CS 577 - Graph Algorithms Part (A)

Manolis Vlatakis

Department of Computer Sciences University of Wisconsin – Madison

Fall 2024

SHORTEST PATH

FINDING THE SHORTEST PATH

Problem Definition

We have a directed graph *G* = (V, E) , where $|V| = n$ and $|E| = m$ and a node *s* that has a path to every other node in *V*. For each edge $e, \ell_e \geq 0$ is the length of the edge.

What is the shortest path from *s* to each other node?

FINDING THE SHORTEST PATH

Problem Definition

We have a directed graph *G* = (V, E) , where $|V| = n$ and $|E| = m$ and a node *s* that has a path to every other node in *V*. For each edge $e, \ell_e \geq 0$ is the length of the edge.

What is the shortest path from *s* to each other node?

Edsger Dijkstra, 1956 Dijkstra's shortest path fame

Algorithm: *Dijkstra*′ *s*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value $d(u)$. Initialize $S = \{s\}$ and $d(s) = 0$ **while** $S \neq V$ **do** Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min$ *e*=(*u*,*v*)∶*u*∈*S* $\{d(u) + \ell_e\}$ Append *v* to *S* and define $d(v) = d'(v)$. **end**

Algorithm: *Dijkstra*′ *s*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value $d(u)$. Initialize $S = \{s\}$ and $d(s) = 0$ **while** $S \neq V$ **do** Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min$ *e*=(*u*,*v*)∶*u*∈*S* $\{d(u) + \ell_e\}$ Append *v* to *S* and define $d(v) = d'(v)$. **end**

How is it greedy?

Algorithm: *Dijkstra*′ *s*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value $d(u)$. Initialize $S = \{s\}$ and $d(s) = 0$ **while** $S \neq V$ **do** Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest $d'(v) = \min$ *e*=(*u*,*v*)∶*u*∈*S* $\{d(u) + \ell_e\}$ Append *v* to *S* and define $d(v) = d'(v)$. **end**

How is it greedy? Which technique to prove optimality?

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Proof.

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Proof.

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Proof.

By induction on the size of *S*.

• For $|S| = 1$, the claim follows trivially as $S = \{s\}.$

Correctness of Dijkstra's

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Proof.

- For $|S| = 1$, the claim follows trivially as $S = \{s\}$.
- By the induction hypothesis, for $|S| = k$, P_u is the shortest *s* − *u* path for all $u \in S$.

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Proof.

- In step $k + 1$, we add v .
	- By definition, P_v is shortest path connected to *S* by one edge.

Correctness of Dijkstra's

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Proof.

- In step $k + 1$, we add v .
	- By definition, P_v is shortest path connected to *S* by one edge.
	- Since P_u is a shortest path to u , P_v is the shortest path to v when considering only the nodes of *S*.

Correctness of Dijkstra's

Theorem 1

Consider the S at any point in the execution of Dijkstra's. For each $u \in S$, the path P_u *is a shortest s – u path.*

Proof.

- In step $k + 1$, we add v .
	- By definition, P_v is shortest path connected to *S* by one edge.
	- Since P_ν is a shortest path to \mathbf{u} , P_ν is the shortest path to \mathbf{v} when considering only the nodes of *S*.
	- Moreover, there cannot be a shorter path to *v* passing through another node $y \notin S$ else y that would be added at $k + 1$.

DIJKSTRA'S OBSERVATIONS

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).end
```
• Negative edge weights, where does it fail?

DIJKSTRA'S OBSERVATIONS

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).end
```
- Negative edge weights, where does it fail?
- \odot \mathcal{D} It is graph exploration, what kind of exploration?

DIJKSTRA'S OBSERVATIONS

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).end
```
- Negative edge weights, where does it fail?
- \odot \mathcal{D} It is graph exploration, what kind of exploration?
	- Weighted (continuous) BFS

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).
```
o D_{Number} of iterations of the loop?

