Selected Solutions to Rudin’s “Principles of
Mathematical Analysis”
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The Real and Complex Number System

. If r is rational(r # 0) and z is irrational, prove that r + z and rz are
irrational.

Proof: Suppose 7+ is rational, thenr +x = ™, m,n € Z, and m,n have
no common factors. Then m = n(r + x). Let r = %,p,q € 7Z, the former
equation implies that m = n(% + x),ie,gqm = n(p + qz),jie,x = %_q"p,
which says that x can be written as the quotient of two integers. This is
contradict to the assumption that x is irrational. The proof for the case
rz is similar.

. Prove that there is no rational number whose square is 12.
Proof: Suppose on the contrary, there is a rational number p satisfies
p? = 12, then let p = =,m,n € Z, m, n have no common factors, so

m? 2

I =12, ie., m? = 12n?, which shows m? is even, m is even to. Suppose
m = 2k, then 4k? = 12n2, ie., k? = 3n2, i.e., k? can be divided by 3,
i.e., k can be divided by 3, so m can be divided by 3. Let k = 3p, then
k? = 9p?i.e..9p? = 3n?i.e.,n? = 3p?, so n? can be divided by 3, i.e., n can
be divided by 3, which is contradict to our choice of m, n.

. Prove Proposition 1.15.

. Let E be a nonempty subset of an ordered set; suppose « is a lower bound
of E and 8 is an upper bound of E. Prove that a < .

Proof: Vx € E, a <z and x < 3, since F is also an ordered set, which
implies that a < 3.

. Let A be a nonempty set of real numbers which is bounded below. Let —A
be the set of all numbers —z, where x € A. Prove that inf A = —sup(—A).
Proof: Suppose y is a lower bound of A, which means Vax € A, y < z,
then —x < —y, V— 2 € —A. In other words, —A is bounded above, thus

z = sup(—A) exists. What remains to prove is inf A = —z. According
to the previous process, —z is a lower bound of A, (*) and if w > —z,
then z > —w, i.e. —w is not an upper bound of —A, thus Jy = —x €



—Alx € A), y > —w, ie. —y < w, but —y = —(—z) =z, so ¢ < w,
which shows that w is not a lower bound of A. Combined with (*), we
conclude that —z is the greatest lower bound of A, i.e. —z = inf A, thus
inf A = —sup(—A4).

. Fix b > 1.

(a)

If m, n, p, q are integers, n > 0, ¢ > 0, and r = m/n = p/q, prove
that (b™)'/™ = (bP)'/4. Hence it makes sense to define b" = (b™)1/™.
Proof: There is unique positive real numbers r; and ro, which satisfy
ri = (0™)/™ and ro = (bP)'/9, what we need to prove then becomes
r1 = ro. For r =™ = b"" and 4 = bP = b7, thus r}'? = p""1 = rd",
Le.ry? =ry? which means r; = r if we take niq root from both sides.

Prove that b"™% = b"b® if r and s are rational.

Proof: Suppose r = %1 and s = %2, then r +s = %,
thus (br+s)n1n2 — bmlng—i-mgnl, and (brbs)nlng — (br)nlnz(bs)nlng —
pranzpmeny — pminztmanwhich shows (b7T%)"112 = (HTHS)Mn2 e,
b = brbs,

If x is real, define B(z) to be the set of all numbers b’, where t is
rational and t < x. Prove that " = sup B(r), when r is rational.
Hence it makes sense to define b* = sup B(x) for every real x.
Proof: B(r) = {b'|t € Q At < r}. It’s easy to see that b* < b",
treQandt <r. (Let r=70 t="=. then (bt)am = (ba ) = ppm,
From ¢t < r, we can obtain that g < ™, which is equivalent to
pn < gm. Thus, bP" < b9, for b > 1, by assumption. This means
that (b')9™ < b9™ taking ﬁ root gives us b' < b, i.e. bt <b".)
**Why can we do the operation of taking an root and don’t affect
the direction of the inequality? The identity

b —a" = (b—a)b" P+ 0" 2a 4 +a"h) (1)

tells us that (b")9" — b9™ = ((b*)™ —b™)T'(q), where T'(g) > 0, thus if
(b*)9™ < b?™ then (b')" < b™. By rewriting b™ as (b )™ and using
(1) again tells us that b* < b = b"

Now, we know that b" is an upper bound of B(r). Note that " €
B(r), so b" must be the smallest upper bound of B(z), otherwise
there is an upper bound « of B(r) satisfies a@ < b", which is absurd
because b" € B(r).

Prove that b®tY = b*bY for all real x and y.

Proof: By definition, b* = sup B(z), ¥ = sup B(y) and v*T¥ =
sup B(z + y).

We need to prove that b*bY is the supremum of B(x+y). This can be
obtained from b**Y = sup B(xz +y) = sup{b“|u € Q ANu <z + y} =
sup{b*Tts € Q,t € QA s <z, t <y} =sup{bb|s € Q,t e QA s <
z,t <y}=sup{bsls € QA s < z}sup{d|t € QAL <y} =0b"bY.



7. Fix b > 1, y > 0, and prove that there is a unique real = such that b* =y,
by completing the following outline. (This x is called the logarithm of y
to the base b.)

(a) For any positive integer n, b™ —1 > n(b — 1).
Proof: " —1=(b—1)(1+b+---+b""1) > (b—1)n, for b > 1.

(b) Hence b —1 > n(b'/™ —1).
Proof: Directly from (a).

(¢) Ift >1andn > (b—1)/(t —1), then b*/™ < t.
Proof: b'/" <l y 1< (t—1)+1=t, ie b/ <t.

(d) If w is such that b¥ < y, then b¥*+(1/™) < y for sufficiently large n;
to see this apply part(c) with t =y -b~%.
Proof: Sufficiently large means n > (b—1)/(y - b~ — 1).

(e) If b >y, then b*~(1/™) > 4 for sufficiently large n.
Proof: b = supB(w) = {V"|r € QA r < w}, if b > y, then y
is not an upper bound of B(w), so there exists r, r € Q A r < w,

b" > y, which also means b"~(1/") >y for sufficiently large n. Thus,
b=/ = sup{b*|s € QA s <w — (1/n)} > br=1/M) > 4.

(f) Let A be the set of all w such that b < y, and show that = = sup A
satisfies b = y.
Proof: Suppose, if, b* > y, then by (e), b*~ (/™ > y for some
sufficiently large n(which means z is not the least upper bound of
A), which is contradict to the fact that © = sup A; On the other
hand, if, b* < y, then by (d), b*t(1/") < 4 for some sufficiently
large n(which means z is not an upper bound of A), which is also
contradict to the fact x = sup A. Thus, b* = y.

(g) Prove that this x is unique.
Proof: It’s sufficient to show that if 21 # x5, then b*t # b*2. This is
clearly from the definition of 4* which says that b* = sup B(z). (To
see this, suppose x1 > 2, then there must exist at least one r € Q
that b" € B(x1) but b" € B(x2). The case that 21 < xo is similar.

8. Prove that no order can be defined in the complex field that turns it into
an ordered field. Hint: -1 is a square.
Proof: According to Definition 1.17, An ordered field is a field F' which
is also an ordered set, such that (i) z+y <ax+zifz,y, 2 € Fand y < z;
(i)zy >0ifx e F,ye F,z>0,and y > 0.
Suppose C is an ordered field, then z? > 0, if x > 0.(Here 0 means
(0,0) € C) If x < 0, then —z > 0, so (—z)? > 0 and 2? = (—x)% > 0.
We have show that 22 > 0 if x # 0. But if we take z = (0,1), then
2?2 = (=1,0) > (0,0). On the other hand, (1,0)? = (1,0) > (0,0)(*), by
(i) we have (—1,0) + (1,0) > (0,0) + (1,0), which gives (0,0) > (1,0), a
contradiction with (*).



9.

10.

11.

Suppose z = a + bi, w = ¢+ di. Define z < w if a < ¢, and also if a = ¢
but b < d. Prove that this turns the set of all complex numbers into an
ordered set. (This type of order relation is called a dictionary order, or
lexicographic order, for obvious reasons.) Does this ordered set have the
least-upper-bound property?

Proof: According to Definition 1.6, An ordered set is a set S in which
an order is defined. An order on S is a relation, denoted by <, with the
following two properties: (i) If z € S and y € S then one and only one of
the statements z < y, x =y, y < z is true. (ii) If z, y, z € S, if x < y
and y < z, then x < z.

To prove (i), it’s easily to see that w = z if and only if a = bAc=d. To
prove (ii), let z = (a,b), y = (¢,d) and z = (e, f), then < y means a < ¢
ora=cAb<d, y<zmeansc<eorc=eAd< f. Combinations of
the four conditions will give either a < e or a = e A b < f, which implies
x < z. So C turns to be an ordered set under this order definition.

This ordered set has the least-upper-bound property. Given any nonempty
set S of C. Let A = {a|]z = (a,b) € S}, B = {b|z = (a,b) € SAa = sup A}.
Then we can easily see that sup .S = (sup A, sup B).

Suppose z = a+bi, w = u+iv, and a = (M)lﬂ’ b= (M%)I/Q. Prove

that 22 = w if v > 0 and that (22 = w if v < 0. Conclude that every
complex number(with one exception!) has two complex square roots.
Proof:

(a) Ifv >0, 22 = 2.2 = (a+bi)? = (a®—b*+i(2ab) = utilv| = u+iv = w.
(b) Ifv <0, (2)? = (a—bi)? = (a® —b?) —i(2ab) = u—i|v| = u+iv = w.
(¢) If w =0, then w = 0Av = 0, which impliesa = 0Ab=0,s0z2 =2 =0

is the unique square root of w. If w # 0, then according to the above

two statements, either x = z or x = Z is a square root of w, i.e.,

22 = w. On the other hand we have known that (—x)? = 22, so —x
is also a square root of w, and x = —z if and only if x = 0. Thus
we have shown that every complex number w will have two complex
square roots if w # 0.

If z is a complex number, prove that there exists an r > 0 and a complex
number w with |w| = 1 such that z = rw. Are w and r always uniquely
determined by 27

Proof:Suppose z = (a,b), then we take r = |z| = Va2 +b% > 0 and

w = (%,%). Obviously, z = rw holds, and |w| = \/f—i + ff—z = \/% =1

r?
From the above definitions of 7 and w, we conclude that w and r always
uniquely determined by z. (In fact, if we take absolute value from both
sides of z = rw, we can obtain |z| = r|lw| = r. So r is uniquely defined
and so is w).



12.

13.

14.

15.

16.

If 21, -+, 2, are complex, prove that |z + 20 + -+ + 2| < |21| + |22| +
Proof: We can prove this by induction on n.

(i)n = 1, this is the trivial case;

(ii)Suppose the inequality holds when n = k. When n =k +1, |21 + 22 +
stz 2| = (24 Fzr) F e < stz F 2]+ 2] <
(2] + |22l + -+ + |2k]) + [2rra] = [21] + |22 + - - + [2k] + |2841], Which
completes our proof.

If x, y are complex, prove that ||z] — |y|| < |z — y|.

Proof: |z| =[(z —y) +y| < |z —y[+ [yl = [z — |y < |z — y|, similarly,
Wyl =ly—ac+af<|ly—zl+|z] =z -yl +|z| = [y - |z| < |z —y| =
|x] — |y| > —|x —y|. Combining these two inequalities gives us the desired
result.

If z is a complex number such that |z| = 1, that is, such that zz = 1,
compute |1 + 2|2 + |1 — z|2.

Proof:[1+ 22+ 1—-22=(1+2)1+2)+(1—-2)(1-2)=1+2+2z+
224+ 1—2—Z24+22=24+222=2+2=4.

Under what conditions does equality hold in the Schwarz inequality?
Proof: If equality hold in the Schwarz inequality, we have AB = |C|?,

ie, | 30 abi* = 30 lag|* 3o [b;]*
j=1 j=1 j=1
From the proof of Theorem 1.35, this is equivalent to |Ba; — Cb;| = 0, V7,
i.e., Ba; = Cb;,Vj, i.e., a; Y |bx|? =b; 3 arby,Vj.
k=1 k=1

Suppose k >3, x, y € R* |x —y| =d > 0, and 7 > 0. Prove:

(a) If 2r > d, there are infinitely many z € R¥ such that |z — x| =
lz—y|=r.
Proof: If 2r > d, then x, y, and z can form a triangle in the R*.
The orbits of z forms a circle in the R, and it is obviously that the
number of z is infinite.

(b) If 2r = d, there is exactly one such z.
Proof: If 2r = d, then clearly z = % is the only satisfied point,
which is the middle point of the line determined by the line with ends
x and y.

(¢) If 2r < d, there is no such z.
Proof: This can be seen from the fact that |x—y| < |x—z|+|z—y]| =
|z — x| + |z — y|, which tells us that d < 2r.

How must these statements be modified if & is 2 or 17
If k =2, then in (a) there are two satisfied points z; (b), (c) still holds.
If k=1, then in (a) there is no satisfied point z; (b), (c) still holds.



17. Prove that [x +y|? + |x — y|? = 2[x|? + 2|y|?, if x € R¥ and y € R*.
Interpret this geometrically, as a statement about parallelograms.
Proof: [x+y[>+[x—y[* = (x+y)(X+¥) +(x~y)(X~§) = 2xX +2yy =
2|x|? + 2|y|?. This is to say, the sum of the square of the two diagonals is
twice of the sum of the square of the two edges of a parallelogram.

18. If £ > 2 and x € R”, prove that there exists y € R* such that y # 0 but
x -y = 0. Is this also true if k = 17
Proof: We classify x into the following cases:

(a) x =0, this case is trivial because each y # 0 satisfies x -y = 0.

(b) Now we suppose that x # 0, then at least one of the coordinates of
x is not 0.

i. If there is at least one(but not all) 0 in the coordinates of x, then
suppose x; = 0, let y be y; =1 and y; = 0, Vj # i, we can see
that y # 0 but x-y = 0.

ii. If all of the coordinates of x are not 0, then we can clarify k
according to its oddity.

When k is even, suppose X = (o1, ...,Tk/2, Tp/241, - Tk), let
Y = (Tky oo T j241, —Th /2, o, —21), then y # 0 and x -y = 0.
When k is odd, suppose X = (21, ..., T(k41)/2—15 T(k+1)/2> T(k+1) /241
s e a:k),let y = (l‘k, oy T(kt1) /2415 0, —T(k4+1)/2—15 - —l‘l), then
y # O(because k > 2) and x -y = 0. This completes our proof.

19. Suppose a € R*, b € R*. Find ¢ € R* and » > 0 such that |x — a| =
2|x — b| if and only if |x — ¢| = r.
The solution is 3¢ = 4b — a, 3r = 2|b — a|, but I doesn’t know how to
obtain it...

20. With reference to the Appendix, suppose that property (III) were omit-
ted from the definition of a cut. Keep the same definitions of order and
addition. Show that the resulting ordered set has the least-upper-bound
property, that addition satisfies axioms (A1) to (A4)(with a slightly dif-
ferent zero-element!) but that (A5) fails.

Proof: First we prove the resulting ordered set R has the least-upper-
bound property.

Let A is be a nonempty subset of R, and assume that 5 € R is an upper
bound of A. Define v to be the union of all & € A. In other words, p € v
if and only if p € « for some o € A. We shall prove that v € R and that
~v = sup A.

Since A is not empty, there exists an ag € A. This ag is not empty. Since
ag C 7, v is not empty. Next, v C S(since a C § for every ain A), and
therefore v # Q. Thus ~ satisfies property(I). To prove(II), pick p € 7.
Then p € a; for some a7 € A. If ¢ < p, then ¢ € a1, hence ¢ € 7.

Thus v € R.



It is clear that a < for every a € A.

Suppose § < <. Then there is an s € v and that s € §. Since s € v, s € «
for some o € A. Hence 0 < «, and ¢ is not an upper bound of A.

This gives the desired result: v = sup A.

Next, we will prove that the addition satisfies axioms (A1) to (A4):
(A1)We have to show that a + 5 is a cut. It is clear that a + f§ is a
nonempty subset of Q. Take ' € «, s’ € 8. Then r’ + s > r + s for all
choices of r € a, s € . Thus ' + s’ € a + B. It follows that a + 3 has
property(I).

Pick p € a+ 8. Then p =r + s, with r € , s € 5. If ¢ < p, then
g<r+s=qg—s<r,soq—s€a Thusqg=(¢—s)+s € a+pand (I
holds.

(A2)a+ S is the set of all r+ s, with r € a, s € 8. By the same definition,
B+ «is theset of all s+ 7. Since r+s=s+r forallr € Q, s € Q, we
have a + = 6+ a.

(A3)As above, this follows from the associative law in Q.

(A4)We have to modify the definition of 0* to be the set of all negative
rational numbers plus the number 0. (The reason will be clear if we look
back to the proof of (A4) on page 18, which use property (III) that has
been removed.)

If r € aand s € 0%, then r+ s < r, hence r+ s € . Thus a+0* C . To
obtain the opposite inclusion, pick p € «, then p =p+0 € a + 0*. Thus
a C a+ 0*. We conclude that a4+ 0* = a.

Finally, we will show that (A5) can no longer be held.

Suppose, on the contrary, Vo, o € R, there is a 8 € R satisfies a+ = 0*.
Let « to be the set of all negative rational numbers. Clearly « is a cut,
but we cannot find another cut g satisfies a + 5 = 0*. (This needs a
little thinking...) This is why property(III) cannot be omitted from the
definition of cut.

Basic Topology

. Prove that the empty set is a subset of every set.

Proof: If this is not true, then 3A, ) € A, which means there is at
least one x € ) but x ¢ A. Obviously this cannot be held since () has no
elements.

. A complex number z is said to be algebraic if there are integers ag, ..., G,
not all zero, such that agz”™ +a12" ' +---+a,_12+ a,, = 0. Prove that
the set of all algebraic numbers is countable.

Proof: A simple proof will be:

(i) z is a root of the n-degree polynomial agz™+a;x" 1+ - -+a,_1x+a, =
0, and we know the fact that each n-degree polynomial has n roots in the
complex plane(*);

(ii)The set of all n-degree polynomials with integral coefficients is count-



able, so is the set of all polynomials with integral coefficients.

Combined (i) and (ii), we know that the set of all algebraic numbers is
countable.

But if we don’t know the fact (*), how to prove this? (I don’t know at
present...)

. Prove that there exist real numbers which are not algebraic.

Proof: Suppose this is not the fact. Let A denote the set of all algebraic
numbers, then R C A. Since R is uncountable, so is A, which is contradict
to the result of 2.

. Is the set of all irrational real numbers countable?

Proof: The answer is obviously No. To see this, let U denote the set of
all irrational real numbers. If U is countable, then R = QU U is countable,
which is contradict to the fact that R is uncountable.

. Construct a bounded set of real numbers with exactly three limit points.
Proof: Let A= {ilneIt}, B={2+Ljnelt}, C={4+L|nelf}
and S = AU BUC, then S is bounded, since |z| < 6, Vx € S and S has
exactly 3 limit points, namely, 0, 2, and 4.

. Let E’ be the set of all limit points of a set E. Prove that E’ is closed.
Prove that E and E have the same limit points. (Recall that £ = EUE".)
Do E and E’ always have the same limit points?

Proof:

(a) Let p be a limit point of E’, then for every r > 0, there is a ¢ € E’
and ¢ € N,(p). Since N,(p) is open, there is a neighborhood N, of
g, Ny C N,(p) and since ¢ is a limit point of E, there is a s € N,
s # g and s € E. Combining these facts, we get that for every r» > 0,
there is an s € N,.(p), s € F, which is equivalent to say that p is a
limit point of F, thus p € ' and E’ is closed.

(b) = Suppose p is a limit point of F, since E C E, p is also a limit
point of E.
<: On the other hand, let p be a limit point of E, then Vr > 0,
there is a ¢ € EAq € N.(p). If ¢ € E, then ¢ € E' and ¢ is a
limit point of E. Since N,(p) is open, there is a neighborhood N,
of ¢, Ny C N,(p). Due to the fact that ¢ is a limit point of E,
there is an s € Ny, s # ¢ As € E. This is to say, Vr > 0, there
isant € EAt € N.(p) (Here, t will either be ¢ or s in the above
statements). Thus p is a limit point of E.

(c) Obviously this is not the case. An easy example will be: E =
{(z,y)2* +y* < Lz € Ry € R}, thus E' = {(z,y)[z® +¢* =
LLx € Ry € R} and E = {(2,9)|z? +y?> < 1,2 € R,y € R}. Thus
the set of all limit points of E is E and the set of all limit points of
E'is E' itself. Clearly E' C E.



7. Let Ay, Ay, A3, ... be subsets of a metric space.

(a) If B, = U™, A;, prove that B,, = U, A,, forn =1,2,3, ...
Proof:
=: Suppose p € B, thenp € B,, or p € B!,. If p € B,,, then p € A;,
for some 1 < i < n, thus p € A; and p € U™ A;. If p € B!, then
p is a limit point of B,, and Vr > 0, there is a ¢ € N,.(p) A q € By,
ie. ¢ € U A,;, since A; € A;, thus ¢ € U?zlf_li and p is a limit
point of U™_, A;. We have known A; is closed, so is U, A; since n is
finite (Recall that a finite union of closed sets is also closed). Thus
pE U?Zlfli. This gives B, C U?zlfli.
<: Suppose p € U, A;, then p € A; for some 1 < i < n, ie,
p€ A;UAL If p € A;, then p € B, thus p € B,; On the other hand,
if p € AL, then p is a limit point of A;, since A; C B,, p is also a
limit point of B,,. Thus p € B,,. This gives U?:lf_li C B,.

(b) If B = U2, A;, prove that B D U2, A;.
Proof: Suppose p € UX,A;, then p € A; for some i > 1, i.e.,
pe A;UA Ifpe A;, thenp € B; If p € A}, p is a limit point of A;.
Since A; C B, p is also a limit point of B, thus p € B. This gives

©, A, CB.

Show, by an example, that this inclusion can be proper.
Let A; = (%,2], then 4; = [},2], B= U}, A; = (0,2] and B = [0,2]. But

0¢ A;,Vi>1,thus 0 € UL, A; and U, A; C B.

8. Is every point of every open set £ C R? a limit point of E? Answer the
same question for closed sets in R2.
Solution:
(i) The answer for open set is Yes. To see this, note that if p € F and E is
open, 3r > 0, N,(p) C E. Let N,/(p) be an arbitrary neighborhood of p.
If v/ > r, then N,.(p) C N,»(p); If v’ < r, we conclude that N, (p) contains
infinite number of points in F. Suppose on the contrary, this is not true.
Then 3’ > 0, v’ < r, Ny(p) contains only finitely many points of E.
Let these points be denoted as pi, pa, ..., pn, and let 6 = min{d(p, p;)|1 <
i < n}, then 6 > 0 and Ns(p) contains no points of F other than p,
thus Ns(p) € E. But § <=1 < r = Ns(p) C Ny (p) C N.(p) C E,
which is a contradiction. We have show that every neighborhood of p
contains infinitely many number of E and thus p is a limit point of E.
(Notes: Since E is an open subset of R?, E must contain infinitely many
points, according to Example 2.21. Thus, we only need to prove that every
neighborhood of a p € F contains infinitely many points of E. This is easy
because every neighborhood of p is also an open subset of R?. This will
be an much shorter proof instead of the above given one.)
(ii) The answer for closed set is obviously No. To see this, consider the
set E = {(1,0)|n € IT} U {(0,0)}. Clearly E is closed, but only 0 is a
limit point of E.



9. Let E° denote the set of all interior points of a set E. E° is called the
interior of E.

(a)

Prove that E° is always open.

Proof: Let p € E°, then p is an interior point of E, thus there is
a r > 0 such that N,(p) C E. Furthermore, let ¢ € N,.(p), then
since N,(p) is open, there is an neighborhood N, of ¢, s.t., N, C
N,(p) C E. Thus, ¢ is an interior point of E and ¢ € E°. This
means N,.(p) C E° and therefore E° is open.

Prove that FE is open if and only if £E° = F.

Proof:

=-: Suppose that F is open. Let p € E°, then p is an interior point
of F, since FE is open, this gives p € F and therefore E° C F; On
the other hand, let p € F, then p is an interior point of E since F is
open, thus p € E° and therefore £ C E°.

<: Suppose E° = E, let p be any point of E, then p is a point of
E°. Thus p is an interior point of E and F is open.

If G C F and G is open, prove that G C E°.

Proof: Let p € G, then p € F since G C E. Furthermore, there
is a neighborhood N¢(p) of p, s.t., Ng(p) C G since G is open. Let
Ng(p) = Neg(p) N E, then Ng(p) is also a neighborhood of p because
p € Ng(p), and Ng(p) C E. Therefore, p is an interior point of E.
Thus p € E° and G C E°.

Prove that the complement of E° is the closure of the complement
of E.

Proof: We need to prove that (E°)¢ = E¢.

=: Let p € (E°)¢, then p ¢ E°. Thus p is not an interior point of
E, which is to say, Vr > 0, there is a ¢ € N,.(p) ANq € E, i.e., g € E°.
Therefore, p is a limit point of E¢ and p € E¢. So (E°)¢ C E°.

<: Let p € E¢, then p € ECor p € (E°). If p € E°, p ¢ E and
p &€ E°, thus p € (E°)¢. If p € (E€), then p is a limit point of E°.
Vr >0,3q € N.(p) Aq € E° ie. q¢ FE and thus ¢ ¢ E°. Therefore,
q € (E°)° and p is a limit point of (E°)°. Since E° is open, (E°)¢ is
closed and p € (E°)¢. So E¢ C (E°)°.

Do E and E always have the same interiors?

Solution: The answer will be No. To see this, let £ = Q, then
E =R. Obviously, E° = 0, but E° = R, if we let the whole space be
R.

Do E and E° always have the same closures?

Solution: The answer is also No. To see this, let £ = {z|z €
[0,1]] Az € Q}U[2,3], then E = [0,1] U [2,3]. But E° = (2,3) and
thus £° = [2,3]. (The whole space is supposed to be R.)

10



10. Let X be an infinite set. For p € X and ¢ € X, define

w0 ={ 5 Ghlh)

Prove that this is a metric. Which subsets of the resulting metric space
are open? Which are closed? Which are compact?

Solution: First, we prove that d is a metric: (i) d(p,q) > 0, if p # gq;
d(p,p) = 0. (i) d(p, q) = d(q,p); (iii) d(p,q) =1, d(p,r) +d(r,q) = 2, and
thus d(p, q) < d(p,r) + d(r,q). Therefore d is a metric.

(a)

Every nonempty subset of X is open. To see this, let S C X and S
is not empty. Suppose p € S, and some r < 1, then N,.(p) contains
the only point p. Clearly N, (p) C S and thus S is open. In fact, the
empty set is trivially open, so every subset of X is open.

Every nonempty subset of X is closed. To see this, let S C X, then
S¢ is also a subset of X and due to (a), S° is open. Thus, S is
closed. In fact, the empty set is trivially closed, so every subset of X
is closed.

Clearly, every finite subset of X is compact. But any infinite subset

of X is not compact. To see this, let S C X and S is infinite. Suppose

0 <r <1, then |J N,(p) is an open cover of S. Clearly there can
peS

be no finite subcover which can cover S, since each N,(p) contains

only one point of S, namely, p. If there is one, then S will be finite,

which is an contradiction.

11. For € R! and y € R!,define

(a)
(b)

di(z,y) = (x —y)*
Solution: Yes.

da(w,y) = \/|z —yl;

Solution: Yes. The first two conditions are trivial. We next prove
the triangular inequality: Let z,y,z € R!, then \/|z — y|++/]y — 2|
VIg—2 > Vo —yl+ly— 2l — /e g + Iy — =|. Suppose A =
Viz =yl + Iy —=[ and B = \/lz —y[+]y — 2], then A> — B> =
2|z —y/ly — 2| > 0, i.e., A2 > B? ie., A> B, since A, B > 0.
ds(z,y) = [2? — y?|;

Solution: No. e.g. d(1,—1) =0.

dy(z,y) = |z — 2yl;

Solution: No. e.g. d(1,3) = 0.

ds(z,y) = 1|+I‘;€Iy|

Solution: Yes. The first two conditions are trivial again. Let’s see
the triangular inequality: Suppose z,y,z € R, and a = |z — y],

11



12.

13.

14.

b=ly—z|, ¢c=|r—z| then a,b,c > 0. Thus d(z,y) + d(y,z) —

. b ¢ a(1+b)(1+o)+b(1+c)(1+a)—c(14+a)(1+b) _
de,z) = f + 4% — T4 = T+ a)(T+b) (1+0) -
%, since a +b > ¢, d(z,y) + d(y, z) — d(z,z) > 0, ie.,

d(z,y) + d(y, z) > d(z, 2).

Determine, for each of these, whether it is a metric or not.

Let K C R! consist of 0 and the numbers 1/n, for n = 1,2,3,.... Prove
that K is compact directly from the definition (without using the Heine-
Borel theorem).

Proof: Suppose {G,} is any open cover of K. Obviously, 0 is a limit
point of K. Since 0 € K, 0 € G, for some op. Furthermore, since Gy,
is open, there is a r > 0, N,(0) C G,,. Let % <r, N €N, then N > %
and whenn > N, n € N, % < % < r, which implies % € N,(0) and thus
1€ Gq,. Let Gy, denote the open set which covers the number 1, where

1=

N
1<i<N. Then K C G,, U(J G,,) and therefore K is compact.
1

Construct a compact set of real numbers whose limit points form a count-
able set.

Solution: Let Ay, = {751+ 5lln >1An e N}, k> 1Ak eN,ie,
Ay ={31+3i,n>1AneN}, Ay = {f[1+ 5],n > 1An € N}, and

2n
so on. Then A; C ( L1 TLet A = {0} U (J Ag), then A is com-
k=1

11
k+10 &

pact since A is closed and bounded (with Heine-Borel theorem). The set
L={0} U{%|n > 1A n € N} contains all of the limit points of A and L is
obviously countable.

Give an example of an open cover of the segment (0, 1) which has no finite
subcover.

Solution: Let G,, = (%_H,%), where n > 1An € N; let P, = (%_H .

Ny iy HE G ) > 1An € Ny, Py — (b 2

Clearly, C = (U Gn) U (J P») is an open cover of (0,1) but we can’t
n=1 n=1

find any finite subcover of C' which also covers (0, 1).

Notes:

(i) Since (0,1) C [0,1], then every open cover of [0, 1] is also an open cover
of (0,1), but the converse is not true. Thus the open cover that we need
to seek must not be an open cover of [0, 1].

(ii) The only difference between (0,1) and [0, 1] is the two end points 0
and 1, which makes (0, 1) is open, but [0,1] is closed (thus compact). The
reason that [0,1] is compact but (0,1) is not is clearly due to these two
end points, since the part that cannot be covered by some finite open sets
of a given open cover will be at the neighborhood of the end point. If the
end point is included, this part can be covered (actually with one open set

12
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15.

16.

instead of the infinite open sets needed if the end point is not included),
so is the whole interval.

Show that Theorem 2.36 and its Corollary become false(in R!, for exam-
ple) if the word “compact” is replaced by “closed” or by “bounded”.
Solution: Theorem 2.36 says that, If {K,} is a collection of compact
subsets of a metric space X such that the intersection of every finite sub-
collection of {K,} is nonempty, then () K, is nonempty.
(i) If the word “compact” is replaced by “closed”, we have the following
counterexample: Let K, = [n,+00), n € N, then K, is closed, K, D Kp,4+1
and thus the intersection of every finite subcollection of { K, } is nonempty.
But () K, is empty. To see this, let > 0 be any positive real number,
then there is an integer m such that n < z < n 4 1, according to the
archimedean property of R. Thus, z € K, but = € K, 11, and « & [ K,,.
Therefore, (| K, = 0.
(i) If the word “compact” is replaced by “bounded”, we also have the
following counterexample: Let K, = (0, %], n > 1An €N, then K, is
obviously bounded, K,, O K1, and thus the intersection of every finite
subcollection of {K,} is nonempty. But (] K, is empty. To see this, let
€ (0,1], then there is a positive integer N such that Nx > 1 according
to the archimedean property, which implies x > % Thus z ¢ (0, %], ie.,
z ¢ Ky, and z & () K,,. Therefore, () K, is empty.
Notes: Here we see that the compactness is essential for Theorem 2.36.

Regard Q, the set of all rational numbers, as a metric space, with d(p, q) =
Ip — q|. Let E be the set of all p € Q such that 2 < p? < 3. Show that E
is closed and bounded in Q, but that E is not compact. Is F open in Q7
Proof: The fact that E is bounded is clear.

Next we show that E is closed. Suppose p is a limit point of £ and p € Q
(without loss of generality, we assume that p is positive, the case that p is
negative will be similar), then we need to show that p € E. Ve > 0, there
isage EAqg>0,d(p,q) =|p—q| <e, since p is a limit point of E. This
gives that g —e < p< q+e¢,ie,p+e>q, ie, (p+e)2—2>¢*>—2>0,
ie., p? + 2pe + €2 > 2. Due to the arbitrariness of €, we conclude that
p? > 2. Since p € Q, p? # 2, thus p? > 2. Similarly, we have p — € < q,
ie, (p—€)?—-3<q®>—3<0, and thus p? <= 3. Since p € Q, p? # 3,
therefore p? < 3. Now we have proved that 2 < p? < 3, thus p € E and E
is closed.

Finally, we need to show that E is not compact in Q. Suppose, on the
contrary, F is compact in QQ, then according to Theorem 2.33, E is compact
in R, which is obviously wrong since F is even not closed in R.

It’s easy to see that F is open in Q.

Notes: Here we see an example of a set which is both closed and bounded
but not compact. Now we are convinced why the premise of the Heine-
Borel Theorem should be “in R¥”.
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17. Let E be the set of all € [0,1] whose decimal expansion contains only
the digits 4 and 7. Is E countable? Is E dense in [0,1]? Is E compact? Is
FE perfect?
Solution:

(a) FE is uncountable. If, on the contrary, E is countable, let the elements
of FE be arranged as x1,x2,.... We denote x; as follows:

T = 0.1’111’12...

T = 0.$21l‘22...

where z;; =4 or z;; =7,14,5 > 1A4,5 € N. Lets = s152... be defined

as
o 4 ifl‘ii:7
i = 7 lfSC”=4

Then s € [0,1] and s € E, but s has at least one digit different from
each x;, which gives s € F, a contradiction. Therefore, E must be
uncountable.

(b) E is not dense in [0,1]. This is easy to be seen since if z € E, 2 > 0.4,
and every y € [0,0.3] cannot be a point or a limit point of E.

(¢) E is closed. To see this, let p be any limit point of E, then we can
conclude that p € E. Thus, we need to show that p € [0,1] and
p’s decimal expansion contains only the digits 4 and 7. The fact
that p € [0,1] is quite trivial. So next we will prove that p’s decimal
expansion contains only the digits 4 and 7. Suppose, on the contrary,
this is not true. Let p = 0.p1pa...., then there is a smallest n € It,
such that p, # 4 Ap, # 7. Let § = min{|q — p|l¢g € E}, then it’s
clearly that 6 > 0 since p ¢ FE and |¢ — p| is a metric. Pick an r
such that 0 < r < ¢, then N, (p) contains no points ¢ € E and thus
p cannot be a limit point of E, a contradiction.

(d) FE isnot perfect. e.g. p = 0.44 € FE, but its neighborhood Ny o1 (0.44)
contains no points of F other than p. Thus p is not a limit point of
E.

18. Is there a nonempty perfect set in R! which contains no rational number?
Solution: Yes. We will construct a nonempty perfect set contained in R
that contains no rational number.

We will begin with a closed interval, and then, imitating the construction
of Cantor set, we will inductively delete each rational number in it together
with an open interval. We will do it in such a way that the end points of
the open intervals will never be deleted afterwards.

Let Ey = [ag, bo] for some irrational numbers ag and bg. Let {¢1, g2, 4¢3, ...}
be an enumeration of the rational numbers in [ag, by]. For each ¢;, we will
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19.

define an open interval (a;, b;) and delete it.

Let a1 and by be two irrational numbers such that ag < a1 < ¢1 < by < bg.
Define E; = Ep\(a1,b1). Having defined FEy, Es, ..., E,, a1, as, ..., a, and
b1,ba, ..., by, let’s define a,, 41 and by 41:

n
If goy1 € U (ag,br), then there exists an i < n such that g, 1 € (a;,b;).
=1

k—
Let ap41 = a; and by = b;.

Otherwise let a,4+1 and b,41 be two irrational numbers such that ay <
Ont1 < @n+1 < bpy1 < by, and which satisfy:

Gnt1 — Qg1 < min {|goy1 — bil}
=1,2,....n

and
bny1 — Gnr1 < min {la; — guy1l}
1=1,2,....,n

. Now define F,,11 = E,\(an+1,bne1). Note that by our choice of a,41
and b,4+1 any of the previous end points are not removed from E,.
oo

Let E = () E,. E is clearly nonempty, does not contain any rational
n=1
number, and also it is compact, being an intersection of compact sets.
Now let us see that E does not have any isolated points. Let z € E, and
€ > 0 be given. Choose a rational number g such that = < ¢ < = + €.
Then g, € (ag,br) and since z € E we must have < aj. which means
ar € (x,x + ¢€), since ar < qi. But we know that a; € E, so we have
shown that any point of F is a limit point, hence F is perfect.
Notes: There are two key points here:
(i) The essential idea is not only deleting the rational number but also a
segment which contains it. This guarantees the result set will be closed,
which is needed by the requirement of perfect sets. Furthermore, the set
hence obtained will be compact since it is both closed and bounded in R,
and F is guaranteed to be nonempty, according to Theorem 2.36;
(ii) The two conditions for the choice of a,+; and b, 11 is also important,
which commits that we will not delete any previously chosen a; and b;
by removing the segment (a,41,bn41). Furthermore, these two conditions
are not so trivial and need a deep thought.

(a) If A and B are disjoint closed sets in some metric space X, prove
that they are separated.
Proof: Since A and B are disjoint, ANB = . On the other hand, A
and B are closed, hence A= A and B=B. Thus ANB=ANB =10
and ANB=ANB=10,ie., Aand B are separated.

(b) Prove the same for disjoint open sets.
Proof: If ANB # 0, then 3p € AN B, ie.,pc Aand p € B. Since
ANB=1,p ¢ B, thus p € B’ and p is a limit point of B. Since
p € A and A is open, there is a neighborhood N, of p, s.t., IV, C A.
Hence there is a ¢ € N, such that ¢ # p A ¢ € B because p is a limit
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point of B. Therefore ¢ € A and ¢ € AN B, which is contradict to
the fact that AN B is empty. We conclude that AN B = 0.

In just the same way, we can prove that AN B = ). Hence A and B
are separated.

(¢) Fix p € X, § > 0, define A to be the set of all ¢ € X for which

d(p,q) < 0, define B similarly, with > in place of <. Prove that A
and B are separated.
Proof: Clearly A is open since A is a neighborhood of p. B¢ =
{qlqg € X Nd(p,q) < 6}, we prove that B¢ is closed. Let w be a limit
point of B¢ then Vr > 0, there is a ¢ € B¢ such that d(w,q) < r.
Thus d(p, w) < d(p,q) + d(q,w) < § + r. Due to the arbitrariness of
r, we conclude that d(p, w) < ¢ and thus w € B¢. Hence B¢ is closed
and B is open. On the other hand, A and B are obviously disjoint.
Therefore, A and B are separated according to the result of (b).

