
CS 577

Assignment 6
QuickSort & QuickSelect – Randomized Algorithms Fall 2024

Answer the questions in the boxes provided on the question sheets. If you run out of room
for an answer, add a page to the end of the document.

Related Readings: http://pages.cs.wisc.edu/~hasti/cs240/readings/

Name: Wisc id:

• Purpose of Homework:

– Algorithm design and analysis, like any skill, can only be developed through consistent practice
and feedback. Whether it’s cooking, playing basketball, integration, gardening, interviewing, or
teaching, theoretical knowledge alone is not sufficient. The comfortable feeling of “Oh, sure, I
get it” after following a well-presented lecture or hearing a TA explain a homework solution is
a seductive, yet dangerous trap. True understanding comes from doing the thing—by actually
solving the problems yourself.

– The homework assignments are your opportunity to practice. Lectures, textbooks, office hours,
labs, and guided problem sets are designed to build intuition and provide justification for the skills
we want you to develop. However, the most effective way to develop those skills is by attempting
to solve the problems on your own. The process is far more important than the final solution.

– Expect to get stuck. It’s normal to have no idea where to start on some problems. That’s why
you have access to a textbook, lecture slides, and discussions. The journey of wrestling with the
problem is an essential part of the learning process.

Scoring Guidelines

You do not need to solve all the exercises.
Choose based on your familiarity with the probability concepts.

The exercises are divided into three categories:
1. Category A: No Probability Knowledge Required

2. Category B: Basic Probability Knowledge Required

3. Category C: Advanced Probability Knowledge Required

⋆ Category A: No Probability Knowledge Required

1a) 10 points 1b) 10 points 1c) 10 points 1d) 10 points 1e) 10 points
2) 10 points 3) 10 points 3b) 10 points
4a) 2.5 points 4b) 2.5 points 4c) 5 points
8a) 5 points 8b) 5 points
14a) 2.5 points 14b) 2.5 points 14c) 2.5 points 14d) 2.5 points

⋆ Category B: Basic Probability Knowledge Required

5) 10 points 6a) 5 points 6b) 5 points 6c) 5 points 6d) 5 points
6e) 5 points 6f) 15 points 7a) 2.5 points 7b) 2.5 points 7c) 5 points
9a) 5 points 9b) 5 points 10a) 2.5 points 10b) 2.5 points
11a) 12.5 points 11b) 5 points 11c) 12.5 points

⋆ Category C: Advanced Probability Knowledge Required

12a) 2.5 points 12b) 2.5 points 12c) 2.5 points 12d) 2.5 points 12e) 2.5 points
12f) 2.5 points 13) 10 points 15a) 5 points 15b) 10 points
16a) 12.5 points 16b) 5 points 16c) 12.5 points

Scoring Summary: Your total score is the sum of the points you collect from solving the exercises: As
you can see the total scores per categories are (A,B,C) = (110, 105, 70)

http://pages.cs.wisc.edu/~hasti/cs240/readings/

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

Homework Guidelines
• Collaboration and Academic Integrity:

– You are encouraged to work together on homework problems, but you must list everyone you
worked with for each problem.

– You must write everything in your own words and properly cite every external source you use,
including ideas from other students. The only sources that you are not required to cite are the
official course materials (lectures, notes, homework solutions).

– Plagiarism is strictly prohibited. Using ideas from other sources or people without citation is
considered plagiarism. Copying verbatim from any source, even with citation or permission, is
also considered plagiarism. Don’t cheat.

• Submission Instructions:

– Submit your homework solutions as PDF files on Gradescope. Submit one PDF file per numbered
homework problem.

– Gradescope will not accept other text file formats such as plain text, HTML, LaTeX source, or
Microsoft Word (.doc or .docx).

– Homework submitted as images (.png or .jpg) will not be graded.

– Each submitted PDF file should include the following information prominently at the top of the
first page: [your full name]_[course title]_[homework assignment number].pdf

• Solution Writing:

– When writing an algorithm, a clear description in English is sufficient. Pseudo-code is not required.