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).end
```
o D_{Number} of iterations of the loop? *n* − 1

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).end
```
- **o** D_{Number} of iterations of the loop? *n* − 1
- Key Operations: *Finding the min*:

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).
```
- **o** D_{Number} of iterations of the loop? *n* − 1
- Key Operations: *Finding the min*: Easy in *O*(*m*)

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).
```
- **o** D_{Number} of iterations of the loop? *n* − 1
- Key Operations: *Finding the min*: Easy in *O*(*m*)
- Overall: *O*(*mn*)

end

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).
```
- **o** D_{Number} of iterations of the loop? *n* − 1
- Key Operations: *Finding the min*: Easy in *O*(*m*)
- Overall: *O*(*mn*)
- How can we get *O*(*m*log *n*)?

Algorithm: *Dijkstra*′ *s*

```
Let S be the set of explored nodes.
For each u \in S, we store a distance
 value d(u).
Initialize S = \{s\} and d(s) = 0while S \neq V do
    Choose v \notin S with at least one
     incoming edge originating
     from a node in S with the
     smallest
     d'(v) = \min_{e = (u,v): u \in S} \{d(u) + \ell_e\}Append v to S and define
     \overline{d}(v) = d'(v).
```
o D_{Number} of iterations of the loop? *n* − 1

- Key Operations: *Finding the min*: Easy in *O*(*m*)
- Overall: *O*(*mn*)
- How can we get *O*(*m*log *n*)?
- How can we get $O(n + n \log n)$?

end

[Shortest Path-Negative](#page-25-0) [Side of the Moon](#page-25-0)

SHORTEST PATH

Going Negative

Problem Definition

We have a directed graph *G* = (V, E) , where $|V| = n$ and $|E| = m$ and a node *s* that has a path to every other node in *V*. For each edge $e = (i, j)$, c_{ij} is the weight of the edge, and the are no cycles with negative weight.

What is the shortest path from *s* to each other node?

SHORTEST PATH

Going Negative

Problem Definition

We have a directed graph *G* = (V, E) , where $|V| = n$ and $|E| = m$ and a node *s* that has a path to every other node in *V*. For each edge $e = (i, j)$, c_{ij} is the weight of the edge, and the are no cycles with negative weight.

What is the shortest path from *s* to each other node?

Richard Bellman L R Ford Jr.

Shortest Path

Going Negative

Problem Definition

We have a directed graph $G = (V, E)$, where $|V| = n$ and $|E| = m$ and a node *s* that has a path to every other node in *V*. For each edge $e = (i, j)$, c_{ij} is the weight of the edge, and the are no cycles with negative weight.

What is the shortest path from *s* to each other node?

Why no negative cycles?

Algorithm: *Dijkstra*′ *s*

Let *S* be the set of explored nodes. For each $u \in S$, we store a distance value $d(u)$. Initialize $S = \{s\}$ and $d(s) = 0$ **while** $S \neq V$ **do** Choose $v \notin S$ with at least one incoming edge originating from a node in *S* with the smallest *d* ′ (*v*) = min *e*=(*u*,*v*)∶*u*∈*S* $d(u) + \ell_e$ Append *v* to *S* and define $d(v) = d'(v)$. **end return** *S*

Dijkstra's

Negative Problem

Dijkstra's

Negative Problem

Lose guarantee that minimum edge between *S* and *V* ∖ *S* is part of minimum path.

Dijkstra's

Negative Problem

Lose guarantee that minimum edge between *S* and *V* ∖ *S* is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

Negative Problem

Lose guarantee that minimum edge between *S* and *V* ∖ *S* is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

• A path with *x* edges: Cost increases $x \cdot \beta$.

Negative Problem

Lose guarantee that minimum edge between *S* and *V* ∖ *S* is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

- A path with *x* edges: Cost increases $x \cdot \beta$.
