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FINDING THE SHORTEST PATH

Problem Definition

We have a directed graph G = (V,E), where |V|=n and |E| = m
and a node s that has a path to every other node in V. For each
edge ¢, £, > 0 is the length of the edge.

e What is the shortest path from s to each other node?
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FINDING THE SHORTEST PATH

Problem Definition

We have a directed graph G = (V,E), where |V|=n and |E| = m
and a node s that has a path to every other node in V. For each
edge ¢, £, > 0 is the length of the edge.

e What is the shortest path from s to each other node?

Edsger Dijkstra, 1956
Dijkstra’s shortest path fame
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DykstrA’S
Algorithm: Dijkstra’s

Let S be the set of explored nodes.

For each u € S, we store a distance value d(u).

Initialize S = {s} and d(s) =0

while S +# V do

Choose v ¢ S with at least one incoming edge originating
from a node in S with the smallest

d'(v)= min {d(u)+0)}

e=(u,v):ueS

Append v to S and define d(v) = d'(v).
end
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DykstrA’S
Algorithm: Dijkstra’s

Let S be the set of explored nodes.

For each u € S, we store a distance value d(u).

Initialize S = {s} and d(s) =0

while S +# V do

Choose v ¢ S with at least one incoming edge originating
from a node in S with the smallest

d'(v)= min {d(u)+0)}

e=(u,v):ues

Append v to S and define d(v) = d'(v).
end

How is it greedy?
@Which technique to prove optimality?
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CORRECTNESS OF D1JKSTRAS

Consider the S at any point in the execution of Dijkstra’s. For each
u € S, the path Py, is a shortest s — u path.
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CORRECTNESS OF D1JKSTRAS

Consider the S at any point in the execution of Dijkstra’s. For each
u € S, the path P, is a shortest s — u path.

By induction on the size of S.
@ For |S| = 1, the claim follows trivially as S = {s}.

e By the induction hypothesis, for |S| = k, P, is the shortest
s—upathforallues.
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CORRECTNESS OF D1JKSTRAS

Consider the S at any point in the execution of Dijkstra’s. For each
u € S, the path Py, is a shortest s — u path.

A\

By induction on the size of S.
o Instep k +1, we add v.
e By definition, P, is shortest path connected to S by one edge.
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CORRECTNESS OF D1JKSTRAS

Consider the S at any point in the execution of Dijkstra’s. For each
u € S, the path Py, is a shortest s — u path.

A\

By induction on the size of S.
o Instep k +1, we add v.

e By definition, P, is shortest path connected to S by one edge.

e Since P, is a shortest path to u, P, is the shortest path to v
when considering only the nodes of S.

e Moreover, there cannot be a shorter path to v passing
through another node y ¢ S else y that would be added at
k+1.

O

v
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DrykstrA’'s OBSERVATIONS

Algorithm: Dijkstra’s

Let S be the set of explored nodes.

For each u € S, we store a distance © Negative edge

value d(u). weights, '
Initialize S = {s} and d(s) = 0 ﬁsre does it
all¢

while S # V do
Choose v ¢ S with at least one

incoming edge originating

from a node in S with the

smallest

d'(v) = mine=(u,v):ue${d(u) +Le}
Append v to S and define

d(v) =d'(v).

end
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DrykstrA’'s OBSERVATIONS

Algorithm: Dijkstra’s

Let S be the set of explored nodes.
For each u € S, we store a distance
value d(u).
Initialize S = {s} and d(s) =0
while S # V do
Choose v ¢ S with at least one
incoming edge originating
from a node in S with the
smallest
d'(v) = mine=(u,v):u55{d(u) +Le}
Append v to S and define
d(v) =d'(v).

end

CLUSTERING

@ Negative edge
weights,
where does it
fail?

o @It is graph
exploration,
what kind of
exploration?

o Weighted
(continu-
ous) BFS
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IMPLEMENTATION AND RUN TiME OF DijksTRAS

