *m* edges

- For each node *v*, we only need to consider outgoing edges to *w* (denoted by η_v).
- For every node v, we need to do this calculation for $0 \le i \le n 1$ lengths.
- Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes, *m* edges

• Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

Space Saving: O(n).

- To build row *i*:
 - We only need i 1 values for each node.
 - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$ for each *i*.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes, *m* edges

• Overall:
$$O(n \sum_{v \in V} \eta_v) = O(mn)$$
.

Space Saving: O(n).

- To build row *i*:
 - We only need i 1 values for each node.
 - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$ for each *i*.
- Recovery of actual path:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes, *m* edges

• Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

Space Saving: O(n).

- To build row *i*:
 - We only need i 1 values for each node.
 - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$ for each *i*.
- Recovery of actual path: An additional array *first*[*v*] that maintains the first hop from *v* to *t*.

Negative Cycles

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$.

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$ *.*

Observation 3

M[i][v] = M[n-1][v] for all i > n-1 and all nodes v if there are no negative cycles on the paths to t.

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$ *.*

Observation 3

M[i][v] = M[n-1][v] for all i > n-1 and all nodes v if there are no negative cycles on the paths to t.

Augmented Graph for Negative Cycle Finding

- Add a node *t* with an incoming edge from all other nodes with cost 0.
- Run Bellman-Ford from any node *s* to *t* until number of edges *n*.
- If, for some *v*, *M*[*n*][*v*] ≠ *M*[*n*−1][*v*], then there is a negative cycle.

MINIMUM SPANNING TREE PROBLEM

MST Problem

Let G = (V, E) be a connected graph, where |V| = n and |E| = m. For each edge e, $c_e > 0$ is the cost of the edge.

• Find an edge set $F \subseteq E$ with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

MINIMUM SPANNING TREE PROBLEM

MST Problem

Let G = (V, E) be a connected graph, where |V| = n and |E| = m. For each edge e, $c_e > 0$ is the cost of the edge.

• Find an edge set $F \subseteq E$ with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

Observation 4

Let T = (V, F) be a minimum-cost solution to the problem described above. Then, T is a tree.

MINIMUM SPANNING TREE PROBLEM

MST Problem

Let G = (V, E) be a connected graph, where |V| = n and |E| = m. For each edge e, $c_e > 0$ is the cost of the edge.

• Find an edge set $F \subseteq E$ with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

Observation 4

Let T = (V, F) be a minimum-cost solution to the problem described above. Then, T is a tree.

Proof.

MINIMUM SPANNING TREE PROBLEM

MST Problem

Let G = (V, E) be a connected graph, where |V| = n and |E| = m. For each edge e, $c_e > 0$ is the cost of the edge.

• Find an edge set $F \subseteq E$ with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

Observation 4

Let T = (V, F) be a minimum-cost solution to the problem described above. Then, T is a tree.

Proof.

- By the definition of the problem, *T* must be connected.
- By way of contradiction, assume that *T* has a cycle *C*. Remove any edge from *C* resulting in a graph *T'*. *T'* is still connect and has a cost less than *T*.

Algorithm Design

What greedy heuristic might work?

Algorithm Design

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Algorithm Design

What greedy heuristic might work?

- Kruskal's (1956) Algorithm
 - Sort edges by cost from lowest to highest.
 - Insert edges unless insertion would create a cycle.

Jarník's (1929), Kruskal's (1956), Prim's (1957), Loberman and Weinberger (1957), Dijkstra's (1958) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Algorithm Design

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Algorithm Design

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Kruskal's (1956) Algorithm

- Sort edges by cost from highest to lowest.
- Remove edges unless graph would become disconnected.

Algorithm Design

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Reverse-Delete (Kruskal's 1956) Algorithm

- Sort edges by cost from highest to lowest.
- Remove edges unless graph would become disconnected.

Assume Distinct Weights

WLOG (WITHOUT LOSS OF GENERALITY)

Theorem 2

(HW Q2) If all edge weights in a connected graph are distinct, then G has a unique MST.

Assume Distinct Weights

WLOG (WITHOUT LOSS OF GENERALITY)

Theorem 2

(HW Q2) If all edge weights in a connected graph are distinct, then G has a unique MST.

Observation 5

All we need is a consistent tie-breaker when $c_{e_1} = c_{e_2}$ for some pair of edges. I.e. based on the labels of the vertices of $e_1 \cup e_2$.

