
Type Inference in Mixed Compiled / Scripting Environments

Type Inference in Mixed Compiled / Scripting Environments

Andrew Weinrich
University of Wisconsin
weinrich at cs.wisc.edu

Ben Libit
University of Wisconsin

liblit at cs.wisc.edu

Abstract
Programs written in statically-typed languages are com-
monly extended with scripting engines that manipulate ob-
jects in the compiled layer. These scripting environments
enhance the capabilities of the program, at the cost of ad-
ditional errors that would be caught by compile-time type
checking. This paper describes a system for using type in-
formation from the compiled, statically-typed layer to per-
form type inference and checking on scripting code. To
improve the quality of analysis, idiomatic rules based on
common programming patterns are used to supplement the
type-inference process. A proof-of-concept of this system
is shown in flint, a type-checking tool for the language
F-Script.

1. Introduction
A recent trend in software development has been to extend
programs written in a compiled language with a scripting
engine that can manipulate objects from the compiled layer.
The presence of JavaScript in web browsers has created an
entire industry of web applications. At the OS level, many
GUI environments have object-oriented scripting languages,
such as AppleScript on Mac OS (2), that can tie together
functionality of various programs. Scripting languages are
also used to implement custom behavior in game engines
(8), and even in mainstream commercial applications like
Adobe’s recent product Lightroom (5).

The benefits of such integrated compiled / scripting en-
vironments are substantial. The ability for end-users to cus-
tomize program behavior increases the lifespan of a product
and fosters the creation of an ecosystem of third-party ex-
tensions. For internal development, moving some code into
a scripting layer reduces compilation costs and turnaround
time for bug fixes.

[Copyright notice will appear here once ’preprint’ option is removed.]

However, the added flexibility of a scripting layer brings
with it several new costs. In particular, most scripting lan-
guages lack any sort of compile-time type checking. This
leads to simple but aggravating errors, such as using an in-
valid method name, that would easily be caught by a type-
checking compiler. In programs where most of the scripting
code is used in the user interface, such as web or GUI appli-
cations, it is difficult to write unit tests for such code, and the
presence of type-related bugs increases the time required for
testing and QA.

In these programs, most of the objects used in scripts are
actually implemented in code written in the compiled layer,
but all type information is thrown away when the bridge to
the scripting level is crossed. A tool that could carry this
type information into the flexible scripting code and detect
type errors would be of great use to programmers, not as a
verifier of program correctness, but as a detector of common
programming mistakes.

Analysis of scripting code can also be improved by mak-
ing reasonable assumptions about the coding styles and con-
ventions that programmers follow. By taking for granted that
the developer follows common conventions, idiomatic rules
can be used to increase the amount of information about a
program’s structure that is available to the analyzer, allow-
ing for more accurate detection of common errors.

This paper describes a generic system for performing
type checking of scripting-language programs that extend
a base of code written in a different, compiled, statically-
typed language. It also describes how convention-based rules
can aid the type-checking process. A proof-of-concept is
shown in flint, a type-checking and static analysis tool
for the language F-Script. F-Script is a scripting language
derived from Smalltalk; it is unusual in that it uses the
compiled, statically-typed language Objective-C (1) as an
implementation platform.

2. Type Checking For Mixed Compiled /
Scripting Code

One commonly suggested solution to the lack of compile-
time type checking in scripting languages is to add explicit
type declarations (4). However, proposed typing systems
based on explicit declarations have encountered significant
resistance from developer communities (14), and making

1 2008/5/14

changes to the core language grammar is generally not fea-
sible for a standalone tool.

An alternative is to perform type inference. Type infer-
ence algorithms are well-known and can be very effective, as
demonstrated by the language ML (9). A type inference sys-
tem for the mixed environments considered in this paper has
the benefit of starting with a much larger set of axioms de-
rived from the compiled code; combined with knowledge of
common programming patterns, the type inference is much
more tractable than in the general case.

Strictly speaking, not all compiled languages are stati-
cally typed, and not all interpreted languages lack static typ-
ing. However, in this paper, we deal exclusively with en-
vironments in which the compiled code base is statically
typed, and the interpreted script code is not. The terms “com-
piled” and “interpreted” in this paper refer exclusively to
statically typed and non-statically typed languages.

2.1 An Object-Oriented Type System
In this paper’s type system, all program entities are objects;
there are no primitive values such as int. Method calls are
the only operation on objects, and the type of an object is
defined solely by which methods it supports, without any
explicit naming.

A type is defined as a finite function from a set of names
(as defined by the grammar of the language under consid-
eration) to ordered tuples of types. One of these name-tuple
pairs is called a “method”. The first type in one of the tuples
is the method’s return value; subsequent types belong to the
method parameters. Variadic, keyword-based, or out param-
eters are not allowed. Instead of functions, types can also be
thought of as finite sets of methods.

If we define an overriding relation for methods and a
subtyping relation for types, we can define a lattice for all
types in a program. This system is described formally in
Table 1. In this table, types are treated as sets of methods.

2.2 Extending the Type System
The type system defined in Table 1 models very simple
object-oriented languages, such as Self (13), but it is miss-
ing many common OO features like classes and inheritance.
These features can be easily simulated within the type sys-
tem as follows:

• Void Types This system does not have the concept of
a “void” pseudotype like that of C-derived languages;
every method must have a return value, even if there is
no such semantically meaningful value. F-Script solves
this problem by introducing a singleton instance of the
class FSVoid, which plays a similar function as unit in
ML: it is a placeholder that implements no methods, is
never required as a parameter, and is generally useless
except for solving the mapping problem. In this paper,
the “void” type is referred to as κFSVoid.

Overriding relationship for methods m and n:

m = 〈name m→ (Rm, Pm1 , Pm2 , . . . Pmj)〉

n = 〈name n→ (Rn, Pn1 , Pn2 , . . . Pnk)〉

n � m ⇐⇒ name n = name m ∧
j = k ∧
Rn v Rm ∧
∀i : 0 ≤ i ≤ k|Pni w Pmi

Subtype relationship for types A and B (treated as sets):

B v A ⇐⇒ ∀m|m ∈ A : ∃n|n ∈ B ∧ n � m

Type > ≡ the empty map of methods
Type⊥ ≡ the universal map of all methods, with⊥ as return
type and > for all parameter types

Table 1. Type system for object-oriented programming en-
vironments.