(d) Prove that every connected metric space with at least two points is
uncountable.
Proof: Let X be a connected metric space with at least two points.
Suppose, on the contrary, X is countable. Fix p € X, Let D =
{d(p,q)l¢ € X A q # p}, then D is not empty since X contains
at least two points. Furthermore, D is at most countable and D C
(0, +00) since the latter is uncountable. (][0, +00) is perfect and hence
is uncountable according to Theorem 2.43. Thus (0,400) is clearly
uncountable.) Hence there is a § > 0, § ¢ D. Define A = {q|q €
X,q # p,d(p,q) < 6} and B = {q|qg € X,q # p,d(p,q) > &}, then
X = AU B. Since A and B are separated according to (c), X is not
connected, which is a contradiction.

20. Are closures and interiors of connected sets always connected? (Look at
subsets of R2.)
Solution:

(a) Closures of connected sets always connected.

Proof: Let F be a nonempty connected set. Suppose, on the con-
trary E is not connected, then £ = AUB, A/B # (), AnNB = {,
and ANB = (. Since EC E, E C AUB. Define Ap =EnNA
and Bp = EN B, then E = Ag UBpg (since E = EN(AUB) =
(EQA)U(EQB) :AEUBE)

Next, we need to show that Ag and By are nonempty and separated.
First if Ap = 0, then E = By = ENB and £ C B. Thus E C B,
and ANE C ANB. Since ANB =), ANE =0, i.e., AN(AUB) =,
ie, (ANA)U(ANB)=10,ie, AU(ANB) =10, ie., A=0, which
is contradict to our assumption. It’s almost the same to show that
Bp is nonempty. Next, let we prove that Ap and Bg are separated.
Since Ap = ENA, Ap C A, then Ay C A, thus Az Br C AN Bg.
On the other hand, By C B, hence AN By C AN B, which implies
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ApNBg CANB. But ANB = 0, thus Ag N Bg = (). Similarly,
we can prove that Ag N Bg = (. Therefore, we conclude that E
is separable, which is a contradiction to our assumption that FE is
connected.

Notes: The converse cannot be true.

Interiors of connected sets are not always connected.

A counterexample is: take two closed disks in R? that intersect in
exactly one (boundary) point. e.g. A = {(z,y)|z? +y* < 1,(z,y) €
R?}, B = {(z,y)|(x — 1) + y* < 1,(z,y) € R?}. Let E = AU B,
then E is connected. But E° is two disjoint open disks, which is
disconnected.

Notes: In R, it is true: every connected set is some interval(closed,
half closed etc) according to Theorem 2.47 and the interior is always
an interval again(open interval, namely segment), so connected. This
is why we need to Look at subsets of R?!

21. Let A and B be separated subsets of some R*, suppose a € A, b € B, and
define

p(t) = (1 —t)a+tb

for t € R, Put Ag = p~1(A4), By = p~}(B). [Thus t € A if and only if
p(t) € A

(a)

Prove that Ay and By are separated subsets of R!.

Proof: We need to show that AgNBy = ) and BoN Ay = 0. Suppose,
Ao N By # 0, then there is an © € Ag N By, i.e., z € Ay and = € By.
If z € By, then p(z) € A and p(x) € B, which means p(z) € AN B.
Thus AN B # @, which is contradict to the fact that A and B are
separated. If x € B(, then x is a limit point of By. We show that
p(z) is a limit point of B. To see this, let » > 0 be any given positive
real number, so N, (p(x)) is a neighborhood of p(z) in R*. Denote
d=|b—al, 6 >0since a# b, and let ¢ = § > 0. Because z is a
limit point of By, there is a y € By and |y — z| < . y € By thus
p(y) € B, and [p(y) — p(x)] = (1 — y)a-+yb) — (1 — )+ zb)| =
(e — y)a+ (y— 2)b| = [(y — 2)(b —a)| = |y — zl[b—a| <=5 =r,
which means p(y) € N,(p(z)). Therefore, p(z) is a limit point of B
and p(z) € B. Thus, p(z) € AN B and AN B is nonempty, which
is again contradict to the fact that A and B are separated. Hence,
A N By must be empty. The proof of Ag N By = () is similar and we
omit it here.

Prove that there exists ¢ € (0,1) such that p(tg) € AU B.

Proof: Let C = Ay N (0,1) and D = Byn (0,1), then C C Ay and
D C By. ThusCnND C AyNnD C AynN By = 0, since Ay and
By are separated according to (a). Therefore, C N D = (). In the
same reasoning process we can have C N D = () and hence C and
D are separated. We next show that there exists tp € (0,1) that

17



22.

23.

to & Ag U By. If this is not the truth, then V¢ € (0,1), t € Ag U By,
ie, t € Ag ort € By. Hencet € Ay N (0,1) or t € By N (0,1),
ie,t € Corte D, ie,te CUD, which gives (0,1) C C U D.
On the other hand, we clearly have C C (0,1) and D C (0,1), thus
CUD C(0,1). Therefore, we get C'UD = (0,1), which means (0,1)
is not connected. But if we apply Theorem 2.47 on (0,1), we can
conclude that (0, 1) is connected, which is a contradiction. So, there
must exist tg € (0,1) that to & Ag U By, i.e., to € Ag and ty & By.
Thus, p(tg) € A and p(ty) € B, i.e., p(to) € AU B.

(c) Prove that every convex subset of R¥ is connected.

Proof: A subset E of R¥ is convex if Ax + (1 — \)y € E, whenever
x € FE,y€ E,and 0 < A < 1. If F is not connected, then £ = AUB,
A# 0, B+# 0 and A, B are separated. Let a € A, b € B, let
p(A) = (1 — N)a + Ab, for A € R!. Note that these are the same
conditions given in the premises, hence we can conclude that there
exists Ag € (0,1) such that p(A\g) € AU B according to (b). This is
to say, when a € E, b € E, there is A\g € (0,1), (1 —Xg)a+ \ob & E,
which is contradict to the assumption that E is convex. Therefore,
FE must be connected.

A metric space is called separable if it contains a countable dense subset.
Show that R* is separable.
Proof: Let Q% = {x = (z1,...,71)[x e RE Ax; € Q,1 < i < k}. Clearly,
Q" is a countable subset of R* since Q is countable. Next, we show that
QF is dense in R¥. To see this, let x be any point in R* and x ¢ Q.
Denote x = (z1, T2, ..., ). Let 7 > 0 be any positive real number. Since
Q is dense in R, there is a y; € Q such that |y; — z;| < Lk, for1 <i<k.
k
Put y = (y1,v2,.--,¥x), then y € QF and |y — x| = z:1|yZ —xz;)? <
i=

\/% -k = r. Therefore, x is a limit point of Q¥ and we conclude that QF

is dense in R*. Hence RF is a separable space.

A collection {V,,} of open subsets of X is said to be a base for X if the
following is true: For every x € X and every open set G C X such that
x € G, we have z € V,, C G for some «. In other words, every open set in
X is the union of a subcollection of {V,}.

Prove that every separable metric space has a countable base.

Proof: Let X be a separable metric space, then X contains a countable
dense subset Y. Suppose the elements of Y can be arranged as y1, y2, ...,
let € = {V,} be the collection of all neighborhoods with rational radius
and center in Y, that is, € = {N,(y;)|r > 0,7 € QA y; € Y}. Clearly,
C is a collection of open sets and € is countable since both Y and Q are
countable. Yz € X, let G be an open set such that G C X and z € G.
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24.

25.

Since x € G and G is open, there is a » > 0 such that N,.(z) C G. If
x € Y, since Q is dense in R, there is a 7’ € Q such that 0 < 7/ < r,
and since N,»(z) € C, if we denote in another form that ¢ = {V,}, we
are convinced ourselves that * € Ny (z) = V, C N.(x) C G, for some
a. On the other hand, if x € Y, there is ay € Y and y € N.(z),
e € QAe < g, for x is a limit point of ¥ since Y is a dense subset of
X. Then d(z,y) < €, thus ¢ € N.(y) and N.(y) € €. Furthermore, Vz €
Nc(y), d(z,z) < d(z y)—i—al(y7 z) < €+ € =2¢ < r, and hence z € N,(x),
which 1mphcs Nc(y) € N,(x). Combining these results together, we get
x € Nc(y) € Ny(z) C G and N,(y) € C. Therefore, C is a base for X.

Let X be a metric space in which every infinite subset has a limit point.
Prove that X is separable.

Proof: Fix 0 > 0, and pick ; € X. Having chosen z1,2,...,z; € X,
choose z;4+1 € X, if possible, so that d(x;,z;41) > d for i =1, ..., j. Next,
we show that this process must stop after a finite number of steps. Sup-
pose, if it’s not, then we can obtain an infinite set E = {z;}$2; such that
d(zi,xzj) > 6, for all i # j and 4,5 > 1. E can have no hmlt point in
X. To see this, suppose p is a limit point of E, then IV s (p) can have at

most one point of E. This is because if 2 € E and 2 € N;(p), y € E and
y # x, then d(y,p) > d(z,y) —d(z,p) > § — g = g, which says y & N (p).
Thus, if we let » = d(x,p) and pick a positive real number r’ such that
0 <" <r, Nm(p) contains no point of E, which is absurd if p is a limit
point of E. Therefore, F has no limit point in E, which is contradict
to our assumption that “every infinite subset has a limit point”. Hence,
the previous process must stop after a finite number of steps and X can
therefore be covered by finitely many neighborhoods of radius ¢ (since
after finite number of steps, we cannot find any = in X, thus every x in
X has been covered by neighborhoods with radius ¢ and centered in the
points that have been selected).

Now, let’s take 6 = %, n =1,2,3,..., and consider the centers of the cor-

responding neighborhoods, namely, the set Y = U {yI X CUN1(y)y €

X}. We will prove that Y is a countable dense subset of X. The fact that
Y is a countable subset of X is clear since every set in the above union is
finite and the total number of sets is countable. Pick p € X and p € Y,
and let 7 > 0 be an arbitrary positive real number, then there exists some
6 = % for some sufficiently large positive integer n such that § < r, and
p € Ns(y), for some y € Y. Hence d(p,y) < § < r and y € N,(p), which
implies that p is a limit point of Y. Therefore Y is dense in X, so X is
separable.

Prove that every compact metric space K has a countable base, and that
K is therefore separable.
Proof: For every positive integer n, there are finitely many neighborhoods
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26.

27.

of radius L whose union covers K (€ = {Ni(p)}, p € K forms an open
cover of K, then there is a finite subcover of € which stills covers K since K
is compact). Let O be the collection of all the ﬁnite subcovers which covers

K when taking n to be 1,2, 3, ..., that is, O = U {N1(p)| K SUN1(p)}-

We will show that O is a countable base of K

Vr € K and every open set G such that G C K and = € G, there is
a r > 0 such that N,(z) C G since G is open. For this r, there is a
sufficiently large n such that 0 < L <r. If N1 (z) € O, thenz € N1 (z) €
N,.(z) C G. If N%(x) ¢ O, then let € = 5-, and x € Nc(y) for some
y € K such that N.(y) € O. Thus, d(amy) < €. Furthermore, Vz € N (y),
d(z,2) < d(z,y) + d(y,x) < e+ e =2¢ =1 < r, hence z € N.(z) and
Nc(y) € N,(z). Taking these together, we have x € N.(y) C N,(z) C G
and N(y) € O. Therefore, O is a base of K and O is countable since every
set in the union is finite and the total number of sets is countable.

We have completed the proof that K has a countable base, and the result
that K is separable is due to the fact that if K is compact, then every
infinite subset of K has a limit point in K, by Theorem 2.37, and the
result of Exercise 24.

Let X be a metric space in which every infinite subset has a limit point.
Prove that X is compact.

Proof: By Exercise 23 and 24, X has a countable base. It follows that
every open cover of X has a countable subcover {G,}, n = 1,2,3,....
If no finite subcollection of {G,} covers - X, then the complement F of

G1U- - UG, is nonempty for each n, but ﬂ F, is empty. Let K,, = U Gi,
=1
then F,, = K¢. Since K,, C K41, F\ D Fn+1 but each Fj, is not empty.

o0
Since () F, is empty , then Vo € X, AN € N, z € Fy but « € Fn41.

=1
IfFE isna set which contains a point from each F,,, then we obtain a infinite
subset of X. We will show that E doesn’t have a limit point. Suppose,
on the contrary, if F has a limit point p, then there is an IV such that
p € Fy but p € Fny1. In other words, p in Ky for some N (thus K,
for n > N) and P in G, for some 1 < a < N. Since G, is open, there
is a neighborhood N, of p such that N, C G. Therefore, N, C K, for
n > N, and N, N F, =0, for n > N. This is contradict to the fact that
p is a limit point of E, since N, can only contain points of F;,, n < N
and thus IV, N E contains only finite number of points. Thus X must be
covered by some finite subcover of {G,} and is compact.

Define a point p in a metric space X to be a condensation point of a set
E C X if every neighborhood of p contains uncountably many points of
E.

Suppose E C R¥, E is uncountable, and let P be the set of all condensation
points of E. Prove that P is perfect and that at most countably many
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28.

points of E are not in P. In other words, show that P° N E is at most
countable.

Proof:

(i)Let x be a limit point of P, and let N, be any neighborhood of x.
Then there is a y € N, y # x, such that y is a condensation point of FE.
Since IV, is open, there is a neighborhood N, of y such that NV, C N,.
Therefore, N, contains uncountably many points of F since IV, contains
uncountably many points of E, and hence x is a condensation point of F.
Thus, x € P and P is closed.

(ii) Let {V,,} be a countable base of R* since R* is separable and every
separable metric space has a countable base. Let W be the union of those
V,, for which £ NV, is at most countable and we will show that P = W¢.
=: Let z be any point of P, then x is a condensation point of F. If
xz € W, then there is some m € N, x € V,, and EN YV, is at most
countable. Because V,, is open, there is a neighborhood U, of z, such
that U, C V,,,, and U, contains uncountably many points of F since z is
a condensation point of E. Hence V,, contains uncountably many points
of F, which is a contradiction. So x &€ W, i.e., x € W€, and thus P C W¢.
<: On the other hand, let x be any point of W€, then x € W. Let N,
be any neighborhood of z, then since N, is open and {V,,} is a countable
base of RF, there is some m, m € N, such that z € V,, C N,. Since
g W, x ¢V, if V; N E is at most countable, hence V;; N F must be
uncountable. V,,, C N, implies that V,,, " £ C N, N E and thus N, N FE
must be uncountable, which is equivalent to say that = is a condensation
point of E. Therefore, z € P and W€ C P.

Now, we have completed the proof of P = W€ Consider any point z
in P, and let N, be any neighborhood of . Then there is some m such
that z € V,,, € N,. Since x ¢ W, V,,, N E is uncountable and thus V,,
is uncountable. Let y € V,,, NW¢ C N, NW¢ C N, and y # x (since W
is at most countable, then V,,, N W is at most countable, thus V,, N W¢
must be uncountable because V,,, is uncountable), then y € W€ and thus
y € P. This is to say, for every neighborhood N, of z, there is a point
y € N, such that y # x and y € P. Therefore z is a limit point of P.
Combined with (i), P is perfect and since W is at most countable, P = W*
implies that at most countably many points of E are not in P, namely,
those points x € E and z € W (P°NE =W N E is at most countable).

Prove that every closed set in a separable metric space is the union of a
(possibly empty) perfect set and a set which is at most countable. (Corol-
lary: Every countable closed set in R* has isolated points.)

Proof: Let E be a closed set and let P be the set of all condensation
points of E (P is possibly empty). Suppose p € P, then every neighbor-
hood of p contains uncountably many points of F and thus p is a limit
point of E. Hence p € E since E is closed, so P C F.

Let E=PU(E— P)=EU(ENP°), and according to Exercise 27, then
P is perfect and E' N P¢ is at most countable, which completes our proof.
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29.

30.

Proof of the Corollary:

Suppose, it is not true. Let E be a countable closed set in R*, and E has
no isolated points. Then each point of E is a limit point of E and F is thus
perfect since F is closed. According to Theorem 2.43, E is uncountable,
which is a contradiction.

Prove that every open set in R! is the union of an at most countable
collection of disjoint segments.

Proof: Let {Vz} be the collection of open sets(segments) of R! such that
centered at every p € Q and with rational radius. Then according to
Exercise 22 and 23, we know that {Vj3} is a countable base of R! and
hence every open set O in R! is the union of a subcollection {V,} of {V;},
ie., O =, Va. Note that {V,} is at most countable.

Next, we show how to get an at most countable collection of disjoint
segments by starting from {V,}. Let E := 0, and let {V,} = {V1, Va,...}
since {V,,} is at most countable. At step n, we add V,, to E according to
the following rule:

(i) If V,, N U, =0, for every U, € E, then add V,, directly into E;

(ii) Otherwise, let {U,} be the collection of sets in E such that U,NV,, # 0.
If V,, € U, for some y, then we simply discard V,,, leaving £ unchanged
and move on to V1. Otherwise, we first replace each U, by V;, UU, and
then we check to see whether there are any two of V,, U U, intersected,
and united them if any are found. Note that the union of two intersected
segments which are centered at rational numbers p;, p2 and with rational
radius r1 and ry is still a segment centered at a rational number and with
rational radius. To see this, let two segment be V; = (a3 = p; — 71,01 =
P1 +T‘1), Vo = (CLQ = p2 — T‘Q,bg = P2 +T2)7 and let a1 < as < b1 < bg,
without loss of generality. Then V3 UV, = (a1, b2), and V3 UV is centered
at ‘“zﬂ, which is clearly a rational number; and with radius bTT‘“, which
is also a rational number. Hence V; UV, € {V,} if V1, V2 € {V,}.
Therefore, we can convince us that the above construction is well defined
and each step can be terminated in finite sub steps. The resulted collection
E after each step n contains disjoint segments from {V,}, and U'y(U’Y €
E)= U?:l V; so we are sure that O = F at last. Furthermore, the number
of sets in F is less than or equal to n after each step n and thus F is at
most countable.

Imitate the proof of Theorem 2.43 to obtain the following result:

If RF = UT" F, where each F), is a closed subset of RF, then at least one
F,, has a nonempty interior.

Equivalent statement: If G, is a dense open subset of R¥, forn = 1,2,3, ...,
then (N} G, is not empty (in fact, it is dense in R¥).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for
the general case.)

Proof: Suppose that, on the contrary, every F;, has an empty interior,
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which implies that Vp € F;, and let N, be any neighborhood of p, there
isaq € Np, q#pandq¢F,, ie, g € F;. Thus p is a limit point
of F. Because R* = J{° F,,, Fy, € U,,, Fin, and p is a limit point of
U 4n Fm-

Now, let 1 be any point of Fy, then zy is a limit point of (J,°_, Fi,.
Let V7 be any neighborhood of x1, then there is a point xo in V; such
that xp ¢ Fy and 22 € |, _, Fy,,. Without loss of generality, we assume
x9 € Iy, and thus z is a limit point of Um;,,é2 F,,. But since x5 & F, xo
is not a limit point of Fy (because Fj is closed), and thus zo must be a
limit point of U;’::?) F,,. On the other hand, x5 is not a limit point of F
suggests that there is a neighborhood V3! of o such that Vi N Fy = (. If
we let V32 be a neighborhood of x5 such that z; ¢ V2 and V2 C Vj, and
denote Vo = V3 N V2, then V; satisfies the following properties:

(i) Von Fy = 0 and thus =1 & Va;

(ii) Vo C Vi;

(iii) x5 is a limit point of ;. _s Fin.

The property (iii) allows us to continue the above construction steps.
Generally speaking, suppose z,, has been picked and V,, has been con-
structed. Then x, is a limit point of Uﬁ:n 41 I'm and there is a point
ZTpa1 in V, such that 2,41 € F, and z,.1 € Uf:;:n-}-l F,,. Without
loss of generality, we assume x,41 € Fj,11, and thus z,4; is a limit
point of Um;ﬁn+1 F,,. Since 41 € Fn, Tpy1 is not a limit point of
F,(because F, is closed) and there is a neighborhood V!, | of @, 41 such
that VL., N F, = 0. If we let V,2,; be a neighborhood of z,+1 such that
z, € V2, and V2, C V,, and denote V.11 = V), N V2, then V4
satisfies the following properties:

(i) Vaor1 N F, = 0 and thus z,, & Vy41;

(11) Vn+1 - Vn;'

(iii) According to our steps, x,1 cannot be a limit point of F;, 1 <14 < n,
due to property (i) and (ii) (which implies V41 N F; =0, for 1 <i < n).
Thus 2,41 must be a limit point of J,_, -

By (iii), ,+1 satisfies our induction hypothesis, and the construction can
proceed.

Since z,, € V;, and thus z,, € V,,, each V,, is nonempty. Since V., is closed
and bounded, V,, is compact. Furthermore, by (i), V41 € V;, C Vj,

ﬂff:l V., is nonempty, according to the Corollary of Theorem 2.36. Then

there is some z € (o, V,. But by (i), (N,—, Vu) N F = 0, for every
m € N, which means © € F,,, for every m € N. Thus = & |Jo—, Fy,, i.e.,
x ¢ RF, which is absurd.

Therefore, we conclude that at least one F), has a nonempty interior.
Proof of the equivalent statement:

Suppose ;° Gy, is empty, then (N]° G,)¢ = R*, ie.,, RF = J° G¢, and
G¢ is closed since G, is open. Then according to the previous result, there
is at least one G% has a nonempty interior. (G%;)° # () means there is a

p € (G%)°, and thus there is a neighborhood N, of p such that N, C G%,
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ie., NyNG,, = 0 and thus p is not a limit point of G,,, which is contradict
to the assumption that G,, is dense in R¥.

Numerical sequences and series

. Prove that convergence of {s,} implies convergence of {|s,|}. Is the con-
verse true?

Proof: Suppose {s,} converges to s, then Ve > 0, N € N such that
|sn, — s| < e, for all n > N. Since ||s,| — ||| < |sn — s|] < €, we know that
|sn| converges to |s|.

The converse is not true. e.g., s, = (—1)".

. Calculate lim (vn?+n —n).

n—oo

n—oo n—oo

Lo 2_1) = lim —2%— = lim — L =
Solution: lim (v/n? —n) = lim Tmn = m Vi L.

CIf sy = V2, and s,y = V2+/5n,(n = 1,2,3,...), prove that {s,}
converges, and that s, <2 forn=1,2,3,....

Proof: We first prove that s, 41 > s, by induction.

(=1, so=1/2+ /51 > V2= s1;

(ii)Suppose the inequality holds when n = k, i.e., sgy1 > sk. Let n = k+1,

then sgyo — Spt1 = /2 + /Skt1 — Skt1 = \/2+,/5k+1 — \/2+ S5k =

VEEr1— 5k : :
WEES== Y eyt Since sp+1 > sp by hypothesis, \/sx11 > /sk and

thus sgy2 > Sgy1. Therefore, s,41 > s, for all n € N. Similarly, by
induction, we can show that s, < 2 for all n € N. So, {s,} is monotonic
and bounded, thus {s,} converges.

. Find the upper and lower limits of the sequence {s,} defined by s; = 0;

S2m—1

Som = — 5 —; S2m+41 = % + Som.
Solution: We can obtain that sp;,1 = 1—(3)™ and sapi2 = 3(1—-(3)™),

for m > 0. Thus limsup s, = 1 and liminf = %
n—o00 n—oo

. For any two real sequences {a,}, {b,}, prove that limsup(a, + b,) <

n—oo
lim sup a,, + lim sup b,,, provided the sum on the right is not of the form
n—oo n—oo
00 — 0.

Proof: Suppose, on the contrary, this is not true. For simplicity, let
A = limsupa,, B = limsupb,, and C = limsup(a,, + b,). Then, by

n—oo n—oo

n—oo
our assumption, A + B < C, i.e., A < C — B. Hence there is an S,
A < S < C - B, and since A = limsup a,,, there is an N € N such that

n—oo

n > N implies a, < S. So, when n > N, a, + b, < S+ b, and thus
limsup(a, + b,) < limsup(S + by,), according to Theorem 3.19. That is,

n—oo n—oo
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C<limsup(S+b ) =S +limsupb, =S+ B < (C — B)+ B = C, which
n—oo

is absurd Therefore, C < A+ B.

6. Investigate the behavior(convergence or divergence) of > a, if

(a) ap =vn+1-—/n;
Solution: Let s, = Y i a; = vn+1—1, then s = lim s, — 00

n—oo
and thus Y a,, diverges.
(b) Ap = ntl-v/n,
: n _ \/n+17\/ﬁ _ 1 1 1
Solution: a, = = T < e = ST then

> an < 3> . Since E converges when p > 1, > a,, converges

TL
by the comparison test.

(©) an = (&/n—1)"
Solution: Smce a = limsup {l]a,| = hmsup|\/ﬁ -1 =0<1,

n—oo
Sanp converges due to the root test.

d) a, = —=, for complex values of z.
1+
Solution: When |2| > 1, [%2£| = |23k = 1 |Z"+1|. Since

ZnFItl "+ zl

[z"+1] < |z|"+1 |z|"+1 |z]™"+ Ant1 |z +1
= < T hmsu < hmsu —

et ] = TR g e 2| 17 P| | \Z| p H

ﬁ < 1, and hence Y a,, converges due to the ratio test.

When |z| < 1, let z = |zlw, where w € C and |w| = 1, then
an = 1+1z" = 1+\z1|"w"' Since |z| < 1, |z|™ — 0 when n — oo,
thus a, — 1 when n — oo and ) a,, diverges.
Finally, when |z| = 1, |a,| = ﬁ > ﬁ =1,
— 0 when n — oo since otherwise |a,| should — 0, too. Hence > a,
diverges.

Summarized, ) a, converges when |z| > 1, and diverges when |z| <

1.

thus a,, cannot

7. Prove that the convergence of > a,, implies the convergence of > @, if
an > 0.
Proof: Ve > 0, since ) a, converges, there is an N; € N such that

n n
n > m > Np implies | Y ax| = > ax < ¢, since a,, > 0. On the
k=m k=m
other hand, since Z L converges, there is an Ny € N such that n >
n
m > Ny implies | Z &=l = Y & < e Then let N = max(Ny, No)

k=m k=m

- () =

andwhenn>m>N,wehave|Z‘/§| \/Z

k=m

HM:

n n
Soag Y. % < /e e =g, by the Schwarz inequality. Hence, > ‘/:7
k=m k=m
converges.
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8. If > a, converges, and if {b,} is monotonic and bounded, prove that

> an Y by, converges.
Proof: 3 a, converges implies that Ve > 0, 3N € N, n > N and p € I

n+p m
implies | > ag| < e. Denote A,,(n) = > antr and put Ag(n) = 0,
k=n+1 k=1

then |A,,(n)| < € for every m. Using summation by parts, we obtain

P p P
that | > anirbnik] = | D0 (Ax(n) — Ap—1(n)bpykl = | D2 Ak(n)bryk —
k=1 k=1 k=1
P P p—1 p—1
> Ap—1(M)bnyk| = | 20 Ae(M)bnsk— 2 Ar()bpy eyl = | 20 Ak(n) (bnyr—
k=1 k=1 k=0 k=1
p—1
bot (k1)) + Ap()bntp — Ao(n)bny1| = |]§1 Ap(n)(brsk = b)) +
p—1

Ap(n)bp4p| (*), since we put Ag(n) = 0. (¥)< | A (1) (brg ke =bnt- (1)) |+
1

ES
I

p—1

p—1
[Ap(n)bnp| < k;l [ Ak ()| (b k =bnt (4-1)) [+ Ap (0) [[br g | < 6(];1 |br 1=
p—1

ot (k+1)| + |brgpl) (**). Since {b,} is monotonic, > [bpsk — bpy(ktn)| =
k=1

|br1 = bntp| and then (**)=€(|bp+1 —bnip| + |bpntp|) < €([bnr1|+ [bnp| +
|brtp|) (***). Since {b,} is bounded, |b,| < M, for every n € N and some

P
M. Hence, (***)< e-3M, which gives | > anirbnir| < 3¢M. Therefore,
k=1

> apb, converges.

9. Find the radius of convergence of each of the following power series:

a) > n32": (Solution: a =1,R = 1);
(Solution: a =0, R = 00);
(

(

Solution: o =2,R = %)7

Ei—z,z":

Solution: a = %, R = 3).

10. Suppose that the coefficients of the power series > a,z" are integers,

infinitely many of which are distinct from zero. Prove that the radius
of convergence is at most 1.

Proof: Let the radius of convergence is R, we first prove that power
series converges absolutely in the interior of the disk with radius R and
with the center at the origin. In other words, Y a,|z|™ converges when
|z| < R. Put ¢, = an|z|™, and apply the root test: limsup {/|c,| =

n—roo

|z lin1r1_>sol<1)p Ylan| = % < 1 and thus ) ¢, converges.
Next, suppose R > 1 and let a = lim_>sup Ylan| = % < 1. Pick a g such
n oo

that a < 8 < 1, then there is an N € N such that {/|a,| < 8 for n > N,
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e., lap| < B™ < 1. Since by assumption, a, are integers, a, = 0 when
n > N. Thus the only possible a, which are distinct from zero are in
the set F = {a;|1 <i < N}. But F is finite, which is contradict to our
hypothesis that there are infinitely many of a,, which are distinct from
zero. Therefore R < 1.

11. Suppose a, >0, 8, = a1 + -+ + ay, and Y a, diverges.

(a)

Prove that 3 12
Proof: Note that

when a, < 1. Suppose that, on the

contrary, 42— converges. Then f2— = ﬁ — 0 as n — oo,
which gives - i — oo and thus a,, — 0 asn — oco. Hence JN € Nsuch

When n>N.

that n > N 1mphes an,

Since > a,, diverges, so is Z T

Prove that 284+ 4 ... 2AEE > 1 — =N and deduce that Z n i
N+1 SN+k SN+k Sn

verges.

Proof: Since s, is monotonically increasing,

an+1 ... 0Ntk
SN+1 SN+k —
aN4+1 ..aNtk _ oNtf1t o taNLE _ SN4R—SN 1— SN

SNtk SN+k SNtk SN+k SN+k
a .
Suppose, on the contrary, . $» converges, then Ve > 0, there is

an N € N, such that |5 + - + aN+k| < € Vk € I't. Hence
1—S < €, which gives - SN >1-— . Fix N and

let & —> o0, this gives s, < % as n — oo and Sy 18 bounded. On
the other hand s, is monotonically increasing, hence s, converges,
which is contradict to the hypothesis that > a,, diverges.

Prove that % < —1— — L and deduce that }_ % converges.
52 Sn—1 Sn 52
. Gn _ Sn”Sn—1 Sn—8n—1 _ 1 1
Proof: =T <SS = T
m
Then an 1 1y _ 1 1 _ 1 —_ 2 _ 1
¢ nz_:l < S1 + Z ( ) S1 + (31 Sm) S1 Sm )

Since Y a, diverges, sn — 00 as n — 0o, and é — 0 asn — oo.

m
Hence, % < % = % and is bounded. On the other hand, > £
B =

&

S

3N

increases monotonically and thus converges.
. an apn ?
What can be said about > and 3 "

. 1+nan,
Solution:
(1= 1352~ may converge or diverge. Let a, = 1, then > a, diverges,

and ) - =37 n%rl diverges. On the other hand, let
[ 1 ifn=2k
On = L otherwise

n

, then > a,, diverges, but

- 1

1+ na, e otherwise
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, converges to 0, in either case.

a ; an < L 1
(11) TTba converges, since {74~ = —5—— < ;7 and > 2 con-

an
verges.

o0
12. Suppose a, > 0 and > a,, converges. Put r,, = > ap,.
m=n

(a) Prove that %= 4 ... 4 %2 > 1 — = if m < n, and deduce that ) =
diverges.
. ap . . . n mt n _— 'm—"n —
Proof: Sincer; > r;ifi < j, f=4- 402 > & JrTera =-m_nil =
1— i > ] — o

Tm Tm '
Suppose, on the contrary, Y (Tl—: converges, then Ve > 0, 3N € N,

n>m > N implies [f= + .. + 22| ¢, andthuse>1f—",1e
= >1—€de, rn > (1—€)ry (¥). Fix this m, let s = Z ay since
’ k=1
n
> a, converges, and let s, = > aj. Then there is a N’ € N such

k=1
that [s,—s| < (1—€)ry, if n > N/, ie., [rng1] = rog1 < (1—€)rp, (¥%).
Now, let K = max(m, N'+1), and let n > K, then (*) and (**) tells
us just contradict things. Therefore > “—"L must diverge.

(b) Prove that \aﬁ < 2(y/Tn—+/Tn+1) and deduce that Z 9o converges.

Proof: 4n — Tn—Tnti _ (VT 1) (VTr—/Tat1) 2\/ﬁ(\/ﬁ Ner=y il
) m Ve VT VTn -

Q(W_m)
Then 375, 7= < 23 1(\/7‘7 VTn1) = 2(/11 — /Tny1)- Be-

causern%()asnﬁoo,z T1 as n — 00. Smcezkl\/ﬁTc

increases monotonically, > -5 \/ﬁ converges.

13. Prove that the Cauchy product of two absolutely convergent series con-
verges absolutely.
Proof: Let Y a, and }_ b, be two absolutely convergent series and »_ ¢,
is their Cauchy product. Denote A = >°7° |an|, B = Y7 |by|, then
Crn = Yomeoloml = 2nso | Xm0 akbm—rk| < 300 ke lanl[bm—r| =
Z?:o |ak| Z:;:O |bim—k| = Zk o lak| En ¥ 0bm| < Z o laxl ZS::O b | =
By _olakl < BY ;o lak| = AB and thus C,, is bounded. On the other
hand, C,, increases monotonically, thus C,, converges.

14. If {s,} is a complex sequence, define its arithmetic means o, by o, =
730“14“1'*5" ,(n=0,1,2,...).

n+

(a) If lims, = s, prove that limo, = s.
Proof: Since lims, = s, Ve > 0, 3N € N, n > N implies |s,, —

_ | SoFSitetsy _ | (so=s)t(s1—8)+-+(sn—5)
sl < e |op—sl = il —s| = | T | <
|so—s|+|s1—s|+-+lsn—s] _ Zpqlsk—s] +Zk N1 lsE—s] < o lsk—s| +
n+1 n+1 n+1 n+1
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(”T;_Ape < it T(L)—il-slk sl { ¢ Pick N' > N, such that Ziolse—sl Of’” sl < ¢

when n > N’ and then |0, — 5| < W+e< € + € = 2e when
n > N'. Therefore limo,, = s.

Construct a sequence { s, } which does not converge, although lim o,, =
0.

Solution: s, = (—1)".

Can it happen that s, > 0 for all n and that limsup s, = oo, al-
though lim o, = 07

Solution: Yes. Sce this example: s, = k, if n = 2¥; and s,, = 2%,
otherwise. Then s, > 0 for all n and limsups,, = oco. But sup-

k . 1

i—p Ut j 3
pose 2F < n < 2*1 then o, = 30+s711—il ts o Lz TET#] <
k(k lu n(l n+1 lo. n(l n+1

AL +1) +3 o T < 52 (Og2 - )+Z7n o 3w — 52 (;gQ ) 4o
n—i—% n+1 n+1

__ (logy n)"+log, n+4
—W—)OW}IGHTL—)OO.

Put a, = s, — s,—1, for n > 1. Show that s, — o, = n+1 Zkak

Assume that lim(na,,) = 0 and that {0, } converges. Prove that {sn}

converges.
sotsittsy, _ (nt1)sn—(sotsit-+sn)
n+1 - n+1

n+1 (nsp— Zf;é skr) = %ﬂ(( _Sn 1)+' o+ (sp—50)) = n+1 (an+
(an+an—1)+-- ~—|—Z,1€:n ag) = n+1 (nap+n—1ap_1+---+1-a1) =
%HZZ:lka’k

Suppose limo, = o, then Ve > 0, 3N € N, n > N implies |o,, —
o] < e. On the other hand, lim(na,) = 0 implies that 3N’ € N
s.t. |nan| < € when n > N’. Let K = max(N,N’), and when
n > K, |sp —o| = |(sn — on) + (00 — )| < |8p — On| + |on —
ol < |%HZZ:1 kag| + € = |%+1(Z£( 1kak + ZZ:K+1 ka)| +€ <
b (1 ks FaelH g bawl) e < g (| 24y ka0 gy Than])+
e = (IS0 kar| + (n — K)e) + € < 745 S0, kag| + 26, Pick
K' > K, such that %ﬂ| Zszl kay| < e whenn > K', then |s, —o| <
€ + 2¢ = 3¢ when n > K'. Therefore, lims,, = o.

Proof: Sy — Op = Sy —

Derive the last conclusion from a weaker hypothesis: Assume M <
00, |na,| < M for all n, and limo,, = 0. Prove that lims,, = o.

n
Proof: If m < n, then s, — 0, = 2L (g, —0p) + 21— 3 (s, —
i=m-+1
si) (*). For these i, |, — 55| = | X7, ap] < |Zhztako) <

M 1 M
Z+1 Zk Z+1|k0«k| < (n 1) < (n=m-1)
Fix € > 0 and assomate w1th each n the 1nteger m such that satisfies
m < =€ < m+ 1. Then 245 < 1 and [s, — si| < Me. Hence
limsup |s, — o] < Me by letting m — oo, thus n — oo in (*). Since
n—oo
€ was arbitrary, lims,, = o.
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15. Definition 3.21 can be extended to the case in which the a,, lie in some
fixed R*. Absolute convergence is defined as convergence of > |a,|. Show
that Theorems 3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 are
true in this more general setting. (Only slight modifications are required
in any of the proofs.)

Proof: The proofs of these Theorem are very similar, only replace a,, by
a, and replace |a,| by |a,|.

16.

17. Fix a > 1. Take x; > \/a, and define z, | = % =z, +

Fix a positive number «. Choose x1 > v/, and define o, x3, 24, ..., by
the recursion formula =, = %(xn + 2.
Tn

(a)

()

Prove that {z,} decreases monotonically and that limz,, = /a.
Proof: z,41 — 2, = (2, + ) — e = %(% —Tp) = i(a —x2).
We prove that z,, > \/«, for every n, by induction.

(i)n = 1, 1 > v/« which is trivial.

(ii)Suppose when n = k, z, > a. Let n = k+ 1, x441 = %(:vk +

«) > % -2, /xp % = /a and the equality holds if and only if

xp/ =

T = 4, namely, zp = Va. Since zj > y/a by hypothesis, we have
Tpy1 > /a. Now we see x,, > +/a for every n and thus z,, 11—z, <0,
ie., zpy+1 < x,. Hence, z, decreases monotonically. Furthermore,
Ty is bounded and thus z, converges. Suppose limz, = =z, then

z = limz, = lim §(z,_1+ )= %(limxn_ﬁ—ﬁ) = 1(z+2),

Tn—1

which gives x = \/a. Thus limz, =z = «.