– Ensure that your algorithm is correct by providing a justification, and analyze the asymptotic
running time of your solution. Even if your algorithm does not meet the requested time bounds,
you may receive partial credit for a correct, albeit inefficient, solution.

– Pay close attention to the instructions for each problem. Partial credit may be awarded for
incomplete or partially correct answers.

Page 2 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

Sorting by k Means
1. Consider an array A[1 . . . n] with n elements, and suppose we divide it into k contiguous subarrays:

A1[1 . . .
n

k
], A2[

n

k
+ 1 . . . 2

n

k
], . . . , Ak[(k − 1)

n

k
+ 1 . . . n]

where each subarray contains n
k elements. We will say that the array A is sorted by k means if, for each i

and j where 1 ≤ i < j ≤ k, every element in subarray Ai is less than or equal to every element in subarray
Aj. In other words, the elements are sorted "externally" between the subarrays but not necessarily sorted
"internally" within them.

For example, consider the array:

A =
[
12 14 20 18 25 22 29 32 37 42 34 50 67 59 52 76

]
This array is sorted by 4 means. If it is necessary in your analysis, recall that using Stirling’s approxi-
mation log(m!) = m logm−m+O(logm).
(a) Algorithm for Sorting by k Means: Design a comparison-based algorithm with a time complexity of O(n log(k))

that sorts an array A of n elements by k means.

(b) Sorting the Subarrays: Design a comparison-based algorithm with a time complexity ofO(n log(n/k))
that fully sorts an array A that is already sorted by k means.

(c) Optimality of the Algorithm (Lower Bound): Prove that the algorithm you designed in part
(b) is optimal, i.e., every comparison-based sorting by k means algorithm for an array of n elements
has a worst-case time complexity of Ω(n log(n/k)) using the comparison-tree method.

(d) Comparison-Based Sorting by k Means (Lower Bound): Prove that every comparison-based
sorting by k means algorithm has a worst-case time complexity of Ω(n log(k)).

(e) Interconnection of the Lower Bounds: Assume you already know one of the two lower bounds,
i.e., either Ω(n log(k)) or Ω(n log(n/k)). Can you deduce the other lower bound more easily from
the known one?

(f) Recall the exercise from Assignment 3, Exercise 5, where we showed that we can sort a k-confused
array using a heap in time O(n log k). Recall that a k-confused array is an array in which each
element is at most k positions away from its final sorted position. Now, prove that the lower bound
is also n log k. Is this lower bound tight?
Hint: Explain why a sorted-by-k-means array can be considered k-confused. Then, explain why the
lower bound for sorting by k-means also applies to sorting k-confused arrays.

Nuts and Bolts

The following interesting problem was first proposed by object-oriented programming professor Gregory
Rawlins around 1992.

2. Suppose we are given n nuts and n bolts of different sizes. Each nut matches exactly one bolt and vice
versa. The nuts and bolts are all almost exactly the same size, and we’re playing with them in the dark,
so we can’t tell if one bolt is bigger than the other, or if one nut is bigger than the other. If we try to
match a nut with a bolt, however, the nut will be either too big, too small, or just right for the bolt.
How quickly can we match each but to the corresponding bolt? Describe your algorithm, its expected
and worst-case performance
Hint: Gregory loved a comparator.

Page 3 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

Multi-set Selection

3. In the following exercise, we will investigate how we can use statistics of the input, such as the cdf
(cumulative distribution function), to solve a selection problem more efficiently.
(a) Let S be a multiset of positive integers, all smaller or equal to a given integer M . We have access

(only) to the distribution FS of the elements of the collection. Specifically, we are provided with a
function FS(ℓ), which for every natural number ℓ, returns the number of elements in S that do not
exceed ℓ, i.e.:

FS(ℓ) = |{x ∈ S : x ≤ ℓ}|
You are tasked with designing a provably correct algorithm that, when given an input integer k
(1 ≤ k ≤ n), computes the k-th smallest element of S by using FS . Prove the correctness of your
algorithm and calculate (by invoking FS) the number of required calls to FS (in the worst-case
scenario). Estimate the number of calls to FS without examining n (though it may depend on M).
Hint: Please take care of corner case like {2nd element in S = [1, 2, 2, 2, 4, 10]}