• Classes Nearly all object-oriented languages are based
around explicitly named classes. Our basic type system
does not attach names to types; however, named classes
can be simulated by the use of appropriate methods. A
class can be defined as a type that contains a method
that takes no arguments, returns void, and whose name
is that of the class prepended with a special token, such
as “$$$”, that can never occur as part of a valid method
name in actual code.
Where a method requires an instance of an exact class
(or subclass) as an argument, it is sufficient for the type
of the parameter to contain only the special name method
of that class.
Many object-oriented languages also have “metaclasses,”
which are objects that implements class methods. In the
Java code MyJavaClass.doStaticStuff(x,y), the
metaclass object would be the MyJavaClass “variable”.
In Smalltalk and F-Script, the metaclass is a true object,
rather than simply a static namespace identifier.
In this paper, the types for a class / metaclass pair, for
instance that of NSFoo, are referred to as κNSFoo and
κNSFoo′ .

• Field Access Many object-oriented languages allow
fields of objects to be directly accessed and assigned
without method calls. Access or assignment to a field
“foo” of an object can be expressed in this paper’s pure
method-based system as the methods 〈getFoo → (x)〉
and 〈setFoo→ (κFSVoid, x)〉, where x is the type of the
field.

• Inheritance With the representation of class types de-
fined above, inheritance follows naturally. If ClassB is a
subclass of ClassA, we define type κClassB as a method
set that contains all the methods in κClassA, including the

2 2008/5/14

special class-name method. κClassB will also contain its
own class-name method and any other methods it imple-
ments. This makes it a subtype of κClassA and provides
the expected subclass semantics.
Multiple inheritance works the same way; a class with
multiple parents needs only to include all methods from
all its superclasses, including their name methods. In
practice, multiple inheritance raises significant issues of
field and method implementation conflict; our type sys-
tem does not address these issues.

• Named Interfaces Languages like Java that do not allow
multiple inheritance often provide some mechanism for
creating named, abstract interfaces that classes can im-
plement. These named interfaces can be represented in
our type system in the same way as classes. A class that
implements multiple interfaces will simply have to con-
tain all the methods that those interfaces declare.

• Overloading Many OO languages also support some
kind of overloading of method names, based on parame-
ter count and types. In this paper’s type system, overload-
ing can be simulated by mangling the names of methods
in the manner of C++. The exact mangling scheme is de-
pendent on the target languages.

• Constructed Types Many statically typed OO languages
support constructed types, such as vector<int> in C++.
Even for languages that do not have these types (also
known as parameterized types), such as pre-1.5 Java, it is
still useful for our analysis to infer them. A constructed
type can be simulated in our type system by creating a
subclass of the base type (such as Array), and altering
its name with the names of its constituent types (such as
Array int). It will be up to the analysis engine to ensure
that these types are created and used properly.

• Protocols A protocol is a set of methods that represents
required functionality for an object, without necessitat-
ing the object’s membership in a statically-typed inter-
face. For example, in Apple’s Cocoa frameworks, proto-
cols are used to specify the methods that delegate objects
must implement, but which the type checker does not en-
force. In Ruby and other scripting languages, the concept
of “duck typing” is analogous to protocols, in that any
object that has all necessary “duck”-like methods is con-
sidered to be a “duck”.
flint uses protocols to represent types when actual class
membership is unknown. This is the case for most argu-
ments to functions written in F-Script, where parameters
do not have type annotations. The only logical difference
between classes and protocols in flint is that the type
for a protocol does not include any of the special marker
methods used to represent class names.

2.3 Drawing Type Information from Compiled Code
Many static type inference systems for languages that lack
explicit typing must operate on an entire program written in
that language. For the programming environments treated in
this paper, the untyped portion of code is typically in oper-
ational units that are far smaller than the base of compiled
code. For example, the amount of JavaScript code in the
world that runs on web browsers dwarfs the size of the actual
browser codebases, but any particular JavaScript program is
much, much smaller than the browser that supports it.

This disparity allows us to start not from scratch, but
with a rich library of type information from the compiled
layer. This information, which must be used by the compiler,
is always written in header files or some other machine-
readable format. The first step in our analysis is to read these
headers and compile a library of all the classes and methods
in the compiled layer. This library forms the set of axioms
for flint’s type inference analysis, and contains over 700
classes and thousands of methods. Compared to the spare set
of primitive types and constructions in a language like ML,
flint’s initial base of axioms is several orders of magnitude
more detailed.

3. Type Analysis
3.1 Type Variables and Constraints
flint uses type variables to represent types in a program.
These variables represent the partial mappings from method
names to type tuples. These maps may not be immediately
defined; a brand new type variable is often defined only by
sub- and super-type constraints against other variables.

Every syntax node in a program is assigned a type vari-
able, which may already have been defined or may be unique
to that node. As the syntax tree is analyzed, the type variable
assigned to a node may be replaced by a different variable,
or may be constrained to be a subtype or supertype of an-
other variable. The constraints are always one of these three
forms:

• Type variable α is a subtype or supertype of variable β
• α and β are the same
• α contains a method 〈method:name:→ (φ, σ1, σ2, . . .)〉

The first stage of flint’s type analysis is to load the pre-
generated information from the compiled library headers.
This produces a large number of class and metaclass type
variables that form the foundation for all program analysis.
Constraints are added between these pre-generated variables
and variables created during program analysis. After a pro-
gram is completely analyzed, flint attempts to find a solu-
tion that satisfies all constraints.

In the simplified type system presented above, there are
no explicit classes. However, in the actual Objective-C run-
time system, every object is an instance of a particular class,
and every class has a name. Unlike JavaScript or Ruby, there

3 2008/5/14

are no objects that can truly be said to have unique, unnamed
types. Classes can be created programmatically, but flint
ignores this; the justification for this decision is presented in
Section 4.4.

