[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: Ba`i Review cu?a TS Nguyen Xuan Tuyen
HI ca'c ba'c:
The^' gio*'i cu?a nhu*~ng nha` khoa ho.c nga`y nay, nho*` co' ddie^n
toa'n va` tho^ng tin ne^n no' nho? la('m, gio^'ng nhu* trong la`ng
va^.y! O*? trong la`ng la`m gi` ba` con sau lu~y tre xanh ma` cha?
bie^'t! Ca'i kim trong go^'i la^u nga`y no' cu~ng lo' ra tho^i! La`m
khoa ho.c to^i nghi~ ca^`n tha`nh tha^.t vo*'i mi`nh va` vo*'i la`ng
khoa ho.c. To^i nghi~ cho*i dao se~ co' nga`y ddu*'t tay tho^i; Ai
kho^ng muo^'n bi. ddu*'t tay thi` ne^n nghie^m tu'c khi cho*i dao dde^?
kho?i bi. ddu*'t tay .
CHa(?ng cu*' gi` o*? dda^u; Ca'c ba'c co' nho*' la.i vu. xi` ca(ng ddan
ve^` con HIV giu*~a Pha'p(P) va` My~(M) qua hai ba'c Luc Montagnier(P)
va` Bob Gallo(M) kho^ng ?
Nhu*~ng chuye^.n Review cu?a ba'c NHV Hung la` chuye^.n bi`nh thu*o*`ng
pha?i la`m trong khoa ho.c ma` tho^i . To^i kho^ng thu*o*ng ai ghe't ai
ca?; To^i u?ng ho^. tinh tha^`n cu?a ba`i Revew na`y vi` ly' do ddi
ti`m su*. trong sa'ng cu?a/trong khoa ho.c . Di~ nhie^n thi` bo'ng dde^m
ra^'t so*. a'nh sa'ng .
Nga`y xu*a cha? co' nha` khoa ho.c bi. cha(.t dda^`u vi` kho^ng chiu.
no'i la` qua? dda^'t vuo^ng ddo' sao ?
Bavo su*. trong sa'ng cu?a khoa ho.c!
Ki'nh
_________________________________________
>Hi ca'c ba'c
>
>Review negative dde^'n va^.y trong toa'n qua? la\ hie^'m hoi.
>Ba'c Tuye^n na\y tui ddoa'n chi? co^'t ba?o ve^. cho co' ba(`ng
>dde^? la\m administration, dda(ng ba\i + ba?o ve^. o+? ta^.n
>xu' "khi? ho" Tbilisi cho qua chuye^.n, kho^ng ngo+\
>le^n dde^'n Math. Review la.i ro+i va\o tay "ddao phu?" NHV Hu+ng
>(chu+' ne^'u he^n ho+n mo^.t chu't co' the^? ro+i va\o tay kho^'i bo.n
>reviewers vo+' va^? vie^'t chung chung kho^ng khen kho^ng che^)
>O^i ddau thu+o+ng!
>
>Ba'c DV An va\ ba'c Tha('ng co\n co' ta\i lie^.u gi\ the^m ve^\ vu.
na\y
>xin dda(ng no^'t le^n ddi. Chuye^.n ba'c Tuye^n ddi.nh u+'ng cu+?
>Hie^.u Tru+o+?ng Dda.i Ho.c Quo^'c Gia o+? Hue^' co' pha?i nguye^n
>nha^n chi'nh kho^ng?
>
>A\ ma\ ba'c Tuye^n na\y cha('c o+? Tbilisi qua~ng cuo^'i '80.
>
>Vu~ (Mainz) co' nho+' ba'c Tuye^n na`y kho^ng?
>
>Cheers, Z
>
>----------
>> De : tle@msri.org
>> A : Multiple recipients of list <vnsa-l@csd.uwm.edu>
>> Objet : Ba`i Review cu?a TS Nguyen Xuan Tuyen
>> Date : vendredi 13 juin 1997 20:53
>>
>>
>>
>>
>>
>> Mathematical Reviews, =A9 Copyright American Mathematical Society
1995,
>1=
>> 997 =
>>
>>
>> 95j:20050 20J06 55R40 =
>>
>> Nguen Suan Tuen
>> On the cohomology of alternating groups and its application in
topology.