Assume Distinct Weights

WLOG (WITHOUT LOSS OF GENERALITY)

Theorem 2

(*HW Q2*) *If all edge weights in a connected graph are distinct, then G has a unique MST.*

Observation 5

All we need is a consistent tie-breaker when $c_{e_1} = c_{e_2}$ for some pair of edges. I.e. based on the labels of the vertices of $e_1 \cup e_2$.

Assumption: all edge weights are distinct.

ANALYZING MST HEURISTICS

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

ANALYZING MST HEURISTICS

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

Proof.

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

Proof.

By exchange argument:

• Let *T* be a spanning tree that does not contain *e*.

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

Proof.

- Let *T* be a spanning tree that does not contain *e*.
- Let e' = (v', w'), where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

Proof.

- Let *T* be a spanning tree that does not contain *e*.
- Let e' = (v', w'), where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.
- Let $T' = T \smallsetminus e' \cup e$.

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

Proof.

- Let *T* be a spanning tree that does not contain *e*.
- Let e' = (v', w'), where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.
- Let $T' = T \smallsetminus e' \cup e$.
- T' is connected as e is a $P_{v,w} \in T'$.

Lemma 3

Let $S \subset V$ be an non-empty proper subset of the nodes, and let e = (v, w) be the minimum cost edge connecting S and $V \setminus S$. Then, every MST contains e.

Proof.

- Let *T* be a spanning tree that does not contain *e*.
- Let e' = (v', w'), where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.
- Let $T' = T \smallsetminus e' \cup e$.
- T' is connected as e is a $P_{v,w} \in T'$.
- Since $c_e < c_{e'}$, cost of T' is less than T.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

Proof.

• Let e = (v, w) be the edge added at any step *i*.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

- Let e = (v, w) be the edge added at any step *i*.
- Since *e* does not create a cycle, $v \in S$ and $w \notin S$ (WLOG).

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

- Let e = (v, w) be the edge added at any step *i*.
- Since *e* does not create a cycle, $v \in S$ and $w \notin S$ (WLOG).
- As *c*_e is the minimum cost edge, the claim follows from Lemma 3.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

Proof.

• Immediate from Lemma 3.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

- Immediate from Lemma 3.
- That is, Prim's algorithm does exactly what Lemma 3 describes.

Reverse-Delete is Optimal

Reverse-Delete (Kruskal's 1956) Algorithm

- Sort edges by cost from highest to lowest.
- Remove edges unless graph would become disconnected.

How should we prove that it produces an MST?

Reverse-Delete is Optimal

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

Reverse-Delete is Optimal

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

Proof.

• Let *T* be a spanning tree that does contain *e*.

Reverse-Delete is Optimal

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* \ *S* be the nodes of the connected components after removing *e* from *T*.

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* \ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in *C* that connects *S* and $V \setminus S$.

Reverse-Delete is Optimal

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* \ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in *C* that connects *S* and $V \setminus S$.
- Let $T' = T \smallsetminus e \cup e'$.

Reverse-Delete is Optimal

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* \ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in *C* that connects *S* and $V \setminus S$.
- Let $T' = T \smallsetminus e \cup e'$.
- T' is connected as e' reconnects S and $V \setminus S$.

Reverse-Delete is Optimal

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* \ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in *C* that connects *S* and $V \setminus S$.
- Let $T' = T \smallsetminus e \cup e'$.
- T' is connected as e' reconnects S and $V \setminus S$.
- Since $c_e > c_{e'}$, cost of T' is less than T.

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

Theorem 7

Reverse-Delete Algorithm produces an MST.

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

Theorem 7

Reverse-Delete Algorithm produces an MST.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Theorem 7

Reverse-Delete Algorithm produces an MST.

Proof.

• Let e = (v, w) be an edge removed at any step *i*.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Theorem 7

Reverse-Delete Algorithm produces an MST.

- Let e = (v, w) be an edge removed at any step *i*.
- By definition *e*, belongs to a cycle *C*.

Lemma 6

Let C *be any cycle in* G*, and let e be the most expensive edge of* C*. Then, e is not in any MST of* G*.*

Theorem 7

Reverse-Delete Algorithm produces an MST.

- Let e = (v, w) be an edge removed at any step *i*.
- By definition *e*, belongs to a cycle *C*.
- As *c*_e is the maximum cost edge of *C*, the claim follows from Lemma 6.

