Creating Better Thumbnails
CS 638 Project Paper

Chris Waclawik

cwaclawik@wisc.edu

May 13, 2009

Abstract

When a user wants to find a particular image in a set, they will often scan a table
of thumbnails instead of flipping through the full-sized images. The smaller the
thumbnails, the more images can be displayed on one screen, and the shorter
it (theoretically) takes to find a particular image. Once a thumbnail is small
enough, however, the loss of detail can make it difficult to recognize the the
original image, lessening the thumbnails effectiveness. A smarter way would be
to first select the the most recognizable, or salient, part of the image, and then
shrink it. This project implements a thumbnail creator that creates a saliency
map for a given image, and crops/scales it down to a specified size.

Introduction and Motivation

Computer screens have a limit on the number of full-resolution images they can
display simultaneously. If we consider, for example, a 4” x 6” printed photo-
graph, the average laptop screen could display three vertically oriented photos.
Given a large set of images, it is impractical to look through each of them one by
one to find a specific image. It is sometimes possible to use image metadata to
accelerate this search, such as file names, the date the photo was taken, or user-
supplied image tags. In most cases, however, this metadata has to be supplied
by the user (barring continued advances in computer vision, specifically object
detection and recognition). Furthermore, supplying this metadata requires the
user to go through the entire image set one by one, which becomes impractical
once the set grows large enough.

Thumbnailing is a common technique used to assist the navigation of large
image set. A traditional thumbnail is a scaled, smaller copy of an existing image.
Their reduced size allows more thumbnails to fit concurrently on the screen than
full-sized images. They are found in nearly any application that handles images
such as iPhoto, Adobe Photoshop Album, and Picasa. Web applications like
Flickr, Google Image Search, and Facebook, use thumbnails to save bandwidth:



a full-sized image will be downloaded from the server only if it’s the specific
image a user requested [3]. Most operating systems now include thumbnails by
default when viewing a folder containing images.

Traditional thumbnails are very computationally cheap to compute: the
image needs to be scaled and (optionally) interpolated. This technique, however,
exhibits shortcomings when one tries to fit too many thumbnails on the screen:
the smaller an image, the more difficult it is to recognize details within it. Once
a thumbnail is small enough that the original image can’t be quickly recognized
from it, the thumbnail fails to serve its purpose. Is it possible, however, to create
thumbnails in another fashion, so that the original image can be recognized (even
as thumbnail size diminishes)?

The key to answering this question is realizing that not every part of a
picture is required to identify it, and the some parts will be more recognizable,
or “salient,” than others. On the other hand, this is the same thing that makes
the problem very difficult: just how do we determine what portions of an image
are the most salient? And furthermore, how do we preserve the most salient
features when creating a thumbnail?

Related Work

Various methods have been devised to compute image saliency. A good overview
of visual attention (and modelling it computationally) can be found in [5]. Most
methods can be characterized as “top-down” or “bottom-up.” The bottom-up
approach relies on low-level, image-dependent cues. These methods, including
[6], [9] and [10], rely on contrast to compute saliency. The top-down approach
requires information about high-level features within the image, and, option-
ally, about the task that is being accomplished (e.g., recognizing faces). These
approaches require complex object detection and are currently not as general-
purpose as the bottom-up method.

Once the salient portions of an image have been determined, there are several
proposed methods for preserving these portions. One method uses fish-eye view
warping to enlarge the most salient part of an image while preserving the rest
of it (albeit distored) [8]. Other methods “push” the salient regions closer to
one another [11], [1]. The simplest method, however, is to use the saliency
map to find the best crop for an image before creating a thumbnail [12]. This
implementation is based on this method.

Method

The thumbnail creation process consists of two parts:

1. Creating the image saliency map.

2. Cropping the image.



Figure 1: The original image.

Creating the image saliency map

The method for creating an image saliency map is based on work by Liu et al.
[9]. The method first creates a scale-invariant saliency map, then enhances this
map using region data for the image. The scale-invariant map requires creating
a contrast map at varying image scales; the contrast map at each scale will
highlight the most salient features matching that scale. The individual steps,
illustrated in figure 2, are as follows:

e Convert the image to LUV colorspace. LUV is perceptually uniform, so the
distance between two points in the colorspace corresponds to the difference
perceived with human vision.

e Construct a Gaussian pyramid for the image [2].

e Create the contrast map for each level of the pyramid as described by
Ma et al. [10]. The map is calculated on a pixel-by-pixel basis with the
following equation:

Cij = Y wi;dpi;py)
qe®
-
w; ; 1— %4
Tmaz



(g) Level 4 (h)

Figure 2: Creating the region-enhanced scale-invariant saliency map. Shown is
each level of the Gaussian pyramid and its corresponding contrast map.



