
CS 577

Assignment 2
Asymptotic Analysis - Data Structures - Amortized Analysis Fall 2024

Answer the questions in the boxes provided on the question sheets. If you run out of room
for an answer, add a page to the end of the document.

Related Readings: http://pages.cs.wisc.edu/~hasti/cs240/readings/

Name: Wisc id:

• Purpose of Homework:

– Algorithm design and analysis, like any skill, can only be developed through consistent practice
and feedback. Whether it’s cooking, playing basketball, integration, gardening, interviewing, or
teaching, theoretical knowledge alone is not sufficient. The comfortable feeling of “Oh, sure, I
get it” after following a well-presented lecture or hearing a TA explain a homework solution is
a seductive, yet dangerous trap. True understanding comes from doing the thing—by actually
solving the problems yourself.

– The homework assignments are your opportunity to practice. Lectures, textbooks, office hours,
labs, and guided problem sets are designed to build intuition and provide justification for the skills
we want you to develop. However, the most effective way to develop those skills is by attempting
to solve the problems on your own. The process is far more important than the final solution.

– Expect to get stuck. It’s normal to have no idea where to start on some problems. That’s why
you have access to a textbook, lecture slides, and discussions. The journey of wrestling with the
problem is an essential part of the learning process.

Scoring Guidelines
1) 10 points
2a) 1 point 2b) 4 points 2c) 5 points 2d) 5 points 2e) 5 points 2f) 2 points 2g) 8 points
3a) 5 points 3b) 7.5 points 3c) 7.5 points 3d) 5 points
4a) 2 points 4b) 2 points 4c) 2 points 4d) 2 points 4e) 2 points
5a) 5 points 5b) 10 points

The first exercise is a bonus. The score is calculated as:

Score = 100× (

∑5
k=2 Exercisek

80
+

Exercise1
20

)

http://pages.cs.wisc.edu/~hasti/cs240/readings/


CS 577
Assignment 2

Asymptotic Analysis - Data Structures - Amortized Analysis Fall 2024

Homework Guidelines
• Collaboration and Academic Integrity:

– You are encouraged to work together on homework problems, but you must list everyone you
worked with for each problem.

– You must write everything in your own words and properly cite every external source you use,
including ideas from other students. The only sources that you are not required to cite are the
official course materials (lectures, notes, homework solutions).

– Plagiarism is strictly prohibited. Using ideas from other sources or people without citation is
considered plagiarism. Copying verbatim from any source, even with citation or permission, is
also considered plagiarism. Don’t cheat.

• Submission Instructions:

– Submit your homework solutions as PDF files on Gradescope. Submit one PDF file per numbered
homework problem.

– Gradescope will not accept other text file formats such as plain text, HTML, LaTeX source, or
Microsoft Word (.doc or .docx).

– Homework submitted as images (.png or .jpg) will not be graded.

– Each submitted PDF file should include the following information prominently at the top of the
first page: [your full name]_[course title]_[homework assignment number].pdf

• Solution Writing:

– When writing an algorithm, a clear description in English is sufficient. Pseudo-code is not required.

– Ensure that your algorithm is correct by providing a justification, and analyze the asymptotic
running time of your solution. Even if your algorithm does not meet the requested time bounds,
you may receive partial credit for a correct, albeit inefficient, solution.

– Pay close attention to the instructions for each problem. Partial credit may be awarded for
incomplete or partially correct answers.

Page 2 of 6



CS 577
Assignment 2

Asymptotic Analysis - Data Structures - Amortized Analysis Fall 2024

Asymptotic Notation
1. Sort the following functions in increasing order of their growth rates, i.e., find a sequence g1, g2, g3, . . .

such that g1 = O(g2), g2 = O(g3), etc. In this sequence, highlight the functions that have the same
growth rate.

n2 2(log2 n)3 log(n!)
(logn)3 n22

2100

log
(

n
logn

) ∑n
k=1 k

3
√
n! log4 n(

n
6

)
n3

log10 n
(log2(n))

log2(n) log
((

2n
n

))
n
∑n

k=0

(
n
k

) (
2n
n/4

) ∑n
k=1 k2

k
∑n

k=1 k2
−k

Stable Matching Problem & Gale-Shapley Algorithm

2. Source: Kleinberg, Jon. Algorithm Design (Chapter 1). In class, we discussed the Gale-Shapley algo-
rithm. In this exercise, we will explore the properties of the algorithm under the assumption that we
have n hospitals and n doctors.