Algorithm: Dijkstra’s

Let S be the set of explored nodes.
For each u € S, we store a distance
value d(u).
Initialize S = {s} and d(s) =0
while S # V do
Choose v ¢ S with at least one
incoming edge originating
from a node in S with the
smallest
d'(v) = mine=(u,v):u55{d(u) +Le}
Append v to S and define
d(v) =d'(v).

e @Number of
iterations of the
loop?

end
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For each u € S, we store a distance
value d(u).
Initialize S = {s} and d(s) =0
while S # V do
Choose v ¢ S with at least one
incoming edge originating
from a node in S with the
smallest
d'(v) = mine=(u,v):u55{d(u) +Le}
Append v to S and define
d(v) =d'(v).

end

IMPLEMENTATION AND RUN TiME OF DijksTRAS

@Number of
iterations of the
loop? n-1

Key
Operations:
Finding the min:
Easy in O(m)

@ Overall: O(mn)
@ How can we

get O(mlogn)?
How can we get
O(n+nlogn)?
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SHORTEST PATH

GoING NEGATIVE

Problem Definition

We have a directed graph G = (V,E), where |V|=n and |E| = m
and a node s that has a path to every other node in V. For each
edge e = (i,), cjj is the weight of the edge, and the are no cycles
with negative weight.

e What is the shortest path from s to each other node?

6/25



SHORTEST PATH SHORTEST PATH AGAIN CLUSTERING

SHORTEST PATH

GoING NEGATIVE

Problem Definition

We have a directed graph G = (V,E), where |V|=n and |E| = m
and a node s that has a path to every other node in V. For each
edge e = (i,), cjj is the weight of the edge, and the are no cycles
with negative weight.

e What is the shortest path from s to each other node?

? S

Richard Bellman L R Ford Jr.
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SHORTEST PATH

GoING NEGATIVE

Problem Definition

We have a directed graph G = (V,E), where |V|=n and |E| = m
and a node s that has a path to every other node in V. For each
edge e = (i,), cjj is the weight of the edge, and the are no cycles
with negative weight.

e What is the shortest path from s to each other node?

Why no negative cycles?
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DykstrA’S
Algorithm: Dijkstra’s

Let S be the set of explored nodes.

For each u € S, we store a distance value d(u).

Initialize S = {s} and d(s) =0

while S # V do

Choose v ¢ S with at least one incoming edge originating
from a node in S with the smallest

d'(v)= min Sd(u)+€e

e=(u,v):ue

Append v to S and define d(v) = d'(v).
end
return S
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DykstrA’S

Negative Problem
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@ Lose guarantee that minimum edge between S and V' \ S is
part of minimum path.
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DykstrA’S

Negative Problem

@ Lose guarantee that minimum edge between S and V' \ S is
part of minimum path.

Why not just boost all edges by max negative value plus a

bit (3)?

@ A path with x edges: Cost increases x - 5.

@ Solution in new graph is not guaranteed to be optimal in
original graph.

7/25
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BeLLMAN-FORD

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n — 1 edges.
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Observation 1

If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n — 1 edges.

Dynamic Program

@ 2D matrix M of # edges in path x vertices.
e M]i][v] is the shortest path from v to ¢ using < i edges.

o @Where is the shortest path from s to t in the solution
matrix?
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BeLLMAN-FORD

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t

that is simple, and has at most n — 1 edges.
v

Dynamic Program

e 2D matrix M of # edges in path x vertices.
e M[i][v] is the shortest path from v to ¢ using < i edges.
e Solution: M[n - 1][s]

@ Dichotomy:

e Use <i-1edges.
e Use <iedges.

.

©Build the Bellman equation.
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BeLLMAN-FORD

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t
that is simple, and has at most n — 1 edges.

Dynamic Program

@ 2D matrix M of # edges in path x vertices.
e M]i][v] is the shortest path from v to ¢ using < i edges.
e Solution: M[n —1][s]

@ Dichotomy:

e Use <i-1edges.
o Use <iedges.