Because classes are created declaratively, for every type
variable there is a finite number of classes that satisfy the
constraints placed on it. Type variables are associated with
syntax nodes, so they are also finite in number. Thus, for any
F-Script / Objective-C program, there are a finite number of
possible solutions to the constraint system. The procedure
flint uses to resolve constraints on type variables is de-
scribed in section 5.3.

3.2 Syntax Analysis and Constraint Creation
To build the type system model for an F-Script program,
flint performs a flow-insensitive, execution-order analysis
of the nodes in the syntax tree. As nodes are analyzed, new
variables are created and constraints between variables are
added. Because F-Script is a simplified version of Smalltalk,
there are only a few distinct kinds of syntax of nodes. A
simplified grammar for F-Script is presented in Figure 1.
The rules for creating and constraining type variables are as
follows:

3.2.1 Literals
There are several kinds of literal objects in F-Script: strings,
numbers, arrays, booleans, and the nil reference. The type of
one of these nodes is the variable for its class. Blocks and
arrays are also literal objects, but they are treated specially,
as described below.

3.2.2 Identifiers
F-Script has lexical scoping, with variable declarations per-
mitted only as parameters or locals of blocks. Additionally,
there is an initial population of global variables for each
metaclass object. Every unique identifier in the program is
assigned a type variable at its point of declaration. To find
the variable corresponding to an identifier, flint looks it
up in the current scoped symbol table. If the identifier is not
found, a new global identifier and variable are created. For
the identifier var, its type is ιvar.

3.2.3 Assignment
For the expression var := exp, the constraint ιvar w τexp

is added to the program. Unlike many languages, the type of
the assignment expression itself is always κFSVoid, regard-
less of the type of the rvalue.

If an assignment is made to a variable that is not declared
in an enclosing block, that variable is created as a top-
level global identifier. Because flint’s analysis is flow-
insensitive, if the same variable has multiple assignments,
the constraints are cumulative.

program ::= stmtlist
stmtlist ::= exp . stmtlist

| ε
exp ::= message

| assignment
| block
| array
| IDENTIFIER
| NUMBER
| STRING
| BOOLEAN

assignment ::= IDENTIFIER := exp
array ::= { explist }

| { }
explist ::= exp , explist

| exp
block ::= [paramlist | | locallist | stmtlist]

| [paramlist | stmtlist]
| [| locallist | stmtlist]
| [stmtlist]

paramlist ::= paramdecl
| paramdecl paramlist

paramdecl ::= :IDENTIFIER
locallist ::= IDENTIFIER locallist

| ε
message ::= exp METHOD NAME

| exp keywordlist
keywordlist ::= keywordpair

| keywordpair keywordlist
keywordpair ::= METHOD NAME: exp

Figure 1. Simplified grammar for F-Script.

3.2.4 Messages
Besides assignment, the only action in an F-Script pro-
gram is method calls, also known as message sending. In
F-Script’s Smalltalk-derived syntax, the name of the method
is broken into components, with the parameters interleaved
between them. The F-Script method call

foo doStuff:a withThing:b

could be approximated as the Java method invocation

foo.doStuff_withThing_(a,b)

A method call has zero or more parameter expressions,
p1, p2, . . . pn. Most of the objects in an F-Script program
are implemented in Objective-C, and their methods have
concrete formal parameter types that can be compared to the
types of actual parameter. However, at the time that a method
call is analyzed, there may not yet be enough information
to determine the type of the message receiver. We defer
this comparison by creating a temporary protocol containing
“semi-formal” parameter types, and then tying the actual and
formal parameter types to them in separate steps.

4 2008/5/14

To accomplish this, flint creates an anonymous proto-
col representing this method, and then constrains the type of
the receiver to be a subtype of this protocol. Given a method
name name with actual parameters p1, p2, . . . pn, and re-
ceiver type ρ, this protocol is defined as:

π = {〈name→ (φ, σ1, σ2, . . . σn)〉}

flint will add the constraints ρ v π and 1 ≤ i ≤ n :
τpi v σi. The type of the node itself will be the semi-formal
return type variable φ.

3.2.5 Statement Lists
In some F-Script contexts, such as block bodies, multiple
statements can be separated by a period. A statement can be
any of the above kinds of expressions. The final period is
optional, unlike in C-derived syntaxes. Each statement list is
analyzed individually; the type of the statement list itself is
the type of the last statement.

3.2.6 Blocks
F-Script is an unusual language in that it has no special
syntax for decisions, loops, or functions. The only way to
create a new level of scope is by creating a literal Block,
which is analogous to a lambda expression in LISP. A block
has the form:

[:param_1 :param_2 ... :param_n|
|local_1 local_2 ... local_n|

exp_1.
exp_2.
...
exp_n.

]

Both parameter and local lists are optional. All literal
blocks are instances of the Block class, which has methods
such as value, value:, value:value:, etc, that are used
to execute the block’s code with. Executing the block by
calling a method with the wrong number of arguments raises
an exception.

The return type of all these methods is the empty mapping
>; because the interpreter engine has no way of knowing
what code it will execute, it is unable to say anything about
the return value beyond the fact that it is an object.

Treating the type of a block literal as simply an instance
of the Block class is undesirable, as it discards a considerable
amount of information about the block’s return type and
parameter types. To rectify this, every block in an F-Script
program is given a custom type like one of the following
protocols:

βφ = {〈value→ (φ)〉}

βφ,σ1 = {〈value:→ (φ, σ1)〉}

βφ,σ1,σ2 = {〈value:value:→ (φ, σ1, σ2)〉}

τx Generic type variable
ιidentifierName Type associated with an identifier

(program variable)
κClassName Instance of a particular class, includ-

ing subclasses
κClassName′ Class object, used for dispatching

class methods
π An anonymous protocol containing

at least one method
αθ Array of objects of type θ
βφ,σ1,σ2,... Block that takes arguments of types

σ1, σ2, . . . and has return type φ
Στ1,τ2,τ3,... A “psuedo superclass” indicating

that a variable must be an instance
of one of several types.

Figure 2. Notation for Type Variables used in flint.