- Solution in new graph is not guaranteed to be optimal in original graph.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*
Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

Dynamic Program

• 2D matrix *M* of # edges in path \times vertices.

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

- 2D matrix *M* of # edges in path \times vertices.
	- $M[i][v]$ is the shortest path from v to t using $\leq i$ edges.

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

- 2D matrix *M* of # edges in path \times vertices.
	- $M[i][v]$ is the shortest path from v to t using $\leq i$ edges.
	- Where is the shortest path from s to t in the solution matrix?

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

- 2D matrix *M* of # edges in path \times vertices.
	- $M[i][v]$ is the shortest path from v to t using $\leq i$ edges.
	- Solution: *M*[*n* − 1][*s*]

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

- 2D matrix *M* of # edges in path \times vertices.
	- $M[i][v]$ is the shortest path from v to t using $\leq i$ edges.
	- Solution: *M*[*n* − 1][*s*]
- Dichotomy:

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

- 2D matrix *M* of # edges in path \times vertices.
	- $M[i][v]$ is the shortest path from v to t using $\leq i$ edges.
	- Solution: *M*[*n* − 1][*s*]
- Dichotomy:
	- \bullet Use $\leq i-1$ edges.
	- Use ≤ *i* edges.

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

Dynamic Program

- 2D matrix *M* of # edges in path \times vertices.
	- $M[i][v]$ is the shortest path from v to t using $\leq i$ edges.
	- Solution: *M*[*n* − 1][*s*]
- Dichotomy:
	- Use ≤ *i* − 1 edges.
	- Use ≤ *i* edges.

Build the Bellman equation.

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n − 1 *edges.*

Dynamic Program

- 2D matrix *M* of # edges in path \times vertices.
	- $M[i][v]$ is the shortest path from v to t using $\leq i$ edges.
	- Solution: $M[n-1][s]$
- Dichotomy:
	- Use ≤ *i* − 1 edges.
	- Use ≤ *i* edges.

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\},\,
$$

where $c_{vw} = \infty$ if no edge from *v* to *w*.

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V} \{M[i-1][w] + c_{vw}\}\}
$$

Worst Case: *n* nodes

 \odot $\ddot{\odot}$ # of Cells:

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V} \{M[i-1][w] + c_{vw}\}\}
$$

Worst Case: *n* nodes

of Cells: $O(n^2)$.

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V} \{M[i-1][w] + c_{vw}\}\}
$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- \bullet \circledast Cost per cell:

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V} \{M[i-1][w] + c_{vw}\}\}
$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- \bullet Cost per cell: $O(n)$.

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V} \{M[i-1][w] + c_{vw}\}\}
$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- \bullet Cost per cell: $O(n)$.
- Overall: $O(n^3)$.

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V} \{M[i-1][w] + c_{vw}\}\}
$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- \bullet Cost per cell: $O(n)$.
- Overall: $O(n^3)$.

Worst Case: *n* nodes, *m* edges

- For each node *v*, we only need to consider outgoing edges to *w* (denoted by η_v).
- For every node *v*, we need to do this calculation for $0 \leq i \leq n-1$ lengths.

$$
M[i][v] = \min\{M[i-1][v], \min_{w \in V} \{M[i-1][w] + c_{vw}\}\}
$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- \bullet Cost per cell: $O(n)$.
- Overall: $O(n^3)$.

Worst Case: *n* nodes, *m* edges

- For each node *v*, we only need to consider outgoing edges to *w* (denoted by η_v).
- For every node *v*, we need to do this calculation for $0 \leq i \leq n-1$ lengths.
