
The Many Arrows of UML UML Diagrams can also be used to the show
relationships between classes. There are four
important relationships that we will use in CS302:

Foo Bar

Dependence

Foo Bar

Aggregation

Foo Bar

Implementation

Foo Bar

Inheritance

Dependence is the most basic relationship between classes.
Class Foo depends on class Bar if it uses instances of Bar
at some point in its code. If the public interface for Bar ever
changes, the code in Foo may need to be updated.

Keep in mind that this does not imply that Bar depends on
Foo; Bar probably does not know what classes are using it.

public class Foo {
 public void doStuff() {
 Bar b = new Bar(...);

 }
}

Aggregation shows that an instance of Foo owns instances
of Bar. Aggregation requires that the Foo instances have a
member variable that will keep a reference to a Bar object
between method calls. The Multiplicity Indicator n is used to
show how many instances a Foo object owns:

0..1 One instance, may be a null reference
1 One instance, cannot be null
4 (or another number): A fixed number of instances
* Multiple instances, must be in an array

public class Foo {
 private Bar b; // n = 0..1

 private Bar x; // never null: n = 1

 private Bar b1, b2, b3; // n = 3

 private Bar[] arr; // n = 0..*

}

n

UML can also be used to identify interface Implementation.
If Class Foo implements Interface Bar, every method listed
in Bar must have actual code in Foo's definition. If the
methods listed in interface Bar ever change, Foo will need
to be changed as well. A single class can implement multiple
interfaces, and can also have its own methods that do not
appear in any interface. The methods in Foo must have the
exact same signature as those in Bar for the compiler to
find them

public interface Bar {
 String performQuery();
}

public class Foo implements Bar {
 // required by interface Bar
 public String performQuery() {
 return "....";
 }
}

Inheritance shows that Class Foo is a child class of Bar.
Foo will gain all the methods in Bar, and a object of type
Foo can be used anywhere a Bar object can be used. Foo
may also add new methods, and can overrride the methods
in Bar with its own code.

public class Bar {
 public String performQuery() { ... }
 public void doStuff() { ... }
}

public class Foo extends Bar {
 // overrides code in Bar
 public String performQuery() { ... }

 // code for doStuff() is inherited
}

For CS302, by Andrew Weinrich 2007 pages.cs.wisc.edu/~weinrich