βφ,σ1,σ2,σ3 = {〈value:value:value:→ (φ, σ1, σ3, σ3)〉}

Once the correct β form is chosen, a copy of the pro-
tocol with fresh parameter and return variables is created.
Constraints are added between the type variables for the pa-
rameter identifiers and the type variables in the protocol:
ιparam1

= σ1, ιparam2
= σ2, etc. No additional constraints

are added to the local variables. The type of the block ex-
pression itself is βφ,σ1,σ2,....

3.2.7 Arrays
F-Script arrays are heterogeneous, so expressions of any
type may be found in array literals. For an array of the form
{ exp1, exp2, ... expN }, the type of the array con-
tents is constrained to be at least the least upper bound of the
types of the expressions in the array literal. If these expres-
sions are called expi, and the type of the array contents is θ,
then the following constraints are added:

1 ≤ i ≤ n : τexpi v θ

This type θ refers only to the objects inside the array.
The type of the array itself, then, is a custom protocol that
contains three methods:

τarr = αθ =

 〈NSArray→ (κFSVoid)〉,
〈at:→ (α, κNumber)〉,

〈put:at:→ (κFSVoid, α, κNumber)〉

The first method is a special marker indicating that this

object is an instance of the standard NSArray class. The
other two methods are for element access and replacement,
respectively. As a shorthand, this type can be called αθ,
indicating an array containing elements of type θ.

If the array literal is empty, its type ακNSObject .

5 2008/5/14

4. Idiomatic Type Analysis
Once all nodes have been assigned types and constraints
have been added to the program type system, there is still
additional work necessary to make flint’s analysis useful.
During this second phase, flint identifies code structures
that follow certain programming conventions, and uses them
to add additional information to the program’s type model.

This second pass relies on the programmer using “reason-
able” program structure and standard idioms. Very advanced
or very sloppy code can defeat this portion of flint’s anal-
ysis, but in most cases, programmers provide a wealth of in-
formation by using coding conventions. The examples below
show how simple pattern recognition can greatly increase the
accuracy of flint’s error detection.

4.1 Leveraging Coding Conventions
Many proposed type checking systems for scripting or
other non-statically-typed languages, such as Smalltalk (3),
JavaScript (11), and Python (12), attempt to make guaran-
tees of type safety for some portion of analyzed programs.
These projects are driven as much by a desire for as perfor-
mance as for correctness; type guarantees are necessary if
the compiler is to inline method calls or make other opti-
mizations.

The scripting language code we consider in this paper is
not a target for optimization, and our type analysis is a tool
for programmers that alerts them to possible problems. We
forgo guarantees of soundness, and instead concentrate on
finding problems that are most likely to occur in actual code.

This is especially valuable for programs written in a lan-
guage like F-Script, which has very few syntactic constraints
on the organization of code. Classes in F-Script are created
programmatically, so strictly speaking it is not decidable
how many classes will be in a given program or what their
capabilities are. This makes it extremely difficult to prove
type correctness; the systems cited above go to great lengths
to be certain they have not missed any changes to the type
environment.

However, in practice, most classes in scripting languages
are written in a fairly standard way. For example, in Perl
(15), each class is defined in one file that has the same name
as the class. F-Script has a similar convention. If we assume
that the programmer are following this convention, our type
inference algorithm can be simplified significantly.

In short, we take for granted that the programmer is being
“reasonable” and is writing “reasonable” code that hews
to common coding standards, even if the language does
not strictly enforce them. These assumptions will cause our
analysis to miss some errors in very sophisticated or flexible
code, or to report errors where none actually exist. These
cases we leave to the judgement of the programmer, just
as the C compiler assumes that, when casting a pointer
from void*, the programmer has extra knowledge about the
program’s state.

4.2 Control-Flow Graph Recognition
In F-Script, as in its parent language Smalltalk, there is
no explicit language construct for conditionals. Instead, a
Boolean object is sent a message, ifTrue:ifFalse:, with
two closures as arguments. It picks the correct one, eval-
uates it, and returns the value returned by that closure. In
this sense, it is closer to the boolean conditional of simple
lambda calculus than the special form of LISP. The simplic-
ity and flexibility of this approach brings with it the inconve-
nient absence of a decidable control-flow graph for the pro-
gram.

The Boolean class is implemented in Objective-C, so
flint knows that it accepts the ifTrue:ifFalse: mes-
sage from reading the header files. Unfortunately, because
the compiled layer has no way of knowing the contents of
the Blocks, the message has only the return type >. This is
undesirable, because it obliterates any possibility of recog-
nizing type errors involving the return value of the if/else or
anything that uses it downstream.

However, we can write a pattern-matching inference rule
to recognize conditionals and properly compute their type.
The following conjunctive list of predicates recognize an if-
else structure in F-Script:

1. Is the node a message?

2. Is the message name ifTrue:ifFalse:?

3. Is the receiver a subtype of κBoolean?

4. Are both the arguments literal Blocks?

If all of these conditions are satisfied, the return type of
the message is constrained to a member of the intersection
of the return types of the two literal blocks.

For the example in Figure 3, the type computed for vari-
able a is neither κNSString nor κNSNumber, but a partial su-
pertype of the two: ΣκNSString,κNSNumber . This type can be
though of as a pseudo-superclass that both classes inherit
from. This would be the case even if if one of the branches
had returned an array; in that case, the type of the if-else
expression would be ΣκNSString,αθ .

Both of the classes represented by ΣκNSString,κNSNumber

contain a method called intValue: for NSString, it parses
an integer from the string; for NSNumber, it truncates the
floating-point value to an integer. Thus, when analyzing the
call to intValue on the last line, flint will be able to
correctly add the constraint ιb w κNSNumber.

4.3 Module Importation
F-Script does not have a special syntax or pragma for module
inclusion; instead, a regular message is sent to the predefined
object sys, which causes the interpreter to load another file
of F-Script code:

sys import:’Dictionary’.
sys import:’switch’.

6 2008/5/14

a := (x < y) ifTrue:[
out println:’blah’.
’6’.

]
ifFalse:[

5.5.
].

b := a intValue.

Figure 3. Example of inferring types based on syntax pat-
terns.

sys addLibrary:’/Users/bob/FScriptLib’.
sys import:’LinkedList’.

