Casting in Java

cast

In a broad sense the Java compiler requires programmers to

provide an explicit cast whenever assigning a "general" type

General Specific

to a more "specific" one. Three examples of this principle are
shown in the diagrams below. Note that the principle applies

to primitive and reference types alike.

When assigning a double to a float,
information can be lost. (The range and
precision of type double is greater than that
of type float.) Therefore, in the absence of a
cast, the compiler will signal an error when
the programmer assigns a double to a float.
Providing an explicit cast is the programmer's
way of saying to the compiler "I'm aware that
there could be a problem here. Relax."

On the other hand, assigning a float to a
double causes no error, even without a cast.

IPod pod = (IPod) p;
Interface

Implementing Class

Playable p = pod;

Figure 2. Converting between interface and implementing

class types.

IPod pod = (IPod) mp;

Superclass Subclass

MP3Player mp = pod;
Figure 3. Converting between superclass and subclass
types.

Handout for CS 302 by Aneesh Karve, karve@cs.wisc.edu

ho cast

float £ = (float) d;

Larger Numeric Smaller Numeric

double d = £;

Figure 1. Converting between double and float.
Can you think of analogous examples using
primitive types other than double or float?

When assigning an implementing class
reference to an interface reference, no cast is
required. Likewise when assigning a subclass
reference to a superclass reference. (As
shown to the left, in both of the reverse cases
the compiler does require a cast.)

Some casts can be checked at compile time:
String s = "Bucky";

IPod pod = (IPod) s; //compiler error
//(since IPod is neither a subclass
//nor superclass of String)

Other casts are checked during runtime. See
below for an example.

ClassCastException

If an invalid cast is made at runtime a
ClassCastException is thrown.
MP3Player mp3 = new IRiver();

//next line causes an exception since
//IPod is not a subclass of IRiver
IPod pod = (IPod) mp3; //exception
//\Why didn't this cause a
//conpile-time error?

instanceof operator
instanceof is a binary operator which can be
used to avert a ClassCastException.
if (mp3 instanceof IPod){
//this cast is always safe
IPod pod = (IPod) mp3;