- \bullet Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

$$
M[i][v]=\min\bigl\{M[i-1][v],\min_{w\in V}\bigl\{M[i-1][w]+c_{vw}\bigr\}\bigr\}
$$

Worst Case: *n* nodes, *m* edges

• Overall:
$$
O(n \sum_{v \in V} \eta_v) = O(mn)
$$
.

Space Saving: *O*(*n*).

- To build row *i*:
	- We only need *i* − 1 values for each node.
	- \bullet *M*[*v*] = min{*M*[*v*], min_{*w*∈*V*}{*M*[*w*] + *c*_{*vw*}}} for each *i*.

$$
M[i][v]=\min\bigl\{M[i-1][v],\min_{w\in V}\bigl\{M[i-1][w]+c_{vw}\bigr\}\bigr\}
$$

Worst Case: *n* nodes, *m* edges

• Overall:
$$
O(n \sum_{v \in V} \eta_v) = O(mn)
$$
.

Space Saving: *O*(*n*).

- To build row *i*:
	- We only need *i* − 1 values for each node.
	- \bullet *M*[*v*] = min{*M*[*v*], min_{*w*∈*V*}{*M*[*w*] + *c_{<i>vw*}}} for each *i*.
- Recovery of actual path:

$$
M[i][v]=\min\bigl\{M[i-1][v],\min_{w\in V}\bigl\{M[i-1][w]+c_{vw}\bigr\}\bigr\}
$$

Worst Case: *n* nodes, *m* edges

• Overall:
$$
O(n \sum_{v \in V} \eta_v) = O(mn)
$$
.

Space Saving: *O*(*n*).

- To build row *i*:
	- We only need *i* − 1 values for each node.
	- \bullet *M*[*v*] = min{*M*[*v*], min_{*vn∈V}*{*M*[*w*] + c_{row} }} for each *i*.</sub>
- Recovery of actual path: An additional array *first*[*v*] that maintains the first hop from *v* to *t*.

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$ *.*

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$ *.*

Observation 3

 $M[i][v] = M[n-1][v]$ *for all i* > *n* − 1 *and all nodes v if there are no negative cycles on the paths to t.*

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$ *.*

Observation 3

 $M[i][v] = M[n-1][v]$ *for all i* > *n* − 1 *and all nodes v if there are no negative cycles on the paths to t.*

Augmented Graph for Negative Cycle Finding

- Add a node *t* with an incoming edge from all other nodes with cost 0 .
- Run Bellman-Ford from any node *s* to *t* until number of edges *n*.
- If, for some *v*, $M[n][v] \neq M[n-1][v]$, then there is a negative cycle.

[MST](#page-57-0)

MST Problem

Let *G* = (*V*, *E*) be a connected graph, where $|V| = n$ and $|E| = m$. For each edge e , $c_e > 0$ is the cost of the edge.

Find an edge set *F* ⊆ *E* with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

MST Problem

Let *G* = (*V*, *E*) be a connected graph, where $|V| = n$ and $|E| = m$. For each edge e , $c_e > 0$ is the cost of the edge.

Find an edge set *F* ⊆ *E* with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

Observation 4

Let T = (*V*, *F*) *be a minimum-cost solution to the problem described above. Then, T is a tree.*

MST Problem

Let *G* = (*V*, *E*) be a connected graph, where $|V| = n$ and $|E| = m$. For each edge e , $c_e > 0$ is the cost of the edge.

Find an edge set *F* ⊆ *E* with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

Observation 4

Let T = (*V*, *F*) *be a minimum-cost solution to the problem described above. Then, T is a tree.*

Proof.

MST Problem

Let *G* = (*V*, *E*) be a connected graph, where $|V| = n$ and $|E| = m$. For each edge e , $c_e > 0$ is the cost of the edge.

Find an edge set *F* ⊆ *E* with minimum cost that keeps the graph connected. That is, *F* should minimize $\sum_{e \in F} c_e$.

Observation 4

Let T = (*V*, *F*) *be a minimum-cost solution to the problem described above. Then, T is a tree.*

Proof.

- By the definition of the problem, *T* must be connected.
- By way of contradiction, assume that *T* has a cycle *C*. Remove any edge from *C* resulting in a graph T' . *T'* is still connect and has a cost less than *T*.

What greedy heuristic might work?

ALGORITHM DESIGN

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

What greedy heuristic might work?