The argument to sys import: is the name of the file,
minus the .fs extension. There are several predefined loca-
tions where F-Script will look for library files. Additional li-
brary directories can be added by defining the FSCRIPT LIB
environment variable, or by using the sys addLibrary:
method.

This “import” command is semantically more equivalent
to eval, because the library file is executed, not just parsed,
before returning to the original file’s code. flint assumes
that programmers follow the convention of library files per-
forming no actions other than creating classes and special
variables, using the procedure described below.

During flint’s second pass, it looks for messages sent
to the sys identifier. If the message is addLibrary:, flint
adds an entry to its own internal list of library locations,
which is initially copied from the interpreter. If the message
is import:, flint checks to see if the library can be found,
and issues a warning if it is not, or if it is not syntactically
valid F-Script. If the library exists, flint loads, parses, and
recursively analyzes the the library code. Like the F-Script
interpreter, flint maintains a list of libraries that have been
imported, so recursive dependence will not cause files to be
analyzed more than once. There is a single model of the
program, and all constraints from libraries go into the same
model.

For flint’s analysis to work properly, programmers
must import libraries earlier in the source code than they
are used. It is possible to write semantically correct code
does not follow this convention, but that is such bad style
that it is reasonable to assume that programmers will always
declare all dependencies at the beginning of a file. It is also
possible to defeat this analysis by using non-literal strings,
which would be the case if the program itself were decid-
ing at runtime which libraries to import. In any language,
the process of dynamically linking code limits the ability
of static analysis tools to determine if a running program
will actually encounter errors. In this regard, flint is no
different.

4.4 Programmatic Class Creation
Although most classes in an F-Script program are written in
the compiled Objective-C layer, it is possible to write classes
directly in F-Script. The language lacks any special syntax
for class creation, so classes must be created programmati-
cally, with properties and methods added to the class one at
a time. During the second analysis pass, flint attempts to
recognize the patterns of class creation, and adds constraints
to the program model.

It is possible for classes to be created so that they function
correctly, but in a way that defeats flint’s attempt to ana-
lyze them. flint assumes that the programmer follows the
coding conventions described below. If any more “sophisti-
cated” structure is used, the programmer is assumed to not
need the help of a type checker.

4.4.1 Class Creation
Classes are created in F-Script by creating a metaclass object
from a special “class factory” called FSClass:

MyNewClass := FSClass newClass:’MyNewClass’.

When flint recognizes a line like this, it creates the
type variables κMyNewClass and κMyNewClass′ , and adds the
constraint ιMyNewClass = κMyNewClass′ .

4.4.2 Property Addition
Properties are added to classes with the command

MyNewClass addProperty:’bar’.

This line creates a new variable τbar and adds the con-
straints:

κMyNewClass v
{

〈bar→ (τbar)〉,
〈setBar:→ (κFSVoid, τbar)〉

}
There is also a method called addClassProperty:,

which has similar operation but affects the metaclass MyNew-
Class’.

4.4.3 Method Addition
Methods are installed to classes by giving the metaclass ob-
ject a block to execute when an instance receives a particular
message:

MyNewClass onMessage:#doStuff:withThing:
do:[:self :stuff :thing |

....
].

There are several important points to note about this style
of method declaration:

1. The token #doStuff:withThing: is a selector, a spe-
cial data type that represents the name of a method.

7 2008/5/14

2. As in Python and JavaScript, self must be explicitly
declared; there is no implicit parameter. The use of the
name self is only conventional, but it must be the first
parameter.

3. Unlike methods for classes written in Objective-C, the
parameters for F-Script methods will have types that are
anonymous protocols determined by constraints added
to their use inside the method. Instead of the single
class (with descendants) that is legal for an Objective-
C method, there may be many classes that could satisfy
the constraints on an F-Script method parameter.

4. It is possible to provide a reference to a previously cre-
ated Block as the implementation, instead of using a
literal. This is useful when creating classes on the fly
and using partially bound closures to implement meth-
ods. However, because flint requires information from
the actual block structure (such as parameter names and
count), such method addition will be ignored. It is as-
sumed that when writing such advanced code, the pro-
grammer has no need of static analysis.

When flint encounters a node that matches this pattern,
it performs the following actions:

1. The block is checked to make sure that it has the correct
number of arguments: the number of colons in the selec-
tor + 1 for the receiver. If it does not, flint reports a
warning to the user and performs no further action.

2. It is conventional to name the first parameter self. If this
convention is ignored, flint reports a warning.

3. The type of the first block parameter, self, is constrained
to be a subtype of the class to which the method is being
added:

σ1 v κMyClass

4. As shown in Section 3.2.6, the return type of the block
is φ, and the block parameters already have the types
σi. flint creates a custom protocol containing this new
method, and the the constraint:

κMyClass v {〈selectorName→ (φ, σ2, σ3, . . . σn)〉}

The method parameters start with σ2 because of the pres-
ence of the implicit parameter.

5. If the same method is implemented in a superclass,
the parameters for this method implementation are con-
strained to be supertypes of the superclass method’s pa-
rameters:

σi w σsuperi

Likewise, the return type is constrained to be a subclass
of the superclass method’s return type:

φ v φsuper

The command onClassMessage:do: performs a similar
operation for class methods.

It is also possible to add methods to existing classes that
were written in Objective-C. Such a collection of methods is
called a “category”, and is similar to the Ruby idea of “mix-
ins”. F-Script extends all Objective-C metaclass objects to
support the onMessage:do: and onClassMessage:do:
commands.

If the method is analyzed without any errors, flint adds
it to its internal library of class functionality. This addition
uses a separate API from that used to add type constraints;
the newly added method is treated no differently than a
method that was written in Objective-C.

4.5 Advanced Array Processing
The original research goal of F-Script was to demonstrate the
feasibility of object-oriented array processing (10). To this
end, F-Script incorporated the array processing functionality
of APL (6). For example, if we have two arrays of equal
length a and b, the following code assigns the scalar product
of a and 4.5 to c, and assigns the inner product of the two
arrays to d:

a := { 2, 3, 4, 5, 6 }.
b := { 6, 7, 8, 9, 0 }.
c := a * 4.5.
d := (a * b) \#+.