Figure 3: The scale-invariant saliency map

Where C' is the contrast of a pixel (4,7), © is the neighborhood of the
pixel, w is the saliency weight, and d is the L? norm of two pixels in LUV
colorspace. The saliency weight w depends on r, the distance of a pixel
from the center of the image, and 7., the largest possible such distance.
The weighting accounts for the fact that the salient portions of an image
are often close to the center.

e Rescale all the contrast maps back to their original size using nearest-
neighbor.

e Add all the contrast maps together to create the scale-invariant saliency
map.

The saliency map is then enhanced using region information. This informa-
tion can be calculated using whichever preferred image segmentation method;
this paper uses mean shift [4] to compute image regions, as is described in the
original paper [9]. Existing MATLAB code was found online and used with
permission [7]. The saliency of a region is defined as the average scale-invariant
saliency over the region.

The region-enhanced salinecy can be calculated with the following equation:

1
Siyj=—— Y,
7 lla € Rigl qez,;ij !



(a) Original (b) Scale-invariant saliency

(¢) Mean shift (d) Region-enhanced saliency

Figure 4: Enhancing the saliency map with region data.

Where S is the region-enhanced saliency of a pixel (4,7), R; ; is the region the
pixel belongs to, and T is the scale-invariant saliency of a pixel.
An example of the region-enhancing process is shown in figure 4.

Cropping the image

Once the saliency map for an image is computed, the problem remains of se-
lecting the optimal crop. We define the saliency threshold of a thumbnail as the
sum of the saliency in the thumbnail divided by the total saliency of the image.
Given a saliency treshold A and thumbnail output dimensions (w, h) we want to
find the smallest possible crop (proportionate to w and h) that has a saliency
threshold greater than A.

Finding this optimal solution is computationally expensive, but an approx-
imate solution can be found using a simple, greedy heuristic. The regions are
sorted by saliency, and each region is added to the crop one by one until the
threshold saliency is reached. In more detail, while the cropped image’s saliency
threshold is less than A:

e P «— most salient unused region
e R/ «— smallest box containg P

Rc +— RcUR

Grow R¢ as necessary to have the correct proportions

Calculate the saliency treshold



Experimental Results

Figure 2 shows an example of the calculations for scale-invariant saliency, and
figure 4 shows how this is combined with region data to create the region-
enhanced saliency map. The mean shift algorithm has a number of parameters
that can be tweaked by the user, most notably “minimum region area,” the
smallest number of pixels possible in a region. For the most part, however, the
default values produced satisfactory results and were left unaltered.

Figure 5 shows the a subset various stages of the cropping process for three
images. During each iteration, the red box represents the minimum bounding
box for the saliency regions included so far, and the green is that box expanded
to meet the target aspect ratio. For the first image (a-f), if we let A = .5, we
get a good crop highlighting the faces in the photo; expanding the box to meet
our target aspect ratio prevents parts of the faces from getting chopped off.

The second image (g-1) shows the process for a different input image; the
target aspect ratio has also been changed to square. Once again, we seem to
get optimal results when \ ~ .5

The third image (m-r), however, shows that we cannot chose the same \ for
every thumbnail. If we let A ~ .5, we’ll end up with a crop that does not include
the entire boat. A better result is obtained when we let A = .8. It appears that
if the saliency is extremely concentrated in one portion of the image, we must
increase A to ensure that all salient portions will appear in the thumbnail.

Concluding Remarks

There are a number of modifications that could enhance the performance of this
method. One would be to experiment with different algorithms for determining
saliency. Our algorithm consists of two replaceable components: a different
saliency algorithm could be used to highlight low-level features. One could also
use a different image segmentation algorithm when computing thesaliency map.
It is possible that there is a method better than mean shift at preserving “regions
of interest.” Furthermore, the mean shift method doesn’t account for any high-
level features: a more intelligent method would recognize salient objects (e.g.,
faces) and give them extra weight.

