[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
RE: [MATH] Random chords
Cha`o anh Tua^'n,
=09
Theo to^i, ke^'t qua? la` 1/3.
Ca'ch ti'nh nhu+ sau:
Co' the^? giu+~ co^' ddi.nh 1 dda^u` cu?a so+.i da^y cung ma`
kho^ng la`m gia?m ti'nh to^?ng qua't cu?a ba`i toa'n. Go.i ddo'
la` ddie^?m A
Khi ddo' du+o+`ng tro`n ddu+o+.c chia la`m hai pha^`n do hai=20
ddie^?m A1 & A2 (AA1 =3D AA2 =3D R (radius)).=20
Mo.i ddie^?m X tre^n cung (A1 A A2): AX <=3D R.
Ca'c ddie^?m Y kha'c tre^n ddu+o+`ng tro`n : AY > R.
Cung (A1 A A2) =3D 120 ddo^. =3D> P =3D 120/360 =3D 1/3
=09
Tha^n,
So+n,
>----------
>From: Tuan V Nguyen[SMTP:t.nguyen@garvan.unsw.edu.au]
>Sent: 1997. j=FAnius 16. 0:44
>To: Multiple recipients of list
>Subject: [MATH] Random chords
>
>
>Hello Math friends,
>
> I have a problem, which was brought up by one of my=20
>colleagues in the mathematical hobby club. The problem is as=20
>follows:=20
>
>If a chord is selected randomly on a fixed circle, what is=20
>the chance that its length is longer than the radius of the=20
>circle?
>
> Any idea?=20
>
> Tuan
>
>
>