(b) Let A[1 . . . n] be an array of n distinct positive integers, and let M be the maximum element of A.
Consider the multiset S composed of all the non-negative differences between pairs of elements of
A. Specifically, we define:

S = {A[i]−A[j] : i ̸= j and A[i] > A[j]}

Design a provably correct algorithm to compute the k-th smallest element of S. Determine the
computational complexity of your algorithm (as a function of n and M), and justify its correctness.
Hint: Attempt to implement FS and use the algorithm from part (a).

Searching into Medical Records

Imagine a hospital’s database that contains two sorted lists of patient records, A and B, each of size n.
One list contains patients with chronic illnesses, while the other contains patients admitted for surgeries.
Both lists are sorted by patient ID, and all patient IDs are distinct across the two lists. Now, the
hospital’s data team needs to find the median patient ID across both lists. However, manually merging
the lists to find the median can be too time-consuming with thousands of records. Instead, how can they
efficiently find the median without combining the two lists?
Remark: Due to the size of A and B, they can not be at the same data center.

4. By leveraging an efficient algorithm that takes advantage of the sorted nature of both lists, we can
quickly find the median without having to merge them. Let’s explore how this can be done.
(a) Before solving the selection problem, let’s first address the rank problem: For any given patient ID

x, devise an algorithm to find the number of patient IDs in A ∪B that are less than x.
(b) Give an algorithm running in O(log2(n)) time that finds the patient ID appearing in the median

place when we sort A&B using the previous part, (obviously without merging the two lists).
(c) Give an algorithm running in O(log(2n)) time that finds the patient ID appearing in the kth place

when we sort A&B (obviously without merging the two lists).

How Many Times Can a Minimum Change?

5. Let a1, a2, . . . , an be a set of n numbers, and let us randomly permute them into the sequence b1, b2, . . . , bn.
Define ci = minik=1 bk, which is the minimum of the first i elements of the sequence. Let X be the ran-
dom variable representing the number of distinct values that appear in the sequence c1, c2, . . . , cn, that
is, the number of times the minimum value changes as we progress through the sequence.
(a) What is the expected value of X, the number of times the minimum changes in the linear search?

Page 4 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

Closest Pair in Expected Linear Time

6. Throughout this section, we are going to assume that every hashing operation takes (in the worst
case) constant time. This is quite a reasonable assumption when true randomness is available (e.g.,
using perfect hashing as explained in [CLRS]). In this exercise, we will design a randomized linear-time
algorithm for the closest pair problem:

Closest Pair Problem: Given a set P of n points in the plane, find the pair of points closest to each
other. Formally, return the pair of points realizing CP(P) = minp,q∈P ∥p− q∥.
(a) Mapping Points to a Grid Sieve: Let Gr be a grid with cell width r, and assume you have a

point set P in the plane. For each point p = (x, y), the grid cell it belongs to is determined by
id(p) = (⌊x/r⌋, ⌊y/r⌋).

• For the points p1 = (2.3, 4.7), p2 = (6.5, 8.3), and p3 = (10.1, 14.9), and grid width r = 3,
compute the grid cell IDs id(p1), id(p2), and id(p3).

• If |xmax(P) − xmin(P)| ≤ X and |ymax(P) − ymin(P)| ≤ Y, what is the maximum number of
grid cells that exist with different IDs?

(b) Explain how someone can efficiently store and look up points that belong to the same or neighboring
grid cells. What is the space complexity of your solution? Additionally, handle the following
scenario: You have the points p1 = (5.1, 6.2), p2 = (2.7, 9.3), and p3 = (4.8, 7.1), with grid width
r = 3. Describe how the points would be stored in the grid-based data structure, and how you
would efficiently retrieve all points that fall into the same grid cell as p1.

(c) Prove that if our grid sieve has squares of side length α = CP(P), then |P | ≤ 4 in any grid cell.