2 2
Put €, = x,, — v/, and show that ¢,11 = ;T” < 2%
B =2a, ey < ﬁ(%)”, (n=1,2,3,..).

2 _
Proof: ¢,41 = Ty —va = 3(z, + 2) —Va = W =
(xn_\/a)z — Efz < €i
NG
e €n \2 B(%%)Q 2 €n—122
Let B = 2/a, then €, 11 < 3 = B(%)° < B(—5—)° =B(=57)" <
< B
This is a good algorithm for computing square roots, since the recur-
sion formula is simple and the convergence is extremely rapid. For
example, if @« = 3 and 1 = 2, show that €, /8 < 1—10 and that there-
fore e5 < 4-10716, ¢5 < 4-10732.
2> % o> 3 then § = U8 — 2a
% = %. Therefore, €5 < ﬂ(%)w < 4-1071, and
€1)32 < 4.10732, since B = 2y/a < 2V/4 = 4.

so that, setting

2%y, 2%,

since z, > /a.

2
afxn

1+xy °

1+xy,

Prove that ©1 > z3 > x5 > ---.
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(b) Prove that 25 < x4 < 26 < ---.

Proof for (a) and (b): We first prove that zs,-1 > /o and

T2, < v/a by induction.

(i)n = 1, zy > /a by assumption. z2 — /o = ’f_t;"ll —Va =

atzi—Va—vaw (z1—Va)(1-Va)
14z 1+x1

Thus the proposition holds.

(ii)Suppose when n = k, Tok_1 > /a and xop < /a. Let n =k + 1,

then @opi1 — v/a = %f;’: - Ja = W > 0, since

Zor < 0 by hypothesis and o > 1 by assumption. zopio — a =

(z2r+1—va)(1-vo)

< 0, since @ > 1 by assumption.

< 0, since a > 1 by assumption.

1+zok 1
Now, we see xo,_1 > /a and z9, < y/a. Since Topt1 — Tap—1 =
atagn 1
a+
atxan — _ Meano1 _ a(ltwon_)+(atzon_1) _
Ttws, Y2n—17= 1+(1¥1'$2n—1 =1 = "MFa, 1) +(ataan_1) L2n-1 =
T2n=1
20+(1+a)ron—1 _ 2(a—a3,_1)
T (ra) Y1 = S r(irey < 00 thUS Tangr < @anoy
.. 2 r—z2
Similarly, we can show that z2,12 — T2, = 27«2(14_7(112121) > 0 and thus
L2n

Ton+2 > T2p-

(¢) Prove that limz, = \/a.
20+ (14a)ron—1

Proof: Since xopy1 = Taan 1 F(1ta)

let limsupz, = limzo,y1 =

a, then a = limay, y = lim Ftiate — Jatlhalinge. o

%, which gives a = y/a. Similarly, since xo, 12 = %,
let lim inf z,, = lim 2, 12 = b, then b = lim s, 45 = lim 2tttz —
2; Jrr(llm':jll(irlnf;)" = 2;;:((11':(;))1)7 which gives b = \/a. Therefore,

lim sup z,, = liminf z,, = /o and lim z,, = /a.

(d) Compare the rapidity of convergence of this process with the one
described in Exercise 16.
Solution: Again, let €, = x, — v/a. Then €,11 = 41 — Vo =

attn _ fy = EaVo)U=ve) _ el=vVa) - Ginee gy < 2, <y,

1+x, 14z, - 1+zn
1-val 1-al ‘ s ,
o, |enl < lent1| < 575 [en], thus the rapidity of convergence is

slower than in Exercise 16.

18. Replace the recursion formula of Exercise 16 by z, 11 = pp%lxn + %x;p‘H,
where p is a fixed positive integer, and describe the behavior of the result-
ing sequences {z,}.
Solution: Similar to Exercise 16, if 1 > ¢, then we can prove that
Tp > Ya and T, < Ty, ie., {x,} decreases monotonically. Thus,

limz,, = ¢a.
19. Associate to each sequence a = {ay, }, in which a, is 0 or 2, the real num-
o0

ber z(a) = . Prove that the set of all 2(a) is precisely the Cantor
n=1
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set described in Sec. 2.44.
Proof: Suppose W = {z(a)la = {an},n =0V o, = 2} and Let Ey =
[0, 1]. Remove the segment (%, 2), and let Ey = [0, 5], F> = [2,1]. Remove

33
the middle thirds of these intervals, and let Egg = [0, %}, FEgo = [%, %],
Ey = [$,1], B2 = [§,1]. Continuing in this way, we obtain 2" com-

pact sets {Eq4,a,---a, } 0 step n, where a; = 0 or a; = 2 for 1 < i < n.
It’s clearly to see that the Cantor set E = ((.—, En) N Ey and E,, =

n=1
oo o0

U  PFaasea, Thus E = (2, B, = (N, U  Faasa, =
Vaiaz---an Vaiaz---an

U Faa,.... Furthermore, for every Ey q,...q,, we have E,, DO E4 a0, 2
Valaz-“
-+ 2 Eajaga,. Since lim diamPFEq q,..q, = lim 37 = 0, there is ex-

n—oo n—oo
(oo} [ee]
actly one point Zg,q,-. in Ey gy = [ Pajas--a, and ZTa,ay.. = g
n=1 n=1
o0
. . a1
To see this, we need to show that z4,4,... = g2 lies in every Eoay-a,,
n=1
n=1,2---. We prove this by induction.
o0
: a a 1
()n =1, Tajap. = F 4+ > 55 Ifay =0, E,y, = Eg = [0,3], and
n=2
Tarap. = 04+ Y0 52 < 0+ Y 57 = 3. Obviously, 24,4,.. > 0, thus
n=2 n=2

oo
Tayay- € Eo; If ay =2, By, = B> = [2,1] and @q,q,. = 3 + 22% > 2
n=

(o)
Obviously, Tayay.. < > 5% =1, thus @a,a,... € F2. Thus @g,a,... € Ea,.
n=1

(ii)Suppose when n = k, Zq 05 € FEajayap a0d Egiaya, = [a =
k
Sk a+ 3%] (This can also be shown by induction easily). Let n = k+1,
n=1
k a o0 a o0
then Zoyq,... = > SE+ 30 + > 2 =a+ g0+ ) ga If
n=1 n=k+2 n=k+2
o0
1 n
ary1 = 0, Eajayarys = (0,0 + gp7), and Zopay. = a+ . g5 <

n=k+2
o0
a+ Y. = =a+ g Since Tayap > 4, Tayas € Fayageeaps,- On the
n=k+2
other hand, if ar11 = 2, Eqjapansy = [0+ 5057,0 + 35 and Zg,q5.. =
o0
a/+3k%+ Z %ZaJer% Sincel’ala2.,,§a+3,€%+3k%:a+3%,
n=k+2

Taras- € Eajasanss-

Therefore, we have proved that x4, 4,... € Eq, a9, , fOr every n. So Zq, g,
is just the only point contained in E,, q4,.... Since E = | FEgap. =

Valaz”-

{plp € FEaay--}, we have shown that x € E implies z € W and thus
E C W. On the other hand, for every x € W, = has the form z,,q4,...,
thus z € E4,4,... and € E, namely, W C E. Hence = W.

20. Suppose {p,} is a Cauchy sequence in a metric space X, and some sub-
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21.

22.

sequence {p,,} converges to a point p € X. Prove that the full sequence
{pn} converges to p.

Proof: Since {p,} is a Cauchy sequence, then Ve > 0, there is an N € N
such that n > m > N implies d(pn,pm) < €. On the other hand,
for this €, since some subsequence {p,,} converges to a point p € X,
there is an N’ € N such that ny > N’ implies d(py,,p) < €. Let ny
be the smallest integer such that ny > max(N,N’) + 1, when n > ng,
d(pn,p) < d(Pn,Dn,,) + d(Pn,,p) < € + € = 2e. Therefore, {p,} converges
to p.

Prove the following analogue of Theorem 3.10(b): If {E,} is a sequence

of closed nonempty and bounded sets in a complete metric space X, if

E, D E, 41, and if lim diamF, = 0, then ﬂ;’c E,, consists of exactly one
n—oo

point.

Proof: Construct a sequence {p, } such that p,, € E,, for every n. Because
FE,, is bounded for every n, diam E, is well-defined for every n. Since
lim diam E,, = 0, Ve > 0, there is an N € N such that n > N implies

n— oo

diam FE,, < e, which is to say that d(p,pm) < € if n > m > N. Hence
{pn} is a Cauchy sequence in X, and {p,,} converges to a point p € X since
X is complete. Thus Ve > 0, there is an N’ € N such that d(p,,p) < € if
n > N’. Hence p is a limit point of E, when n > N’. Since p, € E,, p
is a limit point of F, and thus is a limit point of E,,, where 1 < m < n,
because F, C F,,. This is just to say, p is a limit point of F,, for
every n € N. Since FE, is closed for every n, p € E, for every n, thus
p € N E, and E = (" E, is not empty. The fact that £ = N E,
contains no more than one point is clear since otherwise diam E > 0 and
thus diam F,, > diam F > 0 since £ C FE,,. So lim diam F, > 0, a

n—oo
contradiction. Therefore, F contains exactly one point, namely, p.

Note: One might notice that our choice of {2, } is not unique. We remark
here that, no matter how we choose {z,}, it will converge to the point p
as long as x, € E, due to the condition nlgrolo diam F,, = 0.

Suppose X is a nonempty complete metric space, and {G,} is a sequence
of dense open subsets of X. Prove Baire’s theorem, namely, that (]° G,,
is not empty. (In fact, it is dense in X.)

Proof: Let x; € G1, since G is open, there is a neighborhood V; of z;
such that V) C Vi C G;. (More specifically, we first pick a neighborhood
V{ = N,(x1) of z1 such that V/ C G;. Let s be some positive real number
such that 0 < s < 7, then N4(x1) C N,.(z1) and put V; = N,(z1).)
Suppose V,, has been constructed, pick x,,4+1 in V;, such that x,41 # x,.
Let V,,41 be a neighborhood of z,1 satisfies the following conditions:

D) V1 € Vs

(ll)iCIL ¢ Vn+1.

(lll)Vn+1 g GnJrl;

(iv)diam V, 41 < 3diam V.
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Since G, 41 isdense in X, 2,41 € Gp41 O Typqq is a limit point of G, y1. If
the former case happens, since G,,41 is open, we first pick a neighborhood
Vb 1 of 41 such that an+1 C Gp+1- Then we can pick a neighborhood
V2 of x4 satisfies (i) and (i), since V;, is open and z,41 € V,,. Put
Vi1 C VL NV2 | and let V,,41 satisfy condition (iv) gives us the desired
neighborhood V,,;; satisfying all the four conditions. If the latter case
happens, we first pick a neighborhood V! 41 of x, 11 satisfying condition (i)
and (ii), and then choose an 2], € V,1, 1 NGy 1. Since G 41 is open, we
can pick a neighborhood V2, | of x|, satisfying condition (iii). Replace
Tnq1 by x7,; and let V41 be a neighborhood of x,, 41 (the previous 7, )
such that V11 C V.l N V2 | and V41 satisfies (iv), we get the desired
neighborhood V,, 1. So, in both cases, the above process can continue and
we can obtain a sequence of {V,,} satisfying conditions (i), (ii), (iii) and
(iv).

Since z,, € V},, each V,, is nonempty. What’s more, every V}, is closed and
bounded. Furthermore, (i) tells us that V41 C V,, and (iv) tells us that
diam V,, = diam V,, < 2n#,ldiam Vi, for n > 1, thus lim diam V,, = 0.

n—oo _
Hence the conditions in the premise of Exercise 21 are satisfied, N Va

contains exactly one point and thus is nonempty. By (iii), Vi, € Gy, so
N Vi C€N;° Gy Therefore, (;° G,, is nonempty, too.

23. Suppose {p,} and {g,} are Cauchy sequences in a metric space X. Show
that the sequence {d(pn,¢,)} converges.
Proof: Ve > 0, since {p,,} is a Cauchy sequence, there is an N7 € N such
that n > m > N implies d(p,, pm) < €; similarly, since {g,} is a Cauchy
sequence, there is an Ny € N such that n > m > Ny implies d(gy, gm) < €.
Let N = max(N1, N2), n > m > N implies that d(pn,qn) — d(Pm, Gm) <

(d(prspm) + d(Pms @) + (G, Gn)) — APy Gm) = d(Prs Pm) + d(qns @) <
2¢. Similarly, d(pma q"L)_d(pTL? Qn) < 2¢, and thus |d(pn7 Qn)_d(pnn Qm)| <
2¢. Therefore, d(py,q,) is a Cauchy sequence in R! and hence converges
since R! is complete.

24. Let X be a metric space.

(a) Call two Cauchy sequences {p,}, {gn} in X equivalent if lim d(p,,q,) =
n—oo

0. Prove that this is an equivalence relation.

Proof:

(i)Reflexivity: since d(pn,pn) =0, Um d(pp,pn) = 0;

n— o0

(ii)Symmetry: since d(pn, ¢n) = d(gn,Pn),

(iii)transitivity: if lm d(pn,qn) = 0, lim d(gn,r,) = 0, then 0 <
n—oo n—oo

lim d(pp,rn) < lim d(pn,¢,) + lim d(gn,r,) = 0.

n—oo n—roo n—oo

Hence lim d(pn,r,) =0.

n—oo

Therefore this is an equivalence relation.
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(b)

Let X* be the set of all equivalence classes so obtained. If P € X*,
Q € X", {pn} € P, {an} € @, define A(P,Q) = lim d(py,qn); by
n (oo}

Exercise 23, this limit exists. Show that the number A(P, Q) is un-

changed if {p,} and {¢,} are replaced by equivalent sequences, and

hence that A is a distance function in X*.

Proof: Suppose p, ~ p), and g, ~ ¢,,.then

HA(P, Q') = lim d(pp,q,) < lm d(pn,qn) + lim d(gn,q,) =
n—oo n—oo n—oo

A(P,Q) +0=A(P,Q);

(AP, Q) = lim d(py,¢n) < lim d(py,,pn) + lim d(pn,qn) =

04+ A(P,Q) = A(P,Q);

)AP, Q) = lim d(p),q;) < Tim d(pp,pn) + lim d(pn,gn) +

lim d(g,q) =0+ A(P,Q) +0=A(P,Q).

The opposite direction of (i), (ii), (iii) can be proved similarly and

hence we have A(P,Q) = A(P',Q) = A(P, Q") = A(P',Q").

Next we show that A is a distance function in X™* by checking the

three required conditions:

(\)A(P,P) = li_>m d(pn,pl,) = 0;

()A(P,Q) = lim d(pn,qn) = lim d(gn,pn) = AQ, P);

(III)A(Pa R) = lim d(pnarn) < lim d(pnaQn) + lim d(‘]narn) =
n—00 n— 00 n—00

AP, Q) +A(Q, R).

Prove that the resulting metric space X* is complete.

Proof: Let {P,} be a Cauchy sequence in X*, and denote P, =
{pkn}, for every k € N ({pg,} is an arbitrary Cauchy sequence of X
that belongs to Py). We construct a sequence {s,} in X as follows:
For each n, find the smallest N € N such that d(pum,pnr) < + if

n

k > m > N. Since P, is a Cauchy sequence, this N must exists. Put
Sn = Pn(N+1)-

Next, we show that {s,} is a Cauchy sequence in X. Ve > 0, since
{P,} is a Cauchy sequence, there is an N; € N such that n > m > N;
implies A(P,,, P,) < €, i.e., kli)ngo d(pmk, Pnk) < €. Thus there is a

N; € N such that d(pmm/, Prns) < € if n’ > m’ > Ny. Choose an Nj
such that NLS < ¢, and put N = max(Ny, No, N3). When n’ > m' >
n>m>N, d(Sm, Pmm) < % < % <€, and d(sp, Ppn’) < % < % <
€. Therefore, d(sn, $m) < d(Sn, Pnn’) +d(Prnss Pmm?) + A(Pmms s Sm) <
3¢, which means that {s,} is a Cauchy sequence.

Let P be the equivalence class containing {s, }, then P € X*. Finally,
we will show that {P,} converges to P.

Ve > 0, there is an Ny € N such that d(s,, sm) < €if n > m > N,
since we have proved that {s,} is a Cauchy sequence in X. Choose
an Ny such that Nia < €, then when n’ > m’ > No, d(pmins, Smr) <
L < Ni < e. Let N = max(Np, Ny), then when n’ > m’ > N,

m/’

d(pm/n/’ Z’I’L') S d(pm/n/, Sm/) —|— d(sm/,sn/) < 26. FIX m/’ and 1et n/ —
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oo, we obtain that lim d(pmn,Sn) < 2¢, ie., A(P,,P) < 2e.
n’— oo

Putting these together, we get that Ve > 0, there is an N € N such

that m’ > N implies A(P,,, P) < 2e. Therefore, {P,} converges to

P.

(d) For each p € X, there is a Cauchy sequence all of whose terms are p;
let P, be the element of X* which contains this sequence. Prove that
A(P,,P,) = d(p,q) for all p,¢g € X. In other words, the mapping
¢ defined by ¢(p) = P, is an isometry (i.e., a distance-preserving
mapping) of X into X*.

Proof: A(F,, Py) = lim d(p,q) = d(p,q).

(e) Prove that ¢(X) is dense in X*, and that p(X) = X* if X is com-
plete. By (d), we may identify X and ¢(X) and thus regard X as
embedded in the complete metric space X*. We call X* the comple-
tion of X.

Proof: Suppose T € X* and T & ¢(X), then let {t,,} be any Cauchy
sequence in X that lies in T. We construct a sequence {7, } in ¢(X)
such that T}, = ¢(t,). Ve > 0, there is an N € N such that n > m >
N implies d(tp,tm) < €. Hence A(T,,T) = nli_}n(lo A(tm,tn) < €, ie.,
{T,} converges to T' and thus T is a limit point of p(X). Therefore,
©(X) is dense in X*.

If X is complete, VI' € X*, choose any Cauchy sequence {t,} in
X such that {t,} € T, then {¢,} converges to some t € X. We
conclude that ¢(t) = T, since A(p(t),T) = nl;ngo d(t,t,) = 0. Thus
T € p(X), and X* C ¢(X). Clearly, we have p(X) C X* and
therefore p(X) = X*.

25. Let X be the metric space whose points are the rational number, with the

metric d(x,y) = | —y|. What is the completion of this space? (Compare
Exercise 24.)
Proof: The completion of X is exactly the space R! containing all the
real numbers and with the same metric d(x,y) = |z — y|. This is another
view of the relationship between Q and R, namely, R is the completion of
Q, a great result!

4 Continuity

1. Suppose f is a real function defined on R! which satisfies }llinb [f(x+h)—
—
f(z — h)] =0, for every & € R!. Does this imply that f is continuous?

. 0, z=0
Solution: No. e.g., f(x) = { 1. otherwise
2. If f is a continuous mapping of a metric space X into a metric space X
into a metric space Y, prove that f(E£) C f(E) for every set £ C X.
(F denotes the closure of E.) Show, by an example, that f(E) can be a
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proper subset of f(F).

Proof: Vy € f(E), 3z € E such that f(z) = y. If x € E, then y =
f(z) € f(FE) and thus y € f(E). If x ¢ E, then z is a limit point of E.
Given any € > 0, since f is continuous, there is a § > 0, s.t., dx(z,2) < ¢
implies dy (f(z2), f(z)) < e. Because x is a limit point of F, there must
exists a 9 € E such that dx(zo,z) < ¢, and hence dy (f(xo), f(z)) < €,
which means y = f(z) is a limit point of f(FE). Therefore, y € f(F) and
f(E) C F(E). _

Note that f(F) can be a proper subset of f(E). eg., E =X =Y =R}
f(&) = 125, then E = E and f(E) = f(E) = [0,1), but f(E) = [0,1].

. Let f be a continuous real function on a metric space X. Let Z(f) (the
zero set of f) be the set of all p € X at which f(p) = 0. Prove that Z(f)
is closed.

Proof: Let ¢ be a limit point of Z(f), we need to show that f(q) = 0. To
see this, suppose, on the contrary, f(q) # 0. Without loss of generality, we
assume that f(¢) > 0. Since f is continuous, there is a neighborhood Ny
of ¢ such that f(p) > 0 for all p € N,. Otherwise, for all neighborhoods
V of g, there is at least one point p € V such that f(p) < 0. Then
we can obtain a sequence {p,}, where |p, — ¢| < %, namely, p, — ¢
when n — oo, and f(p,) < 0. But then nlgrolo f(pn) < 0 and since f is

continuous, liLn f(z) = f(q), which means 1i_>m f(prn) = f(q), by Theorem
T—q n—oo

4.2. Thus f(q) < 0, contradict with our assumption that f(q) > 0.
The existence of N, tells us that no point p in Ny satisfies f(p) = 0, which
is again a contradiction since ¢ is a limit point of Z(f). The case f(g) <0

can be examined similarly. Therefore, we conclude that f(q) = 0. So
q € Z(f) and Z(f) is closed.

. Let f and g be continuous mappings of a metric space X into a metric
space Y, and let E be a dense subset of X. Prove that f(F) is dense in
f(X). If g(p) = f(p) for all p € E, prove that g(p) = f(p) for all p € X.
(In other words, a continuous mapping is determined by its values on a
dense subset of its domain.)

Proof: Suppose that ¢ € f(X) but ¢ & f(F), then there is a p € X but
p € E such that ¢ = f(p). Since F is dense in X, p is a limit point of E.
Pick any € > 0, let V' = {y|dy (v, ¢) < €} be a neighborhood of ¢, then V is
open. Since f is continuous, f~!(V) is also open and p € f~1(V). Hence
there is a neighborhood V}, of p such that V,, C f~(V). Since p is a limit
point of E, there is a point x € E such that z € V,. Thus z € f~(V),
ie., f(x) € V and ¢ is a limit point of f(E). Therefore f(FE) is dense in
F(X).

Let h(z) = g(z)— f(x), for all z € X. Then h(p) = 0, if p € E, which gives
E C Z(h). By Exercise 3, Z(h) is closed, thus E C Z(h), according to
Theorem 2.27. Furthermore, since E is dense in X, every point z in X but
not in E is a limit point of £ and thus x € E. Therefore X C E C Z(h).
On the other hand, it is clear that Z(h) C X. Hence Z(h) = X, i.e.,
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h(p) =0 for all p € X, ie., f(p) =g(p) for all p e X.

. If f is a real continuous function defined on a closed set £ C R, prove
that there exist continuous real functions g on R! such that g(x) = f(z)
for all x € E. (Such functions g are called continuous extensions of f
from E to R!.) Show that the result becomes false if the word “closed” is
omitted. Extend the result to vector-valued functions.

Proof: Let the graph of g be a straight line on each of the segments
which constitute the complement of E. Then g is continuous on R! and
g(xz) = f(z) for all x € E.

Remark: Remember that Exercise 29, Chap 2 tells us that every open set
in R! is the union of an at most countable collection of disjoint segments.
Since F is closed, E° is open.

If F is not closed, then the result becomes false. e.g, let E = (0,1) and
f(z) = L. Clearly, f(z) is continuous on E. But we cannot extend it to
R, since lim f(z) = oo.

The result can be extended to vector-valued functions, namely:

If f:R' — R* is a vector-valued continuous function defined on a dense
subset £ C R!, then there exist continuous vector-valued functions g :
R! — R* on R! such that g(x) = f(z) for all z € E. The proof of this is
the same, and the only difference is the straight lines should be interpreted
in R*, not in R'.

. If f is defined on E, the graph of f is the set of points (x, f(z)), for z € E.
In particular, if E' is a set of real numbers, and f is real-valued, the graph
of f is a subset of the plane.

Suppose E is compact, and prove that f is continuous on F if and only if
its graph is compact.

Proof:

=: Suppose E is compact and f is continuous on F, and let G be the
graph of f. Define g : E — G, such that g(z) = (z, f(x)), for all z €
E, then g is one-to-one and onto (namely, G = ¢g(E)). Fix ap € E,
since f is continuous on E, given any € > 0, there is a § > 0 such that
|z — p| < & implies |f(z) — f(p)| < e. Pick r such that » = min(J,e),
then when |z — p| < r < ¢, |f(z) — f(p)| < € and thus |g(z) — g(p)| =
V0 =pl2+1f(x) — f(p)]2 < Vr? + €2 < /2¢. Hence g is continuous and
therefore, G is compact, since E is compact.

<: Recall that a function f: X — Y is continuous if and only if f~1(C)
is closed in X for every closed set C' in Y.

Suppose E is compact. Let F' be any closed subset of f(E), G be the
graph of f (G is compact by assumption), and define ¢ : G — E such
that ¢(z, f(x)) = « for every (z, f(z)) € G. Then ¢ is continuous, by
Example 4.11. Notice that f~1(F) = ¢((E x F)NG). Since E is compact,
E is closed, and since F is closed, E x F is closed. Thus (E x F)NG is
compact, since G is compact. Then ¢((E x F)NG) is compact, since ¢ is
continuous. So f~1(F) is compact, thus is closed. Therefore, f must be
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continuous.

. If EC X and if f is a function defined on X, the restriction of f to E is
the function g whose domain of definition is F, such that g(p) = f(p) for
2

p € E. Define f and g on R? by: f(0,0) = ¢g(0,0) = 0, f(x,y) = eyl
g(z,y) = oyt g (x,y) # 0. Prove that f is bounded on R?, that g is

x24y6

unbounded inJevery neighborhood of (0,0), and that f is not continuous
at (0,0); nevertheless, the restriction of both f and g to every straight
line in R? are continuous!
Proof: |f(z,y)| = IV, < ;=i =1,

24y 2(z2+y*) 2
Given any r > 0 and M > 0, suppose V. is a neighborhood of (0,0),
namely, \/22 + y? < r, for any (z,y) € V;, then there is a y, 0 < y < 3 (if
r>1),or0<y<g(ifr<1) and%>M. Let x = ¢?, then 2% + ¢% =
Py =2+ 1) < <1 <e2(ifr < 1), or < TEE <2< p2(if
r < 1). Hence, (z,y) € V., and g(z,y) = 2—1‘7! > M. So g is unbounded in
every neighborhood of (0,0).

Let {(x,,yn)} be a sequence such that lim y, =0, y, # 0 and x,, = y2,
n—oo

for every n, then lim (z,,,y,) = (0,0), but f(z,,y,) = %, for every n.
n—oo
Thus lim f(2,,ys) = 5 # f(0,0) = 0, and therefore f is not continuous
n—oQ
at (0,0).
We classify the straight lines in R? into the following cases:

. 2
(i)z = a, then f(z,y) = z¥s
and if a # 0, f(z,y) is continuous too, since ay? and a? + y? are both
continuous. ¢ is continuous can be proved similarly.

.Ifa=0, f(x,y) =0, and [ is continuous,

(il)y = b, then f(x,y) = wi’%z, and f is continuous, with the similar proof
of (i). g is continuous can be proved by the same process.
(iii) The most general case comes as y = ax + b, where a # 0. Then

flz,y) = szr(l(z:i);)‘* = 28;7 where P;(z) and Py(z) are 2’ polynomi-

als. Since Pj(x) and P(z) are continuous, by Example 4.11, f(z,y) is
continuous, too. g is continuous can be proved similarly.

. Let f be a real uniformly continuous function on the bounded set E in
R!. Prove that f is bounded on E.

Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.

Proof: Suppose that, on the contrary, f is not bounded. Then for any
M > 0, there is an « € E such that |f(z)] > M. Let M = n, we
can therefore obtain a sequence {z,} such that |f(z,)| > n, and thus
|f(zn)] — o0, as n — oo. Since E is bounded, so is x,. Then there is a
subsequence {zy, } of {x,} which converges, by Theorem 3.6(b). Denote
{xn,} as {yr}, and since {y} converges in R, {y;.} is a Cauchy sequence.
Given any € > 0, there is a § > 0 such that |[p—gq| < ¢ implies | f(p)—f(q)| <
€, for any p,q € F, since f is uniformly continuous on E. For this 4, since
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11.

12.

{yr} is a Cauchy sequence, there exists an N such that |y, — ym| <
dif n > m > N. Thus |f(yn) — f(ym)| < €, and we have |f(y,)| <
L ()| + [f () = f(ym)| < |f(ym)| + €. Fix m and let n — oo, then
lm |f(yn)| < |f(ym)|+ €, which is contradict to the way we choose {x,,}
n—oo

(Pick an integer N’ such that N’ > |f(ym)| + €, then |f(z,)| > N’, when
n > N'. Pick a K such that ng > N’, then |f(xn,. )| > N' > | f(ym)| +¢).
Therefore, f must be bounded.

Remark: If F is not bounded, the conclusion will be false. e.g., Let
E = [0,400), and f(z) = z, for all z € E. Clearly, f is uniformly
continuous (just take § = € in the definition of uniformly continuous).
But again clearly, f is unbounded on FE.

Show that the requirement in the definition of uniform continuity can be
rephrased as follows, in terms of diameters of sets: To every € > 0 there
exists a 6 > 0 such that diamf(E) < € for all E C X with diamFE < 4.

Proof: The requirement in the definition of uniform continuity says that:
To every € > 0 there exists a § > 0 such that dx(p,q) < 0 implies
dy (f(p), f(q)) <, for all p,q € E. Since diamF = sup{dx(p,q)|p,q € E}

and diam f(E) = sup{dy (f(p), f(2)|/ (), f(q) € f(E)}, dlamE < § and
diamf(F) < e, for all E C X.

Complete the details of the following alternative proof of Theorem 4.19:
If f is not uniformly continuous, then for some € > 0 there are sequences
{pn}, {¢n} in X such that dx(pn,¢.) — 0 but dy (f(pn), f(qn)) > €. Use
Theorem 2.37 to obtain a contradiction.

Proof: Since X is compact, then E, = {p,} is a infinite subset of E and
by Theorem 2.37, E,,, has a limit point p in X. Similarly, E,, = {g,} has
a limit point ¢ in X. So, we can obtain a subsequence {py, } of {p,} and
subsequence {¢n, } of {gn} (also, see Theorem 3.6), such that {p,,} con-
verges to p and {qy,, } converges to q. Therefore, dx(p,q) < dx(p,pn,) +
dx(pn,,qn,) + dx(gn,,q) — 0, when ny — oo. Hence dx(p,q) = 0
and p = ¢. On the other hand, dY(f(p)vf(Q)) > dY(f(pnk)7f(Q7tk)) -
dy (f(p), f(pn,)) — dy (f(q), f(qn,)) > €, when ny — oo, which is absurd
if p=gq.

Suppose f is a uniformly continuous mapping of a metric space X into
a metric space Y and prove that {f(z,)} is a Cauchy sequence in Y for
every Cauchy sequence {z,} in X. Use this result to give an alternative
proof of the theorem stated in Exercise 13.

Proof: Given any € > 0, since f is uniformly continuous, there is a ¢
such that dx (p,q) < d implies dy (f(p), f(q)) < €. Since {z,} is a Cauchy
sequence, there is an N € N such that n > m > N implies dx (2, T.,) < 9.
Thus, dy (f(z5), f(zm)) < € and {f(z,)} is a Cauchy sequence.

A uniformly continuous function of a uniformly continuous function is uni-
formly continuous.
State this more precisely and prove it.
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13.

Statement: Let f be a uniformly continuous mapping of a metric space
X into a metric space Y, and g be a uniformly continuous mapping from
Y into a metric space Z. Prove that the mapping h = g o f from X into
Z is also continuous.

Proof: Given any e > 0, since g is uniformly continuous, there is a § > 0
such that dy (y1,y2) < 6 implies that dz(g(y1), g(y2)) < €. For this 0, since
f is uniformly continuous, there is a § > 0 such that dx(z1,2z2) < § im-
plies that dy (y1,y2) = dy (f(21), f(z2)) < 0, and thus dz(g(y1), 9(y2)) =
dz(g(f(x1)),9(f(x2))) = dz(h(x1), h(x2)) < e. Therefore, h is uniformly
continuous.

Let E be a dense subset of a metric space X, and let f be a uniformly
continuous real function defined on E. Prove that f has a continuous ex-
tension from E to X (see Exercise 5 for terminology).( Uniqueness follows
from Exercise 4.)

Proof: For each p € X and each positive integer n, let V,,(p) be the
set of all ¢ € E with d(p,q) < 1/n. Since f is uniformly continu-
ous on E, Ve > 0, there is a § > 0 such that diamS < ¢ implies that
diamf(S) < e, for every S C E. Therefore, for this d, if we pick an N € N
such that 2/N < §, then when n > N, diamV,(p) < 2/n < ¢ and thus
diam f(V,,(p)) < e. This is equivalent to say that nh_)n;o diamf(V,(p)) =0,

and thus ILm diamf(V,,(p)) = 0, since diamf(V,(p)) = diamf(V,(p)).

Because f is real, f(V,(p)) is closed and bounded, and thus compact. Fur-
thermore, since Vii11(p) € Va(p), f(Vas1(p)) € f(Va(p)) and f (Vaya(p)) S

f(Vo(p)). Therefore, (-, f(Va(p)) contains exactly one point, and we
define this as g(p).

Next, we shall prove that the function g so defined on X is the desired
extension of f.

First, if p € E, then since f(p) € f(V,.(p)), for every n, we have f(p) €

Moz f(Va(p)) and thus g(p) = f(p).
Then, let p be any point of X. Given any € > 0, we have shown that

there is an N € N such that if diamV,,(p) < 2/N(namely, n > N), then
diamf(V,(p)) < e. Let r = NLH, then when dx(q,p) < r/2, for any
q € X, since F is dense in X, ¢ is either a point of F, or is a limit point
of E. If ¢ is a point of F, ¢ € Vni1(p) and ¢g(q) = f(q) € f(VN+1(p)),
then |g(q) — g(p)| < €, since diamf(Vy11(p)) < € and g(p) € f(Va(p)),
for every n. If ¢ is a limit point of E, then g(q) € f(V,(q)), for every

n. Pick an @ € F such that dx(z,q) < r/2(this can be done since ¢ is a
limit point of E), then dx(z,p) < dx(x,q) +dx(p,q) <r/2+71/2 =1
Therefore, |g(x) —g(q)| < e(since dx (x,q) < r/2 implies that x € Vy11(q)
and diamVy11(q) < NLH implies diamf(Vn11(q)) < €, because f is uni-
formly continuous on E) and |g(z) — g(p)|] < e. Hence |g(q) — g(p)| <
lg(q) — g(z)| + |g(x) — g(p)| < 2¢ and thus g is continuous.

So g is the desired extension of f.

Remarkl: Could the range space R! be replaced by R¥? By any compact
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metric space? By any complete metric space? By any metric space?

The case of R* and compact metric space both hold, since the key steps
involving “f is real” in the previous proof is that:

In R!, closedness and boundedness imply compactness, thus V,,(p) is com-
pact and Theorem 3.10(b) can be applied.

Note that if R! is replaced by R¥, nothing is new, since the Heine-Borel
Theorem tells us in R*, closedness with boundedness is equivalent to com-
pactness, and the proof process is the same. If R! is replaced by compact
metric space , the compactness also results, since closed subsets of com-
pact space are compact.

If R! is replaced by any complete metric space, recall Exercise 21 of Chap-
ter 3: If {E,} is a sequence of closed nonempty and bounded sets in a
complete metric space X, if E, 2O FE,11, and if nh_)rr;o diamF,, = 0, then

N:° E, consists of exactly one point.

We thus can conclude that if R! is replaced by any complete metric space,
the result also holds.

If R! is replaced by any metric space, the result cannot always hold, since
N} E, may be empty. For example, consider the metric space (Q,d),
where d(p, q) = |p—q|, for any p,q € Q. Q is not complete, by the remark
under Definition 3.12; and closedness and boundedness not implies com-
pactness, by Exercise 16 of Chapter 2.

Remark2: We can also use the result of Exercise 11 to give an alternative
proof. This proof may be easier, and the cases stated in Remark1 will
be more clear under this circumstance. Next, we give out this alternative
proof:

Suppose p € X, if p € E, we define g(p) = f(p) and if p € E, since E
is dense in X, p is a limit point of E. Let {p,} be any sequence of E
which converges to p, then {p,} is a Cauchy sequence in E, since f is
uniformly continuous on E, {f(p,)} is a Cauchy sequence in R!. Then
{f(pn)} will converge to some q € R, since R! is complete. We define
g(p) = q. Firstly, we will show that ¢ is well-defined. That is, if s, = p
and t,, — p, then nh_)rr;o flsn) = nh_)rrgo f(tn) = q. Given any € > 0, since f
is uniformly continuous, there is a § > 0 such that dx(a,b) < ¢ implies
that |f(a) — f(b)| < ¢, for every a,b € E. Since s,, — p, there is an N; € N
such that n > Nj implies dx(s,,p) < /2 and since t,, — p, there is an
N3 € N such that n > Ny implies dx (t,,p) < §/2. Let N = max(Ny, Na),
when n > N, we have dx(sn,tn) < dx(sn,p) + dx(tn,p) < §. Hence,
|f(sn) — f(tn)| < €. Since f(sn) — ¢, there is an N3 such that when
n > Ns, |f(sn) — q] < e. Let N' = max(N, Ns), and when n > N,
|f(tn) = al < [f(sn) —al + [f(sn) = f(tn)] < 2¢. Therefore, f(tn) — q.
Now, we need to prove that g is continuous on X.

Let p e X,

(i) If p € E, then g(p) = f(p). Given any ¢ > 0, there is a § > 0,
dx(a,b) < ¢ implies |f(a) — f(b)] < €/2, for any a,b € E. Let v € X,
such that dx(z,p) < §/2. If z € E, then g(z) = f(z) and |g(z) — g(p)| <
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15.

€/2 < ¢ if x ¢ E, then z is a limit point of E. Suppose s, — =z,
$n € E, then g(x) = lim f(s,) = lim g¢(s,). Since s, — x, there is
n—oo n—oo
an N1 € N such that n > N; implies dx (sp,x) < /2. Thus dx(sn,p) <
dx (n,7) + dx (3,p) < &, and |g(sn) — 9(p)| = |£(5n) — F(p)] < ¢/2. On
the other hand, since g(s,) — g(x), there is an Ny € N such that n > N
implies |g(s,) — g(x)| < €/2. Let N = max(Ny, Na), then when n > N,
lg(x) — g(p)| < |g(x) — g(sn)| +19(sn) — g(p)| < €. Therefore, g is contin-
uous at p.
(ii) If p ¢ E, then p is a limit point of E. Suppose t,, — p, t, € E,
then g(p) = lim f(¢,) = lim g(¢,). Given any € > 0, since f is uni-
n—oo n—oo
formly continuous on E, there is a 6 > 0 such that dx(a,b) < § implies
|f(a) = f(b)| < €/3. Let x € X, such that dx(z,p) < §/3. Then if z € E,
g(x) = f(x), and since t,, — p, there is an N7 € N such that n > N;
implies dx (t,,p) < §/3. Thus dx(tn,z) < dx(tn,p) + dx(z,p) < § and
lg(tn) —g(x)| = | f(tn) — f(z)| < €/3. Since g(t,) — g(p), there is an Ny €
N such that n > Ny implies |g(t,,) — g(p)| < €/3. Let N = max(Ny, N2),
then when n > N, [g(z) — g(p)| < |g(z) — g(tn)] + |g(tn) — g(@)] < e
If x ¢ E, then = is a limit point of E. Suppose s, — =z, s, € F,
then g(x) = nh_)néo f(sn) = nh_{rgo 9(sp). Thus there is an N such that
n > Ny implies that dx(s,,x) < /3. Since t, — p, there is an Ny € N
such that n > Ny implies that dx(¢,,p) < 6/3. Let N = max (N7, N2),
then when n > N, dx(sn,tn) < dx(sn,z) + dx(z,p) + dx(tn,p) < 9,
and thus [g(s,) — g(tn)| = [f(sn) — f(ta)| < €/3. Since g(s,) — g(z),
there is an N3 € N such that n > N3 implies |g(sn) — g(x)| < €/3;
and sine ¢(t,) — g(p), there is an Ny € N such that n > N4 implies
lg(tn) — g(p)| < €/3. Let N' = max(N, N3, Ny), then when n > N,
l9(z) —g(p)| < |9(x) — g(sn)| +|9(sn) — g(ta)| + |9(tn) — 9(p)| < €. There-
fore, g is continuous at p.
Combining (i) and (ii), we have shown that g is continuous at every point
peX.
Notes: The key point in the above process involving “f is real” is that
R! is complete (thus every Cauchy sequence in R! converges). Thus, if Rt
is replaced by R*, or by any compact metric space, or by any complete
metric space, the result also holds, according to Theorem 3.11.