Here, the operation a * b performs pairwise multiplica-
tion of the corresponding elements in a and b and returns
an array containing the result. Attempting to use arrays with
unequal element counts raises an exception. \ is the reduc-
tion operator; in this case, the second operand is the selec-
tor for the + operator, which is internally converted into the
method name operator plus:. This allows a very concise
expression of an operation that in most languages would re-
quire either a loop or an explicit collection operation. In most
cases, no extra syntax beyond normal message sending is re-
quired. This functionality is provided partly by checks in the
F-Script interpreter, partly by the runtime delegation func-
tions of Objective-C, and partly by code in the Array class.

There are several variations to the array processing capa-
bilities of F-Script; flint provides partial support for the
most common cases. When flint sees a message that is
sent to an object that can be positively identified as an in-
stance of NSArray, it checks the message name against the
list of methods that NSArray supports (such as count, at:,
etc). If it is not one of those, the message is assumed to be
sent to all the objects of the array, and the return value is
an array containing the individual results. This is the same
procedure that the F-Script runtime uses to implement array
messaging.

In the following code, arr is a list of angles in radians,
with the value of π factored out. The code first multiplies the
angles by π, then performs some trigonometric operations:

8 2008/5/14

arr := { 0.25, 1.0, -0.27, 2.05 } * 3.14159.
cos := arr cosine.
sin := arr sine.
prod := cos * sin.

The fact that the first operand to * is an array is deter-
mined by testing the type for inclusion of the special Array
marker method. In this example, we take the elements in the
array to have type χ, and the solitary number in the first
line to have type ψ (here, those types are both the variable
κNumber, but in general this cannot be assumed). From this,
we know that the type of the left operand is the special array
type variable αχ.

By recognizing that the second operand to * is not an
array, flint infers that the operator star: message will
be sent to every element in the array. This leads us to add the
constraint:

χ v {〈operator star:→ (γ, ψ)〉}

The assignment statement adds the constraint:

ιarr w αγ

When flint attempts to resolve the types for arr in the
second and third lines, it finds that the lower bound is an
array of type αγ . These unary methods add four constraints,
with fresh type variables for the return values:

γ v {〈cosine→ (µ)〉}

γ v {〈sin→ (ν)〉}

ιcos w αµ

ιsin w αν

Finally, when the two arrays cos and sin are multiplied
together, flint notices that it is an operation between ar-
rays, with the elements of the first array as receiver. This
adds the final constraints:

µ v {〈operator star:→ (ε, ν)〉}

ιprod w αε

A complete resolution of these constraints shows all of χ,
ψ, γ, µ, ν, and ε to be equal to κNumber.

4.6 Custom Inference Rules
Although many of F-Script’s idioms are well-known enough
to write them directly into flint, it is desirable to allow
end-users to write their own rules that can better express the
behavior of their code. For example, one of the modules that
comes with the F-Script standard library is the Pair class, the
complete definition of which is shown in Figure 5 at the end
of this paper. This class has no behavior besides having the
properties first and second. It also adds the operator =>

to the class NSObject, which allows the arrow to be used as
a pairing operator between any two objects.

This class is used often in the F-Script standard library.
Ideally, Pair objects would be polymorphic, in the style of
tuples in the languages ML and Haskell. By default, flint
is incapable of this. Once it has analyzed the Pair.fs file,
it will find no constraints on the types of the first and
second properties. flint will then fix the type of κPair as
the following:

κPair =
{
〈first→ (>)〉,
〈second→ (>)〉

}
This makes it impossible to perform any analysis on the

use of Pair objects. To make a more useful analysis possible,
flint allows for users to write custom syntax rules that
match syntactic patterns. These rules are written in F-Script,
and so can be added incrementally to the analyzer without
recompiling the Flint bundle.

The if-else recognition predicate described in Section 4.2
is one such rule. For creating Pairs, the rule would be even
simpler; it would match any method call with the name
operator equal greater: (the internal F-Script name for
the => operator). This rules relies on the coding convention
that => is used exclusively for pairing objects, and does not
have any other use.

An inference rule written in F-Script overrides flint’s
normal processing when they match, and executes a block
of F-Script code that can return a custom type. In this case,
if the types of the two elements in the pair are α and β, the
rule would return the custom type:

ζα,β =
{
〈first→ (α)〉,
〈second→ (β)〉

}
ζα,β v κNSObject

Note that the actual Pair class does not appear in this type,
nor do the methods setFirst: and setSecond: appear,
even though they do technically exist. This type will then be
treated by flint the same way as it would treat any other
type.

5. flint Architecture
flint is implemented as a Mac OS X bundle written in
Objective-C. The F-Script interpreter links with this bundle
at launch. The code in flint uses several undocumented
features of the F-Script engine, mostly for accessing the
symbol table and parse tree. A short script, flint.fs, is
used to run the analyzer on a target file. This script initializes
the engine, creates an initial FlintAnalyzer object, registers
idiomatic rules, and tells it to load the target program.

5.1 Compiled Code Library
Before analyzing a program, flint loads the library of
compiled type information. This library is generated from
Objective-C framework headers by a separate tool, and is

9 2008/5/14

stored in a serialized format that requires less than 2 sec-
onds to parse and load on a modern Macbook Pro. This li-
brary will only need to be regenerated when the frameworks
change.

5.2 Syntax Analyzer
flint uses the F-Script interpreter framework to parse script
files, but it does not directly use the generated syntax tree.
The F-Script internal representation of a program is designed
for immediate evaluation, not static analysis, and has a num-
ber of nodes that are either not supported by flint (such as
advanced messaging patterns) or that can be trivially reduced
to other kinds of nodes. Although identifiers in F-Script are
lexically scoped, resolution occurs at runtime, and so the
syntax tree does not contain links between identifier nodes
and declarations. The F-Script interpreter also does not keep
enough information on file locations to be useful for error re-
porting. For these reasons, the flint core builds a separate,
but similar, parse tree based on that used by the F-Script in-
terpreter, with a simplified syntax, fully resolved identifiers,
and better location tagging.