(d) Suppose you have a set P of n points in the plane such that r = CP(P), along with the grid
structure Gr(P) and the closest pair p∗i , p∗j . A new point p is inserted. Show how in constant time
we can compute the new closest pair.

(e) Given a set P of n points in the plane, and a distance r, explain how one can verify in linear time
whether CP(P) < r or CP(P) ≥ r.

(f) Closest Pair in Expected Linear Time: Using the above method, show how one can compute the
closest pair of points of P in expected linear time.
Hint: How many points q in P exist such that CP(P \ {q}) > CP(P)?

Maximum Load in Random Binning

When using random hash functions in chained hash tables, the expected search time is constant. However,
we are concerned about the worst-case search time, which can be analyzed using the following binning
problem. Suppose we toss n balls independently and uniformly at random into n bins. Can we determine
the maximum number of balls in the fullest bin?

7. In this exercise, we will show that if n balls are thrown independently and uniformly into n bins, then
with high probability

(
1− 1

poly(n)

)
, the fullest bin contains O

(
logn

log logn

)
balls. To do so, let Xj denote

the number of balls in bin j, and let X̂ = maxj Xj be the maximum number of balls in any bin. Clearly,
the expected value of Xj is 1 for all j.

(a) Show that the probability Pr[Xj ≥ k] is bounded as Pr[Xj ≥ k] ≤ 1
k! .

Hint: Consider the probability that bin j contains at least k balls. This occurs if a specific subset of
k balls lands in bin j, which happens with probability

(
n
k

) (
1
n

)k.
(b) Let k = 2c logn

log logn , where c is a constant. Show that:

Pr

[
Xj ≥ 2c

log n

log log n

]
≤ 1

nc
.

Page 5 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

Hint: Use k! ≥
(
k
2

)k/2
& n = ω(

√
n log n).

(c) Conclude that:

Pr

[
max

j
Xj ≥ k

]
≤ 1

nc−1
.

Hint: Pr [maxj Xj ≥ k] = Pr [∃j s.t. Xj ≥ k]. (Why?)

(d) We will conclude with the inverse question. Prove that for any ε > 0, if n balls are thrown
independently and uniformly into n2+ε bins, then with high probability (1 − 1

nϵ), no bin contains
more than one ball.

Solving Faster for Sum Equations

In the previous assignment, we worked on the following problem:

We are given an array A of n integers. The task is to give a naive algorithm that runs in O(n3)
time to determine if there exist x, y, z ∈ A (not necessarily distinct) such that x + y + z = 0.
We then improved the solution to O(n2 log n) time by considering all sums of two elements
and using binary search.

8. Now, we will further optimize the solution using hash tables and generalize the approach to handle k-
tuples of integers.

(a) Solve the problem in expected O(n2) time using hash tables.

(b) Generalize the above algorithm for a k-tuple. Suppose k is even. Give an algorithm to determine if
there is a k-tuple of entries in A, not necessarily distinct, such that they sum to 0. The algorithm
should run in expected O(nk/2) time.

One hash, Two Hashes, Three Hashes: How Many HashMaps?

Based on hashing, we want to develop a data structure that maintains a summary of a set S, consisting of
n positive integers, and efficiently implements (practically, in constant time) the following two operations:
a) Add x to S. b) Check if x ∈ S.

9. For this purpose, we maintain a summary of S in an array A with m positions, each of size one binary

digit, and we use hash functions h : N+ → [m] such that Prob[h(x) = j] =
1

m
for every x ∈ N+ and

every j ∈ [m]. Finally, we require that the use of randomness does not lead to false negatives (i.e., every
negative answer to the question "is x ∈ S?" must be correct), although it may lead to false positives
(i.e., a positive answer to the question "is x ∈ S?" may be incorrect) but with small probability.

(a) Design such a data structure using only one hash function and compute the probability of a false
positive answer. What is the probability of a false positive answer if m = 8n?

(b) Design such a data structure using k ≥ 1 independent hash functions and compute the probability
of a false positive answer. What is the optimal value of k and what is the corresponding probability
of a false positive answer if m = 8n?