Let I = [0,1] be the closed unit interval. Suppose f is a continuous
mapping of I into I. Prove that f(z) = z for at least one x € I.

Proof: Suppose that, on the contrary, f(x) # x, for all the 2 € I. Define
g(x) = f(x) — z, for € I, then ¢ is continuous, too. Since f(I) C I,
9(0) = f(0) # 0, thus ¢g(0) > 0; on the other hand, ¢g(1) = f(1) — 1 < 0,
since f(1) # 1, by our assumption. Because ¢ is continuous, and ¢(0) >
0 > g(1), there is a x¢ € I such that g(z¢) = 0, by Theorem 4.23. Namely,
f(zg) = xo, which is contradict to our assumption. Therefore, f(z) = x
for at least one x € I.

Call a mapping of X into Y open if f(V) is an open set in Y whenever V
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is an open set in X.

Prove that every continuous open mapping of R! into R! is monotonic.
Proof: Suppose that, on the contrary, some f : R! — R! is continuous
open but not monotonic. Then there is an € R! and a § > 0 such that
(F(&) = f(x)(f(s) = f(x)) >0, for every t € (x — §,z) and s € (z,z + 9).
(More specifically, since f is open, f cannot be constant and furthermore,
f must have infinitely many different values. Since f is not monotonic,
there is 1 < my < w3 such that (f(z2) — f(z1))(f(z2) — f(z3)) > 0.
That is, either f(x2) > f(z1) and f(x2) > f(x3), or f(x2) < f(z1) and
f(x2) < f(xz3). Without loss of generality, let 25 be the first case. Denote
E = [z1, 23], then since f is continuous, there is a p € E, such that f(p) =
;ngf(x). Because f(22) > f(z1) and f(z2) > f(x3), p # v1 and p # 3.
Hence p € (x1,x3), and since (x1,x3) is open, there is a § > 0 such that
(p—6,p-+0) C (21,73) C E. Obviously, (£(t)— F(p))((s)—(p)) > 0 (since

f(t) > f(p) and f(s) > f(p)), for every t € (p —d,p) and s € (p,p + 9).
The second case of z2 can be dealt with similarly.)

Let V = (x—4,2+6), so V is open. But then f(V') cannot be open, since
f(z) € f(V) and f(x) is not an interior point of f(V'). (Otherwise, there
is an € > 0 such that (f(z) — ¢, f(z) +¢) C f(V). Since f is continuous,
there is a ¢’ > 0 such that |t — 2| < §’ implies |f(¢t) — f(z)] < e. Let
r = min(d,d’), then when |t — x| < r, either f(t) > f(x), for every
te(x—rx+r), or f(t) < f(x), for every t € (x — 7,z + ). If it is the
first case, f(z)—¢€/2 & f(V) and if it is the second case, f(z)+e¢/2 & f(V),
either gives us a contradiction.)

Remark: We can also show that every continuous open function must be
injective, and every continuous injective function is strictly monotonic.

Let [z] denote the largest integer contained in z, that is, [z] is the integer
such that z — 1 < [z] < x; and let () = x — [z] denote the fractional part
of . What discontinuities do the functions [z] and (x) have?

Solution: Clearly, both [z] and (z) are discontinuous at each integer-
valued point.

Let f be a real function defined on (a,b). Prove that the set of points at
which f has a simple discontinuity is at most countable.

Proof:

(i) Let E be the set on which f(z—) < f(x+). With each point of E,
associate a triple (p, q,r) of rational numbers such that

(a) f(z—) <p< flz+);
(b) a < gq<t<aximplies f(t) <p;
(¢c) x <t <r<bimplies f(t) > p.

The set of all such triples is countable. We next show that each triple is
associated with at most one point of E. Suppose that, on the contrary,
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there are two point of E are associated with one triple (p, g, ). Let these
two points be denoted as x; and xs, without loss of generality, we let
21 < wo. Then, there is a t € (a,b) such that 1 < t < x2, we have the
following results:

(@) flz1—) <p < f(@14), f(@2—) <p < flz2t);
(b) a < g <t< xz implies f(t) < p;
(¢) 1 <t <r<bimplies f(t) > p.

Obviously, (b) and (c) are contradict, and thus each triple is associated
with at most one point of . Therefore, E is at most countable.

(ii) Let F' be the set on which f(x—) > f(z+), with nearly the same
procedure as (i), we can prove that F' is at most countable (namely, with
changes in (a) by f(z—) > p > f(z+), in (b) by f(¢) > p and in (c) by
f(t) <p).

(iii) Let G be the set on which f(x—) = f(z+) < f(x), then we can let
the above conditions (a), (b) and (c) be replaced as:

(a) f(z) =p;
(b) a < g <t< ximplies f(t) < p;
(¢) z <t <r<bimplies f(t) < p;

Then if z; and a2 are associated with the same triple (p,q,r), we have
f(z1) = f(z2) by (a). But (b) tells us f(z1) < p, since a < ¢ < x1 <
2o and (c) tells us f(z2) < p, since 1 < xy3 < r < b. Both give us
contradictions. Thus, each triple is associated with at most one point of
G and G is at most countable.

(iv) Let H be the set on which f(z—) = f(x+) > f(x), with the same
procedure as (iii), we can prove that H is at most countable (namely,
change conditions (b) and (c) by f(¢) > p).

Combining the results of (i), (ii), (iii), and (iv), we conclude that the set
of points at which f has a simple discontinuity is at most countable.

Every rational x can be written in the form x = m/n, where n > 0, and
m and n are integers without any common divisors. When x = 0, we take
n = 1.Consider the function f defined on R' by

0 « irrational,
s ={ 8

n (=5

Prove that f is continuous at every irrational point, and that f has a
simple discontinuity at every rational point.

Proof: Fix an irrational number p. Given any € > 0, there is an N € N
such that 1/N < e. Let x be any real number, suppose x = [z] + (z),
and p = [p] + (p), we pick an N’ so large that if |x — p| < 1/N’, then
[z] = [p]. Let M = max(N,N'), when |z — p| < 1/M, we have |z — p| <
1/M < 1/N, and [z] = [p] so that |z — p| = |(z) — (p)] < 1/M. Since
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|(z)| <1, if we let () = ™, then m can only be one of the 2n — 1 values
0,%1,...,£(n — 1). Next, we remove from the neighborhood V;,u/(p) of
p those rational numbers with divisor smaller than or equal to M. Let
E = {|q — pl|q is removed from V; p(p)}, then E is finite, by our above
statements. Thus 6 = minE > 0, 6 < 1/M, and Vs(p) contains only
irrational numbers and those rational numbers with divisor larger than
M. Let z € Vi(p) (namely, |z — p| < ¢), if x is irrational, f(z) = 0
and |f(z) — f(p)] = 0 < € and if x is rational, let © = m/n, we have
[f(x) = f(p)|=|f(x)]=1/n < 1/M < 1/N < e and therefore f is contin-
uous at x.

Let p = 7' be any rational number, then given any ¢ > 0, if we ap-
ply the skill in the previous proof process, we can obtain a neighborhood
Vs(p)(except p) which contains only irrational numbers and rational num-
bers with divisor larger than M, where 1/M < e. Thus 0 < f(x) < €, when
x € Vs(p) and = # p, and we have 0 < f(p+) < ¢, 0 < f(p—) < €. Since
€ is arbitrary, we have f(p+) = 0 and f(p—) = 0, but f(p) = 1/n # 0.
Therefore, f has a simple discontinuity at every rational point.

Suppose f is a real function with domain R! which has the intermediate
value property: If f(a) < ¢ < f(b), then f(x) = ¢ for some x between a
and b.

Suppose also, for every rational r, that the set of all x with f(z) = r is
closed. Prove that f is continuous.

Proof: If z,, — xo but f(z,) > r > f(x¢) for some r and all n, then
f(tn) = r for some t, between xy and xz,, since f has the intermediate
value property. Thus ¢, — xg. But then z( is a limit point of the set F
of all x with f(x) = r, and by assumption, E is closed. Therefore, ¢ € E
and f(xog) = r, which is contradict to the assumption that f(xg) < r.
Hence, f must be continuous.

If F is a nonempty set of a metric space X, define the distance from z € X
to E by pg(x) = ingd(x,z).
S

(a) Prove that pg(z) = 0 if and only if x € E.
Proof:
=: Suppose that pg(z) = 0, and x ¢ E. Then z € E°. Since E is
closed, E° is open. Thus there exists an r > 0, such that d(y,x) < r
implies y € E¢ and y ¢ E. Then d(z,x) > r, for every z € E and

infE d(x,z) > r > 0, namely, pg(x) > 0, a contradiction.
z€

<: Suppose that x € E. If z € E, then since d(z,z) = 0, pg(z)
is trivially 0; If x ¢ FE, then z is a limit point of E, thus given any
€ > 0, there is a z € E such that d(z,z) < e. We conclude that
pE(z) = Zlng d(x,z) = 0, since every € > 0 is not a lower bound of

d(z, 2).
(b) Prove that pg is a uniformly continuous function on X, by showing
that |pg(x) — pe(y)| < d(z,y) for all z € X, y € X.
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Proof: Fix z,y, we have pg(z) < d(z,2) < d(z,y) + d(y, z), for

)
every z € E, thus pp(z) < d(z,y) + pr(y) and pp(z) — pr(y) <
d(x,y). Similarly, we have pg(y) — pe(x) < d(z,y) and therefore

lpe(x) — pe(y)| < d(z,y). Hence pg is uniformly continuous.

Suppose K and F' are disjoint sets in a metric space X, K is compact, F
is closed. Prove that there exists § > 0 such that d(p,q) > § if p € K,
qgeF.

Show that the conclusion may fail for two disjoint closed sets if neither is
compact.

Proof: First, we will show that pr(p) # 0, for every p € K. Suppose that,
on the contrary, there is a ¢ € K such that pp(¢) = 0. Then by Exercise
20(a), ¢ € F. Since F is closed, F = F and ¢ € F, which is not possible
because K and F' are disjoint, by assumption. Thus, for every p € K,
pr(p) > 0. Furthermore, by Exercise 20(b), we have pp is continuous on
K, and since K is compact, let m = plng( pr(p), then there exists a point

q € K, such that pp(q) = m, by Theorem 4.15. Since pr(q) > 0, we have
m > 0. Pick any ¢ such that 0 < § < m, we have d(p,q) > pr(p) > m >4,
forevery pe K,q € F.

If two disjoint sets are both closed but neither is compact, then the conclu-
sion may fail. For example, let E be the set of all positive integers, and let
F be the set of {n+X}, n > 2, then both E and F are closed (in fact, E and

F both have no limit points). Clearly, since lim d(p,,¢,) = lim % =0,
n—00 n—00

for p, € E, g, € F, n0 § > 0 can be found such that d(p,q) > ¢ for every
peFE, geF.

Let A and B be disjoint nonempty closed sets in a metric space X, and
define )
pPAp

fo) m@+%@(€m'
Show that f is a continuous function on X whose range lies in [0, 1], that
f(p) = 0 precisely on A and f(p) = 1 precisely on B. This establishes a
converse of Exercise 3: Every closed set A C X is Z(f) for some continuous
real f on X. Setting V = f71([0,3)), W = f*((3,1]), show that V and
W are open and disjoint, and that A C V', B C W. (Thus pairs of disjoint
closed sets in a metric space can be covered by pairs of disjoint open sets.
This property of metric spaces is called normality.)
Proof:
(i) We first prove that pa(p) + pp(p) # 0, for every p € X. Suppose
that, on the contrary, there is a ¢ € X such that pa(q) + ps(¢) =0, then
pa(q) = 0 and pg(q) = 0. Thus ¢ € A and ¢ € B, by Exercise 20(a).
Then ¢ € A and q € B, since both A and B are closed, which is contradict
to our assumption that A and B are disjoint.
The fact that f is continuously then comes directly from Exercise 20(b)
and Theorem 4.9. Since 0 < pa(p) < pa(p) + pu(p), for every p € X, it’s
clear that f(X) C [0, 1].
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f(p)=0&pa(p)=0=peAdspe A B

f) =1 pa(p) = palp) + p5(p) © pp(p) =0=pe B pe B.

(i) Fix any p € V, then f(p) € [0, 3), which gives 0 < p4(p) < p5(p).

If pa(p) # 0, we pick an r € R! such that 0 < pa(p) < r < pp(p),
then since py4 is uniformly continuous on X (by Exercise 20(b)), there is
a 01 > 0 such that dx (z,p) < 0; implies that 0 < pa(x) < r; and since pp
is uniformly continuous on X, there is a d3 > 0 such that dx(z,p) < da
implies that pp(z) > r. Let 6 = min(dy,d2), then when dx (z,p) < 4§, we
have 0 < pa(z) <r < pp(z) and thus 0 < f(z) < 1. So f(z) € (0,1) and
zeV.

If pa(p) =0 (f(p) = 0), since f is continuous on X, there is a 6 > 0 such
that dx (z,p) < & implies |f(z) — f(p)| < 3, namely 0 < f(z) < 3. Thus,
zeV.

Therefore, V is open. In just the same way, we can prove that W is open
(this case the condition becomes 0 < pp(p) < pa(p). Next, we will prove
that V and W are disjoint. If VNW # (), thereisap € X such thatp € V
and p € W, which gives f(p) € [0, 3) and f(p) € (3,1], a contradiction.
Therefore, V and W are disjoint.

The fact A C V and B C W are clear, since € A implies f(z) = 0 and
x € B implies f(x) = 1.

A real-valued function f defined in (a,b) is said to be convez if f(Ax +
(I =Ny < AM(z)+ (1 —Nf(y) whenever ¢ < z < b, a < y < b,
0 < A < 1. Prove that every convex function is continuous. Prove that
every increasing convex function of a convex function is convex. (For
example, if f is convex, so is ef.)

If f is convex in (a,b) and if a < s <t < u < b, show that

1) = f(s) _ fw) = f(s) _ f(w) = S (1)

t—s uU— S8 u—t

Proof: Suppose that, on the contrary, f is not continuous at some p €
(a,b). Then for this p, without loss of generality, there is some sequence
{z,} such that x, — p when n — oo, but f(z,) > r > f(p) (and
thus if we let » < 1 < f(x,), r > ro > f(p) and € = r1 —ry > 0,
then f(xn,) — f(p) > r1 —re2 = € > 0), for some r and all n. Then
Ty :Anp""(l_)\n)xh 0< A <1, forn > 1. f(xn)_f(p) :f()‘np+
(1=An)z1) = f(p) < Anf(P)+(1=An) f(z1) = f(p) = (A=2n)(f(21) = f (D)),
which gives € < f(z,) — f(p) < (1 —A,)(f(x1) — f(p)). Notice that when
Tn = Py, Ap — Land 1 — N\, — 0. Hence f(z,) — f(p) — 0 when n — oo,
namely, ¢ < 0, which is absurd. The case f(z,) < r < f(p) will be
similar, by showing 0 > € to get a contradiction. Therefore, f must be
continuous.(Remark: Recall the method used in Exercise 19 again.)

Suppose f is convex, and ¢ is increasing convex. Let h(z) = g(f(z)),
then h(Az + (1 = A)y) = g(f(Az + (1 = N)y)) < g(Af(x) + (1 = A)f(y)) <
Ag(f(x) + (1 =Ng(f(y)) = Ah(x) + (1 — A)h(y). Therefore, h is convex.
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We have t = :j:; — 3:2—&—“ > =1, if welet A(t) = u_i,
then 0 < A(¢) < 1 for any ¢ since s < t < u, and ¢ = A(t)s + (1 — A(t))u.
Since f is convex, we have f(t) < A(t)f(s) + (1 — A(t)) f(u), which gives
us (u—s)f(t) < (u—1)f(s)+ (t — s)f(uw). Then we have (u — s)f(t) <
(u=5)f(s)—(t—5)f(s)+(t=5)f(u) = (u=s)(f(t) = f(s)) < (t—=s)(f(u)—
1)) = KO < JEHE and (u—s) (1) < (u=1)/(5)+ (u—5) (u) -
(T)-t)f)( u) = (u—1)(f(u) = f(s)) < (u—s)(f(w) = f(1)) = L=LE <

w)—f(t

Combining these two result gives us the desired inequality.

Assume that f is a continuous real function defined in (a,b) such that

f(EY) < M for all ,y € (a,b). Prove that f is convex.

Proof: First, we will prove that if A = %, n=1,2,.., then f(Ax + (1 —

Ay) < Af(z)+ (1 — N f(y). We can prove this by induction:

(i) n=1, A = 3, then it is trivial that f(“”y) < w

(ii) Suppose that when n = k, A = 5, fQhz + (1 = Ny) < Af(z) +

(1 = XN)f(y). When n = k+ 1, we have f(zima + (1 — 577)y
(F+1—55)y)+y F(+A—0)y)+f(y)

) =
f(= 5 ) < R < 3G f(@) + (1= 50)f(y) +
J(W)](by hypothesis)= 5 f () + (1 — 57) f (1)-

Furthermore, we can similarly prove that if A\ =

9i where a; = 0 or

PR
=1, then f(Az+ (1= N)y) < Af(@) + (1 =N f(y) (*):
() n=1A=%. Since A >0, a; =1 and A = 1, then it is trivial that
() < M
k
(ii) Suppose that when n =k, A= Y 5, f(Az+ (1= N)y) < Af(z)+ (1 -
i=1
k+1
ANf(y). Whenn=k+1, A= k.
i=1
k+1
If > 55 <1, we have
i=1
kil KAl él it )yl +y
f(;;iﬁ(l—;f%)y): ( 5
k1 B
Since ) 5y < 1, we must have a; = 0, then
i=1
k+1 ko koo
Y sy = > 4 =37 4 and hence
i=1 i=0 i=1
(3 sirat-% S+ (S (-3 Sy
=1 i=1 =1
f( D) = ) = f( 5
ko ko, ko,
f(z: Llot(1-3 Y+ fy) X R f@)+(- 2 N )+ f(y)
S = 2171 S i=1 7/2:1

k41

)fy) = ;2 gf() + (1 -

k k
(by hypothesis)= 7 55 f(x) + (1 — 30 55
1=1 =1
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sfy) = 2 5t (@) + (1= 3 51)f(y), since a = 0.

k1, k1,
ktl e (X str—De+- 3 oitr)yl+e
f(zlgfﬂ“r( 27)) f(—= TR
kgl a ki1 k
Since Z st > 1, we must have a; = 1, then S 4
i=1 i=0
'L k+1 K3 K3
1+ Z %+ (notice that Y 5t < 2) and hence
k+1 +1 a?:1 koo kg
(5 stir-Dete-3 stipuite (3 Sar- 3 e
f(= SR )= f( 2’*
ko kg .
FOO ZEat(1-3 2 )y)+f (=) _Z 1“ fz)+(1— Z ;fl)f(y)Jrf(I)
< =1 i=1 < i=t i=1
= 2 = 2
. ko ) . B Rel
(by hypothesis)= (Z st + 3)f(@) + (5 — Zl ) f(y) = (22 g+
) |kl k1l o
§)f($)+(§—22 ) = Z f(@)+ (1—2172)f(y) since a; = 1.

Now, suppose that f is not convex, then there is some xg,yo € (a,b) and
some 0 < Ag < 1, such that f(Agzo+(1—Xo)yo) > Aof(zo)+(1—Xo)f (o).
Let g(A) = f(Axo + (1 — Nyo) — (/\f(aco) + (1 = AN)f(yo)), then we have

g(Ao) > 0and g(\) <0, forevery)\fz st,a;=0o0ra; =1,n=1,2,.

Since f(p) is continuous, and p = h(/\) = Azg + (1 — Ny is continuous,
g(A) is continuous. Let 0 < r < g(Ao) and € = g(Aog) — 7 > 0, then there
is a 0 > 0 such that |A — X\g| < § implies |g(A\) — g(Mo)| < €, and thus
g(A) > g(XAg) — € =r > 0. But, for this §, we can pick an N € N such
that n > N implies 2% < §. Then choose \; = 5+ such that n > N
i=1

and [A\; — Ao| < 5k < &, we have g(A;) > 0, which is a contradiction.
Therefore, f must be convex.

Remark: Actually, every 0 < A < 1 can be represented as the form

o0

A= 5k, where a; = 0 or a; = 1, namely, the binary representation of
i=1

A. Hence, the result (*) can be generalized in the case when n — oc.

If ACR* and B C R”, define A + B to be the set of all sums & + ¢ with
reA yeB.

(a) If K is compact and C is closed in R¥, prove that K + C' is closed.
Proof: Take 27 ¢ K + C, put F = 2 — C, the set of all 2 — ¢ with
¢y € C. Then K and F are disjoint.(Otherwise, there is some & € K
and ¥ € F. & € F implies that 7 — & € C, and since ¥ € K,
Z=(Z—17)+Z € C+ K, contradicting to our choice of Z.) Since C
is closed, F is closed. (Let p be a limit point of F, given any e > 0,
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then there is a & in F' such that |¥ —p] < e. Since T € F, & =7 — 7,
for some g € C. Thus |(Z— p) — §] < €, which shows that Z— 7'is a
limit point of C. Then Z—p' € C, since C is closed. Therefore, p'e F
and F is closed.) Because K is compact, by Exercise 21, there exists
ad > 0such that [p—¢q] >dif e K, §€ F. Now let V be the
open ball with center 2’ and radius d, we will prove that V' does not
intersect K + C.

If, on the contrary, there is some p' such that pe V and pe K + C.
Then |f— Z| < 8, and since € K + C, f= @+ b, with @ € K and
be C. Thus |@+b— Z| < &, which gives |@ — (Z— b)| < 4. Since
beC , we have 2 — b € F and obtain a contradiction to our choice
of §. Therefore, V' does not intersect K + C' and we have shown that
(K + C)° is open. Hence K + C is closed.

(b) Let a be an irrational real number. Let Cy be the set of all integers,
let Cy be the set of all na with n € Cy. Show that C; and C5 are
closed subsets of R! whose sum C; + C5 is not closed, by showing
that C; + Cs is a countable dense subset of RL.

Proof: The fact that C; and Cy are closed is clear since neither Cy
nor Cy has a limit point in R'. The fact that C; + C5 is countable is
also obvious, since both Cy and C5 are countable.

Now, we need to prove that C; +C is dense in R'. First, we will show
that given any € > 0, there is m, n such that |ma+n| < € & |(ma)| <
€. Since there is some N such that n > N implies 1/n < 1/N < ¢,
we can divide the interval [0,1) into N segments, namely, [0,1/N),
[1/N,2/N),..., [(N —1)/N,1). Since (mia) # (maa), if my # ma,
there is at least two integers mqi,mg € {1,2,..., N + 1} such that
(mia) and (mea) belong to the same segment. Let m’' = my — ma,
then [(m/a)| = |(m1a) — (m2ar)| < 1/N <e.

Next, we let 6 = (m'a) = m’a + k > 0, without loss of generality,
for some integer k. Suppose p > 0 be any positive real number (the
case p < 0 will be similar), according to the archimedean property
of R!, there is an integer ms such that msd > p and there is an
integer my such that m4(1/p) > 1/6, namely, p < m46. Thus msd <
p < myd, and we can find a ms such that msd < p < (ms + 1)d.
Let 8 = msd = msm’a + msk = ma + n(namely, m = msm’ and
n = msk), then |8 —p| < d < e. Since g € Cy 4+ Cs, we have shown
that C; + Cs is dense. The fact that C; + Cs is not closed then is
clear, since otherwise every number of R! is a limit point of C; + Cs
and thus C; + Co = R!, which is contradict to the fact that C; + Cs
is countable.

26. Suppose X,Y,Z are metric spaces, and Y is compact. Let f map X
into Y, let g be a continuous one-to-one mapping of Y into Z, and put
h(z) = g(f(x)) for x € X.

Prove that f is uniformly continuous if A is uniformly continuous.
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Prove also that f is continuous if A is continuous.

Show (by modifying Example 4.21, or by finding a different example) that
the compactness of Y cannot be omitted from the hypotheses, even when
X and Z are compact.

Proof:

(i) Since Y is compact and ¢ is continuous, ¢g(Y) is compact. On the
other hand, g is one-to-one and continuous implies g=1 : g(Y) — Y is
continuous, by Theorem 4.17, and thus ¢! is uniformly continuous. Since
f(x) = g 1(h(x)), for every x € X, f is therefore uniformly continuous if
h is uniformly continuous, by Exercise 12.

(ii) g~! is continuous, thus if h is continuous, then h = g~1f is also
continuous, by Theorem 4.7.

(iii)As in Example 4.21, let X = [0,27], Y = [0,27) and Z be the unit
circle on the plane. Suppose f : X — Y such that f(z) = z, for x €
[0,27), and f(27) = 0; g : Y — Z such that g(y) = (cosy,siny), for any
y € 0,2r); h : X — Z, h(x) = (cosz,sinzx), for any = € [0,27), and
h(27) = (1,0).

We can easily check that h(xz) = g(f(z)), for every x € X. Furthermore,
h(z) is uniformly continuous (since |h(z) — h(y)| =

V/(cosz — cosy)2 + (sinz — siny)2 = 1/2(1 — (coszcosy + sinzsiny)) =
V2(1 = cos(z — y)) = 24/(sin 25¥)2 = 2[sin 25¥| < 2@ = |z —y|, and
h is continuous at 27). But clearly, f is not continuous, even both X and
Z are compact.

Differentiation

. Let f be defined for all real z, and suppose that |f(z) — f(y)| < (v —y)?
for all real x and y. Prove that f is constant.
Proof: Fix any real z, and let ¢(t) = W Then we have 0 < |4(t)| =

|f(t‘)_f(x)| < (t_'t)‘z = |t — x|, and hence 0 < lim |¢(t)| < lim |t — x| = 0.
t—x t—x

t—z| = |t—=z

Therefore, tlim |¢(t)| = 0 and thus }im ¢(t) = 0. This is equivalent to say,
—x —x

fl(z) = tlgn @(t) = 0, for any real z. So f must be constant, by Theorem

5.11(b).

. Suppose f'(z) > 0 in (a,b). Prove that f is strictly increasing in (a,b),
and let g be its inverse function. Prove that g is differentiable and that

g'(f(x)) = (@ <z <b)

Proof: Suppose that z1,22 € (a,b) and 1 < x2, then f(z1) — f(z2) =
f'(0)(x1 — x2), where 0 € (z1,x2). Since f'(#) > 0 and x; < x2, we have
f(z1) < f(zq), therefore f is strictly increasing in (a, b).

S — — 9()=9(y) _ 9(f(W)=g(f (=) _
Fix y = f(z), and let s = f(t). Define ¢(s) = £5=0 = 5= =
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f(t§:’;(z) = ‘,-(t)_lfm. Since f is differentiable, f is continuous; further-
e

more, f is strictly increasing and thus is one—to—one Hence s — y implies
t — x and then lim ¢(s) = lim L = = Therefore
5=y ¢( ) t—x f(t;:f:(l) lim f(t) f(L) -7 ( ) ’

t—x

g is differentiable, and ¢'(f(z)) = ¢'(y) = slgg o(s) = f,%z)-

. Suppose g is a real function on R, with bounded derivative (say |¢’| < M).
Fix € > 0, and define f(z) = z + eg(z). Prove that f is one-to-one if € is
small enough. (A set of admissible values of € can be determined which
depends only on M.)

Proof: Suppose that x1, 22 € R! and 27 < @9, then f(z1) = x1 + eg(z1),
f(z2) = z2 + €g(z2) and f(z1) — f(22) = (21 — 22) + €(g(21) — g(22)) =
(x1—x2)+eg' (0)(x1—2x2) = (x1—x2)(14€g'(0)), where 6 € (x1, z3). Since
l¢'| < M, it M =0, then ¢’ =0 so f(x1) — f(z2) = 1 — 22 and for any
€ >0, f(x1) # f(x2), if 1 # z2. Thus f is one-to-one. Now consider the
case M >0, we have —M < ¢ < M,and 1 —eM < 1+¢€g'(0) <1+ eM.
We can pick € such that 0 < € < ﬁ, then 1 — eM > 0. Since z1 # x2,
(1 —x2)(14€g'(0)) # 0 so f(x1) # f(x2) and thus f is one-to-one, when
0<e< 47

CIf

Cl Cn—l Cn
Cot g+ n nrl
where Cy,...,C,, are real constants, prove that the equation Cy + Ciz +
-+ Cp_12™ 1 4+ Chz™ = 0 has at least one real root between 0 and 1.

Proof: Define f(z) = Cox + Cl 2?2+ C” i " ="t and let
g(x) =Co+Craz+---+Cph_1a™" 1+Cnat". Then we have f( )= f(1) =0,
and f'(x) = g(x). Since f(1) — f(0) = f/(8)(1 = 0) = f'(0) = g(#), where
6 € (0,1), and since f(1)— f(0) = 0, we have g(6) = 0, for some 6 € (0,1),
which is exactly the required conclusion.

. Suppose f is defined and differentiable for every = > 0, and f'(z) — 0 as
x — 4o0. Put g(z) = f(r + 1) — f(x). Prove that g(z) — 0 as x — +o0.
Proof: g(z) = f(z +1) — f(z) = [/(O)((z + 1) — ) = F/(9), where
0 € (z,z +1). When © — +o0, § — +o0, too, and thus f'(§) — 0.
Therefore, g(z) = f/(§) — 0.

. Suppose

(a) f is continuous for z > 0,
(b) f'(x) exists for z > 0,
(c) £(0) =
(d) f'is monotonlcally increasing.
Put
glx) === (z>0)



and prove that g is monotonically increasing.

Proof: Let h(x) = =, then both f and h are continuous real functions
on [0,400) which are differentiable in (0,400). Given any x > 0, by the
generalized mean value theorem, we have (f(z) — f(0))h'(0) = (h(x) —
h(0))f'(9), where 8 € (0,z). Since f(0) = 0, this gives f(z) = zf'(0), i.e

1) = (z). Since f’ is monotonically increasing and 6 < x, we have
flx) > f'(0) = w), ie., zf'(x) > f(z) for any x > 0. Then ¢'(z) =
W > 0 and hence g is monotonically increasing, by Exercise 2.

. Suppose f'(x), ¢ (z) exist, ¢'(x) # 0, and f(x) = g(z) = 0. Prove that
f@) _ f(=)

e g(t) @)

(This holds also for complex functions.)
Proof: We have

F)—f (@) lim {W=/(@) .
lim 28 = Jim ZO00) — iy St = e S
t—ax 9 t—m 9 t—x £5=2 lim £=2 9

t—x

. Suppose f’ is continuous on [a,b] and € > 0. Prove that there exists 6 > 0

such that ) — f(2)
_ flr ,

HOZIE iy <
whenever 0 < |t — 2| < d, a < a < b, a <t <b. (This could be expressed
by saying that f is uniformly differentiable on [a,b] if f' is continuous on
[a,b].) Does this hold for vector-valued functions too?
Proof: Since [a,b] is compact and f’ is continuous, f’ is uniformly con-
tinuous on [a,b]. Then given any ¢ > 0, there is a 6 > 0 such that
0 < |t — x| < § implies |f'(t) — f'(x)] < ¢, for any ¢,z € [a,b]. We have
[LOLD _ pr(a)| = | L2 f(2)] = |£/(0) — f ()], where 0 € (2, 1)(if
t>ux)orfe (t,z)(if z >t). Anyway, we have 0 < |0 —z| < [t — x| < ¢,
and thus |f'(0) — f'(z)] < €, namely, |M f(x)] <e.
In the case of vector-valued functions, the above result also holds. To see
this, suppose that f : R! — R¥ k > 2 and let f = (f1, f2,..., fx), then
£ = (f1, f5,.... fi.). Similar as the previous proof, since f’ is continuous
on [a, b], f’ is uniformly continuous on [a,b]. Hence given any € > 0, there
is a 0 > 0 such that 0 < |t — 2| < ¢ implies |f'(t) — f'(z)] < 5> for
any ¢,z € |a,b]. Since f(tl)‘/ Z(JC) _ (f1(t) fl(ﬂc) f2(t) fz(ﬂc) ) fk(t) fk(ﬂ”))
(f1(61), f5(02), ..., f.(0x)), where 0, € ( t) 1ft > a: “or 0 E (t, ) ift <,

for 1 < ¢ < k. Then we have |f/(6;) — fl(z )|§|f’( ;) — £ (x )|<\;E’

for 1 < i < k, and thus |7f(w) f'(z)] = [(f{(61), f5(02), ..., fr.(Ok)) —
£ ()] = /(F1(00) = FI(@))2 + -+ (FL(0k) — fi@)? < /% -k =

. Let f be a continuous real function on R!, of which it is known that f’(z)
exists for all x # 0 and that f/(z) — 3 as © — 0. Does it follow that f’(0)

o4



10.

11.

12.

exists?
Proof: f'(0) = lir%w = lim M = hmf( ), where 6 €
T—r

x—0

(0,z), if 2 >0, or 0 € (x,0), if z <O0. Anyvvauy7 T — O 1mphes 0 — 0, and
thus f/(0) — 3, which gives f1(0) = gin%) 1) =
—

Suppose f and g are complex differentiable functions on (0, 1), f(z) — 0,
g(z) = 0, f'(x) = A, ¢'(x) — B as x — 0, where A and B are complex
numbers, B # 0. Prove that

flz) A
-0 g(z) B’

Compare with Example 5.8.
Proof: We have % = {f —Ab- G T A

5.13 to the real and imaginary parts of f( ) and g( ) , we can obtain that

If we apply Theorem

lim f( ) — A and hm g(m) = B. Hence hm fz) _ hm({f z) —A}- )

z—0 09() g(w
A

ilLIBA ( 5 = =(A- A) = LA B = £.

Suppose f is defined in a neighborhood of z, and suppose f”(x) exists.

Show that
L f )+ f @~ )~ 2f()
h—0 h?

= ["(z).

Show by example that the limit may exist even if f”(z) does not.

Proof: The limit on the left side satisfies the hypothesis of Theorem 5.13,
(w+h)+f(w mM=2f(®) _ jimy /(x+h)+f/h(w—h)(—1) _
2

and thus we have lim

h—0 h—0
i f(:v+h) f(m h) _ 1 ! z+h) f@) | f@)=f@=h)y _ 1y, L @th)=f
i 2 10 L
. z—h T
Jim resiria )h HE} = 51" (@) + /(@) = f"(@).

If f(x) = |z|?, compute f'(z), f’(x) for all real x, and show that f()(0)
does not exist.

Proof: . e .

3 _ .3 / T t°—x° _ 1: t—x)(t“+te+x _
(i) When « > 0, f(z) = 2 and f'(z) = th_1>131c L = 75h—I>ralc — - =
}im t2 +tr+2? = 322%; when v < 0, f(x) = —2° and f'(z) = lim _i_";”” =
—xT
—lim t? + tz + 2?2 = —32%, and when z = 0, f'(0+) = hmtd_—*ozo,

t—x 0 t—0

f1(0-) = }gl(l) _fiao = 0, hence f/(0) = 0.

(ii) When z > 0, f"(z) = hm ;3” = tlim 3(t + z) = 6z; when =z <
—T

0, f'(z) = tlgnf?’f%‘h = thm(—?))(t + JL‘) = —6z; and when =z = 0,
7 (04) = lim 3t2_0 =0, f”( -) = lim = 3f =0, hence f”(0) = 0.
(iii) f(S)(O—I—) = hm = 6, and f(3)( ) = lim =%5% = —6, hence

£®)(0) does not exmt.
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13. Suppose a and ¢ are real number, ¢ > 0, and f is defined on [—1, 1] by

~f x*sin(Jz|7¢) (if x #0).
f(x){o (if 2 = 0).

Prove the following statements:

(a)

f is continuous if and only if @ > 0.

Proof: Since f(z) is continuous when x # 0, we only need to show

that f(x) is continuous at 0. We have HH?([) x®sin(|z]7¢) = 0 if and
r—r

only if a > 0.
17(0) exists if and only if a > 1.

. ’ — Jiy Eosin(lz|”%)-0 _ s a—1 .- e
Proof: We have f'(0) = ;E)I%) e ili%w sin(|x| 7€),

and when a > 1, f/(0) = 0; when a < 1, f/(0) does not exist.

/! is bounded if and only if a > 1 + c.

Proof: We have f/(z) = ax® lsin(z7¢) — cax®cos(z= )zt =

az®tsin(z7¢) — cx® "1 cos(z~°), when z > 0, and

f(z) = ax® tsin((—2)~¢) + ca® cos((—x) =€) (—z) ¢! =

ar®Lsin((—x)7¢) + c(=1)"¢"tz¢= "L cos(z~°), when x < 0. When

a>c+1, |f(2)] <la|jz]*™t + |c||z|*~¢7 < |a] + |¢|, in both cases;

and when a < ¢+ 1, f/(x) — oo as ¢ — 0, in both cases.

/' is continuous if and only if a > 1+ ¢.

Proof: Clearly, f/'(z) is continuous at any point z # 0. When

a <0, f(0) does not exist. According to (c), when 1 < a < 1+ ¢,
f'(r) - oo as © — 0, but f(0) = 0 according to (c), hence f’

is not continuous at 0. When a = 1 + ¢, f'(z) = az® !sin(z=°) —

ccos(z7°) = (e+1)zcsin(z~¢)—ccos(x™¢) if x > 0, and zl—i>%1+ fl(x) =
lim [(¢ + 1)z¢sin(z~¢) — ccos(x™¢)] = —c¢ lim cos(z~¢) and this

x—0+ r—0+

limit does not exist; similarly, if z < 0, f/(z) = (c+1)a¢sin((—z) %)+

c(=1)7¢"Lecos(z7¢), and zlg(l)l f/(z) does not exist, by the same rea-

son. Hence f’ is not continuous at 0. When a > 1+c¢, we have f/(z) =

az®tsin(z7¢) — cx®¢"lcos(z7¢), if z > 0, and lim f'(z) = 0;

z—0+
f'(z) = az® tsin((—x)~¢) + c(—1)"¢"tz?="tcos(z79), if z < 0,
and x1_1>r(r)1 f'(x) = 0. Hence f’ is continuous at 0.