A better method would find the optimal A automatically instead of requiring
the user to supply it. One way to do this would be a gradient search over the
threshold/area plot [12]. Figure 6 shows two such plots for the picture of the
bridge. If we consider the plot on the left first, the cropping process moves from
left to right. A steep slope means the algorithm significantly increased the area
of the crop without increasing the saliency by much. One heuristic would be to
select the crop immediately preceeding the steepest slope. A similar idea can
be applied to the second plot (although this one shows the minimum saliency
included in the crop). The difference is that the algorithm preceeds from high
minimum saliencies to lower ones.

Most importantly, the effectiveness of this method needs to be tested with



(a) A=.248 area=.109 (b) A=.298 area=.110 (c) A=.440 area=.200

(d) A=.670 area=.422 (e) A=.823 area=.618 (f) A\=.926 area=.777

(g) A\=.188 area=.037 (h) A=.291 area=.068

(j) A=.543 area=.198 (k) A=.659 area=.303 (1) A=.733 area=.381

(p) A=.681 area=.254 (q) A=.802 area=.356 (r) A=.914 area=.694

Figure 5: Various stages of the cropping process. The area has been normalized
(so that the area of the orginial image is 1. The minimal bounding box is in
red, while the box in green has been expanded to match the aspect ratio of the
target output.



Area

Areg

ns

[k}

07

0B

05

0.4

03

0z

0.1

09

0.8

07

06

04

0.4

03

02

041

Figure 6: Determining the optimal crop

Area vs. Saliency

.
o1 02 03 04 065 06 OF 08 09
Saliency

(a) Area vs. A

- e

. . .
o1 02 03 04 05 06 07 08 08
Minimurm Saliency

(b) Area vs. Minimum Saliency




actual users. The ultimate goal of thumbnails is to aid in image navigation and
selection; no matter how good the preliminary results, the algorithm has little
value if it does not aid users in performing these tasks more efficiently. One
such study has already been performed [12], and showed a significant reduction
in browsing time (when using their own similar thumbnail cropping method).

References

1]

2]

AVIDAN, S., AND SHAMIR, A. Seam carving for content-aware image re-
sizing. ACM Trans. Graph. 26, 3 (2007), 10.

Burt, P. J., AND ADELSON, E. H. The laplacian pyramid as a compact
image code. IEEE Transactions on Communications COM-31,4 (1983),
532-540.

BurTON, C., JOHNSTON, L., AND SONENBERG, E. Case study: an em-
pirical investigation of thumbnail image recognition. Information Visual-
ization, IEEE Symposium on 0 (1995), 115.

CowmaNiIciu, D., AND MEER, P. Mean shift: a robust approach toward
feature space analysis. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 24, 5 (2002), 603—619.

ITTi, L., AND KocH, C. Computational modelling of visual attention.
Nature Review Neuroscience 2, 3 (March 2001), 194-203.

ITT1, L., KocH, C., AND NIEBUR, E. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence 20, 11 (1998), 1254-1259.

LANKTON, S. http://www.shawnlankton.com/2007/11/mean-shift-
segmentation-in-matlab/, 2009.

Liu, F., AND GLEICHER, M. Automatic image retargeting with fisheye-
view warping. In UIST ’05: Proceedings of the 18th annual ACM sym-
posium on User interface software and technology (New York, NY, USA,
2005), ACM, pp. 153-162.

Liu, F., AND GLEICHER, M. Region enhanced scale-invariant saliency de-
tection. Multimedia and Expo, IEEE International Conference on 0 (2006),
1477-1480.

Ma, Y.-F., AND ZHANG, H.-J. Contrast-based image attention analysis
by using fuzzy growing. In MULTIMEDIA ’03: Proceedings of the eleventh
ACM international conference on Multimedia (New York, NY, USA, 2003),
ACM, pp. 374-381.

10



[11] SETLUR, V., TAKAGI, S., RASKAR, R., GLEICHER, M., AND GOOCH,
B. Automatic image retargeting. In MUM ’05: Proceedings of the 4th
international conference on Mobile and ubiquitous multimedia (New York,
NY, USA, 2005), ACM, pp. 59-68.

[12] Sun, B., LinG, H., BEDERSON, B. B., aAND JacoBs, D. W. Automatic
thumbnail cropping and its effectiveness. In UIST ’03: Proceedings of the
16th annual ACM symposium on User interface software and technology
(New York, NY, USA, 2003), ACM, pp. 95-104.

11