- Kruskal's (1956) Algorithm
	- Sort edges by cost from lowest to highest.
	- Insert edges unless insertion would create a cycle.

Jarník's (1929), Kruskal's (1956), Prim's (1957), Loberman and Weinberger (1957), Dijkstra's (1958) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Kruskal's (1956) Algorithm

- Sort edges by cost from highest to lowest.
- Remove edges unless graph would become disconnected.

What greedy heuristic might work?

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Reverse-Delete (Kruskal's 1956) Algorithm

- Sort edges by cost from highest to lowest.
- Remove edges unless graph would become disconnected.

Assume Distinct Weights

WLOG (without loss of generality)

Theorem 2

(HW Q2) If all edge weights in a connected graph are distinct, then G has a unique MST.

Assume Distinct Weights

WLOG (without loss of generality)

Theorem 2

(HW Q2) If all edge weights in a connected graph are distinct, then G has a unique MST.

Observation 5

*All we need is a consistent tie-breaker when ce*¹ = *ce*² *for some pair of edges. I.e. based on the labels of the vertices of* $e_1 \cup e_2$ *.*

Assume Distinct Weights

WLOG (without loss of generality)

Theorem 2

(HW Q2) If all edge weights in a connected graph are distinct, then G has a unique MST.

Observation 5

*All we need is a consistent tie-breaker when ce*¹ = *ce*² *for some pair of edges. I.e. based on the labels of the vertices of* $e_1 \cup e_2$ *.*

Assumption: all edge weights are distinct.

Analyzing MST Heuristics

Lemma 3

Let $S ⊂ V$ *be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*
Lemma 3

Let $S ⊂ V$ *be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*

Lemma 3

Let $S ⊂ V$ *be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*

Proof.

Lemma 3

Let $S ⊂ V$ *be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*

Proof.

By exchange argument:

Let *T* be a spanning tree that does not contain *e*.

Lemma 3

Let S ⊂ *V be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*

Proof.

- Let *T* be a spanning tree that does not contain *e*.
- Let $e' = (v', w')$, where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.

Lemma 3

Let S ⊂ *V be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*

Proof.

- Let *T* be a spanning tree that does not contain *e*.
- Let $e' = (v', w')$, where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.
- Let $T' = T \setminus e' \cup e$.

Lemma 3

Let S ⊂ *V be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*

Proof.

- Let *T* be a spanning tree that does not contain *e*.
- Let $e' = (v', w')$, where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.
- Let $T' = T \setminus e' \cup e$.
- *T*^{\prime} is connected as *e* is a $P_{v,w} \in T'$.

Lemma 3

Let S ⊂ *V be an non-empty proper subset of the nodes, and let* $e = (v, w)$ *be the minimum cost edge connecting S and V* \setminus *S. Then, every MST contains e.*

Proof.

By exchange argument:

- Let *T* be a spanning tree that does not contain *e*.
- Let $e' = (v', w')$, where e' is in $P_{v,w} \in T$, $v' \in S$, and $w' \in V \setminus S$.
- Let $T' = T \setminus e' \cup e$.
- *T*^{\prime} is connected as *e* is a $P_{v,w} \in T'$.
- Since $c_e < c_{e'}$, cost of T' is less than T .

П

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

Proof.

• Let $e = (v, w)$ be the edge added at any step *i*.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

- Let $e = (v, w)$ be the edge added at any step *i*.
- Since *e* does not create a cycle, *v* ∈ *S* and *w* ∉ *S* (WLOG).

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Theorem 4

Kruskal's Algorithm produces an MST.

- Let $e = (v, w)$ be the edge added at any step *i*.