Verifying Polynomial Identity via Random Sampling

10. You are given two polynomials F (x) and G(x), each of degree at most d. You are tasked with verifying
whether the identity F (x) ≡ G(x) holds, but instead of directly computing their canonical forms, you
will use a randomized algorithm. The algorithm proceeds as follows:

Page 6 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

• Choose a random integer r uniformly from the range {1, . . . , 100d}.
• Evaluate F (r) and G(r).

• If F (r) ̸= G(r), conclude that F (x) ̸= G(x).

• If F (r) = G(r), conclude that F (x) = G(x).

(a) Prove that the algorithm has one-sided error and give a condition that the algorithm gives a wrong
answer.

(b) Prove that the probability of the algorithm giving the wrong answer (i.e., F (x) ̸= G(x) but the
algorithm concludes that F (x) = G(x)) is at most 1

100 .

(c) Suppose we repeat the algorithm k times, choosing a new random r each time. What is the
probability that the algorithm gives the wrong answer after k iterations?

(d) Prove that by repeating the algorithm enough times, you can reduce the probability of error to less
than ϵ, for any given small ϵ > 0. How many iterations k are needed to ensure that the probability
of error is less than ϵ?

Sorting Check in Middle-earth

In the ancient land of Middle-earth, the Elves and the Wise speak of a great challenge—one that tests
the knowledge of order and chaos among the scrolls of numbers. A list of integers A[1 . . . n] is said to be
almost sorted if there are at most n/4 elements that, if banished from the scroll, leave behind a sequence
that follows the ancient law of order. For example, the scroll [1, 2, 3, 5, 4, 7, 9, 6, 10, 11, 12, 8] is almost in
order, for if we strike from it positions 5 and 6, the sequence [1, 2, 3, 4, 7, 9, 10, 11, 12] shall remain, which
obeys the Law of Order. For simplicity, it is said that all elements in the scroll are distinct, like the stars
in the sky.

11. The task of the quest is to design a probabilistic algorithm with the speed of the swiftest Elven arrows,
one that can distinguish between lists that are almost ordered and those that are not1. Specifically, if
the scroll is fully ordered, the algorithm shall always declare it so. Furthermore, with great certainty
(with a probability of at least 9 out of 10), if the scroll is almost ordered, the algorithm must accept
it. However, if chaos reigns in the scroll, the algorithm must, with a similar probability of 9 out of 10,
declare that the scroll is far from ordered.

(a) Consider an ancient algorithm, one that selects k positions in the scroll A at random, much like
the wanderings of hobbits through Middle-earth. It declares that the scroll is almost ordered if,
for every chosen position ai, it holds true that A[ai] ≤ A[ai + 1]. Should any ai defy this law,
the algorithm declares the scroll to be unfit and chaotic. Provide an example of a scroll where the
algorithm must inspect k = Ω(n) positions to ensure that the likelihood of error is less than 0.1,
lest the scrolls of knowledge be corrupted.

(b) Suppose we call upon the wisdom of the Elves to use a variant of the legendary Binary Search to
search within a list A that may not follow the ancient Law of Order (with the risk, of course, that
the search may fail, as even the wisest cannot always find what is not there). The search proceeds
as follows:

BINARY-SEARCH(A, x, low, up)
if low == up then return low;
else mid = ceil [(low + up)/2];
if x < A[mid] then return BINARY-SEARCH(A, x, low, mid - 1);
else return BINARY-SEARCH(A, x, mid, up);

1At first glance, this may seem a lofty goal indeed, for no deterministic algorithm could solve this without much toil—at
least as much toil as examining 3n/4 of the elements in the scroll A.

Page 7 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

Imagine now, for two values x and y, that BINARY-SEARCH(A, x, 1, n) returns the position k, and
BINARY-SEARCH(A, y, 1, n) returns position ℓ. Show that if k < ℓ, then x < y, as one path must
always be less than another in the great search for order.