Therefore, we can conclude that f’ is continuous if and only if a >
1+ec

17(0) exists if and only if a > 2+ ¢.
Proof: f”(0+) = lim L(J;(O)

0+ =

= 1ir(r)1 az® ?sin(z7¢) — cx® “ 2 cos(z~¢) = 0, when a > 2 + ¢, and
z—0+

does not exist when a < 2 + ¢;
O_) — 1 [ (@)—f'(0)
f (O ) a:lif(l)lf =0

96



= liI(I)l ar® 2 sin((—x)7¢) + ¢(—1)""tx* "2 cos(x~¢) = 0, when
r—0—
a > 2+ ¢, and does not exist when a < 2 + c.

Hence, we have f(0) =0, when a > 2+ ¢, and f”(0) does not exist
when a < 2+ c.

(f) f” is bounded if and only if a >= 2 + 2¢.

Proof: f"(z) = a(a — 1)z% 2 sin(2=¢) — acz® "2 cos(x~¢) — c(a —
c—1)z% 2 cos(x™¢) —2x*2¢" 2 sin(2~°), when 2 > 0; and f”(x) =
a(a — 1)x* 2 sin((—2)7¢) + ac(=1)"¢"1z2=¢=2 cos(x~ ) +cla—c—
1)(=1)"¢ Lz 2 cos(x™¢) +c*(—1) ¢ Lz? =2 2 sin(2 ™), when = <
0. We have |f"(z)| < |a(a — 1)||z272| + |ac||z2~ 72| + |e(a — ¢ —
Dlf24=2] + [2][222] < [a(a — 1] + lac] + e(a — ¢ — D] + |2],
when a > 2¢+ 2, and f”(z) — oo, when a < 2¢+ 2 and z — 0, in
both cases.

(g) 1" is continuous if and only if a > 2 + 2e¢.
Proof: f’(z) is continuous at every x # 0. When a < ¢+ 2, f”(0)
does not exist; when c+2 < a < 2+2¢, f”(x) — oo when  — 0, but
f"(0) = 0; when a = 2 + 2¢, zli%l+ f"(x) and mlir(r)li f"(x) does not

exist; and when a > 2+ 2¢, lim f’(z) = lim f’(z) =0 = f"(0),
r—04 r—0—

hence f”(z) is continuous at 0.
Therefore, f” is continuous if and only if a > 2 + 2c.

14. Let f be a differentiable real function defined in (a,b). Prove that f is
convex if and only if f’ is monotonically increasing. Assume next that
f"(x) exists for every x € (a,b), and prove that f is convex if and only if
f"(x) > 0 for all z € (a,b).

Proof:
(i)=: Suppose f is convex, then f(Az + (1 — AN)y) < Af(z)+ (1= X)f(y),
for any z,y € (a,b) and 0 < A < 1. Let 21,23 € (a,b), and 1 < xa. Since

. . —f(x . Az1+(1=N)z2)—f(z
F/(z1) exists, f'(z1) = t_lgrll_i_ f(t) f( 1) _ }\linl f( )\:;1+((17>)\)122)7££ 1) <
lim A E)+HA—NFz2)=f(e1) _ 15, ( D) =f(x2)) _ iy LE)=flz2)
A1 A=1)(z1—x2) Pre] A=1)(z1—22 A1 T1—T2
f@1)— (902)
Xr1—T2
; / — 1 SO —fle2) _ iy SO—flx2)
and since f (z2) exists, f'(z2) = tllgf L8-e) — tllg:lz o) -
i SOz (A-N)za)— f(22) iy M@+ f(@2)— f(22)
_)l\l_m le ()\z1+(12 /\)3162)2 = _)1\1_% x; Az +(1— i)xg) :
_ lim AU =f(@2) _ giyy fE)=f(22) _ f21)—f(22) . Therefore, f'(z1) <
=0 Az2—w1) A—0  TrTT2 T1—T2 !

f/(z2) and f’ is monotonically increasing.

<: Suppose f’ is monotonically increasing, and let z, y be any two number
in (a,b) such that z < y. For every 0 < A < 1, denote z = Az + (1 — Ay,
hence z € (x,y). Then f(Az + (1 — N)y) — (Af(x) + (1 = N f(y)) =
@) = (Af(@) + (1 =N f() = A(f(z) — f(@) + (1 =N (f(2) — f(y) =
Af(0)(z =) + (L= N f"(9)(z —y) = Af(0)(Ar + (1 = Ny —x) + (1 —
N (@)Az+ (1 =Ny—y) = AM1=A)(y—2)f(0) + (1 =Nz —y)f'(¢) =

o7



15.

A1 =Ny —2)(f'(0) — f'(¢)), where 0 € (x,2), and ¢ € (z,y). Since

then 6 < ¢ and f’ is monotonically increasing, we have f/'(8) < f/(¢),

which gives f(Az + (1 — Ny) — (Af(zx) + (1 — A)f(y)) < 0 and thus

fOz+ (1 =Ny) <Af(x)+ (1 —X)f(y). Therefore, f is convex.

(ii) Suppose f”(z) exists for every x € (a,b).

=: If f is convex, then by (i), f’ is monotonically increasing. Fix any
€ (a,b), we have f"(x) = limw > 0. (Since t < z implies

t—x
7'(@) < f(x) and ¢ > x implies f'(t) > f'(x).)
<: If f’(z) > 0 for all z € (a,b), we have that f’ is monotonically
increasing, by Theorem 5.11, and thus f is convex by (i).

Suppose a € RL, f is a twice-differentiable real function on (a, 00), and My,
My, My are the least upper bounds of |f(x)|, | f'(z)|, | f”(x)]|, respectively,
on (a,00). Prove that M? < 4MyM,.

Does M? < 4MyMs; hold for vector-valued functions too?

Proof: If h > 0, Taylor’s theorem shows that f'(z) = 5-[f(z + 2h) —
f(z)] = hf"(€) for some € € (z,x + 2h). Hence |f'(z)| < hMs + 2o, and
If/(z)]? < h2M3Z + %ﬁ? + 2MoM,. Since z and h are both arbitrary, we

have M2 < inf h2M2 + 2% + 2My My, which gives M2 < 4MoMs.
To show that M? = 4MyM, can actually happen, take a = —1, define

f(:c){ 222 -1 (-1<x<0),

2
ihﬁ (0 <z < o0),

We will show that My =1, My =4, My = 4.
First, we have |f(z)| <1 when -1 <z < 0, and f(z) =1— E%H is strictly
decreasing when 0 < x < oo, thus M; = 1.

Then, f'(z) = 42 when —1 < z < 0, and f'(z) = (w2+1

x < oo. Since f'(0—) = lim f(t) f(o) = lim 2t = 0 and f'(0+) =

fO=f(0) _

tE%Br = thm+ t2+1 =0, thus f/(0) = (Actually7 since f” exists,

/' must be continuous.) Therefore, |f/(z)| < 4, when —1 < z < 0, and
f’(x):mwhen0<x<oo Thus f'(x) — 0 as ¢ — oo and

since f/(0) =0 and f'(x) > 0 when 0 < < oo, there must be a point
xo € (0,00) at which f'(x) obtains its maximum (since f'(x) is contin-
uous), or equivalently, g(z) = 23 + 2z —|— 1 obtains its minimum at .

I when 0 <

Hence ¢/(z0) = 0, which gives 323 +2 — - —O ie. 3:1;0+25c0—1 =0,
ie., (x3 +1)(323 — 1) = 0 and thus 23 = % Therefore, xg = ﬁ and

sup f'(x) = f/(xg) = i when 0 < z < co. So we have My = 4.
Next, f"(z) = 4, When —l1<z<0,and f’(z) = A0-327) 4 strictly de-

($2+1)d
creasing when 0 < 2 < oo, thus |f”(z)| < 4. f"(0—) = tlir(? w =
oo
4, and f"(04) = hm M = lim = 4, then f"(0) = 4.

t—0+ (t2+1)2
Therefore, we have Mg =4.
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16.

17.

18.

In the case of vector-valued functions, M? < 4MyM, also holds, which
will be clear after we prove Exercise 20.

By the result of Exercise 20, we have |f(z + 2h) — f(z) — £'(z) - 2h] <
E2O1. (972, for some & € (z,z+2h). Since [f'(x)-2h|—|f(z+2h)—f(z)]| <
|f(x)-2h— (f(x+2h)—£(z))| = |f(x+2h)— f( )—f(x)-2h] < E20EL (9p)2,
we have |f'(z)-2h| < |f(z+2h) — f(z)|+ F2@L . (2)2, and hence |f’(x)|

g [f(z 4+ 2h) — f(2)] + hEP(€)] < gh(|f(x +20)| + [£(2)]) + hIER ()] <
ih - 2Mo + hMy = % + hMs. The following proof is the same.

Suppose f is twice-differentiable on (0, 00), f is bounded on (0, o), and
f(z) = 0 as x — oo. Prove that f/(z) — 0 as z — .

Proof: Since f” is bounded on (0, 00), we have My = sup|f”| < M, for
some positive M. Let a — oo in Exercise 15, we have My = sup|f| — 0,
since f(x) — 0 as ¢ — oco. Then 0 < M? < 4AMgMy < 4M Mgy — 0 as
x — oo, and thus My = sup |f'| — 0 as © — oo. Therefore, f/'(z) — 0 as
T — 00.

Suppose f is a real, three times differentiable function on [—1,1], such
that f(—1) =0, f(0) =0, f(1) =1, f'(0) = 0. Prove that f®(x) > 3 for
some z € (—1,1). Note that equality holds for (23 + 2?).

Proof: By Theorem 5.15(Taylor’s Theorem), we have f(8) = f(a) +
fl)(B—a)+ @(ﬁ —a)? + %(B — a)?, where a, 3 € [-1,1] and
x is between o and 5. Let 8 = 1, a = 0, then § — a = 1, we have

" 3 " 3

F(1) = £(0) + f/(0) + £ 2(0) + f(é(s) =1 2(0) + f(;(s), for some s € (0,1).
Let 3 = -1, a =0, then 8 —a = —1, we have f(—1) = f(0) + f'(0) +
f”(o) f(S)(t) = f”(o) f“;(t), for some t € (—1,0). Since f(1) =
f(— ) = O we have @ (s) + fO(t) = 6, then either f®)(s) > 3 or
f@)(t) > 3, which gives the desired result.

Suppose f is a real function on [a,b], n is a positive integer, and f(*—1
exists for every t € [a,b]. Let «, 8, and P be as in Taylor’s theorem(5.15).
pefine 1)~ 1(5)
AU P ()]
R
for t € [a,b], t # B, differentiate f(t) — f(8) = (t — B)Q(t) n — 1 times at

t = «, and derive the following version of Taylor’s theorem:

Q" V(a)
(n—1)!

Proof: We have f(t) = f(8)+(t—8)Q(t), then f'(t) = Q) +(t—)Q'(?),
F(t) = 2Q'(t) + (t — f)Q"(t), and in general, f©) ( ) =iQU(t) + (t —
B)QW(t), for 1 < i < n — 1. Thus, we have f(a) = iQU Y (a) +

P+

f(B) = P(B) + (8 —a)"

n—1

(a = /)QW (). Hence P(8) + L (8- a)" = X L4 (5~ a)

k=0
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19.

(n—1) n—2 .(x) (n—1) _ (n—1)
Q(n71§;1)(6_a)n _ kzo f kl(a) (5—Q)k+(f(n,1§?) (B—a)" 1+Q(n71)(!a)(5_

) n=2 .(k) ) _ (n—2) _ (n—1) 3
)" = Z fi@“)(ﬁ — )k + ((n i§]e] (?T)Li-(lf)x' B)Q (@) (B —a)" !+

(n=1) (o *) (o (n=2) (o, -
Q ()( a)) = kzof ()(ﬁ Oé)k-i-Q(TQ)(!)(B—Oz) 1

( ) Q(a)(B—a) = f(a)—(f(a)=f(B)) = f(B), which gives the desired

result.

Suppose f is defined in (—1,1) and f(0) exists. Suppose —1 < a, < B, <
1, a, — 0, and 8, — 0 as n — oo. Define the difference quotients

f(Bn) — f(an).

D, =
Bn — an

Prove the following statements:

(a) If oo, < 0 < By, then lim D,, = f'(0).

Proof: Given any € > 0. We have |D,, — f/(0)| = |fT£ia") -

#(0)| = |f(g:):afn( ) + f(O) fo(zan) #(0)| = |f(5nn_0( ) . 5n5—nocn

f(a;::£(0)~5;‘_)‘;"—f’(0)| |(f(ﬁ53_é‘(0) f/(O))'gn/ilan-F( (a(;g:g(o)_

F1(0) - 2| < [LB=EO) g | L | 4 | el IO ()
— f®)=f(0) .

|,8n_a |. Since f'(0) = }%W,andanﬁo,ﬂn%Oabn%oo,

nlingo % = f'(0), and RILH;O w = f/(0). Thus there is

an N; € N such that n > N; implies |W — f'(0)] < e, and
there is an Ny € N such that n > N3 implies |M 1(0)] <e.
Let N = max(Ny, Na), then when n > N, |D,, — f'(0)| < (|ﬁ |+

|z De
If o, < 0 < By, then B, — a,, > 0 and |D,, — f(0)] < (|

ﬂ
W _|)e = (72— — % )¢ = ¢ when n > N. Therefore,

Bn—an Bn—an Bn—an

: _ !/
nhHH;O D,, = f'(0).

(b) If 0 < o < B and {5 ﬁja -} is bounded, then lim D,, = f'(0).
Proof: Asin (a),if 0 < a, < B, and |3 B" —~| < M, for some M > 0,
then 8, —a,, > 0and | D,,— f'(0)] < (|ﬁn_an |+|ﬁn ~|)e = Gptlne =
(2522~ — 1)e < (2M + 1)e (since 25 22— — 1 < |2 S ] <
2|3 ﬁja | +1 < 2M 4+ 1). Therefore, hm D = f/(0).

n n n—0o0

(c) If f' is continuous in (—1,1), then lim D,, = f/(0).

Give an example in which f is differentiable in (—1,1)(but f’ is not
continuous at 0) and in which «,, 8, tend to 0 in such a way that
lim D,, exists but is different from f’(0).
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Proof: We have hm D, = lim {Bn=flon) _ hm (&), where

n—00 n = ®n
&, is between ay, and Bn. Since o, — 0 and 3, % () as n — 00, we

know that &, — 0 as n — oo. Since f’ is continuous, we Conclude
that lim f'(&,) = f(0), which gives lim D,, = f'(0).

n—oo n—oo
Let f be the same function defined in Example 5.6(b), that is

1

2gin L
ro={ 5 120

Then by Example 5.6(b), f is dlfferentlable 1n (-1,1), but f’ is not
continuous at 0. Let «,, = m, Bn = then -1 < «,, <

2n7r’
Bn_i<1,andan—>06n—>0 as n — oo. We have D,, =
F(Bn)—flan) (271”,)2Sin@””)*(igmriﬂ,/g)gsin(2n7r+7r/2) B 4 q
Bn—an - e - T2 + 7= an
Snrtn/2  2nw 2n
: _ 4 _ _2 / _
hence nh_}rrgo D, = nh_}rr;o THE T But f/(0) = 0, by Example

5.6(b).

20. Formulate and prove an inequality which follows from Taylor’s theorem
and which remains valid for vector-valued functions.
Proof: Taylor’s Theorem states the following facts: Suppose f is a real
function on [a,b], n is a positive integer, f("~1) is continuous on [a,b],
fO)(t) exists for every t € (a,b). Let a, B be distinct points of [a, ], and

define
()
P(t) = Z f —a)k.

Then there exists a point x between « and § such that

£(8) = PB) + 2B - )"

(n) T n (n) T n
Thus, we have |f(8) = P(8)| = [55{2(8 — a)"| = |15 2[18 — a” <

)
MW al|™, where t is between « and f.

This inequality also holds in the case of vector-valued functions. Specifi-
cally, suppose f is a continuous mapping of [a, b] into R¥, n is a positive
integer, f("~1) is continuous on [a, b], £(")(t) exists for every t € (a,b). Let
a,  be distinct points of [a, b], and define

Then there exists a point x between « and 5 such that

£ (@)
n'

I£(8) — P(8)] < g~ afr.



21.

Now, we will give our proof.
Put z = £(8) — P(8), and define

o) =z ft) (a<t<b).

Then ¢ is a real valued continuous function on [a, b], ¢*~1) is continuous
on [a,b], ™ (t) exists for every t € (a,b). By Taylor’s Theorem, we have

1) (g, ) (5
OED phas IR au LIFRPSE
2" |

for some z between o and f. Since ¢(t) = z - f(t), p*)(t) = z- £ (t) and
in particular, $*)(a) = z - f(*)(a). Then we have

nl, ) (o 2z £ (2
68)= 3 25D 5y 2D 5,

LRl !

Since
n—1 (k) o
P =Y e o,

we have -

8(8) =2 P + 2D 5y,
and hence £

o)~ () = “L 5 ay

On the other hand
¢(B)—z-P(B)=2-f(B) —z-P(B) =2z (f(B) — P(B)) =2z = |z,

thus we have

2z () w2 £ (2) n £ ()] n
|z| *T(ﬂfa) *|T(5*a) \§|Z|'T|5*Oé|,
by Schwarz inequality. Therefore,

£(n) (g ‘ £f(n) (g
o < s i) - P < T Dls —ap,

which is the desired result.

Let E be a closed subset of R'. We saw in Exercise 22, Chap. 4, that there
is a real continuous function f on R! whose zero set is E. Is it possible,
for each closed set F, to find such an f which is differentiable on R!, or
one which is n times differentiable, or even one which has derivatives of
all orders on R'?

Solution:
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22. Suppose f is a real function on (—o0,400). Call z a fized point of f if
f) =a.

(a)

If f is differentiable and f'(t) # 1 for every real ¢, prove that f has
at most one fixed point.

Proof: Suppose that, on the contrary, f has more than one fixed
point. Let z1, x2 be two different fixed points of f, 1 < z2, and
define g(x) = f(z) — . Then g(z1) = g(xz2) = 0, and since g(z1) —
9(x2) = ¢'(§)(x1 — x2), for some § € (x1,22), we have ¢'(§) = 0,
namely, f'(£) = 1, which is contradict to the assumption that f'(t) #
1 for every real t.

Show that the function f defined by
fO)=t+1+e)!

has no fixed point, although 0 < f’(¢) < 1 for all real t.

Proof: Since e* > 0, we have f(t) > t, for every real ¢, and thus f has
no fixed point. f'(t) = e“‘;tjzie;fl, and it’s clear that 0 < f/(¢) < 1,
for all real ¢.

However, if there is a constant A < 1 such that |f’(¢)| < A for all real
t, prove that a fixed point x of f exists, and that z = lim z,,, where
x; is an arbitrary real number and z, 11 = f(x,) forn =1,2,3, ....
Proof: We first show that by starting from an arbitrary real number
x1 and apply x, 1 = f(x,), the resulted sequence {z,} converges.
To see this, suppose n € N, m € N, and n > m. Then |z, —
Tnt| = |f (1) — F(n2) = [F(€) (o1 —2n_2)| = |£/(€)l[7n1—
Tp—o| < Alxp_1 — Tp_2o|, where £ is between z,,_; and z,_s. Hence
|Tn — 21| < Alzn_1 — Tp_o| < -+ < A" 2|25 — 21|, and we have
|xn_xm| < |xn_xn71|+‘mn71_mn72|+' . '+|xm+1_$m‘ < (An—2+
An—S + ... +Am—1)|m2 —.’L‘1| — Am—1(1 +A+ ...+An—m—1)|x2 _
T < AMTH 1+ A+ )|oe — x| = Am’l%. Since A < 1,
A™=1 5 0 when m — oco. Then given any ¢ > 0, there is an
N € N such that n > m > N implies A™~! < U=A)e and thus

[x2—x1]

[Ty — 2m| < Am_lmi%” < €. Therefore, {x,} is a Cauchy sequence
in RY, then {z,} converges to some x € R! since R! is complete.

Next, we will show that x = lim =z, is a fixed point of f, that
n—oo
is, f(z) = x. Since x,11 = f(x,), we have x = lim z,4; =
n—oo

1i_>m f(zn) = f(z), for f is continuous.

Show that the process described in (¢) can be visualized by the zig-
zag path

(w1, 22) = (22,72 = (2, 73) — (T3, 23) = (v3,T4) — -

23. The function f defined by f(z) = 2’41 has three fixed points, say «, 53,

3

v, where —2 < a < —1,0 < 8 <1, 1 <~ < 2. For arbitrarily chosen z,
define {z,} by setting zp41 = f(zn).

63



()

If 1 < «, prove that z, = —oc0 as n — oc.

Proof: We have f'(x) = 2%, for every z € RL. If 11 < a < —1,

we have 2o — a = f(z1) — f(a) = f/ (&) (21 — a) = (2 — ), for

some & € (x1,a) and thus |22 — a| = |&3]|z1 — o] > o®|z; —al. In

general, we have 2 — @ = [(z0_1) — F(@) = f/(En1)(En_s — 0) =

& _(rn_1 — ), for some &,_1 € (z,-1,) and hence |z, — a| =

& tn 1 —al == € e €y — o], where & € (1, 0),
= 1,2,..,n — 1. Therefore, & > a? > 1, for each k, and |z,, —

al > o?=Y|z; — a|. Furthermore, by induction we known that

r, < a for each n (v, —a=¢&_(x,_1 —a), and if x,,_1 < «, then

Ty < @), and x, < T,—1(since z, — rp—1 = (T — @) — (Tp—1 — ) =

(€2, —1)(xp_1 —a) < 0). Hence, we have o — x,, > " V|z; —al,

which gives 2, < —a?™ Y|z, —a| + . Since a < —1, a? > 1,

a?(=1) 5 450 as n — oo, thus z,, — —00 as n — co.

If o < z1 < 7, prove that z,, — 8 as n — oo.

Proof:

(i) First, we prove that if —1 < x1 < 1, then z,, — 8 as n — oo. We

have ‘Tn*ﬂ = f(xn—l)ff(ﬂ) = f/(gn—l)(xn—lfﬂ) = Si_l(xn—lfﬁ)a

then |z, — B] =& _j|lon—1 — Bl ==& _1 -+ oy — B, where
&; is between x; and 3. Furthermore, since z,, — 8 = &2, (z,_1 — f3),

we have z,, — 21 = (xp, — B) — (Tp—1— B) = (&_; — 1)(zn-1 — B).
If -1 < x; < 8, we can show that —1 < x, < 8 and x,, > T,_1
by induction, then let M = max(z?, 3%) < 1, we have |z, — 3| =
2 e &y - Bl < MYz — B]. Since M < 1, M"t — 0
as n — oo, then given any € > 0, there is an N &€ N such that
n > N implies M"~! < < and hence |z,, — 8| < e. Therefore,

lz1—p5]"
lim z, = 3.
n—oo
If 8 < x; <1, we can also show by induction that § < z,, < 1 and
2(n—1
Tp < Tp_1. then |z, —B] =€2_, - &l — | < xl(n )|9c1 - Bl
Since x1 < 1, by the same reason, we have lim z,, = (.

n—oo

(ii) Next, if x1 = —1, 29 = f(—=1) =0 € (-1, 1), then we can apply
(i) for zo. If 21 = 1, 2o = f(1) = 2, and then we can also apply (i)
for £5. Thus now, we can conclude that if —1 < z; <1, then z,, — 3
as n — 0o.

(iii) Finally, if & < 27 < —1, we will show that there must exist an
N € N such that n > N implies z,, > —1. Otherwise z,, < —1 for all
n. Since f is strictly monotonically increasing, by induction, we can
easily show that o < x,, < —1. What’s more, x,, — 25,1 = ( 72171 —
1)(pn—1 —a) > 0 implies that x,, > ©,,_1, since &,—1 € (@, z,,—1) and
thus €2_; > 1. Then, {x,} is monotonically increasing and bounded,
hence {z,} must converge to some §, by Theorem 3.14, and clearly,
6 # «, B,v. By Exercise 22, we can show that ¢ is also a fixed point
of f, which is absurd. Therefore, there must be an N such that

n > N implies x, > —1. Since xy4+1 = f(ay) and 2y < —1, we
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24.

25.

have zn4+1 = f(xzn) < f(=1) = 0. Then we can apply (i) to xy41.
If 1 <z <, in a similar way, we can find an N such that n > N
implies @,, < 1. Since zy41 = f(zn) > f(1) = 2, we can then apply
(1) to TN+1-

(¢) If v < x4, prove that z,, — +00 as n — 0.
Proof: The proof is very similar as (a). We have z, —v = f(2,—1)—
f() = f'(€a—1)(@n—1—7), and thus |z, —| = &3 - &F|an—1-7/,
where &, € (v, k). Since z, — 21 = (£2_; — 1)(zp—1 —7) > 0,
we have z,, > x,_;. Hence, |z, — 7| > v*" V|z,_1 — 4|, and thus
T >y + 2|z, — 4| Clearly, z,, — 0o as n — co.

Thus S can be located by this method, but « and ~y cannot.

The process described in part (c) of Exercise 22 can of course also be
applied to functions that map (0, 00) to (0, 00).
Fix some a > 1, and put

1 e’ a+x

Se+ D), g =T

fla) = 3

Both f and g have \/a as their only fixed point in (0, 00). Try to explain,
on the basis of properties of f and g, why the convergence in Exercise 16,
Chap. 3, is so much more rapid than it is in Exercise 17. (Compare f’
and ¢', draw the zig-zags suggested in Exercise 22.)

Do the same when 0 < a < 1.

Solution: We have f'(z) = 3(1— %), and thus f'(v/a) = 0. But ¢/(z) =

(EJT“)Q and ¢'(v/a) = ;g

Suppose €, = z — /«, then Thi1 = flzr) = fVa+e) = f(Va) +
f'(Va)er + r (5") = a+ - 5’“)ek, for some &, € (v/o,xi). Then
€ht1l = Thal — \/a = #61@ < Me;, where M =sup |f"(z)|/2 =1/2y/a
and z € (y/a, +00). (note that f”(z) = %) This can explain why x,,41 =
f(x,) converges much more rapid then z,+1 = g(z,,).

Suppose f is twice differentiable on [a,b], f(a) <0, f(b) >0, f'(z) > >
0,and 0 < f”(x) < M for all = € [a,b]. Let € be the unique point in (a, b)
at which f(§) =

Complete the details in the following outline of Newton’s method for com-
puting £.

(a) Choose z1 € (,b), and define {z,,} by

Tt = f'(x
n

Interpret this geometrically, in terms of a tangent to the graph of f.
(b) Prove that z,4+1 < x, and that lim T =E.

Proof: Since z,11 — 2, = — 5 (7;")), f'(zn) > 0 and f(z,) > 0 since
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zp, € (€,b)(we will prove this immediately), if f(z,) < 0, then there
is a a € (x,,b) such that f(a) = 0, which is contradict to the hy-
pothesis that £ is the unique point in (a, b) at which f(£) = 0. Hence,
Tpt1 — Tn < 0, which gives z,41 < xp.

Now we prove that z,, € (£,b), for each x,,. We prove this by induc-
tion.

(i) When n = 1, it’s trivial that x; € (£,b).

(ii) Suppose zp € (£,b), when n = k + 1, let g(z) = = — J{,((Z)),

then g(¢) = & and g¢'(z) = LG 2y — ¢ = glan) - g(¢) =
' (0k)(z — &), where 0, € (§,z). Thus f(0;) > 0 and xp41 > &.
Tpy1 —b=g(xr) — b= (z — b) — ]{,((Z’Z)), since f(zx) > 0 (because
xg € (€,0)), Tpr1 — b <z, — b < 0. Therefore, xp11 € (€,5).

Next, we prove that nlgl;o r, = & First, since z, is bounded and

monotonically decreasing, x, converges. Let x = lim z,, then

n—oo
nlgrolo Tpt1 = nhﬂn;() (Xn — ]{c,((fc:‘l))), which gives nhHH;O f(zyn) = 0. Since f

is continuous, 1i_>m f(zn) = f(z), and then f(x) = 0. Since z € (a,b)
n (oo}
and ¢ is the unique point in (a,b) at which f(§) = 0, we conclude
that ¢ = £, namely, lim z,, = ¢&.
n—oo

Use Taylor’s theorem to show that

_ ()
a 2f"(xn)

Tn+1 — 6

(Tn — 5)2

for some t,, € (&, ).

Proof: By Taylor’s Theorem, f(§) = f(zn) + f(zn)(€ — x,) +
%(5 —x,,)?, which gives 0 = f/(/xn) + (@) —xn) + %(f —
In)27 Le., xp — ]{/((9;7;)) = ¢+ fo/g;;)) (€ - zn)27 Le, Tpy1 — & =
f// tn

ey (@n —

If A= M/25, deduce that

1 n
0<api1 —€< Z[A(wl I
(Compare with Exercises 16 and 18, Chap. 3.)

Proof: Since 0 < 6 < f/(z) and 0 < f”(z) < M, we have ;}iﬁi’;)) <

5
)22 = A A2y —E6)F S AA2 AT (167 = AT (o —
€)?" = L[A(z1—¢)]?". On the other hand, we have z,,41 < £. Hence
0 < @py1 — &< S[A(@ — ).

Show that Newton’s method amounts to finding a fixed point of the
function g defined by




26.

27.

How does ¢'(x) behave for m near &?
Proof: Clearly, g(§) = £— f (5) = ¢, and € is a fixed point of g. Since

g'(x) = LG e have ¢/(€) = 0, and |¢/(x)| < %|f()|. Since f
is continuous, we have f(x) — 0, when x — ¢, then ¢'(x) — 0, when
x— & (namely, ¢’ is continuous at 0)

(f) Put f(z) = 2'/3 on (—o00,00) and try Newton’s method. What
happens?
Solution: f is monotonically increasing on (—o0,00) and f(z) =0
if and only if z = 0. Since f'(z) = %:1:*2/3 — oo as x — 0, the
hypothesis of applying Newton’s method does not hold. Furthermore,
we can compute that g(z) = —2z, and hence if z1 # 0, z,41 =
g(xy) = -+ = (—2)"z; will diverge when n — oo.

Suppose f is differentiable on [a,b], f(a) = 0, and there is a real number
A such that |f/(x)] < |f(z)| on [a,b]. Prove that f(z) = 0 for all x € [a, b].
Proof: Fix xg € [a,b], let My = sup |f(x)|, My = sup|f/(z)| for a < x <
xg. For any such x, we have |f(x)| < Mi(xo — a) < A(zo — a)My. Hence
My =0if A(xg —a) < 1. That is, f =0 on [a, zg].

Now, if we let 29 = a + i, then clearly A(zg —a) = 3 < 1, hence f =0
on [a,zo]. If we replace a by xo, then [a,b] became [xo,b], f(zo) = 0,
and |f )| < A|f( )| on [zg,b]. We can now proceed on by choose 21 =
T + 35 = a+ 255 and show that f = 0 on [zg,z1], and so on. Since
Tn=a+(n+ 1)2,47 there is an N such that b —zy < 4 and thus we can
finally stop at [z, b] and show that f = 0 on [zy,b]. Therefore, f(x) =

for all = € [a, b].

Let ¢ be a real function defined on a rectangle R in the plane, given by
a<z<b a<y<p. A solution of the initial-value problem

Yy =¢(xy), yla)=c (a<c<pP)

is, by definition, a differentiable function f on [a,b] such that f(a) = ¢,
o < f(z) < B, and

fl@) =z, f(x))  (a<D).

Prove that such a problem has at most one solution if there is a constant
A such that

|p(z,y2) — ¢z, y:)| < Alya — 31

whenever (z,y1) € R and (z,y2) € R.

Proof: Suppose that, on the contrary, there are two solutions f; and fs
corresponding to the same problem, then f](z) = é(z, f1(x)), fi(a) = ¢,
and fi(z) = &(z, f2(2)), fo(a) = c. Let g(x) = fi(z) — f2(x), then g is
differentiable on [a,b], g(a) = fi(a) — fa(a) = 0, and |¢'(z)| = |f1(z) —
fo@)| = 1o(x, f1(x)) — ¢(z, fa(z))| < Alf1(x) — fo(z)] = Alg(z)| on [a,b].
By Exercise 22, g(z) = 0 for all « € [a,b]. That is, fi(z) = fa(z), for all
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28.

29.

x € [a,b].
Note: Note that this uniqueness theorem does not hold for the initial-
value problem

y =y y0)=0,
which has two solutions: f(z) =0 and f(z) = 22 /4.

Formulate and prove an analogous uniqueness theorem for systems of dif-
ferential equations of the form

y; = ¢j($7y1a "'7yk)7 y](a’) =Cj (.] = 177k)

Note that this can be rewritten in the form y’ = ¢(z,y), y(a) =c¢
where y = (y1, ..., yx ) range over a k-cell, ¢ is the mapping of a (k+1)-cell
into the Euclidean k-space whose components are the functions ¢1, ..., ¢,
and c is the vector (¢1, ..., ¢x ). Use Exercise 26, for vector-valued functions.
Proof: In the case of vector-valued functions, we have a similar result as
Exercise 26. Specifically, suppose f is differentiable on [a, b], f(a) = 0, and
there is a real number A such that |[f'(z)] < A|f(x)| on [a,b]. Then we
have f(x) = 0 for all = € [a,b]. The proof is the same as in the real-value
case, by using Theorem 5.19 in place of the mean value theorem.

Now, we can formulate an analogous uniqueness theorem for the above
systems of differential equations by stating that such a problem has at
most one solution if there is a constant A such that |¢(z,y2) — d(x,y1)| <
Alya — y1|- The proof is also the same as in Exercise 27, and with real-
valued functions replaced by vector-valued functions.

Specialize Exercise 28 by considering the system
y;’:yj+1 (jzl7ak_1>7
i = f@) =Y kg;(x)y;,
j=1

where f,g1,...,gx are continuous real functions on [a,b], and derive a
uniqueness theorem for solutions of the equation

y® + ge(2)y* Y 4 go()y 4 ()Y = f(2),

subject to initial conditions

ya)=ci, Yla)=co .., y* V(@)=

Proof: If we have that the above differentiable equation system has at
most one solution, then we can conclude that the give equation has at
most one solution, since every solution of the former is the solution of the
latter, and vice versa. Then the uniqueness theorem follows, by Exercise
28, that there is a constant A such that |¢(z,y1) — ¢(z,y2)| < Aly1 —y2|.
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Or, equivalently, |y} — y5| < Aly1 — y2l.
2 2 k k
We have [y, — ybl = /(4 — 5)2 + (02 — )2 + -+ (o — )2 =

k—1 X .
Zo(y%’) — M2+ [y — 82 — (O — )2 =

k

k—1 . . . .
\/‘ O(yij) — )2+ [(Zl gi (@) =y )2 = (1 =82 <
J= J=
1

¢“@Pﬁ¥+uéﬁm

j—1 j—1 0 0
45w)—ﬁ’wf@*w9m
k

Jj=

k=1

(by Schwarz inequality)< \/(1 + Zl g3 (x)) Zo(yij) — Y2
= =

=.Ja +§jlg?(:v))|Y1 — Y2

k
< /(14 > M?)|y1—y2|, where M; = supg;(z),1 <i < kand z € [a,b].
j=1
(Note that since g; is continuous, g; is bounded on [a, b], and g; can achieve
k
its maximum and minimum on [a,b].) Let A = ,[(1+ Y M?), then we
j=1

have |y} — y4| < Aly1 — y2|, and then Exercise 28 applies.

The Riemann-Stieltjes integral

. Suppose « increases on [a, b], a < xg < b, v is continuous at zg, f(xg) = 1,
and f(z) = 0 if z # xo. Prove that f € Z(a) and that | fda = 0.
Proof: Given any € > 0, since « is continuous at xg, there exists a § > 0
such that |a(t)—a(zo)| < €, if [t—zo| < §. Let P be a partition of [a, b] such
that Ax; < 6, for every ¢, and suppose zo € [x;_1,x;], for some j. Then we
have U(P, f,a) = M;Aa; = a(zj)—a(xj_1) and L(P, f,a) = mjAa; = 0.
Hence U(P, f,a) — L(P, f,a) = axj) — a(xj_1) < ¢, and thus f € Z(«a).
Furthermore, since for every e > 0 we can find a partition P of [a, b] such
that U(P, f,a) < €, and since we have 0 = L(P, f,a) < U(P, f, ), we
conclude that inf U(P, f,«) = 0, namely, [fda = 0. Clearly, [fda =
sup L(P, f,«) = 0, we thus have [ fda = 0.

. Suppose f > 0, f is continuous on [a, b], and f; f(x)dx = 0. Prove that
f(z) =0 for all z € [a,b]. (Compare this with Exercise 1.)

Proof: Suppose that, on the contrary, f(y) > 0 at some y € [a,b]. Let
fly) = M > 0, and let r be some positive real number such that 0 <
r < M, since f is continuous on [a,b], there exists a § > 0 such that
|f(t) — f(y)] < M —r, if |t —y| < 0, which gives f(t) — f(y) > r— M and
thus f(t) >r—M+M =r>0.
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Now let P be a partition of [a,b] such that Az; < §, for every i, and
suppose y € [xj_1,x;| for some j. Then we have f: f(z)dx > L(P, f) >
m;Ax; > 0, which is contradict to the assumption that f; fdx =0.

. Define three functions f1, f2, B3 as follows: B;(z) =0if 2 <0, §; =1
if 2 >0 for j = 1,2,3; and $,(0) = 0, B2(0) = 1, B5(0) = 3. Let f be a
bounded function on [—1, 1].

(a) Prove that f € Z(51) if and only if f(0+) = f(0) and that then
[ fdpi = £(0).
Proof: Suppose f(0+) = f(0). Consider partitions P = {x¢, x1, z2, 23},
where g = —1,21 = 0 < 23 < 3 = 1. Then U(P, f,81) = Mo,
L(P, f,81) = ma. If f(0+) = f(0), then My and my converges to
f(0) as o — 0. Thus f € Z(51), and [ fdB = f(0).
On the other hand, if f € Z(51), then given any € > 0, there ex-
ists a partition P of [—1,1] such that U(P, f,81) — L(P, f,31) < e.
Suppose 0 € [zj_1,x; ], for some j. Then U(P, f, p1) — L(P, f, 1) =
M; —m; < € (since f is bounded, M; = sup f(x), m; = inf f(z),
x € [xj_1, ;] must exist). Pick a 6 > 0 such that [0,6] C [z;_1,z;],
then we have |f(t) — f(0)] < M; —m; <€, if 0 < ¢ < J. Hence we
have /(04) = lim_f(x) = /(0).