Gale–Shapley (preference lists for hospitals and doctors)

Initialize M to an empty matching.
While (some hospital h is unmatched and hasn’t proposed to every doctor)

d← first doctor on h’s list to whom h has not yet proposed.
If (d is unmatched)

Add h–d to matching M .
Else If (d prefers h to current partner h′)

Replace h′–d with h–d in matching M .
Else

d rejects h.
Return stable matching M .

(a) Execute the Gale-Shapley algorithm (resolve any ties alphabetically).

Hospitals’ Preferences

Hospital A: Doctor X > Doctor Y > Doctor Z
Hospital B: Doctor Y > Doctor Z > Doctor X
Hospital C: Doctor Z > Doctor X > Doctor Y

Doctors’ Preferences
Doctor X: Hospital C > Hospital A > Hospital B
Doctor Y: Hospital A > Hospital C > Hospital B
Doctor Z: Hospital B > Hospital C > Hospital A

(b) Swap one preference and observe how the algorithm behaves differently.

Hospitals’ Preferences

Hospital A: Doctor X > Doctor Y > Doctor Z
Hospital B: Doctor X > Doctor Z > Doctor Y
Hospital C: Doctor Z > Doctor X > Doctor Y

Page 3 of 6



CS 577
Assignment 2

Asymptotic Analysis - Data Structures - Amortized Analysis Fall 2024

Doctors’ Preferences
Doctor X: Hospital C > Hospital A > Hospital B
Doctor Y: Hospital A > Hospital C > Hospital B
Doctor Z: Hospital B > Hospital C > Hospital A

(c) Prove the correctness of the following invariant: if a doctor is matched, they remain matched and
can only switch to a hospital that they prefer more than their current match. (Complete the proof.)

(d) Show that the algorithm produces a valid matching, i.e., no hospital is matched to more than one
doctor, and no doctor is matched to more than one hospital.

(e) Prove by contradiction that all hospitals are matched in the final matching.

(f) Prove that all doctors are matched in the final matching.
Definition: Given a perfect matching M , a hospital h and a doctor d form an unstable pair if both
h prefers d to its current doctor and d prefers h to its current hospital.

(g) Consider a pair (h, d) that is in the final matching M∗. Prove by contradiction that (h, d) cannot
be an unstable pair.
Hint: Consider the case where hospital h has proposed to d and the case where h has never proposed
to d.

Hogwarts: Amortized Analysis & Data Structures

3. At Hogwarts, students use magical belts to carry and organize their enchanted items. These belts have
different functionalities depending on the house the student belongs to. One day, Professor Snape dis-
covered that Harry Potter and Hermione Granger were using their beloved Gryffindor magical belts to
solve a magical challenge. As punishment, he forced them to use only the Slytherin magical belts, which
had completely different functionality. At the same time, Professor McGonagall, wanting to teach Draco
Malfoy a lesson, made him use the Gryffindor magical belts instead of the familiar Slytherin belts. Now,
Harry and Hermione had to find a way to use the Slytherin belts to simulate the functionality of the
Gryffindor belts, while Malfoy had to do the opposite.

Gryffindor Magical Belt

• G-InitBelt: Creates a new belt, ready to hold
items.

• G-BeltIsEmpty: Checks if the belt has no items.

• G-RemoveItem: Takes the last item placed on the
belt.

• G-AddItem: Places an item on the belt, which goes
at the start of the belt.

• G-BeltSize: Tells the wizard how many items are
currently on the belt.

Slytherin Magical Belt

• S-InitBelt: Creates a new belt, ready to hold
items.

• S-BeltIsEmpty: Checks if the belt has no items.

• S-RemoveItem: Takes the first item placed on the
belt.

• S-AddItem: Places an item on the belt, which goes
at the end of the belt.

• S-BeltSize: Tells the wizard how many items are
currently on the belt.

Your mission is to help Harry, Hermione, and Malfoy adapt to their new circumstances by designing the
correct moves and spells.

• Describe how to implement a Slytherin belt using two Gryffindor belts, so that each Slytherin
operation requires O(1) amortized belt operations.