After the syntax tree has been created, flint moves
through the tree in execution order, applying the rules from
Section 1 to create new type variables and constraints This
default The code in these classes may be overridden by
custom inference rules written in F-Script, as described in
Section 4.6. Each syntax node of the program has a rule
applied to it only once.

At various points, idiomatic rules will recognize module
importation and tell the analyzer to load additional code.
This may include both new F-Script code that must be an-
alyzed, and compiled with compiled type information.

After the F-Script program has been completely analyzed,
flint attempts to find a solution to the global system of type
constraints.

5.3 Constraint Resolution
flint uses a constraint system based on the model of the
Banshee engine (7). As described below, there is a finite
set of solutions for all type variables, so flint is guaran-
teed to find a solution for a constraint system, if one exists.
Some expressions in F-Script, such as arrays and closures,
give rise to type variables that indicate custom behavior. In
these cases, they are treated as singleton instance of custom
classes. Because both closures and arrays are special syn-
tactic forms, there are a finite number of both in a program,
and the number of unique classes in F-Script’s library will
remain finite.

A valid solution for an F-Script program’s type constraint
system is one in which there is at least one class that can sat-
isfy the constraints on every variable. The constraint system
of a program can be modeled as a directed graph, with type
variables as nodes and subtyping relationships as edges.

5.3.1 Identifying Type Variable Solutions
All constraints placed on a type variable reduce the number
of classes that the variable may represent. This reduction
may be “from above”, in the case of a subtype relationship,
which eliminates from contention superclasses from higher
levels of the hierarchy; or it may be “from below”, in the case
of a supertype constraint. In both cases, the total number
of candidate classes is reduced. Once all classes have been
eliminated from contention, no further constraints can have
any effect, and it is known that the program will encounter
type errors at runtime.

It would be very inefficient to tag each type variable
with the complete enumeration of classes that satisfy its
constraints. In most object-oriented languages, the set of
all classes (including abstract classes) can be represented
as a potentially disconnected, directed acyclic graph. flint
uses this representation to efficiently identify portions of the
hierarchy that satisfy type constraints.

In this representation, a constraint to be a subtype of,
for example, κNSFoo eliminates all class nodes that are not
reachable from κNSFoo’s node. A superclass constraint elim-
inates all nodes from which κNSFoo is not reachable. A
sample representation of this kind of solution restriction is
shown in Figure 4, with a set of nodes defined as only
the conjunction of two reachability restrictions. flint uses
these restrictions to efficiently determine which classes sat-
isfy the constraints on a variable.

It is possible for constraints to be added that eliminate
all nodes in the class hierarchy from the solution set for a
variable. This indicates a type error, as there is no class that
has all of the functionality the program requires.

Pseudo-superclasses (i.e. the ΣClassA,ClassB,... type vari-
ables) can be represented by creating brand new classes and
imposing subtype constraints on them. These classes are
only created in special circumstances (such as the custom
rule for conditional expressions) that are based on a lim-
ited number of syntax patterns, so they do not invalidate the
finitude of possible type variable solutions.

5.3.2 Constraint Data Flow Analysis
The application of constraints on type variables can be im-
plemented as a straightforward data-flow analysis of a graph.
The properties of this data-flow are shown in Table 2. All
type variables start their lives as the top value, representing
the set of all possible classes. As constraints are added, they
move down the solution lattice. Reaching the bottom value
indicates a type error.

Because the program analysis is flow-insensitive, con-
straints may affect type variables created at a syntactically
earlier location. After all syntactic analysis is complete,
flint recursively applies each constraint until all type vari-
ables in the program have reached fixed solutions. This
global solution is the final typing of the program.

10 2008/5/14

Graph Nodes Type variables.
Graph Edges Supertype and subtype constraints. Although a subtype and supertype constraint are

semantically equivalent, it is more natural to see the information as flowing in a
particular direction. For the constraints described in Sections 3 and 4, the variable
on the left-hand side is the one being constrained. By default, the propagation of
constraints follows this direction, rather than the direction from supertype to subtype.

Data Values Sets of possible classes that will satisfy all constraints. These values are defined as the
set of all subsets of the nodes in the program’s class hierarchy.

Partial Order on Data Values Subset.
Top Value The set of all classes, equivalent to κNSObject. This is the default value for all type

variables.
Bottom Value The empty set of classes, which represents an invalid solution.
Transition Function Application of constraints; because constraints always remove classes from consider-

ation, this function is monotonically decreasing.

Table 2. Data-flow Analysis for Resolving Type Constraints

5.3.3 Optimization
In even a moderate-sized program, there will be thousands of
type variables. flint uses several optimization techniques
to reduce the amount of work it has to perform in resolving
the type constraint system:

• Online solution reduction
It is not always necessary to wait until the end to ap-
ply constraints. For example, if an identifier is assigned
a constant, resulting in the constraint ιvar w κNSFoo,
flint will immediately restrict the possible solution set
of ιvar, reducing the number of iterations that must be
performed in the final analysis.

• Immutable type variables
Many of the variables in a program will represent classes
from libraries, such as κNSString and κNSNumber′ . There
is only a single class that these variables can represent, so
flint “hardwires” this solution to them at the beginning
of its analysis. Any attempt to add additional constraints
to these nodes must be incorrect, so they may be removed
from consideration without affecting the rest of the pro-
gram model.
As mentioned above, it is possible to add additional
methods to existing classes. However, flint uses a sep-
arate internal API to perform these modifications. As
stated, our analysis relies on a coding convention that
all class categories and libraries will be imported at a
syntactically earlier point than their functionality is first
used.

• Collapsing variables
In the case of a literal object, such as a string constant, it
is useless to have a dedicated type variable for that syntax
node; the node can simply take the κNSString type. Like-
wise, if only a single assignment is made to a variable,
the types of the left- and right-hand sides are identical,
and the same variable can be used for both. flint ag-

gressively collapses type variables when it can prove that
they are identical.

• Subgraph identification
Because the effects of constraint resolution follow a di-
rected graph, it is possible that a change to a variable
will only affect a portion of the type system. flint per-
forms automatic, on-demand identification of dependent
subgraphs for each type variable, and caches this infor-
mation so that future iterations will not have to search
the entire graph.