(c) Now, suppose we have an algorithm that selects k positions in the scroll A, much like the gathering
of an Elven council, and declares the scroll almost ordered if, for each chosen position ai, it holds
true that ai = BINARY-SEARCH(A,A[ai], 1, n). Should any ai not satisfy this, the algorithm will
reject the scroll as unworthy of the Law of Order. Using part (b), show that for any scroll A, with
k = Θ(1) chosen positions, the probability of failure becomes less than 0.1, a triumph worthy of the
most learned Elves and Wise of Middle-earth.

Las Vegas Selection: Average Case Analysis of QuickSelect

QuickSelect receives an array t[1 . . . n] of n real numbers, and a number k, and returns the element of
rank k in the sorted order of the elements of t. Formally, QuickSelect chooses a random pivot, splits
the array according to the pivot, and recurses only on the subproblem containing the required element.
This implies that we now know the rank of the pivot, and if it’s equal to k, we return it. Otherwise, we
recurse on the subproblem containing the required element (adjusting k as we proceed). QuickSelect is a
modification of QuickSort that performs only a single recursive call instead of two.

12. We will now perform an average-case analysis of the number of comparisons in QuickSelect, similarly to
what we did in class for QuickSort. To bound the expected running time, we will analyze the expected
number of comparisons. Let S1, . . . , Sn be the elements of t in sorted order. For i < j, let Xij be the
indicator variable that is one if Si is compared to Sj during the execution of QuickSelect. We will now
calculate the expected value of the number of comparisons in various cases.

(a) Compute α1 = E
[∑

i<j<kXij

]
, the expected number of comparisons for the case i < j < k. Prove

that α1 ≤ 2(k − 2).

(b) Compute α2 = E
[∑n

j=k+1

∑j−1
i=k+1Xij

]
, the expected number of comparisons for the case k < i < j.

Prove that α2 ≤ 2(n− k).

(c) Compute α3 = E
[∑k−1

i=1

∑n
j=k+1Xij

]
, the expected number of comparisons for the case i < k < j,

and over all possibilities for i and j. Prove that α3 ≤
∑n

∆=3 2(∆− 2)/∆ ≤ 2n.

(d) Compute α4 =
∑n

j=k+1 E[Xij], the expected number of comparisons for the case i = k. Prove that
α4 ≤ lnn+ 1.

(e) Compute α5 =
∑k−1

i=1 E[Xij], the expected number of comparisons for the case j = k. Prove that
α5 ≤ lnn+ 1.

(f) Finally, conclude by summing
∑

i αi to show that the expected number of comparisons is O(n).

Verifying properties : Monte Carlo Sampling

One of the big advantages of randomized algorithms is that they sample the world; that is, learn how
the input looks like without reading all the input. For example, consider the following problem: We are
given a set U of n objects u1, . . . , un, and we want to compute the number of elements of U that have
some property. Assume that one can check if this property holds, in constant time, for a single object,
and let ψ(u) be the function that returns 1 if the property holds for the element u and 0 otherwise. Now,
let Γ be the number of objects in U that have this property. We want to reliably estimate Γ without
computing the property for all the elements of U . A natural approach would be to pick a random sample
R of m objects, r1, . . . , rm from U (with replacement), and compute Y =

∑m
i=1 ψ(ri). The estimate for

Γ is β = (n/m)Y . It is natural to ask how far β is from the true value Γ.

Page 8 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

13. Let U be a set of n elements, with Γ of them having a certain property ψ. Let R be a uniform random
sample from U (with repetition), and let Y be the number of elements in R that have the property ψ,
and let Z = (n/m)Y be the estimate for Γ. Then, for any t ≥ 1, we have that

P
[
Γ− tn

2
√
m

≤ Z ≤ Γ +
tn

2
√
m

]
≥ 1− 1

t2
.

Similarly, we have that

P[E[Y]− t
√
m/2 ≤ Y ≤ E[Y] + t

√
m/2] ≥ 1− 1

t2
.

