UML Diagrams can also be used to the show

Th e M a ny ArrOWS Of U M L relationships between classes. There are four
important relationships that we will use in CS302:
Dependence

Dependence is the m ic relationshi ween cl . .
ependence is the most basic relationship between classes public class Foo {

Class Foo depends on class Bar if it uses instances of Bar

at some point in its code. If the public interface for Bar ever public void doStuff() {

Foo Bar

changes, the code in Foo may need to be updated. Bar b = new Bar(...);

Keep in mind that this does not imply that Bar depends on

Foo; Bar probably does not know what classes are using it.

Aggregation shows that an instance of Foo owns instances public class Foo {

Aggregation of Bar. Aggregation requires that the Foo instances have a private Bar b; // n = 0..1
member variable that will keep a reference to a Bar object
Foo Bar between method calls. The Multiplicity Indicator n is used to private Bar x; // never null: n =1

show how many instances a Foo object owns:

private Bar bl, b2, b3; // n = 3

O n 0..1 One instance, may be a null reference
1 One instance, cannot be null .
’ ” . rivate Bar arr; // n = 0..*
4 (or another number): A fixed number of instances P]
* Multiple instances, must be in an array }
UML 50 b d o identif . imol public interface Bar {
. can also be used to identify interface Implementation. String performQuery();
Implementatlon If Class Foo implements Interface Bar, every method listed }
in Bar must have actual code in Foo's definition. If the
Foo Bar methods listed in interface Bar ever change, Foo willneed puplic class Foo implements Bar {
Fo be changed as well. A smglg class can implement multiple // required by interface Bar
L D mterfacc_es, and_ can also have its own r_nethods that do not public String performQuery() {
appear in any interface. The methods in Foo must have the return "....";
exact same signature as those in Bar for the compiler to }
find them }
. public class Bar {
Inheritance public String performQuery() { ... }
. . . public void doStuff() { ... }
Inheritance shows that Class Foo is a child class of Bar. }
Foo Bar

Foo will gain all the methods in Bar, and a object of type

public class Foo extends Bar {
// overrides code in Bar
public String performQuery() { ... }

Foo can be used anywhere a Bar object can be used. Foo
_> may also add new methods, and can overrride the methods
in Bar with its own code.

// code for doStuff() is inherited

}