Implementing Prim's Algorithm

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

IMPLEMENTING PRIM'S ALGORITHM

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

• Retrieve the minimum valued edge between *S* and $V \setminus S$.

IMPLEMENTING PRIM'S ALGORITHM

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

- Retrieve the minimum valued edge between *S* and $V \setminus S$.
- Prim's and Dijkstra's have nearly identical implementations (but different minimizers)!

IMPLEMENTING PRIM'S ALGORITHM

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

- Retrieve the minimum valued edge between *S* and $V \setminus S$.
- Prim's and Dijkstra's have nearly identical implementations (but different minimizers)!

Priority Queue (min-heap)

- ExtractMin (O(1)): n 1 times.
- ChangeKey $(O(\log(n)))$: *m* times.

Overall: $O(m \log(n))$

IMPLEMENTING KRUSKAL'S ALGORITHM

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

Implementing Kruskal's Algorithm

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

• Sorting the edges: $(O(m \log m) \text{ and}, \text{ since } m \le n^2, O(m \log n)).$

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m) \text{ and}, \text{ since } m \le n^2, O(m \log n)).$
- Maintain sets of connected components that we merge.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m) \text{ and}, \text{ since } m \le n^2, O(m \log n)).$
- Maintain sets of connected components that we merge.
- Initialize one set per node: *O*(*n*).

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m) \text{ and}, \text{ since } m \le n^2, O(m \log n)).$
- Maintain sets of connected components that we merge.
- Initialize one set per node: *O*(*n*).

Union-Find Data Structure

- Find(x): Finds the set containing *x*. $(O(\log n) \text{ can be } O(\alpha(n)))$
- Union(x,y): Joins two sets x and y. (O(1))

Union-Find / Disjoint-Set

Key Operations

- Find(x): Finds the set containing *x*. $(O(\log n) \text{ can be } O(\alpha(n)))$
- Union(x,y): Joins two sets x and y. (O(1))

Union-Find / Disjoint-Set

Key Operations

- Find(x): Finds the set containing *x*. $(O(\log n) \text{ can be } O(\alpha(n)))$
- Union(x,y): Joins two sets x and y. (O(1))

Basic Container

node	rank	parent
------	------	--------

Union-Find / Disjoint-Set

Key Operations

- Find(x): Finds the set containing *x*. $(O(\log n) \text{ can be } O(\alpha(n)))$
- Union(x,y): Joins two sets x and y. (O(1))

Basic Container

node	rank	parent
------	------	--------

Initializing Data Structure for Kruskal's

For each node *s*, create a singleton set. That is each container has rank 0 and points to itself.

UNION-FIND OPERATIONS

UNION-FIND OPERATIONS

- If *x*.parent points to *x*, return *x*.
- Else Find(x.parent)

UNION-FIND OPERATIONS

- If *x*.parent points to *x*, return *x*.
- Else Find(x.parent)
- $O(\log n)$ requires balanced trees.

UNION-FIND OPERATIONS

- If *x*.parent points to *x*, return *x*.
- Else Find(x.parent)
- $O(\log n)$ requires balanced trees.
- $O(\alpha(n))$ with path compression.

UNION-FIND OPERATIONS

Find(x): $O(\log n)$

- If *x*.parent points to *x*, return *x*.
- Else Find(x.parent)
- $O(\log n)$ requires balanced trees.
- $O(\alpha(n))$ with path compression.

Union(x,y): O(1)

UNION-FIND OPERATIONS

Find(x): $O(\log n)$

- If *x*.parent points to *x*, return *x*.
- Else Find(x.parent)
- $O(\log n)$ requires balanced trees.
- $O(\alpha(n))$ with path compression.

Union(x,y): O(1)

UNION-FIND OPERATIONS

Find(x): $O(\log n)$

- If *x*.parent points to *x*, return *x*.
- Else Find(x.parent)
- $O(\log n)$ requires balanced trees.
- $O(\alpha(n))$ with path compression.

Union(x,y): O(1)

- (WLOG) x.rank ≥ y.rank:
 y.parent = x
- If x.rank = y.rank:
 - x.rank := x.rank + 1

UNION-FIND OPERATIONS

Find(x): $O(\log n)$

- If *x*.parent points to *x*, return *x*.
- Else Find(x.parent)
- $O(\log n)$ requires balanced trees.
- $O(\alpha(n))$ with path compression.