- Since *e* does not create a cycle, *v* ∈ *S* and *w* ∉ *S* (WLOG).
- As *c^e* is the minimum cost edge, the claim follows from Lemma [3.](#page-71-0)

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

Proof.

• Immediate from Lemma [3.](#page-71-0)

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Theorem 5

Prim's Algorithm produces an MST.

- Immediate from Lemma [3.](#page-71-0)
- That is, Prim's algorithm does exactly what Lemma [3](#page-71-0) describes.

Reverse-Delete (Kruskal's 1956) Algorithm

- Sort edges by cost from highest to lowest.
- Remove edges unless graph would become disconnected.

How should we prove that it produces an MST?

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Proof.

Let *T* be a spanning tree that does contain *e*.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* ∖ *S* be the nodes of the connected components after removing *e* from *T*.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* ∖ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in C that connects S and $V \setminus S$.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* ∖ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in C that connects S and $V \setminus S$.
- Let $T' = T \setminus e \cup e'$.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* ∖ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in C that connects S and $V \setminus S$.
- Let $T' = T \setminus e \cup e'$.
- T' is connected as e' reconnects *S* and $V \setminus S$.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

- Let *T* be a spanning tree that does contain *e*.
- Let *S* and *V* ∖ *S* be the nodes of the connected components after removing *e* from *T*.
- Let e' be an edge in C that connects S and $V \setminus S$.
- Let $T' = T \setminus e \cup e'$.
- T' is connected as e' reconnects *S* and $V \setminus S$.
- Since $c_e > c_{e'}$, cost of T' is less than T .

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Theorem 7

Reverse-Delete Algorithm produces an MST.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Theorem 7

Reverse-Delete Algorithm produces an MST.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Theorem 7

Reverse-Delete Algorithm produces an MST.

Proof.

• Let $e = (v, w)$ be an edge removed at any step *i*.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Theorem 7

Reverse-Delete Algorithm produces an MST.

- Let $e = (v, w)$ be an edge removed at any step *i*.
- By definition *e*, belongs to a cycle *C*.

Lemma 6

Let C be any cycle in G, and let e be the most expensive edge of C. Then, e is not in any MST of G.

Theorem 7

Reverse-Delete Algorithm produces an MST.

- Let $e = (v, w)$ be an edge removed at any step *i*.
- By definition *e*, belongs to a cycle *C*.
- As *c^e* is the maximum cost edge of *C*, the claim follows from Lemma [6.](#page-88-0)

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

Retrieve the minimum valued edge between *S* and *V* ∖ *S*.

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

- Retrieve the minimum valued edge between *S* and *V* ∖ *S*.
- Prim's and Dijkstra's have nearly identical implementations (but different minimizers)!

Prim's (1957) Algorithm

- Initialize a node set *S* with an arbitrary node *s*.
- Keep the least expensive edge as long as it does not create a cycle.

Key Operations

- Retrieve the minimum valued edge between *S* and *V* ∖ *S*.
- Prim's and Dijkstra's have nearly identical implementations (but different minimizers)!

Priority Queue (min-heap)

- \bullet ExtractMin $(O(1))$: *n* − 1 times.
- ChangeKey $(O(log(n)))$: *m* times.

Overall: $O(m \log(n))$ 18/25

Implementing Kruskal's Algorithm