Mi][o] = min{MLi - 1][o], min{Mi - 1][w] + cou}}

where ¢y, = o0 if no edge from v to w.
8/25
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BeLLMAN-FORD ANALYSIS

Mi][o] = min{MTi - 1][o], min{Mi - 1][w] + co }}

Worst Case: n nodes
o @ # of Cells:
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Worst Case: n nodes

e #of Cells: O(n?).
e Cost per cell: O(n).
e Overall: O(n®).

.

Worst Case: n nodes, m edges

@ For each node v, we only need to consider outgoing edges
to w (denoted by 7).

e For every node v, we need to do this calculation for
0 <i<n-1lengths.
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BeLLMAN-FORD ANALYSIS

Mi][o] = min{MTi - 1][o], min{Mi - 1][w] + co }}

Worst Case: n nodes

e #of Cells: O(n?).
e Cost per cell: O(n).
e Overall: O(n®).

.

Worst Case: n nodes, m edges

@ For each node v, we only need to consider outgoing edges
to w (denoted by 7).

e For every node v, we need to do this calculation for
0 <i<n-1lengths.

e Overall: O (nY ey mv) = O(mn).
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BeLLMAN-FORD ANALYSIS

M[i][o] = min{M[i - 1] o], min{Mi - 1)[] + oo} }

Worst Case: n nodes, m edges

e Overall: O (nY ey mv) = O(mn).

Space Saving: O(n).

@ To build row i:

e We only need i - 1 values for each node.
e M[v] = min{M[v], mingey {M[w] + ¢y } } for each i.
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@ Recovery of actual path:
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BeLLMAN-FORD ANALYSIS

M[i][o] = min{M[i - 1] o], min{Mi - 1)[] + oo} }

Worst Case: n nodes, m edges

e Overall: O (nY ey mv) = O(mn).

Space Saving: O(n).

@ To build row i:
e We only need i - 1 values for each node.
o M([v] = min{M[v], mingey {M[w] + ¢} } for each i.
@ Recovery of actual path: An additional array first[v] that
maintains the first hop from v to t.
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NEeGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest
path is —oco.
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Observation 3

Mli][v] = M[n - 1][v] for all i > n — 1 and all nodes v if there are no
negative cycles on the paths to t.
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NEeGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest
path is —oco.

Observation 3

Mli][v] = M[n - 1][v] for all i > n — 1 and all nodes v if there are no
negative cycles on the paths to t.

.

Augmented Graph for Negative Cycle Finding

@ Add anode t with an incoming edge from all other nodes
with cost 0.

@ Run Bellman-Ford from any node s to ¢ until number of
edges n.

e If, for some v, M[n][v] # M[n - 1][v], then there is a
negative cycle.
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MINIMUM SPANNING TREE PROBLEM

Let G = (V,E) be a connected graph, where |V| = n and |E| = m.
For each edge ¢, c, > 0 is the cost of the edge.

@ Find an edge set F ¢ E with minimum cost that keeps the
graph connected. That is, F should minimize ). c,.
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MINIMUM SPANNING TREE PROBLEM

Let G = (V,E) be a connected graph, where |V| = n and |E| = m.
For each edge ¢, c, > 0 is the cost of the edge.

@ Find an edge set F ¢ E with minimum cost that keeps the
graph connected. That is, F should minimize ). c,.

A

Observation 4

Let T = (V,F) be a minimum-cost solution to the problem described
above. Then, T is a tree.

A

@ By the definition of the problem, T must be connected.

e By way of contradiction, assume that T has a cycle C.
Remove any edge from C resulting in a graph T’. T" is still

connect and has a cost less than T.
O

v
11/25
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@What greedy heuristic might work?

Kruskal’s (1956) Algorithm

@ Sort edges by cost from lowest to highest.

o Insert edges unless insertion would create a cycle.

Prim’s (1957) Algorithm

@ Initialize a node set S with an arbitrary node s.

@ Keep the least expensive edge as long as it does not create a

cycle. |

Reverse-Delete (Kruskal’s 1956) Algorithm
@ Sort edges by cost from highest to lowest.