(b) State and prove a similar result for Ss.
Proof: For (2, we have f € Z(02) if and only if f(0—) = f(0). The
proof is similar:
Suppose f(0—) = f(0). Consider partitions P = {zo, 1,2, 23},
where g = =1 < 21 < 23 = 0,23 = 1. Then U(P, f,82) = Mo,
L(P, f,B2) = ma. If f(0—) = f(0), then M> and msy converges to
£(0) as 21 — 0. Thus f € Z(B,), and [ fdBs = f(0).
On the other hand, if f € Z(82), then given any e¢ > 0, there exists a
partition P of [—1,1] such that U(P, f, 82) — L(P, f, B2) < €. Suppose
0 € [zj_1,z;], for some j. Then U(P, f,B2) — L(P, f,2) = M; —
m; < €. Pick a § > 0 such that [—4,0] C [z,;_1,z,], then we have
[f(t) — f(0)| < M; —m; <e¢, if =6 <t < 0. Hence we have f(0—) =
Tim f(z) = f(0).

(¢) Prove that f € Z(53) if and only if f is continuous at 0.
Proof: Suppose f is continuous at 0. Let 0 < § < 1, consider par-
titions P = {zg, 21, x2, x5}, where o = —1,21 = —§,29 = 0,23 = 1.
Then U(P, f,83) = Ma, L(P, f,f3) = ma. If f is continuous at 0,
then My and ms converges to f(0) as § — 0. Thus f € #(83), and
[ fdBs = £(0).
On the other hand, if f € Z(f3), then given any € > 0, there exists
a partition P of [—1,1] such that U(P, f, B3) — L(P, f,83) < e.
If0 ¢ P, then0 € (z;_1,x;), for some j, and U(P, f, B3)—L(P, f, B3) =
M; —m; < e. Pick a § such that [—6,0] C [z;-1,2,], then we have
[f(t) — fO)] < Mj —m; <e¢, if =6 <t <. Hence f is continuous
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at 0.
If 0 € P, suppose xj = 0, for some 0 < j < n. Then U(P, f,53) —
L(P, f, ﬁg) = (M; —mj) -5+ (Mj41 —mjq1) - 5 < ¢, which gives
M; —mj < 2 and M1 —m; < 2e. Now pick a § > 0 such that
[—6,0] C [xj—1,2;41), then we have |f(t) — f(0)] < 2¢, if =6 <t < 4.
(Note that if —6 <t < 0, |[f(t) — f(0)] < M; —m; < 2, and if
0<t<d, |f(t)— fO)] < Mjy1 —mj 1 < 2e) Hence, f is continu-
ous at 0.

(d) If f is continuous at 0 prove that

[ is = [ rase = [ raz = 50

Proof: If f is continuous at 0, then f(0) = f(0+) = f(0—). By (a),
(b), (c), we have the desired result.

4. If f(z) = 0 for all irrational x, f(z) = 1 for all rational z, prove that
f &% on [a,b] for any a < b.

Proof: Given any partition P of [a,b], we have U(P, f) = Z cAx; =

1=
n

b—a, and L(P, f) = ZO Ax; = 0. Hence U(P, f) — L(P, f) = b—a and
1 g% -

5. Suppose f is a bounded real function on [a, b], and f? € Z on [a,b]. Does

it follow that f € #? Does the answer change if we assume that f3 € %?
Solution: Even if f?2 € % on [a,b], we cannot conclude that f € # on
[a,b]. For example, let f(x) = —1 for all irrational z, f(z) = 1 for all
rational x, similarly as Exercise 4, we have f ¢ %’ Clearly, f is bounded
and f2(z) = 1, for every x. Thus f? € %, and f f?(x)dxr =b—a.
If f3 € #, however, we can conclude that f € %, too. Slnce f is bounded
on [a,b], then f? is bounded on [a,b]. Suppose m < f3 < M, ¢ = y7 is
continuous (and one-to-one) on [m, M]. Since f3 € %, by Theorem 6.11,
we have f = ¢(f3) € Z on [a, b).

6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded
real function on [0, 1] which is continuous at every point outside P. Prove
that f € #Z on [0, 1].

Proof: Note that P can be covered by finitely many disjoint segments
whose total length can be as small as desired. (But how to prove this for-
mally?) Now, let € > 0 be given, put M = sup |f(z)|, and let the finitely
many disjoint segments which cover P be (u;,v;) such that the sum of the
corresponding differences v; — u; is less than e.

Remove the segments (u;, v;) from [0, 1] (if (u;,v;) € [0,1], remove their
intersection part). The remaining set K is compact, since K = ([)(u;, v;)¢)N
[0,1] is an intersection of closed sets, thus K is a closed subset of [0, 1] and
[0,1] is compact. Since f is continuous on K, f is uniformly continuous
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on K, and there exists a 6 > 0 such that |f(s) — f(t)] <eif s€ K, t € K,
|s —t| < 4.

Now form a partition P’ = {xg, 21, ..., z, } of [0, 1], as follows: If u; € [0, 1],
u; € P'. If v; € [0,1], v; € P’. (But note that only u; and v,, will not in
[0,1].) No point of any segment (u;,v;) occurs in P’. If ;1 is not one of
the u;, then Ax; < 4.

Note that M; — m; < 2M for every i, and that M; — m; < € unless x;_1
is one of the u;. Hence we have

UP', f)— L(P', f) < 2Me+¢€(1 —0) = (2M + 1)e.
Since € is arbitrary, Theorem 6.6 shows that f € Z.

. Suppose f is a real function on (0,1] and f € Z on [, 1] for every ¢ > 0.

Define
1 1
/0 f(x)dx:li_rf(l)/c flx)dx

if this limit exists (and is finite).

(a) If f € Z on [0, 1], show that this definition of the integral agrees with
the old one.
Proof: Given any ¢ > 0, if we can prove that there exists an
r(0 < r < 1) such that 0 < ¢ < r implies | fcl f(x)dx—fol f(z)dz| < e,
we are done.
Firstly, let’s show that if f € %2 on [0,1], f is bounded on [0, 1].
Suppose that f is unbounded, let P be any partition of [0,1]. Then
there is at least one [z;_1, z;] such that f is unbounded on [z;_1, z;].
No matter which € > 0 is given, we can put § = x; — ;1 and
find two points s,t € [x;_1,2;] such that f(s) — f(t) > 5. Then
U(P, f)—L(P, f) > (f(s) — f(t))d > €, and hence f ¢ Z#, a contra-
diction.

Next, Let P be any partition of [0,1] such that ¢ € P, and let
P, be the partition of [¢, 1] with respect to P. Suppose z; = c,
then U(P, f) = i M;Ax; = EJ:MlAZ'Z + U(P., f). Since f is
bounded on [0, 1],1:Vxlle have |f(x)7|:1§ M, for every x € [0,1]. Then
UPS) = U(P )] = | 5 M| < M| & Aa] = Mz, = a0) =

Me. Given any € > 0, we can pick an 7’7(0 < r < 1) such that
r < ¢/M. Then when 0 < ¢ < r, we have Mc¢ < Mr < €, which gives
|U(Paf) - U(Pcaf)l <€

Since f € # on [0, 1], we have fol f(z)dz = T()lf(x)dx = infU(Pygq3, f),
and [ f(z)dz = [ f(z)dz = inf U(Py.y}, f). Then for the above e,
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we can choose a partition P; of [0, 1] such that U(Py, f) < fo x)dz+
e. If ¢ € P, we are done and put P’ = P;; otherwise, let P2 =
P1 U{c} then Ps is a refinement of Py and thus U(Pe, f) <U(P1, f) <
fo x)dr + €, we put P’ = P. Now we find a partition P’ of [0,1]
such that ¢ € P’ and fof x)dx <U(P', f <f0 x)dz + €.
Similarly, for this € and 0 < ¢ < r, we can find a partition P’ of
[e,1] such that fcl flx)de < U(PLf) < fcl f(z)dz + e. Now let
P® = P'u {0}, then P? is a partition of [0,1] and ¢ € P?). Let
P* be the common refinement of P’ and P® (thus ¢ € P*) and
let P* be the partition on [¢,1] with respect to P*, we then have
f01 )z < U(P*, f) <U(P', f) < [y f( d:c+e(1e,|U(P* f) -
fo dx\ <o), [} fle)de < UP:f) < UPLS) < [} fla)de +
& (e, | [, fle)de — U(P: )|<6)and|U(c7f)—U( SO <
€. Therefore |ff dm—fo x)dz| < \flf Ydz — U(P*, f)| +
\U(Ps, f)=U(P*, )| +|U(P*, f fo z)dx| < 3e, which completes
our proof.

(b) Construct a function f such that the above limit exists, although it
fails to exist with |f| in place of f.
Solution: An example is f(z) = Llsinl. Since we can find from
many mathematical analysis textbooks that floo Si;mdac converges
but ST 222 |dz diverges. If we replace z by 1, then [~ S2&dy =
0 +sin +dt and [ 922 |dy = fo |4 sin 4|dt. (But how to prove this
with the knowledge we have learned from this book is still not clear
to me...)

8. Suppose f € Z on [a,b] for every b > a where a is fixed. Define

/f )iz = lim bf()

if this limit exists (and is finite). In that case, we say that the integral on
the left converges. If it also converges after f has been replaced by |f], it
is said to converge absolutely.

Assume that f(z ) > 0 and that f decreases monotonically on [1,00).

Prove that [, f(z)dx converges if and only if Z f(n) converges. (This

is the so-called * 1ntegral test” for convergence of series.)

Proof:

= Suppose fl x)dx converges. Let {y,} be a real sequence such
that y,, = [|" f(z )dx then {y,} converges. Thus given any € > 0, there
isan N € N such that n > m > N implies |yn Ym| < €, which is
equivalent to say | [ f(z)dz| < e. Since f(z) > 0, [" f(z)dz > 0,
and hence [ f(z)dz < e. Now form a partltlon P ={xg = m,z1 =

m+1,...,Tp_pm = n} of [m,n], then U(P, f) = i MyAzy, = i My, =
k=1 k=1
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kz flzr—1) = i fim+k-1) = :Zl f(k) and similarly, L(P, f) =
=1 k=1 =m

nimf(mk) = n_mf(m +k)= zn: f(k), since f(x) decreases monotoni-
k=1 k=1 k=m+1

cally.

Note that we have L(P, f) < [ f(z)dz = [ f(z)dz, and thus > f(k) <

- k=m+1

[P f(x)de < e Since f(z) 20, | 3. fk) = 3 f(k) < e, then

k=m+1 k=m+1

(oo}
>~ f(n) converges, by Cauchy criterion.
=1

o0
<: Suppose Y f(n) converges. Then given any e > 0, there exists an

n=1

N € N such that n > m > N implies | > f(k)| < €, which gives
k=m+1

> f(k) < esince f(z) > 0. Form the same sequence {y,} as the pre-
k=m+1
vious proof such that v, = fl z)dz. Let N =N+1landn' >m' > N/,

then |y, — ym:| = |fm, f(z dx\ = fm, f(z)dz. Now form a partition
P ={xg=mizy =m' +1,..., 2 _m = n'} of [m/,n'], then similarly

n'—1
as the previous proof, we have U(P', f) = > f(k) = > f(k).
k=m' k=(m’/—1)+1
Sincen’ >m’ >N =N+1,n—-1>m'—1> N —1= N, hence
n'—1
> f(k) < €, namely, U(P',f) < e. Therefore |y, — ym/| =
k=(m’—1)+1
|f72, f(z)dz| = f:;, f(z)dz <U(P', f) < e, and by Cauchy criterion, {y,}
converges.
Note that for any b > 1, we can find an n € N such that n < b <

n + 1, and thus [}" f(z)dz < fl x)dr < an x)dx. Therefore,
I f(@)de = hm fl x)dx = hm fl x)dx = hm Yn- Since ILm Yn

exists, f 1 )dx converges.

. Show that integration by parts can sometimes be applied to the “im-
proper” integrals defined in Exercise 7 and 8. (State appropriate hy-
potheses, formulate a theorem, and prove it.) For instance show that

/°° cosT , /°° sinx d
r = ———dx.
o 1+ o (1+a)?
Show that one of these integrals converges absolutely, but that the other
does not.
Proof:

(i) Suppose F' and G are differentiable functions on [a, ), F' = f € Z,
and G' = g € #Z, on [a,b] for every b > a. What’s more, blim F(b)G(b),
— 00
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10.

[.° F(z)g(x)de and [° f(x)G(z)dx exists. Then

/00 F(z)g(x)dz = blir& F(b)G() — F(a)G(a) — /OO f(z)G(x)dx

To see this, simﬂarly as in the proof of Theorem 6.22, let H(a:) = F(x)G(x),
and we have f H’ Jdz = H(b)—H (a), namely fb F(z)g(z)dx = F(b)G(b)—

f f(z)G(z)dx, for every b > a. Let b — oo, we have the de-
51red result
11 foo Coszdx . hm sin b f sin foo sin x dl‘
1+x b o0 1+b 1+0 0 —(1+1)2 0 (14x)2

(iii) We can show that [ > (ff;)Q dx converges absolutely, but | > Ty de

does not. To see this, define y,, = fo dz, then we have y, < yn41,
and 0 < UYn < fO (1+m (\1:1;1;?\ dz.
But [ 5% ‘Cosxl does not converge. Since 0 < |cosz| < 1, we have | cos z| >

(CObl‘)Q _ 1+cos2z _ Then foo |cosz\ fo 2(1+w)dx+fooo cos 2z dx. Since

| sin z|

(142)2
yzde = 1. Hence {yn} converges, sois [

14z 2(14x)
o0 o0 S oo
I 2(1+ S A dlverges (i.e., = 00), and | [; QC(OFJer) dz| = 1| [ 3‘_‘;53”2 dz| <
1 [o° |sin2az| _ 1 cos 2z
1o Gror S 1 fo (1+:L’) = 7. Hence fo 2(1+m)dx is bounded, and

therefore, [;™ ‘Coszl diverges. (— o)

Let p and g be positive real numbers such that

1 1

- +-=1

p q

Prove the following statements.
(a) If u >0 and v > 0, then

uP v

u < — + —.
p q

Equality holds if and only if u? = v9.

Proof: Consider the function f(z) = Inz, x € (0,00). We have

f'(x) =1 >0, and f’(z) = —% < 0. Then we know that f(z) is

monotonically increasing, and g(x) = —Inx is convex.

Hence, —lnuv = —(Inw + Inv) = —(%lnup + %lnvq) ln( uP +

1qu?) (since i, l =1, and —Inz is convex). Therefore, fln uy >
ln( uP+1 11‘1) and thus Inuv < ln( uP+1 ;v7)- Due to the monotone

property of Inz, we have uv < pu” —|— qvq Clearly, equality holds if

and only if u? = v9.

(b) If f € #(a), g € Z(r), f 20, g >0, and

b b
/fpdozzlz/ glda,
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then .
/ fgda < 1.

Proof: By (a), we have fg < 1u? + évq, and hence, f: fogda <

P
b b b
fa(%up—i—%vq)da—f %upda—&—fa vq)da—%l—i—%-l—%—&—%—

1
a q

If f and g are complex functions in %Z(«), then

b b b
| / fgda] < { / |FiPdoy /o / lgl7da /.

This is Holder’s inequality. When p = q¢ = 2 it is usually called the
Schwarz inequality. (Note that Theorem 1.35 is very special case of
this.)
Proof: We have that
b b
| Jo f9da < Ju |fglde
U 1oy /e [} |gladayt/a = ([ |f|pda}t/r{ [} |glida}i/a

and

Jy |fglde _ Sy f1lglda
(21 fIpda} /P [2 |glada}t/a  {[7|flpda}i/p{[? |gleda}t/a’

which equals

’ | [P 1/p gl /440,
b b '
a [, |flpda [} |gloda
and by (a), we have

’ |f|p 1/p |g|q 1/qda < ’ 1 ‘f|p +1 ‘g|q
/a(fflflpda) T lotaa’ </ N

and
b b
/b[l e el 1o lfPda 1] lglda
o P[0\ flpda” 4 [ |glada P flpda 4 [ |glida’
and

L\ de 1 [y lglde 1 1
P[P flrda 4 [P |gltda P4

)

which gives

| Y fdal
([ fIpda} /e [2 |glada)t/a ~

Therefore,

b b b
| / fgdal < { / |FPdayt/r{ / 9|7}/,
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11.

(d) Show that Holder’s inequality is also true for the “improper” integrals
described in Exercise 7 and 8.
Proof: As the case of Exercise 7, we have

1 1 1
[ fodal < ([ Isvaay e[ lglrdayn
for every ¢ > 0, and thus we have
1 1 , 1 ,
i < P 1/p 3 q 1/q
tim| [ fodo] < tim{ [ f17da} 7 im [ fivda e
which gives

1 1 1
d Piol/P 9do\ /9.
\/0 fg a\s{/o | f[Pdoc} {/0 |lg|?doc}

Similarly, as the case of Exercise 8, we have

b b b
[ fodal <1 [ 1frayog [ lgptdaye,
for every b > a, and thus we have
b b b
lim |/ fgda] < lim {/ | f|Pda}/P lim {/ lg|9da} /e,
b—oo J, b—oo " J, b—oo " J,
which gives
[ todal <[ Ifraayieg [ lgidaye

Let a be a fixed increasing function on [a,b]. For u € Z(«), define

b 1/2
lula = {/ |u2da} .

Suppose f, g, h € Z(«), and prove the triangle inequality

I[f = hll2 < |If = gll2 + |lg — hll2

as a consequence of the Schwarz inequality, as in the proof of Theorem

1.37.

Proof: First we prove that if u € Z, v € Z, than ||u+v||2 < ||u]l2+]]|v]]2.
1/2

We have ||u + v||2 = {f: lu + U|2da} , and hence ||u + v||3 = f: lu +
v)?da < f;(|u| + [v])2da(by Schwarz inequality) = f; \u|2da+f; |v|?da +
2 [Plullvlda < [0 |ul2da + [P ]o]2da + 2()7 [ul2da)2(f7 |v]2da) /2 (by
Holder’s inequality)= ([, [ul*da)!/? + ([, [v*da)'/2)? = (|[ull + [v]]2)*.

Therefore, ||u + v|| < ||ull2 + ||v]]2-
If we replace u = f — g, v = g — h, then we have the desired result.
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12. With the notations of Exercise 11, suppose f € Z(«a) and € > 0. Prove
that there exists a continuous function g on [a, b] such that ||f — g||2 < e.
Proof: Let P = {xo,...,x,} be any partition of [a, b], define

x;—t t— a1
AZL’i f(xl_l) + A.’EZ

g(t) = f(@i)

if Ti—1 S t S Z;.
g is clearly continuous since g(x;+) = g(x;—) = f(z;) = g(z;). Then we

have
Ty —t t—x—1
£ = 9(0)] = [T (F(0) = F(wimn) + 5o (D)~ £,
which gives that
F(£)—g(t)] < () i)+ o S0 = f )] < M

for Ti—1 <t< Zi.

Since f € Z(«), f is bounded, we can suppose that |f| < M on [a,b].
Furthermore, given any e > 0, we can choose a partition P such that
U(P, f,a) = L(P, f,a) < 537, namely, Z(Mi—mi)Aai 537+ Hence, we

=1
have that

b 1/2 noopm 1/2
15 =alla={ [17-gPaa} = { s
v >/
1/2 1/2
{Z/ (M; —my) da} {2MZ/ (M; —my) da}
1/2 €2 1/2
= {QMZ(MZ — mi)Aai} {2M2M} =€,

i=1

which gives the desired result.
13. Define
r+1
flx) :/ sin(t?)dt.

(a) Prove that |f(z)| < 1/x if 2 > 0.
Proof: Put t? = u (namely, t = \f), we have du = 2tdt = 2+/udt,

or equivalently, dt = d—\/%. Hence f(z) = [ (@+1)* sm“du and if we
integrate by parts, we have that f (x) = *(Cosz(((jill)) : COZ(; )) B
z+1 cos(z2 cos((z 2 z+1
[ st = 52— =E) - [ s
S 1 COS U
Then |f(x)| < |5 >| + |C°5“§:f> | + |f<””“ cosudul < &+
(z+1) 1 _ 1 1 -
2(:E+1 f = ﬂ + 2($+1) - (27(a:+1) - ﬂ) o if x > 0.
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(b) Prove that
2z f(x) = cos(z?) — cos[(z + 1)%] + ()

where |r(z)| < ¢/ and ¢ is a constant.

Proof: Asin (a), we have f(r) = COSQ(;Q) 7‘3052(((5111))2) 7fw(2””+1) ot g,

and thus 2zf(x) = cos(xQ) — cos[(z + 1)?] + r(x), where r(z) =
T cos|(xT 2

COS[(IJrl) ] QII( +1)% cosu du. Hence |7,( )| < | [:£+J£1) ”+

4u3/2

(m+1) | | (z+1)* 1 1 1
2z |f 4005/’Z du | < x+1 + 2z ‘ f Au3/2 S r+1 + 2:E| 2(xz+1) -
2

1) _ 1y
22l = z+l + 22 (g — 2(z+1)) = r+1 <z

(c¢) Find the upper and lower limits of «f(z), as ¢ — oo.
(d) Does [, sin(t?)dt converge?

14. Deal similarly with

15.

Show that
eI f(x)] <2

and that
e®f(z) = cos(e®) — e~ cos(e® ) + r(x),

where |r(z)] < Ce™®, for some constant C.
Proof: Similarly, put v = e?, and then du = e*dt = udt, namely, dt =

e"tt sinu cos e” cose®t! e cosu
We thus have f(z) = [ du:i—w_ o cosugy,

e’ e’ er

Therefore, e*|f(x)| = |cose®| + |Cose g 1|f |C7C:752“|du| <1414
x+1
e 5 Hdul=1+21+e"(L - eT+1) = 2.

oz o1
e* f(x) = cos(e®) — %ﬂ —e” [ 3, Wthh gives
1
7“(3:) = —e” :Z €8t du. Hence |r(z)| = em|fem COS“alu|
T | f cos udu| = e~%| sin(e**1) —sin(e?)| < 2e~*, which gives the

desnred result.

Suppose f is a real, continuously differentiable function on [a,b], f(a) =

f(b) =0, and
b
/ fA(z)dr = 1.
1

b
[ at@ @ =3

b b
/a [ (2)2da - / PP a)ds > 1.
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16.

Proof: We have

b
/ of (@) [ (z)dz = bf2(b) - af?(a) / F@)(f(&) + 2 (2))da

/ 2 ()dot / wf(@)f’ / 12 () do— /abxf(ff:)f’(w)dx,

which gives that

/abxf(x)f'(x)dx - /ab P )iz = —.

By Holder’s inequality, we have

| / of @) (@)l < | 1 @) / " P2

which gives
b !/ 2 b 2 r2 ].
/a[f () d/ PP a)dn 2 1

Since the equality cannot hold in this case, we have the desired result.

; ; [P (2f(=)?
(Note that if the equality hold, then we have that s — JP(af(@)ds
b s
Equivalently, we have |f'(z)| = Mlxzf(z)|, where M = %.
Since f:xf ) (x )dx = —3, we have f(z) = —Mazf(z) = Cxf(z)
(C = —M), namely, & = Cxf(z), ie., cﬁ{( 7 = Cuadz. Solving this

equation gives us that ln flz) = %Cx + K’, namely, f(z) = Ke(1/2)0a? ,
where K = X" > 0. But since f(a) = f(b) = 0, we have K = 0, a
contradiction.)

For 1 < s < oo, define
1
(s) = ns
n=1
(This is Riemann’s zeta function, of great importance in the study of the
distribution of prime numbers.) Prove that

=s [ <+1
Proof Let’s compute the difference between the integral over [1, N]
and the Nth Partial sum of the series that defines £(s). This gives
that

N

s [ X [ ey

n=1 n=1
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N-1

n+1 1 1 1
:|SZ”/n Fd$*25|:|2(%*ﬁ)*25|
1

—

n= n=1 n=1

B n 1 N-1 1 1

-1
= — — _ | = 0—7— =
‘n:1( ns (n+1)s) Ns| | Ns Ns‘ Ns—1
Let N — oo and we have
N N
) [z] ) I
|1\}E>noos/1 mstx—nh_)n;O;E\—Q
which gives
© ] &1 =1 [® [
5/1 ;ES'de:ZlE’Z'e"g(S): 15:5 1 xs+1dx.

)= - [

where [z] denotes the greatest integer < z. Prove that the integral
in (b) converges for all s > 0.
Proof: We have

s Crx—z], s <1  [x]
ijs/l pores) d:ztfs_l—s/1 Edm+s/1 xs+1dx

Furthermore,

Let

and we have 0 < y,, < %, for every n. Then {y,} is bounded and

since yp, < Yn+1, {yn} converges. Therefore, floc ”;:—K]dx converges.

17. Suppose « increases monotonically on [a,b], ¢ is continuous, and g(z) =
G'(z) for a < < b. Prove that

b b
/ a(x)g(z)dr = G(b)a(b) — G(a)a(a) — / Gdo.
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Proof: Take g real, without loss of generality. Given P = {zg, 21, ..., 2},
choose t; € (z;_1,x;) so that g(¢;)Az; = G(x;) — G(x;—1). Then we have
that

Za(zi)g(ti)A%‘ = Z a(@i)(G(z;) — G(zi-1))

=1 i=1

=D la(@)G(xi) — a(@i—1)G(@i-1) + a(2i-1)G(@i-1) — a(2:)G(zi-1)]

= Z[Oé(l‘i)G(xi)—a(xz‘—l)G(%‘—l)]+Z[a(ﬂfi—l)G(xi—l)—Oé(l‘z')G(ﬂfi—l)]

n

= G(b)a(b) - G(a)a(a) = Y Glzi)[a(zi-1) — alz;)]
i=1

= G(b)a(b) — G(a)a(a) — ZG(Z'ifl)Aaiv

and equivalently,

Z az;)g(t)Ax; + Z G(zi—1)Aa; = G(b)a(b) — G(a)a(a).
i=1 i=1
Since .
L(P, ga) SZa t))Ax; <U(P,ga)
i=1
and

L(P,G,«) Z (ri—1)Aa; <U(P,G,a),
which gives that
L(P,ga) + L(P,G, o) < G(b)a(b) — G(a)a(a) < U(P,ga) + U(P,G, ).
Notice that P is arbitrary, we thus obtain that
b b b b
/ o(2)g(x)dz+ / Gda < G(b)a(b)—Cla)ala) < / o(2)g(x)da+ / Gda,
namely,
b b
/ a(z)g(z)dz —l—/ Gda = G(b)a(b) — G(a)a(a),

which is the same to say that



18.

19.

Let v1, 72, 3 be curves in the complex plane, defined on [0, 27] by
nt) =€, yat) =¥, s(t) = 2mitenl/h,

Show that these three curves have the same range, that v; and 79 are
rectifiable, that the length of v, is 27, that the length of ~s is 47, and
that ~3 is not rectifiable.

Proof:

(i) Clearly, 71, 2 and ~y5 all have the unit circle on the complex plane as
their range.

(i) Since v1(t) = ie" and 4(t) = 2ie**, both of which is continuous on
[0.27]. By Theorem 6.27, we have that v; and 7, are rectifiable. And thus
Am) = [T Jie't|dt = 2m, A(va) = [ |2ie®|dt = 4r.

Let v, be a curve in R¥, defined on [a, b]; let ¢ be a continuous 1-1 map-
ping of [¢,d] onto [a, ], such that ¢(c) = a; and define y5(s) = v1(¢(s)).
Prove that 75 is an arc, a closes curve, or a rectifiable curve if and only if
the same is true of ;. Prove that v, and v; have the same length.
Proof:

(i) Since y2(s) = 11(4(s)), and ¢ is one-to-one, it’s clear that v; is one-to-
one if and only if 5 is one-to-one. That is, o is an arc if and only if v,
is an arc.

(ii) First we prove that if ¢(c) = a, then ¢(d) = b. Suppose that on the
contrary, this is not the case. Then there must be an sg € [¢,d], so # ¢, d,
such that ¢(sp) = b. Hence we have ¢(c) < ¢(so) and ¢(d) < ¢(so).
Take a A such that max(¢p(c), d(d)) < A < ¢(so), then ¢(c) < A < ¢(s0),
d(d) < A < ¢(sp). Since ¢ is continuous on [c,d], we have that there is
an s1 € (¢, sp) such that ¢(s1) = A; and similarly, there is an ss € (sq,d)
such that ¢(s2) = A. This is contradict to the fact that ¢ is one-to-one.
If ~; is closed, we have that v1(a) = 41(b). Then we have vo(c) =
v1(9(c)) = 71(a) = v1(b) = 11 (d(d)) = ¥2(d), hence 7, is closed. And if
v2 is closed, we have that y2(c) = y2(d), then we have v, (a) = y1(é(c)) =
Ya(c) = va(d) = y1(¢(d)) = v1(b), hence 7, is closed.

(iii)If 4y is rectifiable, A(y2) = sup A(P,,,y2) = sup 21 |v2(xi)—y2(ziz1)| =

Sp 3= [71(8(21) 71 (61 -1))] = sup AP, 71) = Al3s), hence 5 is rec-

i=1

n
tifiable. And if 7, is rectifiable, A(y1) = sup A(Py,,y1) =sup > |yi(@;) —
i=1

Y1(xi-1)| = sup 2_:1 [72(6 71 (@) =2(¢~ H(wiz1))| = sup A(Pyy, 72) = A(72),
hence 7, is rectifiable.

The fact that v, and 7 have the same length is clear from the above proof
process.
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Sequences and series of functions

. Prove that every uniformly convergent sequences of bounded functions is
uniformly bounded.

Proof: Suppose {f,(x)} converges to f(x) uniformly for all z € E, and
{fn(x)} is bounded, for every n. Then we can pick an N € N such
that n > N implies |f,(z) — f(x)] < 1, for all + € E. which gives
that |f(z)] < |fys1(z)| + 1. Let |fyi1(x)] < M, then |f(z)| < M + 1.
Furthermore, we also have |f,,(z)| < |f(x)| +1, for all n > N, which gives
|fn(z)| < M +2, for all n > N. Suppose |fi(x)| < M;, for 1 <i < N, and
let M’ = max{M;, M, ..., My, M + 2}, then we have |f,(z)] < M’, for
all n and € E. Hence {f,(x)} is uniformly bounded.

. If {f.} and {g,} converge uniformly on a set E, prove that {f, + gn}
converges uniformly on E. If, in addition, {f,} and {g,} are sequences of
bounded functions, prove that {f,g,} converges uniformly on E.
Proof:(i) Since {f,} and {g,} converge uniformly on E, there exist Ny,
Ny € N such that n > m > Ny implies |f, — fm| < €/2 and n > m > Ny
implies |gn, — gm| < €/2. Let N = max{Ny, Na}), then when n > m > N,
we have |(fn + gn) = (fm + gm)| = [(fa — fin) + (gn — gm)| < |fr — fiul +
|gn — gm| < €, and thus {f, + g} converges uniformly on F, by Cauchy’s
criterion.

(ii) Since {fn} and {gn} converge uniformly on E and both of which
are bounded, by Exercise 1, {f,} and {g,} are uniformly bounded. Let
|fn| < My and |g,| < My, by (i) there is an N € N such that n > m > N
implies that |f, — fm| < €/2M, and |g, — gm| < €/2My. Hence we have
|fngn - fmgm| = |fn(gn _gm) +gm(fn - fm)' S |angn - gml + ‘gmen -
fm| < €, when n > m > N. Therefore, {f,gn} converges on E uniformly.

. Construct sequences { f,}, {gn} which converge uniformly on some set F,
but such that {f,g,} does not converge uniformly on E (of course, { f,,gn}
must converge on E).

Solution: Let f,(z) =2+ 222L g (z) =1 4302 5 € (0, +00). Then fy,
and g, converge uniformly to z and % (since sup |f, — x| = sup |*F| =

|1} = 0, and sup|g, — 1| = sup[*2Z| = || — 0, when n — o0). But
fogn =1+ (51275)2 + (x4 %)SI% does not converge uniformly to 1, since
H 2 .
?Zplff)gn —hl\ = sup |20 4 (g4 1)sine| = L 4 (2knm+ 1) L] = 2kr
> 1), when n — 00.
. Consider
— 1
x) = —_—
/(@) nz::l 1 +n%x

For what values of x does the series converge absolutely? On what inter-
vals does it converge uniformly? On what intervals does it fail to converge
uniformly? Is f continuous wherever the series converges? Is f bounded?
Solution:
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(i) When = > 1, we have 1 + n%z > 1+ n? > n? which gives m =

o0 (o] o0
1 1 _ 1 1 1o

Trzs < pz and hence [f(z)| = | X0 15251 < X sy £ 22 72 Since
n=1 n=1 n=1

(oo}

> # converges, f(x) converges absolutely.

n=1

When 0 < = < 1, we have 1 + n?z > n2z, which gives ‘1+}l%| < ﬁ

Hence, | f(x)| = z I

i‘%\»—l

Z >, which shows f(z) con-

verges abbolutely
When 2 = 0, we have f(z) = Z 1. Clearly, f(x) diverges, so does |f(z)|.

When z < 0, |1 + nz| > ||x|n — 1|, and when n is sufﬁmently large

(suppose n > N), we have |z|n? — 1 > 0. Hence, |f(z)| = | E | <
N
1 1
Z \1+n2x| Z \1+n2x| + Z [1+n2z| < Z +n2z| + Z |a:|n2 1’
=N+1 el n=N+1

wh1eh gives that f (2) converges absolutely.
In summary, when & # 0, f(z) converges absolutely, and when x = 0,
f(x) diverges.

(ii))When z € [a, +o0), where a > 0, by picking any r € (O a) we have that

o0
1+ n%z > n?z > n?r, which gives Hi% n2 . Since Z % > %

n=1
converges, f(z) converges uniformly on [a, +00), by Theorem 7.10.

Similarly, when z € (—o0,b], where b < 0, by (i) we have |1 + n%z| >
|gr:|n2 — 1 > 0, when n is sufficiently large (suppose n > N). Pick any

2 2 1 1 .
€ (b,0), we have |1 +n?z| > |r|n® — 1, and thus TrnZa] S far—1- Since
oo 1 o0
E W’ 7 converges, ) T also converges, we have >~ T _m e

n=1 n=N+1 n=N+
1
converges uniformly, and therefore ) Tinza] converges uniformly.
n=1

In summary, f(z) converges uniformly on intervals such as (—oo, b] (b < 0)
or [a,+00) (a > 0). Conversely, f(z) fails to converge uniformly on such
intervals that (0, a] (a > 0), [b,0) (b < 0), and [b,a] (b <0 and a > 0).

(iii) By (i), f(z) converges if and only if  # 0. For any zy # 0, we
can construct an interval such that zo € [a,4+00) (¢ > 0, if g > 0) or
xg € (—00,b] (b < 0, if g < 0). By (ii), in either case, f(x) converges
uniformly on the constructed interval, then according to Theorem 7.12,
f(x) is continuous on the interval. Hence, in particular, f is continuous
at xg.

(iv) Clearly, f(x) cannot be bounded, since f(0) does not converge.
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5. Let

0 (z < nll),
fa@) ={ sin?z (L Lw<l)
0 (2 <a2).

Show that {f,} converges to a continuous function, but not uniformly.
Use the series Y f,, to show that absolute convergence, even for all z,
does not imply uniform convergence.

Proof: Fix any zg € R, if 2y < 0 or ¢ > 1, then clearly fn(aco) =0, for
every n; if zo € (0, 1], then there exist a unique N such that N+1 <z <

+, and thus when n > N, we have f,(zo) = 0. Hence, 11_>rn fn(z0) = 0,
which gives that f(z) = lim f,(z) = 0. Clearly, f(x) is continuous. To
n—oo

see that the convergence is not uniform, let M, = sup|f,(z) — f(x)| =
sup | fn(z)| = sup|sin® Z| = sup|M| = 1, since n%rl <z< i
implies 2nm < 2?” < 2(n+ 1)m. Then M,, =1 when n — oo, and thus the
convergence is not uniform, by Theorem 7.9.

Let g(x) = > fu(z), from the above statements we have known that for
any xo, g(zo) = sin’ 2o if zo € (0,1], and g(zo) = 0 otherwise. Clearly,
> fnu(zo) converges absolutely. But f,, cannot converge uniformly, since
g(TQH) = fn(%“) = 1, for every n. This means, no matter which N

N+p

m, so that | %; 1fn(ar)| = fni(z) =1,
n=N+

chosen, we can pick z =
contradicting the Cauchy’s criterion.

6. Prove that the series

converges uniformly in every bounded interval, but does not converge ab-
solutely for any value of x.
Proof: Suppose a < x < b, then we can assume that || < M, for
. o0 2 o0 o o0
some M. Since Y (—1)"ZH% = 3 (=1)"%L; + 21(—1)"%. By Theo-
n=

n=1 n=1
o0

(=1)"L converges. What’s more, Z( nr %

18

rem 3.43 (Leibnitz),

n=1

(o)
M? Y (—=1)"-%, and since |(—1)"-%| = % and Z > converges, we have
n=1
> (—1)"-; converges. Therefore, Y (—1)" &4 “4n converges uniformly, by
n=1 n=1

Theorem 7.10. (More specifically, > (—1)”:’72 converges uniformly by

n=1
Theorem 7.10, since |(—1)"i—2| = ﬁ—z < M?Z;, and 3 % converges. So
does Z( 1)nEgn +”.)

Clearly, [(—1)mefn +”| = Z4n > % = L1, and hence E|(—1)"%| di-

’I’L —_—n

verges, for any value of z, since Z diverges.
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7. Forn=1,2,3,..., x real, put

o
T 14 na?’

Show that {f,} converges uniformly to a function f, and that the equation
f'(@) = lim f(x)

is correct if © # 0, but false if x = 0.
Proof: Clearly, f(z) = lim f,(z) = 0, for any real . Put M, =
n—oo

sup | fn(x) — f(z)] = SUP|1+% -0 = Sup|1+ﬁ| = sup \m| = ﬁ
(if and only if x = /n when the supremum is achieved), and we have
M, — 0 when n — oco. Therefore, f,, converges uniformly, by Theorem
7.9.

_nxz .
F0) = 2525 = et — e o e Jiy £,0) =0 = £0)
when 2 # 0. But f/(0)=2—-1=1%#0= f/(0).

8. If

_J 0 (<0),
I(x){l (x >0),

if {x,} is a sequence of distinct points of (a,b), and if > |c,| converges,
prove that the series

flx) = chf(x—xn) (a <z <)

converges uniformly, and that f is continuous for every x # x.,.
Proof: Since |c,I(z—2,)| < |cy| and Y |¢,| converges, by Theorem 7.10,
> enI(x — xp,) converges uniformly.
N
Let fy(x) = > epl(xz — xy,), we have lim fn(t) = . ¢, = fn(x), if
n=1 t—x Tn<T
x # x,, and hence fy(x) is continuous, for every x # x,. Therefore,
f(x) is continuous if x # x,, by Theorem 7.12. (Clearly, when z =
Zn, f(x) cannot be continuous, and only one side continuousness can be
committed.)

9. Let {f»} be a sequence of continuous functions which converges uniformly

to a function on a set E. Prove that

lim f,(z,) = f(z)

n—oo
for every sequence of points z,, € E such that x,, — x, and « € E. Is the
converse of this true?
Proof: Since f, converges uniformly to f on F, then given any € > 0,
there exists an N € N such that n > N implies |f,(z) — f(z)| < €/2,
for all € E. In particular, |f,(z,) — f(2n)| < €/2, when n > N. On
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10.