Endless Versions of Average Case Analysis of QuickSort

14. In class, we discussed the derivation of the recurrence relation for the average-case complexity of Quick-
Sort, T (n):

T (n) =
1

n

n∑
k=1

(T (k − 1) + T (n− k)) +O(n)

In this exercise, we will solve the bound for this recurrence step-by-step.

(a) Firstly, show that:

nT (n) = 2

n−1∑
k=0

T (k) + 2n2 − n

(b) Prove the following relation:

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 4n− 3

Hint: Shift and subtract terms (Simplicity is Magic).

(c) Define a new function t(n) = T (n)
n+1 and prove that:

t(n) = t(n− 1) +
7

n+ 1
− 3

n
=⇒ t(n) = 4Hn − 7 +

7

n+ 1

where Hn =
∑n

i=1
1
i ≈ log n+ γ, the n-th order harmonic number

(d) Finally, substitute back T (n) = (n+ 1)t(n), we can derive a tight O(n log n) form of the form:

T (n) = (n+ 1)(4Hn − 7 +
7

n+ 1
) = 4nHn − 7n+ 4Hn

15. In this exercise, we aim to prove that QuickSort is efficient using conditional expectation. Consider a
specific element x in an input array of n elements that is being sorted by QuickSort. Let Xi denote
the size of the recursive subproblem at the i-th level of the recursion that contains x. If x does not
participate in a subproblem at this level, then Xi = 0. It is clear that X0 = n.

(a) As a first step, compute the probability that the i-th pivot is an element between the Xi−1/4-th
and (3/4)Xi−1-th positions. Prove that E[Xi | Xi−1] ≤ (7/8)Xi−1.

(b) Using the result from part (a), show that E[Xi] = E[E[Xi | Xi−1]] ≤ (78)
in. Using Markov’s

inequality, prove that:

P (x participates in more than c lnn levels of recursion) ≤ 1

nβ
,

where β > 1 is a constant.

Page 9 of 10

CS 577
Assignment 6

QuickSort & QuickSelect – Randomized Algorithms Fall 2024

16. In class, we discussed Chernoff bounds :

Let X1, . . . , Xn be n independent coin flips, such that P[Xi = 0] = P[Xi = 1] = 1
2 , for i = 1, . . . , n. Let

Y =
∑n

i=1Xi. Then, for any ∆ > 0, we have P[|Y − n/2| ≥ ∆] ≤ 2 exp
(
− 2∆2

n

)
..

Let’s see how we could use this powerful statistical tool for the QuickSort problem.

(a) Prove that Chernoff bounds can be generalized to infinite series: Let X1, X2, . . . be an infinite se-
quence of independent random 0/1 variables. Let M be an arbitrary parameter. Then the probability
that we need to read more than 2M + 4t

√
M variables of this sequence till we collect M ones is at

most 2 exp(−t2), for t ≤
√
M . If t ≥

√
M , then this probability is at most 2 exp(−t

√
M).

(b) Let’s revisit QuickSort one last time. Consider an arbitrary element u being sorted, and the i-th
level recursive subproblem that contains u. Let Si be the set of elements in this subproblem. We
consider u to be successful in the i-th level, if |Si+1| ≤ |Si|/2. Namely, if u is successful, then the
next level in the recursion involving u would include a considerably smaller subproblem. Let Xi be
the indicator variable which is 1 if u is successful. We first observe that if QuickSort is applied to
an array with n elements, then u can be successful at most T = ⌈lg n⌉ times, before the subproblem
it participates in is of size one, and the recursion stops. Thus, consider the indicator variable Xi,
which is 1 if u is successful in the i-th level, and zero otherwise.
Prove that the Xi’s are independent, and P[Xi = 1] = 1/2.

(c) Typically, if u participates in v levels, then we have the random variables X1, X2, . . . , Xv. To
make things simpler, we will extend this series by adding independent random variables, such that
P[Xi = 1] = 1/2 for i ≥ v. Thus, we have an infinite sequence of independent random variables, that
are 0/1 and get 1 with probability 1/2. Prove that for any c > 0, the probability that QuickSort
performs more than (6 + c)n lg n comparisons is smaller than 1/nc.

Page 10 of 10