>=
>> (Russian) =
>>
>> Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzii 97 (1992),
18--47. =
>>
>>
>> The paper contains four sections. The first two are devoted to the
>comput=
>> ation of ${\rm
>> Im\,Res}(E,A\sb m)$, the image of the restriction ${\rm Res}(E,A\sb
>m)\co=
>> lon H\sp *(A\sb
>> m;{\bf Z}/p)\to H\sp *(E;{\bf Z}/p)$, where $A\sb m$ denotes the
>alternat=
>> ing group on $m$
>> letters, $E$ is a maximal elementary abelian $p$-subgroup of $A\sb m$
>and=
>> $p$ is a prime. The
>> main result of these two sections, Theorem 2.5, is an explicit
>computatio=
>> n of this image for the
>> special case where $m=3Dp\sp n$, $A\sb {p\sp n}$ is viewed as the
>alterna=
>> ting group on (the point set
>> of) $({\bf Z}/p)\sp n$ and $E=3DE\sp n$ is the subgroup of all
>translatio=
>> ns on $({\bf Z}/p)\sp n$.
>> Unfortunately, this result is due to Huynh Mui, at least for $p>2$
>[Math.=
>> Z. 193 (1986), no. 1,
>> 151--163; MR 88e:55015 (see Theorem 3.10)]. Formula (9) in Section 1,
>the=
>> key point in the proof
>> of Theorem 1.8, is also due to Huynh Mui [J. Fac. Sci. Univ. Tokyo
Sect.
>=
>> 1A Math. 22 (1975), no.
>> 3, 319--369; MR 54 #10440 (see Theorem 5.2)]. =
>>
>>
>> In Section 3 the author naturally equips $H\sb *A\sb \infty\coloneq
\lim
>=
>> H\sb *A\sb m$ with an
>> algebra structure. Let $E\subset A\sb m\subset S\sb m$, where $E$ and
>$A\=
>> sb m$ are as above and
>> $S\sb m$ is the symmetric group on $m$ letters. The author also shows
>${\=
>> rm Im\,Res}(E,A\sb
>> m)=3D{\rm Im\,Res}(E,S\sb m)$ for some special cases of $E$ and $m$.
(In
>=
>> the general case, it is
>> false; for example, if $p>2$, $m=3Dp\sp n$, $E=3DE\sp n$. See Huynh
>Mui's=
>> two papers mentioned
>> above.) Formula (11) and its proof on pages 39--40 are again due to
>Huynh=
>> Mui [op. cit., 1986 (see
>> p. 156)]. =
>>
>>
>> Section 4 is devoted to describing the homology and cohomology
algebras
>o=
>> f $F({\bf R}\sp
>> q,\infty)/A\sb \infty$. Here $F({\bf R}\sp q,m)$ denotes the
>configuratio=
>> n space of $m$-tuples of
>> distinct points in ${\bf R}\sp q$ with the usual free action of $A\sb
>m\s=
>> ubset S\sb m$, and $F({\bf
>> R}\sp q,\infty)/A\sb \infty\coloneq \lim F({\bf R}\sp q,m)/A\sb m$.
The
>s=
>> ection is reproduced
>> from some parts of three papers by the reviewer [C. R. Acad. Sci.
Paris
>S=
>> er. I Math. 297 (1983),
>> no. 12, 611--614; MR 85b:20071; C. R. Acad. Sci. Paris Ser. I Math.
307
>(=
>> 1988), no. 18,
>> 911--914; MR 90c:57037; Pacific J. Math. 143 (1990), no. 2, 251--286;
MR
>=
>> 91k:55017].
>> Actually, the reviewer studied $F({\bf R}\sp q,\infty)/S\sb \infty$.
>Ther=
>> efore, the reviewer thinks
>> what the author should have proved in the paper is that $$H\sp
*(F({\bf
>R=
>> }\sp q,\infty)/A\sb
>> \infty;{\bf Z}/p)\cong H\sp *(F({\bf }\sp q,\infty)/S\sb \infty;{\bf
>Z}/p=
>> )$$ for $p>2$. However, he
>> does not do that, but claims it only for $q=3D\infty$ by asserting
$H\sb
>=
>> *(A\sb \infty; {\bf
>> Z}/p)\cong H\sb *(S\sb \infty;{\bf Z}/p)$ on page 39. So, there are
some
>=
>> unclear things in the
>> section. For instance, one might ask why the hypothesis that $q$ is
odd
>i=
>> n Theorem 4.1 (and so, in
>> Theorems 4.4 and 4.5) is not used in the proof. The reader is urged
to
>fo=
>> llow an explanation for
>>
>> this hypothesis in the reviewer's paper [op. cit., 1988]. Also, the
>eleme=
>> nts $\overline L\sb
>> n,\overline M\sb {n,s},\overline Q\sb {n,s}$ on page 44, $m\sb {H,R}$
in
>=
>> Lemma 4.3 and the sum
>> $(K,S)+(L,T)$ in Theorem 4.4 are used but not defined. =
>>
>>
>> Reviewed by Nguyen H. V. Hung
>>
>>
>> =A9 Copyright American Mathematical Society 1995, 1997 =
>>
>
---------------------------------------------------------
Get Your *Web-Based* Free Email at http://www.hotmail.com
---------------------------------------------------------