@ Remove edges unless graph would become disconnected.
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WLOG (WITHOUT LOSS OF GENERALITY )

(HW Q2) If all edge weights in a connected graph are distinct, then G
has a unique MST.

Observation 5

All we need is a consistent tie-breaker when c,, = c,, for some pair of
edges. Le. based on the labels of the vertices of e1 U ep.

Assumption: all edge weights are distinct.
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AnNavrLyzinGg MST HEeuristics

Let S c V be an non-empty proper subset of the nodes, and let
e = (v, w) be the minimum cost edge connecting S and V \ S. Then,
every MST contains e.

By exchange argument:
@ Let T be a spanning tree that does not contain e.
e Lete' = (v',w'), wheree'isin P, , € T,v €S, and w' e V\ S.
o LetT'=T~e ue.
e T'is connected aseisa Py € T'.
°

Since ¢, < ¢,7, cost of T' is less than T.
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@ Sort edges by cost from lowest to highest.

@ Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.
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Kruskal’s (1956) Algorithm

@ Sort edges by cost from lowest to highest.

@ Insert edges unless insertion would create a cycle.

Theorem 4
Kruskal’s Algorithm produces an MST.

@ Lete = (v,w) be the edge added at any step i.

@ Since e does not create a cycle, v € Sand w ¢ S (WLOG).

@ As c, is the minimum cost edge, the claim follows from
Lemma 3.
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PriMm’s ALGORITHM 1s OPTIMAL

Prim’s (1957) Algorithm

@ Initialize a node set S with an arbitrary node s.

@ Keep the least expensive edge as long as it does not create a
cycle.

Prim’s Algorithm produces an MST.

o Immediate from Lemma 3.

@ That is, Prim’s algorithm does exactly what Lemma 3
describes.
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REVERSE-DELETE 1s OPTIMAL
Reverse-Delete (Kruskal’s 1956) Algorithm

@ Sort edges by cost from highest to lowest.

@ Remove edges unless graph would become disconnected.

How should we prove that it produces an MST?
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Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

A\

@ Let T be a spanning tree that does contain e.

@ Let Sand V \ S be the nodes of the connected components
after removing e from T.

@ Lete’ be an edge in C that connects S and V \ S.
o LetT'=T\eue'.

o T’ is connected as ¢’ reconnects S and V \ S.

A\
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REVERSE-DELETE 1s OPTIMAL

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

A\

@ Let T be a spanning tree that does contain e.

Let S and V \ S be the nodes of the connected components
after removing e from T.

Let ¢’ be an edge in C that connects S and V \ S.
LetT'=T~eue.

T’ is connected as ¢’ reconnects S and V \ S.
Since ¢, > ¢,r, cost of T' is less than T.

A\
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REVERSE-DELETE 1s OPTIMAL

Let C be any cycle in G, and let e be the most expensive edge of C.
Then, e is not in any MST of G.

Reverse-Delete Algorithm produces an MST.

e Lete = (v,w) be an edge removed at any step i.

e By definition e, belongs to a cycle C.

@ Asc, is the maximum cost edge of C, the claim follows
from Lemma 6.
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.
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IMPLEMENTING PRIM’'S ALGORITHM
Prim’s (1957) Algorithm

@ Initialize a node set S with an arbitrary node s.

@ Keep the least expensive edge as long as it does not create a

cycle. )

Key Operations

@ Retrieve the minimum valued edge between S and V' \ S.

@ Prim’s and Dijkstra’s have nearly identical
implementations (but different minimizers)!

.

Priority Queue (min-heap)

@ ExtractMin (O(1)): n—1 times.
@ ChangeKey (O(log(n))): m times.

Overall: O(mlog(n))
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Kruskal’s (1956) Algorithm
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Kruskal’s (1956) Algorithm
@ Sort edges by cost from lowest to highest.

@ Insert edges unless insertion would create a cycle.

Key Operations

e Sorting the edges: (O(mlogm) and, since m < n?,

O(mlogn)).
e Maintain sets of connected components that we merge.