11.

the other hand, since every f,, is continuous on E, f is continuous on F,
by Theorem 7.12. Hence there is an M € N such that n > M implies
|f(xn) — f(x)] < €/2. Let N’ = max(N, M), then when n > N’ we have
[fn(an) = f(@)] = |fa(zn) = flan) + Flzn) = f(@)] < [frlzn) = fza)] +
|f(zn) — f(z)| < €, which is to say nlgr;o fo(zn) = f(2).

The converse should be expressed as: Let {f,} be a sequence of continuous
functions which converges to a function f, and if, for every sequence of
points =, € E such that z,, = = and « € E, we have HILII;O ful(zn) = f(x),

then {f,} converges to f uniformly.

This cannot be true, and Exercise 5 serves as a counterexample. By
Exercise 5, we have that f(z) = 0, for every z. If x,, — x, then if we
suppose that ﬁ <z< %, there must exist an M such that n > M
implies ﬁ <z, < % Let N’ = max(N, M), then when n > N’ we
must have f,(z,) = 0 and hence nh—>120 fn(zy) = 0= f(x), which satisfies
the requirement of the hypothesis. But Exercise 5 has proved that the
convergence of {f,} is not uniform.

Letting (z) denote the fractional part of the real number z (see Exercise
16, Chap.4, for the definition), consider the function

flx) = Z % (x real).
n=1

Find all discontinuities of f, and show that they form a countable dense
set. Show that f is nevertheless Riemann-integrable on every bounded
interval.

Proof: We have know that (x) is discontinuous where z is an integer.

On the other hand, since |(Z§)| < #, and ) # converges, we have that
N
S 2 converges uniformly, by Theorem 7.10. Let fy(z) = 3. (&2

n2 n2

n=1

then fn(z) is discontinuous where any (nz) is discontinuous (1 < n < N).
This means when nz = m, m € Z, fy(x) is discontinuous, which implies
that when x is rational, x = g, p,q € Z then f,(x) is discontinuous, for
any n > ¢q. Since fy converges uniformly to f, if fy is continuous for
every N, f should also be continuous, by Theorem 7.12. Hence f(z) is
discontinuous at every rational point x, and clearly, Q is a countable dense
subset of R.

Suppose [a, b] is any bounded interval, and suppose g, (x) = (Z;“), then we
have na < nx < nb, if x € [a,b]. Since the number of integers lying in
[na,nb] is finite, we know that g,, has only finitely many discontinuities in
[a,b]. Since |gn(z)| = |(Z—f)\ < 43 < 1, we see that g,(z) is bounded on
[a, b], for every n, then according to Theorem 6.10, we have that g, € Z,
for every n. Hence by the uniform converge of Y g,(x) and the Corollary
of Theorem 7.16, we have that f € Z.

Suppose {fn}, {gn} are defined on E, and
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12.

(a) > fn has uniformly bounded partial sums;
(b) gn — 0 uniformly on FE;
(€) g1(x) > ga2(x) > g3(x) > --- for every z € E.

Prove that > f,,gn converges uniformly on F.
N
Proof: Suppose Ay(xz) = > fn(x), since Y f, has uniformly bounded

n=1

partial sums, we have Ay(x) < M, for all N € Nand = € E.

Given any € > 0, there is an integer N’ such that g,(x) < (¢/2M), for
every x € E, and n > N, since g, (x) converges to 0 uniformly, and g, (z)
is decreasing monotonically for every z € E. For N’ < p < g, we have

£ @@ = | L (4n(0) = Arr @)l = | E An(olanta) -

qf An(2)gn1 (@) = | 22 An(2)(gn(2) =gnt1(2))+A4(2)gq () = Ap—1 (2)

n=p—1 n=p

B <1'E A2 00(0) = 9001 ()] + 1Ay (0)] + s (2] <

q—1 q—1
M(] 32 (gn(@) = gnr1(2)[ + 194 (@) +gp(@)]) = M| 32 (gn(2) = gny1(2)) +
n=p n=p
9q(x) + gp(z)| = 2M g, (x) < ¢, for every x € E. Uniform convergence now
follows from Cauchy’s criterion.

Suppose ¢ and f,(n = 1,2,3,...) are defined on (0,00), are Riemann-
integrable on [¢,T] whenever 0 <t < T < oo, |fun| < g, fn — f uniformly
on every compact subset of (0, 00), and

/0DQ g(x)dz < co.

Prove that

lim fr(z)de = / f(z)d.
(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.)
Proof: Since |f,| < g and [~ g(z)dz < oo, we have that [° fu(2)dx
exists. What’s more, since f, — f uniformly, we must have |f]| < g, on
every compact subset of (0,00), and thus [;° f(z)dz exists.
Since f,, — f uniformly, we have that f(z) = limsup f,(z) = linrgigf fn(2).

n—oo

Since | fn| < g, we have —g < f,, < g and thus 0 < f,, + g, for every n. Let
gn = inf(f;+g), where i >n. Then0< g1 < go <+, gp < (fn+g), and
gn — (f + g) uniformly. Clearly, each [~ gndz = [;°(fn + g)dx exists.
Therefore, we have

oo

|0+ e <vimint [+ )
0 0
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13.

or equivalently,

fdx < liminf fndm

n— oo

Similarly, since f, < g, we have g — f, 2 0. Let h,, = inf(g — f;), where
i>mn. Then0< hy <hy <---, hy < g— fpn, and hy, — (g — f) uniformly.
Clearly, each [~ hndx = [;°(g — fn)dz exists. Therefore, we have

- — f)d lim inf - — fa)d
/O(g fldz < /0(9 fn)da

n—oo

or equivalently,

—/ fdx < liminf[—/ frndz],
0 n—oo 0

which is equivalent to

o oo
lim sup / frndx < / fdz,
n—o0o 0 0
since

lim sup/ fndx = —lim inf[—/ fndx).
0

n—oo n— oo

(See Exercise 5, Chap. 1).
Combining the above tvvo results gives us

(o9} (oo}
fdx < liminf fndx < lim sup/ fndx < / fdzx,
0

n—oo n—00

and hence

o0 oo oo oo
fdx =1lim inf/ fndz = lim sup/ fndz = lim fndz,
0 0

0 n— 00 n—00 n—oo Jq
which is the desired result.

Assume that {f,} is a sequence of monotonically increasing functions on
R with 0 < f,(z) < 1 for all x and all n.

(a) Prove that there is a function f and a sequence {ny} such that

f(z) = lim fo, (2)
k—o0

for every z € R!. (The existence of such a pointwise convergent

subsequence is usually called Helly’s selection theorem.)

Proof: (i) Some subsequence {f,,} converges at all rational points

r, say, to f(r), by Theorem 7.23.

(ii) Define f(z), for any € R!, to be sup f(r), the sup being taken

over all r < x.

(iii) Now, we will show that f,, () — f(x) at every x at which f
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is continuous. Since f is continuous at x, given any e¢ > 0, there
is a d > 0 such that |y — x| < ¢ implies |f(y) — f(z)| < €/2. Pick
two rational numbers r; and 79 from N(z,0) such that ry <z < ro.
Since each f,,, is monotonically increasing on R, we have f,, (r1) <
frn; (@) < fn,(r2). And since f,,(r) — f(r), for every rational number
r, there exists integers Ny and Ny such that n; > Ny implies |f,,, (r1)—
f(r1)] < €/2 and n; > Ny implies |fy,(r2) — f(r2)| < €/2. If we let
N = max(Ny, Ny), thenn; > N implies | f, (ri)—f(r%)| < €/2, where
k =1,2. This gives that f(r1) —€/2 < fn,(r1) < fn, (@) < fn,(r2) <
f(re)+€/2, when n; > N. On the other hand, since r1,79 € N(z,0),
we have that |f(r1) — f(z)| < €/2 and |f(r2) — f(2)| < €/2, which
gives that f(r1) > f(x) —€¢/2 and f(r2) < f(z) + €/2. Therefore,
f(l‘) —€e< f(Tl) - 6/2 < fm(rl) < fm(x) < fm(TQ) < f(?”g) +€/2 <
f(z) + €, or shortly, f(x) —e < fn,(x) < f(z) + €, when n; > N,
which gives | fp, (z) — f(x)| < €, when n; > N. Hence, f,,(z) = f(z)
at every x at which f is continuous.

(iv) Now we will prove that f(z) is monotonically increasing on R!.
To see this, first suppose r; and r» to be two rational numbers and
r1 < re. Since every f,, is monotonically increasing on R!, we have
fni(r1) < fn,(r2), for every n;. Since fn,(r) — f(r) on every rational
number r, we then have f(r1) < f(r2). Now suppose z1 and zo
be two real numbers such that z; < xo, then f(z1) = sup f(r1),
r1 < x1, and f(z2) = sup f(re), ro < x9. Hence, f(z1) < f(x2) and
f(x) is monotonically increasing on R. (Since if 1 = z9, clearly
f(z1) = f(x2), and if z1 < x4, there exist a rational number r such
that 1 < r < xq, and thus fx; < f(r) < f(z3).) Then by the similar
argument as in Theorem 4.30, we can conclude that the set of points
(denoted as F) where f is discontinuous is at most countable. Using
Theorem 7.23 again on the sequence {f,,} (note that 0 < f,.(x) <1
still holds, for all the n; and ) gives us that there is a subsequence of
{fn;} which converges (to f(z)) for every z € E, and therefore this
subsequence of { f,,,} (and hence a subsequence of { f,,}) converges for
every x € R!, to a function g(z) (g(x) = f(z), where f is continuous
at x, but we cannot conclude this for those discontinuities of f). This
proves (a).

(b) If, moreover, f is continuous, prove that f,, — f uniformly on com-
pact sets.
Proof:

14. Let f be a continuous real function on R! with the following properties:
0< f(t) <1, f(t+2) = f(¢) for every t, and
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15.

Put ®(¢t) = (x(t),y(t)), where
.’E(t) _ Z 2—nf(32n—1t)’ y(t) _ Z 2—nf(32nt).

Prove that ® is continuous and that ® maps I = [0, 1] onto the unit square
I? C R2. If fact, show that ® maps the Cantor set onto I2.

Proof: First, we have [27" f(3?"71)] < 27" and since Y 27" converges,
>" 27" £(3%771t) converges uniformly, for every ¢, by Theorem 7.10. Since
f is continuous, each 27" f(32"~1¢) is continuous, and hence both z(t) and
y(t) is continuous. Therefore, ®(t) is continuous, by Theorem 4.10. On
the other hand, each (zg,y0) € I? has the form

oo oo
—n —n
ZTo = E 27 "aon—1, Yo = E 27 "ag,
n=1 n=1

where each a; is 0 or 1. If
to = Zg_i_l(Qai>,
i=1

(by Exercise 19, Chap.3, to is a point of the Cantor set) then we have

f(8t) = f(3 i 3771 (2a:)) = f(;fjl 35=71(2a;)) = f(k;1 3571 (2a;) +
23]“*1‘*1(2&1)) = f(2K+ 2631671'71(2(%)) — f(§3k7i71(2ai))

= f(.2137i(2az'+k—1))-
If ap = 0, then 0 < 3" 37%(2ai2%-1) = Y. 37 (2a544-1) < 2>.37¢ =
i=1 i=2 i=2

> .
1/3, and hence f(D>_ 37"(2a;4%-1)) = 0 = ay; if ap = 1, then 2/3 <
i=1

>0 37 2aiyk—1) <2/3+ 337 (2ai45-1) <2/3+2337' =2/34+1/3=
i=1 =2 i=2

o0 .
1, and hence f(> 37"(2ai+x-1)) = 1 = ai. Now we have proved that
i=1
f(3¥t) = aj. and therefore, f(32"'ty) = asn_1, f(3*"ty) = azn,, which
gives that z(tg) = Y 27" f(3*" " tg) = Y. 27"ag,_1 = w0, and similarly,
n=1 n=1

y(to) = yo. This means, for each (g, o) € I?, we can find a ty € (Cantor
set) E, such that ®(to) = (x(to), y(to)) = (x0,y0). Hence, ® maps F onto
I2. Since E C I, ® also maps I onto I2.

Suppose f is a real continuous function on R, f,(t) = f(nt) for n =
1,2,3,..., and {f,} is equicontinuous on [0,1]. What conclusions can you
draw about f?
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16.

17.

Solution: Since f,, is equicontinuous on [0, 1], then given any € > 0, there
exists a § > 0, such that |z —y| < § implies | fr(z) — fn(y)| <€, z,y € [0,1]
and n € N. Or, equivalently, |f(nz) — f(ny)| <€, z,y € [0,1], |z —y| < 0,
and n € N. In particular, |f(z) — f(y)] <€, z,y € [0,1], and |z — y| < 0.
This means, f is uniformly continuous on [0, 1]. Hence, in general, f is
uniformly continuous on every interval [0, n], but for each of these interval,
the underlying &’ = nd is different for different n.

Suppose {f,} is an equicontinuous sequence of functions on a compact
set K, and {f,} converges pointwise on K. Prove that {f,} converges
uniformly on K.

Proof: Since {f,} is equicontinuous, given any € > 0, there is a § > 0
such that d(z,y) < 8, z,y € K implies d(f,(z), fn(y)) < €, for every
n. Let V(x,d) be the set of points y € K such that d(y,z) < §, then
U.ex V(x,6) forms an open cover of K. Since K is compact, there are
finitely many points z1, xs, ..., Z;, € K such that

K CV(x1,0) UV (20,8)U---UV(xp,0). (%)

Since f,, converges pointwise on K, there is an N € N such that n > N
implies d(fi(xs), fj(xs)) < €, for every ¢ > N, j > N,and 1 < s < m.
Given any x € K, by (*), there is an 25, 1 < s < m, such that x € V (x5, ).
Therefore, we have d(fi(z), f;(z)) < d(fi(x), fi(ze)) + d(fi(ws), £;(zs)) +
d(fj(zs), fi(x)) < 3¢, for i > N, j > N, and thus f,, converges uniformly
on K, by Cauchy’s criterion.

Define the notions of uniform convergence and equicontinuity for map-
pings into any metric space. Show that Theorems 7.9 and 7.12 are valid
for mappings into any metric space, that Theorems 7.8 and 7.11 are valid
for mappings into any complete metric space, and that Theorems 7.10,
7.16, 7.17, 7.24, and 7.25 hold for vector-valued functions, that is, for
mappings into any R¥.

Solution: For mappings into any metric space, we have the following
definitions for the notion of uniform convergence and quicontinuity, with
minor modifications to Definition 7.7 and 7.22.

We say that a sequence of functions {f,}, n = 1,2,3, ..., converges uni-
formly on FE of to a function f if for every € > 0 there is an integer N such
that n > N implies dy (f,(z), f(x)) < € for all z € E. Here, every f, and
f is a mapping from F to a metric space Y, and dy is the metric of Y.
A family % of functions f defined on a set E in a metric space X into a
metric space Y is said to be equicontinuous on F if for every € > 0 there
exists a d > 0 such that dy (f(p), f(q)) < € whenever dx(p,q) <,z € E,
y € E, and f € %#. Here dx and dy denote the metric of X and Y,
respectively.

(a) The M,, in Theorem 7.9 should be rephrased as

M, = sup dy (fn(z), f())
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in the current context, and clearly, this is still an immediate conse-
quence of our modified definition of uniform convergence.

(b) Theorem 7.12 says that, if {f,,} is a sequence of continuous functions
on F, and if f,, — f uniformly on E, then f is continuous on F.
This statement needs to be proved differently in the new context as
follows. Since {f,} — f uniformly, given any € > 0, there is an
N € N such that n > N implies dy (fn(x), f(z)) < ¢, for any z € E.
Now, fix any = € FE, and since fy is continuous on FE, there is a
0 > 0 such that dx(t,z) < ¢, t € E implies dy (fn(t), fn(x)) < e
Hence we have dy (f(t), f(z)) < dy (f(t), fn () +dy (fn (), fn(z))+
dy (fn(x), f(x)) < 3¢, for t € E and dx(t,2) < d, which show that f
is continuous on E.

(¢) If we review the proof processes of Theorem 7.8 and 7.11, we can
find that the required condition which may not hold in an arbitrary
metric space is the equivalence of Cauchy sequences and convergent
sequences. Since now we know that the given metric space is com-
plete, this equivalence is guaranteed. Therefore, the proofs there
remain true, and only the metrics need to be replaced.

(d) By reviewing the proof processes of Theorem 7.10, 7.16, 7.17, 7.24,
and 7.25, it’s clear that all these procedures hold in the context of
R¥. We only need to replace f by f.

18. Let { f,} be a uniformly bounded sequence of functions which are Riemann-
integrable on [a, b], and put

Fo(z) = / FaB)dt (a <z <b).

Prove that there exists a subsequence {F,,, } which converges uniformly
on [a,b].

Proof: Theorem 6.20 has shown us that each F,, is continuous on [a, b],
and next we will show that {F,} is equicontinuous. Since { f,,} is uniformly
bounded, we have |f,,(z)] < M, for all n and z € [a,b]. Then given any
€ > 0, choose a § such that 0 < § < ¢/M. When |z —y| <4, z,y € [a, )],
we have

Fae) - Falw)l = | [ "t - / C payde] = | / " fad]

y
§M|/ dt| = Mz —y| < M6 <,

for all n and z,y € [a,b], |z — y| < 6. Hence F), is equicontinuous, by Def-
inition 7.22. Furthermore, we have |F,(z)| = | [ fo(t)dt| < M| [ dt| =
Mlx —a|l < M(b— a), for every n and every z € [a,b]. Thus {F,} is
uniformly bounded (of course, pointwise bounded, too). Since [a,d] is
compact and F,, € €([a,b]), for every n, by Theorem 7.25, {F,,} contains
a uniformly convergent subsequence on [a, b], which is the desired result.
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19.

20.

Let K be a compact metric space, let S be a subset of ¥ (K). Prove that S
is compact (with respect to the metric defined in Section 7.14) if and only if
S is uniformly closed, pointwise bounded, and equicontinuous. (If S is not
equicontinuous, then S contains a sequence which has no equicontinuous
subsequence, hence has no subsequence that converges uniformly on K.)

Proof: =: Suppose S is compact, then by Theorem 2.34, S is (uniformly)
closed. Since every function in %(K) is bounded, and S is a subset of
€ (K), S is clearly pointwise bounded. Given any € > 0, for each f € S, let
V(f,€) be the set of all functions g € S such that d¢(x)(f,9) = |[f —gll <
€. Since S is compact, there are finitely many f; € S, 1 < i < m, such
that

SCV(fi,e) UV (fa,e)U---UV(fim,e€).

Since each f;, 1 < i < m, is continuous, and K is compact, each f; is
uniformly continuous on K. Hence, there is a 6 > 0, such that d(z,y) < 9,
x,y € K implies |f;(x) — fi(z)| < ¢, for each 1 < i < m. Here d is the
metric of K. Now, for every f € S, there is an fs, 1 < s < m, such that
f € V(fs,€), or, in other words, ||f — fs|| < e. We then have that

[f(@) = F)l < |f (@) = fs(@)| + | fs(2) = [s()] + 1 fs(y) = f(y)]
<If = fsll + [fs(@) = s+ [1fs = FII < 3e,

where z,y € K and d(z,y) < J. This gives that S is equicontinuous.

<: Suppose S is uniformly closed, pointwise bounded, and equicontinu-
ous. Let E be any infinite subset of S, then E is pointwise bounded and
equicontinuous, too. By Theorem 7.25(b), we have that E contains a uni-
formly convergent subsequence on K. Suppose {f,} is this subsequence,
and {f,} converges to f uniformly, then f is a limit point of E. Note that
by Theorem 7.15, we know that € (K) is complete, so f € €(K). What’s
more, since f is a limit point of E, f is also a limit point of S. Therefore,
f € S since S is uniformly closed. Thus, by Exercise 2.26, we have that S
is compact.

If f is continuous on [0, 1] and if

/1 f@)z"de =0 (n=0,1,2,...),
0

prove that f(z) =0 on [0, 1].
Proof: If we can show that

/01 @) =0,

then f(z) = 0 follows immediately. Since f is continuous on [0, 1], by The-
orem 7.26 (Weierstrass’s Theorem), there exists a sequence of polynomials
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21.

P, such that hm P,(z) = f(z) uniformly on [0,1]. Then by Theorem
7.16, we have that

/ P (a)dz = / F@)(lim Pa(a))dz = lim [ f(z)Py(z)da.
0 0

n—oo n—oo 0
Since

/1 f(@)a"dz =0 (n=0,1,2,..),
0

/ f(z)Py(z)dz =0,
0

no matter which P, (z) is. Therefore,

/01 fA(x)dz =0

and hence f(z) =0 on [0, 1].

we thus have that

Let K be the unit circle in the complex plane (i.e., the set of all z with
|z| = 1), and let &7 be the algebra of all functions of the form

N

f(e?) = Z cne™ (6 real).

n=0

Then & separates points on K and 7 vanishes at no point of K, but
nevertheless there are continuous functions on K which are not in the
uniform closure of .

Proof: Since |z| = 1, we can write z = ¢ for some §. The functions in
&/ then can be rewritten as

N
= g cpz”
n=0

Clearly, o7 separates points on K and & vanishes at no point of K. But
there are continuous functions on K which are not in the uniform closure
of «/. To see this, note that, for every f € &7, we have

27
f( led&*/ Cn ezn@ 29d0
i 5>

n=0

2w N ) N 2 )
- / (Z Cnel(nJrl)e)de = Z / Cnez(n+1)0d9 =0
0 n=0 n=0"0

And what’s more, for every ¢ in the closure of &7, we have g = lim f,,
n—oo
and f,, — ¢ uniformly, f,, € &/. Therefore,

27 27
/ ge®dh = lim frnet?do = 0.
0
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22.

23.

Pick h(e?) = e~. Clearly, h is continuous on K. However,

2m 2m

21
h(e)e’dh = / e el dp = df =21 #0.
0

0 0

Thus, A is not in the closure of 7.

Assume f € Z(a) on [a,b], and prove that there are polynomials P, such
that

n—oo

b
lim / |f — Po|*da = 0.

Proof: As in Exercise 6.11, for v € Z(«), define

b
ullz = { / fu2da}!/?.

By Exercise 6.12, we known that, for f € Z(a) and € > 0, there exists a
continuous function g on [a, b] such that ||f — g||2 < v/€/2. What’s more,
by Weierstrass’s Theorem, since g is continuous on [a, b], there exists a
sequence of polynomials P, such that nl;ngo P, = ¢ uniformly on [a,b].

This means, there is an integer N such that n > N implies |g — P,| <

Ve/2y/a(b) — al(a), ie., [ |g— Pal?da < e/4 and thus ||g— P, ||z < \//2.

By Exercise 6.11, we have that
f = Pull2 < [If = gll2 +[lg = Pull2 < Ve, forn>N.

Thus,
b
/ |f — Pulda = (||f 7P7l||2)2 <e¢, forn>N.

Since € is arbitrary, we have

b
lim / |f — Pu|?da = 0.

n—oo

Put Py =0, and define, for n =0,1,2, ...,

2% — P2(x)

Pria(z) = Po() + 9

Prove that

nh_}rr;o P, (z) = |z,
uniformly on [—1, 1]. (This makes it possible to prove the Stone-Weierstrass
theorem without first proving Theorem 7.26.)
Proof: First, we will prove that 0 < P,(z) < Ppy1(x) < |2] if |z] < 1 by
induction.

()n = 0, then Pi(x) = Py(x) + % = % > 0 = Py, and clearly
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24.

Py (z) < |z| since |z| < 1.
(ii) Suppose n = k, we have 0 < Py(z) < Pry1(x) < |zl, if |z| < 1. When
n =k + 1, we have that

z? — P13+1($)

|z| = Pry2(z) = |2] = Prya(z) — 5

z| + Pyt ()
= (] - P ()1 - L D0 @),
Since Pry1(z) < |2/, 2] = Preya(x) = (|2] = Prya(2))(1 — []) = 0, which
gives Prio(x) < |z|. What’s more, we have Pyia(z) — Pri1(x) = (Jz| —
P (2)) = (2] = Prera(e)) = (o] = Pepa(@))(1 = (1 = FEEEE) =
(|| — PkH(x))(M) > 0 and thus Py11(x) < Pyya(z). Therefore,
0 < Pyy1(z) < Pryo(z) < |z] and we are done.
Next, since |z| — Py (x) = [|z] — Ph—1(z)][1 — w] for n > 1, and
0 < P,(z) < |z|, we have that |z| — P,(x) < [|z| — Poo1(2)][1 — I%‘]
Apply this inequality n times, we get |z| — P, (x) < (Jz| — Po)(1 — %)" =
(1 — 21)". Assume y = |a], and f(y) = y(1 — 4)". Then f'(y) = (1 —
%)"—%(1—%)"‘1. Let f'(y) = 0, we get yo = %H Since f"(y) = —5(1—
Hn-2(2— ("—;'1)3/)7 we have f"(yo) = —5(1 — %_H)"_Q < 0. Therefore, yq
is the point at which we get the maximum value of f(y). Hence we have
f) < flyo) = 751 — 37)" < 337, which gives [z] — Py(z) < 5.
Then, given any € > 0, there is an integer N such that n > N implies
2] — Pu(z) < 227 < e. Combined with the fact 0 < Py (x) < Pyyi(z) <
|z|, we have that li_>m P,(z) = |z| (by Theorem 3.14), and clearly, the

convergence is uniform, if x € [-1,1].

Let X be a metric space, with metric d. Fix a point a € X. Assign to
each p € X the function f, defined by

fp(z) = d(z,p) —d(z,a) (z € X).

Prove that |f,(z)| < d(a,p) for all z € X, and that therefore f, € € (X).
Prove that

||fp - fq|| =d(p,q)

for all p,q € X.
If ®(p) = f, it follows that ® is an isometry (a distance-preserving map-
ping) of X onto ®(X) C ¥(X).

Let Y be the closure of ®(X) in (X). Show that Y is complete.
Conclusion: X is isometric to a dense subset of a complete metric space
Y.

Proof:

(i) Since d(z,p) < d(z,a) + d(p,a), we have f,(x) = d(z,p) — d(z,a)
d(p,a) = d(a,p); and since d(z,a) < d(z,p) + d(p,a), we have f,(x)
d(z,p) — d(z,a) > —d(p,a) = —d(a,p). Therefore, —d(a,p) < fp(z)

VAN I VAN
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25.

d(a,p) and hence |f,(z)| < d(a,p), for all x € X. Since it’s clear that
fo(x) is continuous, therefore f, € € (X).
) |

i) |[fp — foll = Slelg\fp(x) = fo(@)| = Slelg\d(ﬂﬁ,p) — d(z,q)|. Since
|d((E,p) _d((E,q)‘ < d(p, q)u for all x € Xa we have sup |d($7p) _d(m7Q)| <
reX

d(p,q). On the other hand, p € X and |d(p,p) — d(p, q)| = d(p, q), we thus
have Sug ‘d(SC,p) - d(x7Q)| = d(p7 q)a namely ||fp - fq” = d(pa q)7 for all
re

p,q € X.

(iii) Let {f,,} be any Cauchy sequence in Y, to show that Y is complete, we
must show that {f,} converges to some f € Y. Clearly, {f,} is a Cauchy
sequence in €(X), and since €(X) is complete, {f,} must converge to
some f € €(X). Therefore, f is a limit point of € (X), and actually, a
limit point of Y. Since Y is the closure of ®(X) in ¥(X), Y is closed and
thus f € Y. Hence, Y is complete. (In fact, every closed subset E of a
complete metric space X is complete. See the remark under Definition
3.12.)

Suppose ¢ is a continuous bounded real function in the strip defined by
0<z<1, —00 <y < oo. Prove that the initial-value problem

Y = o(x,y), y(0)=c

has a solution. (Note that the hypotheses of this existence theorem are
less stringent than those of the corresponding uniqueness theorem; see
Exercise 27, Chap.5.)

Proof: Fix n. For ¢ = 0,...,n, put x; = i/n. Let f, be a continuous
function on [0, 1] such that f,(0) = ¢, fl(t) = ¢(zi, fn(z:)) if 2, <t <
Zit1, and put A, (t) = f1(t) — (¢, fn(t)), except at the points x;, where
A, (t) =0. Then

fulz) = et / “[6(t Fu(8)) + A (0))dt.

Choose M < oo so that || < M.

@)If2] = 16, falws))] < M, and [Au| < [f2] + 6] < 2M. Clealy,
A, € Z since ¢ is continuous on [0,1], and |fn| < |e + | [; [0, fu(t)) +
An(O)dt] = le|+| [ fr(@)de] < lel+] [y fr(0)de] < lel+M = My on [0,1],
for all n.

(b)We have |f,(z) — fn(y)| = |f; flt)dt] < M|z — yl, for all n and all
x,y € [0,1]. Then given any € > 0, we can pick § = ¢/M > 0, and when
|z —y| < & we get |f(z) — f(y)] < M|z —y| < M = ¢, which is to say
that {f,} is equicontinuous on [0, 1].

(¢)By (a), (b) and Theorem 7.25(b), there is some subsequence {f,, } of
{fn} which converges to some f, uniformly on [0, 1].

(d)Since ¢ is uniformly continuous on the rectangle 0 < z < 1, |y| < M,
given any € > 0, we can pick a 6 > 0 such that when |f,, (t) — f(t)] < 9,
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26.

lp(t, fn,(£)) — @(t, f(t))| <€, for any ¢ € [0,1]. Since f,, — f uniformly,
there is an N > 0 such that ny > N implies |f,, (t) — f(¢)| < §, for all
t € [0,1]. Therefore, (¢, fn, (t)) = ¢(t, f(t)) uniformly on [0, 1].

(e)Since ¢ is uniformly continuous on the rectangle 0 < x < 1, |y| < M,
for any given € > 0, there is a r > 0 such that \/(z1 — 72)2 + (y1 — ¥2)2 <
r implies |¢(x1,y1) — @(x2,y2)| < €. Since f, is uniformly continuous
on [0,1], there is a § > 0 such that |z; — ¢t| < § implies |f,(z;) —
fn®)] < r/v/2. Let & = min(8,7/+/2), then when |z; — t| < §’, we have
V@i — )24 (fu(zi) — fu(t)2 < V2 = r and therefore, |p(zi, fn(2:)) —
o(t, fn(t))| < € namely, |A,(t)] < e. Since x; = i/n and t € (x5, %i41),
there is an integer N such that n > N implies |z; — | < 1/n < §’, which
means when n > N, |A,(t)] < ¢, for all ¢ € [0,1]. Hence, A,(t) — 0
uniformly on [0, 1].

(f)Hence we have

T

flz)= lim f, (z)=c+ lim [D(t, fr,, (1) + Ay, (t)]dE

N —» 00 TN —>00 0

:c+/0 o(t, f(t))dt.

This f is a solution solution of the given problem, since f'(z) = ¢(z, f(z))
and f(0) =c.

Prove an analogous existence theorem for the initial-value problem

y' =®(z,y), y(0)=c,

where now ¢ € R*, and @ is a continuous bounded mapping of the part
of RE*+1 defined by 0 < x < 1,y € R¥. (Compare Exercise 28, Chap.5.)
Proof: Due to the similarity of the proof process as Exercise 7.25, here 1
just sketch the proof outlines.

Fix n. For i = 0,...,n, put z; = i/n. Let f, be a continuous function
on [0, 1] such that £,(0) = ¢, /. (¢t) = ®(z;, £ (z;)) if ©; <t < 2441, and
put A, (t) =f],(t) — ®(t,£,(t)), except at the points x;, where A,,(t) = 0.
Then

f,(z) =c+ /Ow[@(t, £.(t) + A,(t)]de.

Choose M < oo so that |®]| < M.

@)f,| < M, |A,] <2M, A, € #Z, and |f,| < |c| + M = My, say, on
[0, 1], for all n.

(b){f,.} is equicontinuous on [0, 1], since |f},| < M.

(c)Some {f,, } converges to some f, uniformly on [0, 1], by using a vector-
valued version of Theorem 7.25.

(d)Since ® is uniformly continuous on the rectangle 0 < z < 1, |y| < M,
®(t,f,, (t)) = ®(¢,£(¢)) uniformly on [0, 1].

(e)A,(t) — 0 uniformly on [0, 1], since A, (t) = ®(z;, £, (x;)) — P(L, £,(¢))
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in (z;, zi41).
(f)Hence f(z) = c+ [ ®(t,£(t))dt. This f is a solution of the given prob-
lem.

Some special functions

. Define

_ eV (@ #0),
f(x>_{0 (z =0).

Prove that f has derivatives of all orders at x = 0, and that f(™(0) =0

forn=1,2,3,....

Proof: Let y = 1/, then f(x) = g(y) = e’y2, when x # 0. Clearly,

g™ (y) = e‘yzpn(y), where P,(y) is some n-order polynomial of y, for

n=1,2,3,.... Now we prove f(")(0) = 0 by induction.

(i)When n = 1, f1(0) = lim W = lim ye ¥’ = 0, by Theorem
x—0 Yy—r00

8.6(f).

(ii)Suppose ) (0) = 0. When n = k+1, fF+D(z) = i;rr%) W =

lim yg® (y) = lim ye ¥ Py(y) = 0, according to Theorem 8.6(f).
Yy—00 Yy—00
Therefore, f(™(0) =0, for n = 1,2,3, ...

. Let a;; be the number in the ith row and jth column of the array

-1 0 0 0
1/2 -1 0 0
1/4 1/2 -1 0
1/8 1/4 1/2 -1

so that .
0 (i < j),
a; =4 -1 (i=9),
217 (i > ).
Prove that
D) ITEEED 3 SR
i g i
Proof:

DD ap =Y (-1+Y ay)=> (-1+ i aij)
i j=1

% j<i i

= Z(—l + Z_: 27 = (-1+27" Z_:w’)

)
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= (1427227 - 1)) = Z(—l +1-2""") = _giw -
DAL ISR WNES SEES oM

J i>7 i=j+1

72 1+ZQH:Z 1+2ﬂ22

i=j+1 i=j+1

:Z(—1+2J2_3)=Z —141) Zo—o

J

3. Prove that

z;zj:aij :zj:z;aij

if a;; > 0 for all ¢ and j(the case +0o = 400 may occur).

Proof: Suppose, first, s =), Zj a;; converges, that is, s < 4-00. Since
aij > 0, 32 |ai;| = >, a;; = by, and )7, b; converges. By Theorem 8.3,
Z Z Aj5 = E Z Ajj .

Next, suppose s = >3, 3"  aij = +00. Let smn = D10, D07 aij, given
any M > 0, since s = +o0 and a;; > 0, there exists some m,n; such that
Sminy, > M. Clearly ty,m, = 300 30 aij = Smyn, > M, therefore,

Q5 = +0Q.

=3 Y,
Thus, tzz Qjj = Z > i

4. Prove the followmg limit relation:

(a) hn% =L =1logb (b>0).
Proof By Theorem 5.13, we have
bt —1 ) e” logb _ 1

lim =lim — =lime
x—0 x z—0 x x—0

zlogb o0 b = logb.

(b) lim s+l _
z—0 z '

Proof: By Theorem 5.13, we have

1 1 1
i 208D —1.
z—0 xT =01+ 1

: 1/x _
(c) ili%(l + ) e.

Proof: Let y = (1 + 2)1/7 then logy = log(1+x)

—, and

log(1
hm logy = lim M

z—0 €T

=1
Since log(z) is continuous, this implies log(lim,_,oy) = 1. On the

other hand, loge = 1, and due to the monotonicity of log(x), we have
lim, 0y = e, namely, lim,_o(1 + m)l/f —=e.
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(d) lim (14 £)" = e,
n— oo
Proof: If x = 0, then lim, ,oo(1 + £)" = lim, 3001 = 1 = el
Suppose  # 0, let y = n/x, then lim, (1 + )" = limy o [(1 +
i)y]x Due to the continuity of z®, this leads to lim, . [(1+ i)y]x =
[limy oo (1 + %)y]x = €%, by Theorem 3.31.

5. Find the following limits

e—(14x)/®

(a) lim =

z—0
Solution: Let y = (1 + )'/®, then logy = 1/zlog(1 + z), namely,
xlogy = log(14x). Differentiate both sides gives: logy+xz(1/y)y’ =
1/(1+x),ie,y =(1/1+z)—logy)y/z = (1/(1+z) —1/zlog(1 +

x lo x T lo, x
) (k) V% o = (s~ LR (1 /o = (L 1 JoaCl) g

x)/® and therefore, lim, 0y’ = lim, 0(1/z —1/(z +1) — 1/x)e =
elim,_o(—1/(z +1)) = —e.
By Theorem 5.13, lim, o ¥ = lim, o —y' =e.

(b) lim pio[nt/m —1].

n—roo

Solution: Let y = 21/?, then logy = Llogz.

Therefore, lim,_, 1 o, logy = 0, by (45) on page 181, and hence

lim; 100y = 1, due to the continuity and monotonicity of log(z).
We then have

zt/e 1
lim
n—oo logn

[nY" —1] = lim

[zY/* —1] = lim
z—+oo log x

z—+oo logz/x
T —
z—+o0 (1 — log x)/a?

by Theorem 5.13. With the similar process as in (a), we have y' =

w. Therefore,
. y' a1 —loga)/a®
im —————— = lim — 75— = lim /'
a—+oo (1 —logzx)/z?2  a—+o (1 —logz)/x z—+00

: tanx—x
(C) i% z(l—cosz) "

Solution: Since e® = 37 | L7 and cosz = (e’ + e~), we have

n=0 n!
cosx =1—22/2! +2*/4! — ... Then
I tanx — i tanx — x . 1/cos?x —1
im ————— = lim =lim ———
10 (1 —cosx) a—=0x3/20 —a5/41 ... z—0  322/2
2sinz 2

mo——— = _.
z—0 3x° cos® x 3

103



(d)

: r—sinx
}% tanz—zx°

Solution: Similarly as in (c), we have sinz =  — 23 /3! +2° /5! —- - -
Then

. x—sinz .33l =5l 322 /3!
lim —— = lim = lim —
z—=0tanxz —x =0 tanx — x =0 sin” x/ cos? x
. z2cos’x 1
z—0 2sin®x 2

6. Suppose f(z)f(y) = f(x + y) for all real x and y.

(a)

Assuming that f is differentiable and not zero, prove that
fz) = e

where c is a constant.
Proof: Since f is differentiable, we have

F(0) = tim 2@ =TSO _

z—0 x z—0 T

since f(0) = f(0+0) = f(0)f(0) and f(0) # O(so f(0) = 1). Fix
some integer m, and let p, = m/n, then p, — 0 when n — oo,
thus we have lim,, o, L0/M=1 — £/(0). Since [f(m/n)]" = f(n -

flz) -1

)

m/n
(m/n)) = f(m), we have f(m/n) = f(m)*/™. Therefore, f'(0) =
(1/m) limy, 00 %::_1 = log f(m)/m, by Exercise 4(a). Note that

the above process is immaterial with m, or in other words, for any
integer m, we must have log f(m)/m = ¢, where ¢ = f/(0). Hence,
we have f(m) = e“™. Then for any rational number p = m/n,
[f(P)]" = f(np) = f(m) = e™ and thus f(p) = e“™/™ = e°. Since
f is differentiable, f is continuous, and since Q is dense in R and
f(p) = e for every p € Q, we have f(x) = e°® for every z € R,
according to Exercise 4.4.