B

A

Figure 4. Sample class hierarchy. Unshaded portion shows
the possible classes for type variable τ given the constraints
τ v κA and τ w κB.

11 2008/5/14

5.3.4 Reporting Errors
flint detects and reports two kinds of errors: type errors re-
sulting from conflicting constraints, and misuse of program-
ming idioms that are likely to lead to run-time exceptions.

5.4 Type Errors
There are two ways that a type error may arise: calling
a method that a class does not implement, and calling an
existing method with an incompatible parameter type.

Method implementation errors are detected during reso-
lution of constraints, as described above. If flint ever de-
termines that the set of possible classes for a type variable
is empty (the bottom value in the data-flow analysis), it re-
ports an error and removes that type variable, along with all
associated constraints, from the graph. This prevents errors
from cascading, but also hides other problems that may arise
when that error is fixed.

Parameter type errors are detected after the fixed point
for the type variable graph has been created. As described in
Sections 3 and 4, type variables for methods call receivers
are constrained against protocols that contain the types of
the arguments. After the set of possible classes for a type
variable has been calculated, the methods that are called on
it are checked against these candidate classes. If any method
is called with an incompatible parameter, as defined by the
inheritance hierarchy, an error is reported to the user.

5.4.1 Programming Idiom Errors
flint can find several common programming mistakes
that, while not strictly errors, will probably cause problems
at run-time. These constraints are matched by a series of
heuristics during the second pass of flint’s analysis. These
heuristics, or idiomatic rules, are in the style of the venerable
C utility lint, hence the name of this paper’s program (for
“F-Script lint”).

While it is possible to write a correct program that
matches some of these warning patterns, in most cases they
indicate the presence of serious problems. A programmer
whose technique involves heavy violation of these idioms
probably would not find much use in a program-analysis
tool like flint.

Idiomatic rules are written in F-Script, using an API sim-
ilar to that for the custom type inference rules. Several of the
idiom violations that flint detects are:

• If a method is being added to a class, it is possible for
the implementation block and method name to have a
different number of argument slots, or for the block to
be missing the implicit parameter. These errors will raise
exceptions when the library is loaded, but flint will
attempt to catch them at analysis time.

• As described above, when flint notices that a library
file is imported, it first checks to see if that library exists
before loading it. If the file does not exist, flint contin-
ues its analysis but reports a warning. When running the

program, the absence of the library file would cause an
exception.

• F-Script has several reserved identifiers, including sys,
args, and the identifiers for metaclass objects. Assign-
ment to these identifiers is syntactically legal, but raises
an exception at runtime. As part of the second analysis
pass, flint checks every assignment statement to see if
the lvalue is one of these reserved identifiers. If so, it dis-
cards any constraints that had been added to the identifier
and warns the user.

• κFSVoid is a placeholder that is required to map Objective-
C void-valued methods to F-Script; actually using it is
as inappropriate as using the unit value in ML. If a
message node can be determined to have type κFSVoid,
flint checks to ensure that that type is not propagated
anywhere via assignment or use as an expression. If it is,
flint reports an error.

Because idiomatic rules are written in F-Script, they can
be used by the programer to extend flint’s analysis.

A. Appendix
Acknowledgments
Thank you to Phillipe Mougin for creating F-Script and
encouraging the development of flint.

References
[1] Apple Inc, “The Objective-C Programming Language”, 2006.

[2] William R. Cook, “The Development of AppleScript”, Pro-
ceedings of the Third Conference on History of Programming
Languages, 2007.

[3] Craig Chambers and David Ungar, “Iterative Type Analysis and
Extended Message Splitting: Optimizing Dynamically-Typed
Object-Oriented Programs”, SIGPLAN 1990 Conference Pro-
ceedings, 1990.

[4] Gilad Bracha and David Griswold, “Strongtalk: Typechecking
Smalltalk in a Production Environment”, Proceedings of the
ACM SIG-PLAN conference on OOPSLA, 1993.

[5] Mark Hamburg, “Its All Glue: Building a desktop application
with Lua”, presented at the Lua Workshop, 2005.

[6] Ken Iverson, “A Programming Language”, John Wiley and
Sons, 1962.

[7] John Kodumal and Alex Aiken, “Banshee: A Scaleable
Constraint-Based Analysis Toolkit”, Proceedings of SAS 2005,
2005.

[8] Noel Llopis and Sean Houghton, “Backwards Is Forward: Mak-
ing Better Games with Test-Driven Development”, presented at
the Game Developers Conference, 2006.

[9] Robin Milner, Mads Tofte, and Robert Harper, “The Definition
of Standard ML”, MIT Press, 1990.

[10] Phillipe Mougin and Stephane Ducasse, “OOPAL: Integrating
Array Programming in Object-Oriented Programming”, OOP-
SLA 2003 Conference Proceedings, 2003.

12 2008/5/14

[11] Peter Thiemann, “Towards a Type System for Analyzing
JavaScript Programs”; European Symposium On Programming,
2005.

[12] Mike Salib, “Starkiller: a type inference system for Python”,
presented at PyCon, 2004.

[13] David Ungar and Randall B. Smith, “Self: The Power of
Simplicity”, OOPSLA 1987 Conference Proceedings, 1987.

[14] Guido van Rossum, “Optional
Static Typing: Stop the Flames!”,
http://www.artima.com/weblogs/viewpost.jsp?

thread=87182.

[15] Larry Wall, Tom Christiansen, and Jon Orwant, “Program-
ming Perl 3rd Edition”, O’Reilly Media, 2000.

13 2008/5/14

"Create a simple Pair class"
Pair := FSClass newClass:’Pair’ properties:{’first’, ’second’}.

Pair onClassMessage:#pair:with: do:[:self :first :second | |newPair|
newPair := self alloc init.
newPair setFirst:first.
newPair setSecond:second.
newPair

].

"Add a pairing operator to NSObject, and thus to every other class"
NSObject onMessage:#operator_equal_greater: do:[:self :second |

Pair pair:self with:second.
].

Figure 5. Source code of the Pair class.

14 2008/5/14