Union(x,y): O(1)

• (WLOG) $x.rank \ge y.rank$:

y.parent = x

• If x.rank = y.rank:

x.rank := x.rank + 1

• By using rank, we maintain balanced sets if we start with balanced sets.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m) \text{ and}, \text{ since } m \le n^2, O(m \log n)).$
- Maintain sets of connected components that we merge.
- Initialize one set per node: *O*(*n*).

Union-Find Data Structure TH: How many Find and Unions?

- Find(x): Finds the set containing *x*.
- Union(x,y): Joins two sets x and y.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m) \text{ and}, \text{ since } m \le n^2, O(m \log n))$.
- Maintain sets of connected components that we merge.
- Initialize one set per node: O(n).

Union-Find Data Structure

- Find(x): 2m times $O(\log n)$ (can be $O(\alpha(n))$).
- Union(x,y): n-1 times O(1).

GRAPH EXPLORATION OVERVIEW

BFS and DFS

- Traverses a graph *G* starting from some node *s*.
- Builds a tree *T*.
- No guarantee on any distance measure.

GRAPH EXPLORATION OVERVIEW

BFS and DFS

- Traverses a graph *G* starting from some node *s*.
- Builds a tree *T*.
- No guarantee on any distance measure.

Dijktra's

- Traverses a graph starting from some node *s*.
- Builds a tree *T*.
- All *s* to *u* paths in *T* are the shortest such path in *G*.

GRAPH EXPLORATION OVERVIEW

BFS and DFS

- Traverses a graph *G* starting from some node *s*.
- Builds a tree *T*.
- No guarantee on any distance measure.

Dijktra's

- Traverses a graph starting from some node *s*.
- Builds a tree *T*.
- All *s* to *u* paths in *T* are the shortest such path in *G*.

MST Algorithms

- Explores a graph *G* edges.
- Builds a tree *T*.
- *T* is minimum cost to connect all nodes in *G*.

Clustering

Cluster 1

Cluster 3

Cluster 2

k-Clustering

Maximizing Spacing Problem

- A universe $\mathcal{U} \coloneqq \{p_1, \ldots, p_n\}$ of *n* objects.
- Distance function $d : U \times U \rightarrow \mathbb{R}$ such that, for all $p_i, p_j \in U$:
 - $d(p_i, p_i) = 0$
 - $d(p_i, p_j) > 0$
 - $d(p_i, p_j) = d(p_j, p_i)$
- Objective: Partition U into k non-empty groups $C := C_1, \ldots, C_k$ with maximum spacing:

maximize
$$\min_{C_i, C_j \in C} \min_{u \in C_i, v \in C_j} d(u, v)$$

Algorithm Design

What greedy approach might work?

Algorithm Design

Algorithm

- Build an MST.
- Remove *k* 1 largest edges.

Algorithm Design

Algorithm

- Build an MST.
- Remove *k* 1 largest edges.

k-Clusters at max spacing?

- Start with a tree, remove *k* 1 edges: We get a forest of *k* trees.
- By definition largest edges are removed so max spacing.

Algorithm Design

Algorithm

- Build an MST.
- Remove *k* 1 largest edges.

k-Clusters at max spacing?

- Start with a tree, remove *k* 1 edges: We get a forest of *k* trees.
- By definition largest edges are removed so max spacing.

Which MST algorithm?

Algorithm Design

Algorithm

- Build an MST.
- Remove *k* 1 largest edges.

k-Clusters at max spacing?

- Start with a tree, remove *k* 1 edges: We get a forest of *k* trees.
- By definition largest edges are removed so max spacing.

Which MST algorithm?

Kruskal's ($O(m \log n)$ which is $O(n^2 \log n)$ for clustering):

- Merge sets from lowest to most expensive edges.
- Stop when we have *k* sets.

Appendix

References

Image Sources I

https://medium.com/neurosapiens/ 2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/ 08/biografia-de-lester-randolph-ford-jr/

https://medium.com/koderunners/ genetic-algorithm-part-3-knapsack-problem-b59035

 ONSIN
 https://brand.wisc.edu/web/logos/

Image Sources II

https://www.pngfind.com/mpng/mTJmbx_ spongebob-squarepants-png-image-spongebob-cartoo

https://www.pngfind.com/mpng/xhJRmT_ cheshire-cat-vintage-drawing-alice-in-wonderland