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

Implementing Kruskal's Algorithm

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

Sorting the edges: $(O(m \log m)$ and, since $m \leq n^2$, $O(m \log n)$).
Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m)$ and, since $m \leq n^2$, $O(m \log n)$).
- Maintain sets of connected components that we merge.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m)$ and, since $m \leq n^2$, $O(m \log n)$).
- Maintain sets of connected components that we merge.
- Initialize one set per node: $O(n)$.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m)$ and, since $m \leq n^2$, $O(m \log n)$).
- Maintain sets of connected components that we merge.
- Initialize one set per node: $O(n)$.

Union-Find Data Structure

- Find(x): Finds the set containing *x*. ($O(\log n)$ can be $O(\alpha(n))$
- \bullet Union(x,y): Joins two sets *x* and *y*. ($O(1)$)

Union-Find / Disjoint-Set

Key Operations

- Find(x): Finds the set containing *x*. ($O(\log n)$ can be $O(\alpha(n))$
- \bullet Union(x,y): Joins two sets *x* and *y*. (*O*(1))

Union-Find / Disjoint-Set

Key Operations

- Find(x): Finds the set containing *x*. ($O(\log n)$ can be $O(\alpha(n))$
- \bullet Union(x,y): Joins two sets *x* and *y*. (*O*(1))

Basic Container

Union-Find / Disjoint-Set

Key Operations

- Find(x): Finds the set containing *x*. ($O(\log n)$ can be $O(\alpha(n))$
- Union(x,y): Joins two sets x and ψ . ($O(1)$)

Basic Container

Initializing Data Structure for Kruskal's

For each node *s*, create a singleton set. That is each container has rank 0 and points to itself.

Find (x) : $O(\log n)$

Find (x) : $O(\log n)$

- \bullet If *x*.parent points to *x*, return *x*.
- Else Find(*x*.parent)

Find (x) : $O(\log n)$

- \bullet If *x*.parent points to *x*, return *x*.
- Else Find(*x*.parent)
- $O(\log n)$ requires balanced trees.

$Find(x): O(log n)$

- \bullet If *x*.parent points to *x*, return *x*.
- Else Find(*x*.parent)
- $O(\log n)$ requires balanced trees.
- \bullet *O*(α (*n*)) with path compression.

$Find(x): O(log n)$

- \bullet If *x*.parent points to *x*, return *x*.
- Else Find(*x*.parent)
- $O(\log n)$ requires balanced trees.
- \bullet *O*(α (*n*)) with path compression.

Union (x,y) : $O(1)$

$Find(x): O(log n)$

- \bullet If *x*.parent points to *x*, return *x*.
- Else Find(*x*.parent)
- $O(\log n)$ requires balanced trees.
- \bullet *O*(α (*n*)) with path compression.

Union (x,y) : $O(1)$

• (WLOG)
$$
x
$$
.rank $\geq y$.rank:
 y .parent = x

$Find(x): O(log n)$

- \bullet If *x*.parent points to *x*, return *x*.
- Else Find(*x*.parent)
- $O(\log n)$ requires balanced trees.
- \bullet *O*(α (*n*)) with path compression.

Union (x,y) : $O(1)$

- \bullet (WLOG) *x*.rank $\geq \nu$.rank: *y*.parent = x
- \bullet If *x*.rank = *y*.rank:
	- *x*.rank ∶= *x*.rank + 1

$Find(x): O(log n)$

- \bullet If *x*.parent points to *x*, return *x*.
- Else Find(*x*.parent)
- $O(\log n)$ requires balanced trees.
- \bullet *O*(α (*n*)) with path compression.

Union (x,y) : $O(1)$

 \bullet (WLOG) *x*.rank $\geq \nu$.rank:

y.parent = x

 \bullet If *x*.rank = *y*.rank:

x.rank ∶= *x*.rank + 1

By using rank, we maintain balanced sets if we start with balanced sets.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m)$ and, since $m \leq n^2$, $O(m \log n)$).
- Maintain sets of connected components that we merge.
- Initialize one set per node: $O(n)$.

Union-Find Data Structure TH: How many Find and Unions?

- Find(x): Finds the set containing *x*.
- Union(x,y): Joins two sets *x* and *y*.

Kruskal's (1956) Algorithm

- Sort edges by cost from lowest to highest.
- Insert edges unless insertion would create a cycle.