.

e Initialize one set per node: O(n).

A\

Union-Find Data Structure

@ Find(x): Finds the set containing x. (O(logn) can be
O(a(n)))
@ Union(x,y): Joins two sets x and y. (O(1))
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UnNi1oN-FIND / DisjoINT-SET
Key Operations

@ Find(x): Finds the set containing x. (O(logn) can be
O(a(n)))

@ Union(x,y): Joins two sets x and y. (O(1))

V.

Basic Container

node | rank | parent

A

Initializing Data Structure for Kruskal’s

For each node s, create a singleton set. That is each container
has rank 0 and points to itself.

S 0 \

)
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Find(x): O(logn)

e If x.parent points to x, return x.
o Else Find(x.parent)

@ O(logn) requires balanced trees.
e O(a(n)) with path compression.

Union(x,y): O(1)
e (WLOG) x.rank >y.rank:
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UnioN-FIND OPERATIONS

Find(x): O(logn)

e If x.parent points to x, return x.

o Else Find(x.parent)
@ O(logn) requires balanced trees.
e O(a(n)) with path compression.

Union(x,y): O(1)
e (WLOG) x.rank >y.rank:
y.parent =x

o If x.rank =y.rank:
X.rank :=x.rank + 1

e By using rank, we maintain balanced sets if we start with
balanced sets.
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IMPLEMENTING KRUSKAL'S ALGORITHM
Kruskal’s (1956) Algorithm
@ Sort edges by cost from lowest to highest.

@ Insert edges unless insertion would create a cycle.

Key Operations

e Sorting the edges: (O(mlogm) and, since m < n?,

O(mlogn)).
e Maintain sets of connected components that we merge.

.

e Initialize one set per node: O(n).

A\

Union-Find Data Structure

TH: How many Find and Unions?

@ Find(x): Finds the set containing x.

@ Union(x,y): Joins two sets x and y.
22/25
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IMmPLEMENTING KRUSKAL'S ALGORITHM

Kruskal’s (1956) Algorithm
@ Sort edges by cost from lowest to highest.

@ Insert edges unless insertion would create a cycle.

Key Operations

e Sorting the edges: (O(mlogm) and, since m < n?,

O(mlogn)).
@ Maintain sets of connected components that we merge.

.

e Initialize one set per node: O(n).

.

Union-Find Data Structure
@ Find(x): 2m times O(logn) (can be O(«a(n))).
@ Union(x,y): n—1 times O(1).

.
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GRrAPH EXPLORATION OVERVIEW
BES and DFS

e Traverses a graph G starting from some node s.

@ Builds atree T.

@ No guarantee on any distance measure.

\

e Traverses a graph starting from some node s.
@ Builds a tree T.

@ Allsto u paths in T are the shortest such path in G.

A

MST Algorithms

e Explores a graph G edges.
@ Builds a tree T.

o T is minimum cost to connect all nodes in G.
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Cluster 1

k-CLUSTERING ?/Q

Cluster 3

Maximizing Spacing Problem

e A universe U := {p1,...,pn} of n objects.
e Distance function d : U x U — R such that, for all p;, p; e U:
° d(PiaPi) =0
e d(pi,pj) >0
® d(Pi,P]’) = d(P]’,Pz‘)
@ Objective: Partition ¢/ into k non-empty groups
C:=(jy,..., Cx with maximum spacing:

maximize min min _d(u,v)
Ci,CjeC ueC;,veC;
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SHORTEST PATH SHORTEST PATH AGAIN CLUSTERING

ALGORITHM DESIGN

Algorithm
@ Build an MST.

@ Remove k -1 largest edges.

A\

k-Clusters at max spacing?

e Start with a tree, remove k — 1 edges: We get a forest of k
trees.

@ By definition largest edges are removed so max spacing.

Which MST algorithm?
Kruskal’s (O(mlogn) which is O(n*logn) for clustering):

@ Merge sets from lowest to most expensive edges.
@ Stop when we have k sets.
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