• Describe how to implement a Gryffindor belt using two Slytherin belts, so that each stack operation
requires O(

√
n) at the worst case.

(a) Implementation of SlytherinUsingGryffindorBelts:

Page 4 of 6



CS 577
Assignment 2

Asymptotic Analysis - Data Structures - Amortized Analysis Fall 2024

(b) Analysis of Runtime Complexity using “Gringotts” Banking/Accounting Method:

(c) Implementation of GryffindorUsingBeltsSlytherin:

(d) Analysis of Runtime Complexity:

4. At Hogwarts, magical devices are often used by students to assist with their studies and daily tasks.
One such device is Hermione Granger’s enchanted hourglass, a unique magical artifact she uses to
measure time and perform a variety of spells. This hourglass isn’t just for keeping track of time—it’s
enchanted to trigger specific magical charms as the sand shifts from one compartment to another. The
hourglass has many compartments, each representing a different spell or charm. As the sand shifts into
a new compartment, it activates a charm. The complexity of the charm depends on the compartment
number, with more advanced spells being triggered as the sand moves to higher compartments. Here’s
how Hermione’s enchanted hourglass works:

SandShift(Hourglass[0..∞]) :

Step 1: i← 0

Step 2: While Hourglass[i] = 1 (meaning all the sand has shifted from this compartment)
Start –WhileBlock–
Set Hourglass[i]← 0 (reset the current compartment)
i← i+ 1 (move to the next compartment)
End –WhileBlock–

Step 3: Set Hourglass[i]← 1 (start filling the next compartment with sand)
Step 4: TriggerCharm(i) (trigger the magical charm associated with this compartment)

The time required to cast each charm increases with the compartment number. Let T (i) represent the
time it takes for the charm in compartment i to complete. Now, imagine Hermione uses the enchanted
hourglass n times, starting with all the sand at the bottom. The time it takes for each SandShift
depends on the complexity of the TriggerCharm. The Challenge: Help Hermione determine the
average (amortized) time it takes to complete each SandShift for the following scenarios:

(a) What is the amortized time per SandShift if T (i) = 42? Spell: Lumos - A basic lighting spell.
Every time the sand shifts, the room lights up with the same bright intensity.

(b) What is the amortized time per SandShift if T (i) = 2i? Spell: Expelliarmus - A disarming charm.
As the sand shifts into higher compartments, the spell’s power doubles, disarming increasingly
powerful magical objects.

(c) What is the amortized time per SandShift if T (i) = 4i? Spell: Expecto Patronum - A protective
charm that conjures a Patronus. As the sand moves to higher compartments, the Patronus becomes
stronger, requiring more magic and focus.

(d) What is the amortized time per SandShift if T (i) =
√
2i? Spell: Riddikulus - A spell that turns

something scary into something silly. The complexity increases, but at a slower rate than exponen-
tial, making each higher compartment a bit more challenging.

(e) What is the amortized time per SandShift if T (i) = 2i

i+1? Spell: Protego - A shield charm. The
spell’s power increases exponentially with each compartment, but the increase is tempered by the
precision needed to direct it, represented by the i+ 1 in the denominator.

Renting a house with Ideal Lake Monona View

5. Professor Manolis has just arrived in Madison, Wisconsin, and is looking for renting a house with a
beautiful view of Lake Monona. Madison is known for its stunning lakes, particularly Lake Monona,
and the Monona Terrace offers one of the best views in the city. However, not every building near the
Monona Terrace has an unobstructed view of the lake. Professor Manolis wants to make sure that his

Page 5 of 6



CS 577
Assignment 2

Asymptotic Analysis - Data Structures - Amortized Analysis Fall 2024

new house will have a perfect view of the lake. To help him out, suppose you are given an array A[1..n]
that stores the height of n buildings on a city block, indexed from west to east. Building i has a good
view of Lake Monona if and only if every building to the east of i is shorter than i.

Below is an algorithm that computes which buildings have a good view of Lake Monona. What is the
running time of this algorithm?

Listing 1: GoodCandidate Algorithm
GoodCandidate(A[1..n]):

initialize a stack S
for i ← 1 to n

while (S not empty and A[i] > A[Top(S)])
Pop(S)

Push(S, i)
return S

(a) Give a quick explanation of a quadratic bound

(b) Don’t turn in: Your professor likes only linear time algorithms

Page 6 of 6