Key Operations

- Sorting the edges: $(O(m \log m)$ and, since $m \leq n^2$, $O(m \log n)$).
- Maintain sets of connected components that we merge.
- Initialize one set per node: $O(n)$.

Union-Find Data Structure

- Find(x): 2*m* times $O(\log n)$ (can be $O(\alpha(n))$).
- Union(x,y): *n* − 1 times *O*(1).

Graph Exploration Overview

BFS and DFS

- Traverses a graph *G* starting from some node *s*.
- Builds a tree *T*.
- No guarantee on any distance measure.

Graph Exploration Overview

BFS and DFS

- Traverses a graph *G* starting from some node *s*.
- Builds a tree *T*.
- No guarantee on any distance measure.

Dijktra's

- Traverses a graph starting from some node *s*.
- Builds a tree *T*.
- All *s* to *u* paths in *T* are the shortest such path in *G*.

Graph Exploration Overview

BFS and DFS

- Traverses a graph *G* starting from some node *s*.
- Builds a tree *T*.
- No guarantee on any distance measure.

Dijktra's

- Traverses a graph starting from some node *s*.
- Builds a tree *T*.
- All *s* to *u* paths in *T* are the shortest such path in *G*.

MST Algorithms

- Explores a graph *G* edges.
- Builds a tree *T*.
- *T* is minimum cost to connect all nodes in *G*.

CLUSTERING

Maximizing Spacing Problem

- A universe $U := \{p_1, \ldots, p_n\}$ of *n* objects.
- Distance function $d: \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ such that, for all $p_i, p_j \in \mathcal{U}$:
	- $d(p_i, p_i) = 0$
	- $d(p_i, p_j) > 0$
	- $d(p_i, p_j) = d(p_j, p_i)$
- Objective: Partition U into *k* non-empty groups $C = C_1, \ldots, C_k$ with maximum spacing:

$$
\mathop{\mathrm{maximize}}\limits_{C_i,C_j\in\mathcal{C}}\min\limits_{u\in C_i,v\in C_j}d(u,v)
$$

What greedy approach might work?

Algorithm

- Build an MST.
- Remove *k* − 1 largest edges.

Algorithm

- Build an MST.
- Remove *k* − 1 largest edges.

k-Clusters at max spacing?

- Start with a tree, remove *k* − 1 edges: We get a forest of *k* trees.
- By definition largest edges are removed so max spacing.

Algorithm

- Build an MST.
- Remove *k* − 1 largest edges.

k-Clusters at max spacing?

- Start with a tree, remove *k* − 1 edges: We get a forest of *k* trees.
- By definition largest edges are removed so max spacing.

Which MST algorithm?

Algorithm

- Build an MST.
- Remove *k* − 1 largest edges.

k-Clusters at max spacing?

- Start with a tree, remove *k* − 1 edges: We get a forest of *k* trees.
- By definition largest edges are removed so max spacing.

Which MST algorithm?

Kruskal's $(O(m \log n)$ which is $O(n^2 \log n)$ for clustering):

- Merge sets from lowest to most expensive edges.
- Stop when we have *k* sets.

APPENDIX

REFERENCES

Image Sources I

[https://medium.com/neurosapiens/](https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd) [2-dynamic-programming-9177012dcdd](https://medium.com/neurosapiens/2-dynamic-programming-9177012dcdd)

[https://angelberh7.wordpress.com/2014/10/](https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/) [08/biografia-de-lester-randolph-ford-jr/](https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/)

<http://www.sequence-alignment.com/>

[https://medium.com/koderunners/](https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6) genetic-algorithm-part-3-knapsack-problem-b59035

<https://brand.wisc.edu/web/logos/>

Image Sources II

[https://www.pngfind.com/mpng/mTJmbx_](https://www.pngfind.com/mpng/mTJmbx_spongebob-squarepants-png-image-spongebob-cartoon-transparent-png/) spongebob-squarepants-png-image-spongebob-cartoo

[https://www.pngfind.com/mpng/xhJRmT_](https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland-cartoon/) cheshire-cat-vintage-drawing-alice-in-wonderland