Prove the same thing, assuming only that f is continuous.

Proof: f(m) = f(m-1) = [f(1)]™, and hence log f(1) = log f(m)/m.
Let ¢ = log f(1), then log f(m)/m = ¢ for every m. The following
proof is the same as in (a). Note that only continuity of f is enough,
and differentiable is not required.

7. If 0 < z < 7/2, prove that

2 sinx

™ €T

<1

Proof: First, we will prove that sinxz < z < tanz, for 0 < x < 7/2. Let
f(z) = tanz — z, then f'(z) = 1/cos’z — 1 = sin?z/ cos®z > 0, which
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gives f(z) > f(0) = 0, namely, tanz > x. Next, let g(z) = = — sinz,
then ¢’(z) = 1 — cosz > 0, hence g(z) > ¢g(0) = 0, namely, z > sinz.
Therefore, sinz < x < tanz, for 0 < z < 7/2.

Since % -1= % < 0, we have % < 1; and let h(z) = Si‘f,
then A/(z) = LIS () since x < tanz gives zcosz — sinz < 0.
Therefore, h(z) > h(n/2) = 2/m, namely. 2/7 < sinz/z < 1.

8. For n=0,1,2,.., and z real, prove that
|sinnz| < n|sinz|.

Note that this inequality may be false for other values of n. For instance,
[sin p1] > £ [ sin]
sin —m| > —|sin7|.
2 2

Proof: We prove this by induction.

(i)When n = 0, sin 0z = 0 - sin z and the inequality holds.

(ii)Suppose the inequality holds when n = k, namely, |sin kz| < k|sin x|.
Let n = k+1, then | sin(k+1)z| = | sin kx cos z+cos kx sin x| < |sin kz cos x|+
|cos kxsinz| < |sinkz|+ |sinz| < k|sinz|+ |sinz| = (k+ 1)|sinz|. This
proves the inequality.

9. (a) Put sy =141 +---+ (1/N). Prove that

]\}Enoo(sN —log N)

exists. (The limit, often denoted by 7, is called Euler’s constant. Its
numerical value is 0.5772.... It is not known whether -y is rational or
not.)

Proof: Let t, = s, — logn, it’s sufficient to show that {t,} is a
Cauchy sequence.

Suppose n > m, we have |t, — tm| = |(sn, — logn) — (sm — logm)| =
(50— $m) + log(m /)| = | X5_, 1/ + log(m/n)].

It’s easy to see that

/ Lat < Z 7</
m+1t m

and therefore
log(——) < f L log(™
& m+1 k 8
k=m++1
which gives

n

J+log(™) < Y 3 +loa(™) < log( ) log(™),

k=m+1

1
o8( 1 +1

105



namely,

m
log(———) <ty — tm < 0.
og(m+1)

Hence, |t, — tm| < log(l + 1/m). Given any € > 0, there exists
an integer N > 0 such that m > N implies log(1 + 1/m) < € (or,
m > 1/(e* — 1)), namely, |t, — t,n] < €, when n > m > N. Thus,
{tn} is a Cauchy sequence, as we desire.

(b) Roughly how large must m be so that N = 10" satisfies sy > 1007?
Solution: Since {t,} converges to v, there exists some N > 0, such
that » > N implies |t,, — | < 0.1, namely, v — 0.1 < ¢, < v+ 0.1,
or, logn +v—0.1 < s, <logn+ v+ 0.1, which gives, logn < s, <
log,, +1. Let N = 10™, this gives mlog10 < sy < mlog10+ 1. For
sy > 100, we must have mlog 10 > 100, which gives m > 44.

10. Prove that " 1/p diverges; the sum extends over all primes. (This shows

11.

that the primes form a fairly substantial subset of the positive integers.)
Proof: Given N, let pq,...,px be those primes that divide at least one
integer < N. Then

The last inequality holds because
(1 o I)71 < 621

if 0 <z < 5. To see this, let f(z) = **(1—x), then f'(z) = **(1—2z) >
0, for 0 < z < 1. Hence, f(z) > f(0) = 1, which gives e?* > (1 —z)~ 1.
Since Y~ 1 diverges, it’s clear that Z% from above.

Suppose f € Z on [0, A] for all A < oo, and f(z) — 1 as * — +o00. Prove
that

limt/oo e f(x)dr =1 (t>0).

t—0 0
Proof: Fix some t > 0, e~ is strictly decreasing on [0,+00). When
z =0, e =1 and when z — 400, e~ — 0. Given any ¢ > 0, since
f(z) = 1 as © — +o0, we can pick some A’ > 0 such that z > A’ implies
|f(z) — 1] < €, namely, 1 — e < f(z) < 1+ e. We hence have

o0

(1=c)t / s < / et faydr < (14 0 / e~t7dx.

’ ’ ’

t/ e dy = —/ e d(—tx) = —e "
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Let ¢ — 0, we have e *4" — 1 and thus

_ : —tx
1 e<tlgr(1)t/ e T f(x)dr <1+e,

which gives

|limt/ e " f(x)dr — 1| < e
A/

t—0
Since € > 0 is arbitrary, this leads to

1imt/ e " f(x)dr = 1.

t—0 ,

On the other hand, since f € Z on [0, 4] for all A < oo, f € Z on [0, A'],

thus |f| € Z on [0, A’], by Theorem 6.13(b). Let M = fOA |f(x)|dx, we
then have

A’ A’ A’
[ ett@asl < [ et lf@ldn < [ 1f@)lde =
0 0 0

Therefore,

A/
0< |t/ e " f(z)dx| < tM.
0

Let t — 0, we have
A/
: —tx _
%gr(l) \t/o e f(z)dx| =0,

and thus "
lim t/ e ' f(x)dx = 0.
0

t—0

We hence have

t—0

o A’
lim t/ e " f(x)dr = lim t/ e " f(x)dw
0 =0 Jq

+limt/ e f(x)dr=0+1=1.

t—0 ’

. Suppose 0 < 0 <7, f(z) =1if |z] <94, f(z) =0if § < |z| < 7, and
flxz+2m) = f(x) for all .

(a) Compute the Fourier coefficients of f.

Solution: s
1 g 1 1)
= — d = — d = —.
0 27 J_, f(@)dz 27 /_5 “ T
and
1 [" : o innd
Cn = % . f(x)e_ln$d$ = % s e "dx = Slz: 9 (n # 0)
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(b)

Conclude that

Zsm(né) _ ) (0<8<m).
n=1

n 2
Proof: Let y = :2 ¢n. Since c_, = c,, we have Z;ifoo Cn =
:2 Cep = :g ¢n = y, and therefore, 2y + cg = ::LOO Cn =
£(0) (since f(z) = ::100 c,e™®). This gives 2y + % =1, and thus
Y= 71_3/”. So

;sinflné) :7;7"%:”9: 7r;6'

Deduce from Parseval’s theorem that

i sin?(nd) w—§
n2¢ 2

n=1

-1

Proof: Lety = :z len|?. Since c_p, = cp, wehave >~ e, |* =

E:fl le_n|? = Z:ﬁ lc,|? = y, and therefore,

+oo T
1
2+ feol? = 3 leaf? =5 [ If)P,

n=—oo -

by Parseval’s theorem, which gives

Hence,

o . 2 0o 2 2
sin“(nd) T y m  m—46
2 Ty = X glel ==
n=1
Let 6 — 0 and prove that

> sinz ., ™
de = —-.
/O(m)x 2

Proof: Let A > 0 be any positive real number, and let flz) =
(#22)2 First we prove that f € # on every [0, A]. Define

o) { @) (>0

1 (x =0)

Since

lim g(z) = lim f(z) =1 = g(0),

z—0 z—0

108



g(x) is continuous on every [0, A] and hence g € # on [0, A]. Since

/f dm—hm/ flx da:—hm/ dx—/ g(z)dz,

f € % on every [0, A].

Let P* = {z9 =0,21 =0, ..., xm = A}(suppose (m — 1)§ < A < md)
be a partition on [0, A] (see Exercise 6.7(a)). Suppose P = {yo =
0,91, ...,yr = A} is any other partition on [0, A]. Choose § > 0 small
enough so that x,, , =n;—16 < y; < x,, =n6, for 1 < i < k. We
then have

| Y [f (i) Ag, — Mii(yi = @, ) = Mai(w, — 1))

< D N1 (i6) [ Az, + Mui(ys = @n, ) + Mai(wn, —,)]

nq

<Y IMAZy A M(y; =2, )+M(2n,—yi)] = 2M Y Azy, = 2MES,

where M = sup |f(x)|, My, = sup |f(z)]
£E[O,A} xe[yifl,y,-,]

and My; = sup |f(z)|. Therefore, we have
TE[Yi,Yit1]

Zf(mé)Aa:m < Z[Mli(yi — Tn,_,) + Mai(zn, — yi)] + 2MES.
This gives

> fan Axanfn§5<U(Pf)+2Mk5

n=1 n=1
and thus .
lim Y~ f(2n) Az, <U(P, f).

6—0
n=1

Since P is arbitrary, we have

A
sin?
hme n65</ f(x)dx,i.e. hmz n25 </ f(z)dx.
On the other hand, we have

| Z nz A'rn mlz( Yi (Eni,l) - m2i(xni - yz)H

< D 1 (id)| A, +mailys — @n, )+ mai(@n, — 4i)]

uzs
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< Z[MAxni—i—M(yi—xnifl)—i—M(xni—yi)] = 2MZ Ax,, = 2MEKS,

ng g

where M = sup |f(x)], mi; = inf |f(x)]
z€[0,A4] z€[yi—1,¥i]

and mg; = inf  |f(z)|. Therefore, we have
x€[yi,Yit1)

D F(id) A, =Y [mai(yi — n,_,) + mai(wn, — yi)] — 2M k8.
This gives

i fan) Az, = Zf (né)d > L(P, f) — 2M k6,

n=1 n=1
and thus .
lim > f(2n)Azy, > L(P, f).

5—0
n=

Since P is arbitrary, we have

A
x)dz,i.e. hm Z sin” / f(z)dz.
0

/ 00

Since f € Z on [0, A],

. % sin?(nd) A
éﬂ%; n2s _/0 f(@)de.

m

Z f(nd)é >

\\

Hence,

Thus,

Put § =7/2 in (c). What do you get?

Solution: We get
n? 4
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13. Put f(z) = ¢ if 0 < = < 27, and apply Parseval’s theorem to conclude

14.

that
2

<1
Xm

Proof: By computing the Fourier coefficients of f, we get

1 (7 1 ("
Co =5 7ﬂf(x)dxf%/iﬂxdx70,

and
1 1 ™ . (_1)n+1
. L —1n;vd _ = —ina g 0).
n =g [ e n= L [ = B )
Thus |e,[? = 5. Lety = S5 [eaf?, then 01 Jenf? = S5 e, ? =

+ |ea? = y. Hence

+oo

1 [ 1 ("
2tlal = 3 Jenf =5 [ 1@Pde =5 [ st
n=-—oo
which gives
w2 2 1 2
2y:§7 i.e., yzg, i.€., ;EZE
If f(x) = (7 — |2])? on [—7, 7], prove that
Z cosnx
and deduce that
STRER S
n2 6’ nt 90"
n=1 n=1

Proof: Compute the Fourier coefficients of f, we get

1 1 [7 9 2
=g [ @ = - [ mlolas = T

1 " —in 1 " 2 —inx 2
Cn = — _Wf(a:)e dx:§/ (m—|x])%e da::nQ (n #0).

—T

= , 2 2 .
Z Cpet = 74_2 an+ Z ﬁeznz

n=—oo n=-—oo
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2 = 2 = 2 ad 2
= 4 zna: + 77,nac _ 2 e znz 7’”1:6
3 7; n? Z n2 3 2:: n? )
oo 2 oo

:% Z 2cosna:—§ Z COSNT.

Put x = 0, we get
w2 =4
_ 22
=3 —|—;n2—ﬂ'

which gives

S _w
= n? 6
Since ¢, = %, we have |¢,[2 = 4, for n # 0. Let y = 3, |c,/?, then
since ¢, = c_,, we have
+oo 1 ™ 1 ™
el = 3 lel =g [ 1@Par =g [ o e
which gives
2y + 14 = 14,2'.6.,2y = ﬁ,i.e.,y = E.
9 5 45 45

Hence,
27:* =5

15. With D,, as defined in (77), put

Prove that
1 1—cos(N + 1)z

:N—i—l' 1—cosx

and that

(a> KN > 07

b) 5= [T Kn(z)de =1,

(c) KN(z)§ﬁ~71fO<5<|x|<7r

1—cosd
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If sy = sy (f; ) is the Nth partial sum of the Fourier series of f, consider
the arithmetic means
Sot+ 81+ -+ SN
N+1

ON —

Prove that

T

flz —t)Kn(t)dt,

—T

on(f;z) = by

and hence prove the Fejer’s theorem:
If f is continuous, with period 2w, then on(f;x) — f(x) uniformly on
[—7, 7.

Proof:
(i)Since
W sin(n + %)
Dn(l') = elkz - T ’
k;n sin(§)
we have
N N
sin(n + 2sin(%) sin(n + 1)z
Dy (z) =
_ bt EN:[COSME —cos(n+1)z] = 1—cos(N + 1)z
_1—c0sa:n_0 1—cosx
Hence,
N
1 1 1 —cos(N + 1)z
K = —— D,n = N .
~(@) N—|—1n2=% (@) N+1 1—cosz

(ii)Next, we prove:

(a) The fact Ky > 0 is clear.

(b) Since

1 s

_ 1 "< ikx _ - 1 " ikx _
> _WDn(m)dx—%/_ﬂkZe dx—kz %/_ﬂe dr =1,
=—n =—n

we have
N
17 1 1 1 /7
o | Kn@)de = - Dy (2))dz = —
o | Kn(@)de N+1nZ * J\f+1ﬁz_:02w/7r
N
1 1
N+1n§ N VD



16.

(c) Let g(x) = 1 — cosx, then ¢'(z) = sinz. If 0 < § < z < m, then
sinz > 0 and thus g(z) > g(6) =1 —cosd; and if —7 < z < —§, then
sinz < 0 and thus g(x) > g(—d) = 1 — cosd. That is, 1 — cosz >
1 —cosd, for 0 < 6 < |z| < 7. Therefore,

1 2 1 )
K < . < . 5 < <
wlz) < N+1 1l—cosz ~ N+1 1—cos5’0< <lal<m
(iii)Since
1 ™
Sn(fwr) - % . f(l' - t)Dn(t)dtv
we have
1 N 1 N 1 ™
(i) = FoT i) = FoT g /_ﬂf@ — ) Dy ()dt
1 4 1 N 1 ™
- ﬁ/_ﬂ f(‘”_t)(ﬁ nZ:ODn(t))dt: ol flz —t)Kn(t)dt.

(iv)Since f is continuous on [—m, 7], f is uniformly continuous on [—,7].
Given any € > 0, there exists some 0 < § < 7 such that |x —y| < ¢ implies
(&) — F)] < /2, for any 2,y € [, 7]

Due to (ii)(b), and Kn(t) = Kn(—t), put M = sup |f(z)| for x € [—7, 7],
we have

(i)~ F@)l = o= [ (e —1) = S@) Ky (O

1 -4 1 5 1 T
<2M-— K — —t)— K 2M-— K
<arg [ rvag [ ie--r@iRaan g [ R

2M [T e, 1 [T 2M 1 2 €

= Kn@dt+=(— [ Kn@)dt) < Z—(7—0)—— — 4=

S /5 () +2(27r/,ﬂ e G s I vy
AM (7 —§)

€
= = f fficiently 1 N.
(N + D)(1 = cos9) + 5 < €, or sufficiently large

Therefore, on (f;x) — f(z) uniformly on [—, 7).

Prove a pointwise version of Fejer’s theorem:
If f € Z and f(x+), f(z—) exist for some x, then

Jim o (fiz) = 5 f(o+) + fla-)

Proof: Since f(z+), f(x—) exist for some x, Given any € > 0, there exist
some d; > 0 and dz > 0 such that © < ¢ < z + d; implies |f(¢) — f(z+)| <
€/2 and x — §3 < ¢t < x implies |f(t) — f(z—)| < €/2. Let 6 = min(d1, d2),
then x < ¢t < z+ 6 implies |f(t) — f(z+)| < ¢/2 and x — § < ¢ < z implies

114



|f(t) — f(z—)| < €/2. Since f € #, f is bounded, and thus |f| < M, for
some M > 0. As in Exercise 15(iv), we have

a HED I L[ oy SO I g

|G'N(f,$

2w 2
o [ e I
o | (== LT iy ay
<t :If(:r o - TEETED e ar
+|1/6(f(w—t) e P T, ke ()
s [Tt - - IO e
<o g [ )dt+|217r/_i(f(x—t) eV P T, ke ya

1 [7 4M (7 —9)
= <
+2M27T /5 Kn(t)dt < (N + 1)m(1 — cos )

8 —
e [ e =0 - D ey,

2
and since
5
5z [ (=0 - T yar -
0 x r—
50 [ (o=t - Dy
8 X X
+% O(f(:c—t)—f< +)J2Ff( ))K (t)dt|
0 ~ f(p—
o [ te == o)+ LI D g
J z=) — f(z
o [ e =0 - sy + LTy
0
1[0 L0 flat) - fla—)
~lgr [ =0 feEnoi+ 5 [ LI e



1) 0
o [0 - faprn@art o [ IEDIE D gy
T Jo T Jo

0 x+) — fla— 0
~l5r [ (e =0~ faryrx (i + LTI L iy

5 R 5
o [ (a0~ feKn@ar+ TEDTED L [ wio

1 /Y 1[0
“lgr [ == farnKn®it+ o [ (=0 =fa-)Kxal
0 5
< % 17 =)= eIt + Qi (@ —t) - f@)| Kn(t)d

€ €
<$ 7/ Ky(t)dt = =
=2 or ) VYT T

4M(m —9)
(N + 1)7(1 — cos?)

for sufficiently large N, which is the same to say:

we hence have

(i) FED )

€<€7

| <

lim o (f:2) = 57 (a+) + Fa-)]

n—oo

17. Assume f is bounded and monotonic on [—7, ), with Fourier coefficients
Cn, as given by (62).

(a) Use Exercise 17 of Chap. 6 to prove that {nc,} is a bounded se-

quence.
Proof: We have
1 s
— 71n13d - = 72’!1[6
new =ng- [ fae . / I
_ L(f( ) —inz|mT / —znmdf)
DT S A e A ’

Since f is bounded, |f| < M. Then

1 , )
neal = e e [ ey <

—T

1 , ) m )
o (F@e ™ 4 10|+ [ el
1 2M

1
< M+ f(m) — f(-m) < 5= AM = ==

Therefore, {nc,} is bounded.
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(b) Combine (a) with Exercise 16 and with Exercise 14(e) of Chap. 3,
to conclude that

Jim sy (f;@) = %[f(xﬂ + fz—)]

for every z.

Proof: Let ao(f;x) = co,an(f;7) = ¢, + c_p,e” ™% n > 1, and
hence an(f;x) = sn(f; ) — sn—1(f; ), for n > 1. Since |na, (f;x)| =
[R(en€™™ 4 ¢_ne )] < lene™ |+ [c_ne= ) < [ncq] + | —nel,
nay (f; x) is bounded. Therefore, according to Exercise 14(e) of Chap.
3, since

[f(z+) + f(z—)],

N =

li z) =
Jim on(f;x)

we have

lim sy(f;z) = %[f(a:ﬂ + f(z—)],

N—oc0

for every .

Note that, since f is monotonic, f(z+) and f(xz—) exist at every
point of x of (—m, ), by Theorem 4.29; and since f is monotonic,
f € Z, by Theorem 6.9. Therefore, the hypothesis of f in Exercise
16 holds.

(c) Assume only that f € Z on [—m, 7] and that f is monotonic in some
segment («, 8) C [—7, 7. Prove that the conclusion of (b) holds for
every x € («, 8). (This is an application of the localization theorem.)
Proof: Define a function g such that:

(i)g is bounded and monotonic on [—7, 7);
(ii)g = f on (a, B).
By (b), we have

Jim_sw(gi ) = 3lgCa+) + gla-)) = 31+ + Fa-))

for every = € (o, 8). By the localization theorem, we have

Jim_sx(fia) = Jim sn(gia) = S[7(a+) + )
for every z € (a, ).
18. Define
f(z)=2® —sin?ztanz g(x) = 22° —sin? 2 — rtanz.

Find out, for each of these two functions, whether it is positive or negative
for all x € (0,7/2), or whether it changes sign. Prove your answer.
Solution: I've no idea at the current time.
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19. Suppose f is a continuous function on R!, f(z + 27) = f(x), and /7 is
irrational. Prove that

i 2 stoe) = [ st

for every z.
Proof: We first prove this for f(x) = e***.
(i)k =0, then f(z) =1, and we have

lim —fo+na —1=5 [ s

N—oco N 2

(ii)k # 0, then we have

1 7 1 [T .
— Hdt = — ikt =
m »[ﬂ f( ) 27T —T ‘ 0,

and
1 N
lim — E (r+na)= lim — E gth(ztna)
N—oco N f N—oo N
n=1
) 1 . ) ) etk ezk(N+l)oc _ eika
= hm felkz E €zkna = hrn T = 0
N—oo 4 N—ooo N etka 1
n=

Note that this is due to the fact that a/m is irrational. To see this, let
« = fm, where § is some irrational number. Then ka = k87 # 2mm, for
every integer m. Hence e’** # 1. On the other hand we have k(N +1)a =
kNa+ ka = ENBT + ka # ka + 2mm, for every integer m if N # 0, and
therefore, e (N+1De £ gike §f N £ (. Since le?®| = 1, for every real 0, we
have the previous result and thus,

N—oco N 2w

lim —fo—f—na —0—* f()

Next, we will prove this for every f which satisfies the given hypothesis.
We have

O'N(fQQT—i-ma) N+1an_N+1ZZCkeik(m+ma)

n=0k=—n

then

M
. 1 . ik(z+ma)
St = S S o LS
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20.

1 N n 1 T 1 N
ikt
=—> > dt=—— co=co.
N 14 2 Fop [ ° N+144%7%

Since f is continuous, and f(z+27) = f(z), by Fejer’s theorem, oy (f; ) —

f(x) uniformly on [—n, 7], and thus uniformly on R!. Thus given any

€ > 0, there exists an integer Ny > 0 such that N > Ny implies
lon(fiz+ma) — f(z+ma)| <e

for any x and m. Hence,

1 X 1
‘M ZUN(f7$+ma)—M Z f(@+ma)l
m=1 m=1
L M
~ e S (onlfia +ma) = fla+ma))

M M
m=1 m=1
for N > Ny. Therefore, we have
| M | M
lim — ; — lim —
|M1£>nooMTnZﬂoN(f,x+ma) MgnooMmZﬂf(x—i—ma)\<e,

for N > Ny, and thus

M M
. . 1 . 1
i i 5 2 on(fwma) = Jw 5 3 f(o+ma),

for every z, which gives

1

M
. R
]v}ianmZ_lf@*m“)]JL“;ococo%/Wf“)dt'

The following simple computation yields a good approximation to Stir-
ling’s formula.
For m =1,2,3, ..., define

fl@)=(m+1—-2x)logm+ (z —m)log(m+1)

if m <z <m+1, and define

g(z) = E—1—|—logm
m
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if m— % <z <m+ % Draw the graphs of f and g. Note that f(z) <
logz < g(z) if # > 1 and that

/1 f(z)dz =log(n!) — %bgn > —é +/1 g(x)dx.

Integrate log x over [1,n]. Conclude that
7 1
3 < log(n!) — (n + §)logn+n <1

for n =2,3,4,.... (Note: log+/2m ~ 0.918.) Thus

n!
7/8<7<6.

(n/e)*v/n

e

Proof:

(i)First we prove f(z) <logz < g(x) if z > 1.

Since (—logz)” = (=1/z) = 1/2? > 0 for z > 0, —logx is convex on
(0, +00). Hence,

—log(Am+ (1 = A)(m+1)) < X(—logm) + (1 — A)(—log(m + 1))

forevery 0 < A< 1. Form <x <m+1, put A =m+1—z, we have
0 < A <1, and therefore,

log((m+1—z)m+(x—m)(m+1)) > (m+1—z)logm+(x—m)log(m+1),
namely,
logz > (m+1—1x)logm+ (x —m)log(m+1) ide., logx > f(x).

On the other hand, put

h(z) = g(x) —logz = £—1—|—lo(¢gm—log:1c, m—1§m<m—i—l7
m 2 2

we have h'(z) = 1/m — 1/xz. Let h'(z) = 0, we get © = m. Since
R'(z) =1/2? > 0 for any m — & <z < m+ 1, h(z) > h(m) = 0, which
gives g(x) > log z, for any m — % <z<m+ %
Note that the above statements hold for every m = 1,2, 3, ..., and there-
fore, we have f(x) <logz < g(x) for all x > 1.
(ii)Next we will prove that

/1 f(x)dx = log(n!) — 5 logn > -3 +/1 g(x)dx.

We have

n n—1 m41
/1 f(z)dz = mz_:l/ f(z)dz

m
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n—1 m+41
= Z / [(m+1—xz)logm+ (x —m)log(m + 1)]dzx

n— 1 m—+1
= [log(1 + E) / xdx + (m + 1) logm — mlog(m + 1)]

m=1 m
S 2m 1 1
= Z[ 5 log(l—l—a)—i—(m—i-l)logm—mlog(m-i—l)]
m=1
n—1
1 1 1 1
= Z [= log(ﬂ) +logm] = —logn+log((n—1)!) =log(n!) — = logn,
= 2 m 2 2
and
n+1/2 n m-+1/2 n m-+1/2 T
/ g(z)dx = Z / g(z)dx = Z / (——1+logm)dx
1/2 1/ m=1/2 me1Jm=1/2 T
n 1 m+1/2 n n
Z [logm—1+— xdx = Z [logm—1+—-m] = Z logm = log(n!)
— m Jm—1/2 — —
m=1 m=1 m=1
Since
1 1
/ g(z)dx = / (x — 1)dx = —=,
1/2 1/2
and
n+1/2 n+1/2 T
[ swde= [ 1 ognyis
1 1 1 1 1
=5 (n+1)—|—§(logn—1) = %Jrilogm
we have
n n+1/2 1 n+1/2
[ awie= [ g [ gwdo- [ oo
1 1/2 1/2 n
=lo (n|)+,_i_,10 n= nf(ac)da:—i—l—i < nf(x)dx—&—f
— g 8n & ) 8 8n
Therefore,

/1 f(z)dz =log(n!) — %bgn > —é +/1 g(x)dz.

(iii) Since f(z) <logx < g(z) if x > 1, integrate over [1, n| gives us
/ f(x)dz < / log zdx < / g(z)dz,
1 1 1
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namely,

/” f(z)dr <nlogn—(n—1) < /ng(x)dl’, i.e.,
1 1

log(n!) — %logn <nlogn—(n—1) <log(n!) — %logn + é,
which gives

g <log(n!) — (n + %)logrm—n < 1.
Thus,

|
. n!
——) <1, e, P ——— <e.
n

(n/e)"vn

Note that since

1
g —log v2m < log(n!) — (n+ i)logn—l—n—logv%r < 1—logVv2m,

then
0.043 < log(—M ) < 0.082

' 8 n"\/2mn o

which gives

—0.043 nle” 0.082 . n!
e < —F—=<e , d.e., 0958 < —— = < 1.085.
n"/2mn (n/e)mv2mn
. Let

1 s

n= = D, (t)|dt =1,2,3,...).

5 | IDaiat (n )

Prove that there exists a constant C' > 0 such that
L,>Clogn (n=1,23,..),

or, more precisely, that the sequence

4
{L, — = logn}

is bounded.
Proof: No idea at the current time...

. If aisreal and —1 < x < 1, prove Newton’s binomial theorem

n!

(1+;C)a:1+ia(a_1)'~-(a—n+1)xn.

Show also that

o

(1-=2) T;) n!l(«)



if -1<xz<1land a>0.
Proof:

(i) First, we prove that

1/n
lim [("+m)] -1, melt
n—00 n

() e

Since

n nlm! ’

By Stirling’s formula, we have

) n4+m\]"" . (n+m)! 1/n
lim = lim |———~
n—o00 n n—00 n!m!

[(m +n)/e]™ " \/2m(m + n)

= lim_ [ ml(n/e)n/2mn } h

) (m 4 n)™ m\" m\ 1"
= 1] ~ 7 (1 _ . 1 _
n1—>H<§o|: mle™ + n + n

m 1/n m71l/n
— lim [(m+") m 1] = lim {( +n) ]
n—00 mlem n— 00 m!
m/n
= lim (m +n)™/™ = lim [n(l—i—)} =1
n— 00 n—oo

(ii) Next, denote the right side by f(z), we will prove that the series
converges. Since |z| < 1, it’s sufficient to show that

1/n
<1.

lim sup

n—00

’a(a—1)~-~|(a—n—|-1)

(ii.a) If v is 0 or any positive integer, suppose « = N, then n > N implies
ala—1)---(a—n+1) =0, and therefore,

1/n
=0.

lim sup
n—oo

’a(a—1)~-~|(a—n+1)

(ii.b) Suppose o > 0 and « is not an integer, then there exists some integer
m > 0 such that m < a < m+1. Then we have a—(m+1)+1 =a—m >0
and « — (m+2)+1=a—(m+1) < 0. Therefore, when n > m + 1, we
can rewrite
ala—1)--(a—n+1)
n!
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as

ala—1)(a—(m+1)+1)- (Oé—(m+2)+i!)-..(a—n+1).

Let
M =

a(a—1>-~-<a—<m+1>+1>\,

then

ala—1)--(a—n+1)
n!

-

(a—(m+2)+1)---(a—n+1)’
n!

(m+1)—a).—-(n—-1)—a)

:M.
n!

Since m < a < m + 1, we have

(m+1)—a)--- (=D —) _((m+1)—m)---((n—-1) —m)

<
n! - n!
_(n=1-m)l  (n—(m+1)(m+1)! 1
n/! nl(m+1)! (o myn) (m+ 1)
Hence,
1) (o — 1/n
Jimn sup ala—1)--(a—n+1)
) ((n—1)—a)1¥™
s o () (1) o)
n—00 n!
1 1/n
< lim sup {M - } =

due to the fact that

fim s Kn i+ 1>>} U Kn e+ 1)” h

W (1) w4 (m 1)\ ] /0 m )
T ()

=1
n’— o0 n'

(ii.c) If @ < 0, we have —a > 0. Suppose m < —a < m + 1, then

a(a1)~~(an+1)'_ (Ca)((=a) +1)--- (=) + (n = 1))

n! n!

- (m+1)((m+1)+1)--(m+1)+(n—-1) (m+n)! _ (n—l—m).

n! T nlm! n
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Therefore,

ala—1)---(a—n+1)

lim sup

1/n
= lim K”erﬂ —1.
n—o00 n

Combine (ii.a), (ii.b), (ii.c), we get the desired result that the series con-
verges for any real a.
(iii) Next, we prove that

<[]
< limsup
n

n— oo

Since
£ Za(a—l) .7.1!(04—71—1—l)mcn_l7
we have
(1+2)f (2) 1+x)§: a—1) -T-L'(oz—n+1)n n—1
n=1 :
i ala—1)-- (afnJrl - i ala—1) (afn+1) _—
n! —
—a+z a_l _n+1) n—1
“ofa—1)---(a—n+1 n
LS n'< )
B Zafa—1)---(a—(n+1)+1)
—a—i—; CES] (n+1)
ala—1)--(a—n+1 n
55 CEDR )
:a—i—za(a_l) '7;'(04_”+1)(a—n+n)x"
n=1 !
:a(l—i—za(a_l) 'T'L!(O‘_”“)x")—af(x)
(iv) Solve
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23.

gives us

=af(z), ie., df(x):a de

d
(1+2) fo) =ty

and therefore,
log f(z) = alog(1+2)+C, ide., f(x)=C"(1+2z)"

Since f(0) =1, we get C' =1 and hence f(x) = (1 4 x)°.
(v) Substitute —z as x, —« as «, we have

R = 1)7'1'!' oty

B ~ala+1)-(a+n—1) , =Tn+a) ,
_1+n§::1 n! . _;::0 n!F(a)x’

since
I'n+a)=(a+n—1I'(a+n—-1)=---=(a+n—1)-- (a+1)al(a).

Let v be a continuously differentiable closed curve in the complex plane,
with parameter interval [a, b], and assume that y(t) # 0 for every ¢ € [a, b].
Define the indez of v to be

1M
Ind(y) = %/a Ty dt.

Prove that Ind(v) is always an integer.

Compute Ind(y) when y(t) = ™, a =0, b = 2.

Explain why Ind(v) is often called the winding number of v around 0.
Proof: )

(i) Since 7 is continuously differentiable, I~ is continuous on [a, b]. Define

p(z) = /j 1/((;)) dt, x € la,b],

then ¢(a) = 0 and by Theorem 6.20, ¢’ = 77
Solve this equation gives us

do _ &y
de  ~dz' ¥

which gives
p=logy+C, e, v=Cexp(p),
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24.

where C” # 0 is some constant. Since y(a) = v(b) (v is closed), we must
have exp ¢(b) = exp ¢(a) = 1(because p(a) = 0). Note that

[
) = 5 [ T8t = o) - pta)) = 52,

and therefore, p(b) = 2miInd(y). Combining with the fact exp p(b) =1
gives that Ind(y) is an integer.
(i) When v(¢) = €™, a = 0, b = 27, we have

1 eint)/ 27

2m
Ind(y) = —/ (%dt Lm dt = n.

2mi etnt 2w Jo

(iii) Here, I will explain why Ind(v) is often called the winding number of
~ around O.

By (ii), if Ind(y) = n, then we have Ind(y) = Ind(e™™). By Theorem
6.17, et t € [0,27] is rectifiable, and its length

2 27
Ae™) = / |(e)'|dt = / line™|dt = 27n.
0 0

Since the length of the unit circle on the complex plane is 27, we know
that the length of e, t € [0,27] is n times the length of the unit circle.
What’s more, since ™!, t € [0,27] has the same range as the unit circle,
it seems as the curve e, t € [0, 27r] winds around 0 along the edge of the
unit circle n times.

Let v be as in Exercise 23, and assume in addition that the range of ~
does not intersect the negative real axis. Prove that Ind(y) = 0.

Proof: We first prove that for 0 < ¢ < oo, Ind(y + ¢) is a continuous
function of c.

Suppose 0 < x,y < oo, we have

b ’ !
Ind(y +) - Ind(v+y)\—|271m [ -

L[y L KO,
()+y) 2 Jo |7(8) + 2|y (8) + 9]

Since 7 is contlnuously dlffelrentlauble7 |[v/| < M for some M >0, |y] > m
for some m > 0, since v # 0 and + is continuous. (Or m = inf |y(t)|, for

€ [a,b], and since 7 is continuous (so |y| is continuous), we must have
some tg € [a,b], for which |y(tg)| = m. Since (t) # 0 for every t € [a, b],
m > 0.) On the other hand, since the range of 7 does not intersect the
negative real axis, we have |y + z| > |y| > m and |y +y| > |y| > m.
Hence,

_ b—a
/ I (t)|ly — = dtg( )2 - zl.
[v(t) + z[|v(t) + v 2mm
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25.

26.

Then given any € > 0, we can pick a ¢ such that 0 < § < (bzf;’;jw €. When

ly — | < 4, we have

(b—a)M <(b_a)M6<e

|Ind(’7+$>—lnd(’)’+y)|§w|y—$| pp—

This shows that for 0 < ¢ < oo, Ind(y + ¢) is a continuous function of c.
On the other hand, Exercise 23 tells us that Ind(y) is always an integer,
so Ind(y+ ¢) must be an integer, for every 0 < ¢ < 0o, since 7 + ¢ satisfies
the hypothesis of Exercise 23 if 7 satisfies them. Therefore, Ind(y + ¢)
must be a constant, for 0 < ¢ < oo. To prove this, we only need to
show that Ind(y+ c) is constant on every interval [0, A]. Since Ind(y+c)
is continuous, it is uniformly continuous on [0, A]. Then there exists a
d > 0 such that |y — x| < § implies |Ind(y + y) — Ind(y + x)| < 1.
Since Ind(y + ¢) is integer-valued, this implies Ind(y + y) = Ind(y + z)
if [y — x| < 4. Pick an r such that 0 < r < ¢, then there is an integer
N such that Nr < A < (N + 1)r. In each interval [ir, (i + 1)r], where
0 < i <N, Ind(y + ¢) is an constant, say Ind(y + ir). Hence we have
Ind(y+ir) = Ind(y+(i+1)r), for every 0 < ¢ < N, which is equivalent to
say that Ind(y+c) is constant on [0, A], for every positive A and therefore,
Ind(y+ ¢) is constant on [0, 00). Since Ind(y+c¢) — 0 as ¢ — 0o, we have

Ind(y) = Ind(y+0) = Clggo Ind(y+c) =0.

Suppose y; and 7, are curves as in Exercise 23, and

11(t) =@ <@ (a<t<b).

Prove that Ind(y1) = Ind(yz2).
Proof: Put v = 45/v1. Then |1 — | < 1, hence Ind(vy) = 0, by Exercise
24. Also, since

Y /) hm )R i

y Y2/M Y2/M Y1 Y2 M

)

we have

O, L o0 RO,
1) =g [, S = L, Gy~ = )= )

which gives Ind(v1) = Ind(2).

Let -y be a closed curve in the complex plane (not necessarily differentiable)
with parameter interval [0, 27], such that v(t) # 0 for every t € [0, 27].
Choose § > 0 so that |y(t)] > ¢ for all t € [0,2n]. If P, and P, are
trigonometric polynomials such that |P;(t) —~(t)| < /4 for all t € [0, 27]
(their existence is assured by Theorem 8.15), prove that

Ind(Py) = Ind(P)
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27.

by applying Exercise 25.

Define this common value to be Ind(7y).

Prove that the statements of Exercises 24 and 25 hold without any differ-
entiability assumption.

Proof: Clearly, P;(t), t € [0,2n] satisfy the hypothesis of Exercise 23,
namely, they are continuously differentiable and closed nonzero curves.
Since |Py(t) — v(t)| < §/4, we have |Py(t)] > |y(t)| — 6/4 > 3§/4. Thus,
Pi(t) — Po(t)] = [(Pi(t) — () — (Pa(t) — A(6)] < [Pi(t) — ()] +
|Po(t) — ~v(t)] < 0/2 < 3§/4 < |Pi(t)|, and by Exercise 25, we have
Ind(Py) = Ind(Py).

If we define this common value to be Ind(vy), the statements of Exercise
24 and 25 hold without any differentiability assumption.

First, consider the statement of Exercise 24. Since |vy(t)| > ¢ and |P(t) —
~v(t)| < 6/4, we have |P(t)| > |y(t)| — §/4 > 3§/4. Thus if the range
of v does not intersect the negative real axis, so does P. Then we have
Ind(P) = 0, since P satisfy the hypothesis of Exercise 23 and 24. Hence
Ind(v) = 0.

Next, consider the statement of Exercise 25. Let g(t) = |v1(¢)| — | (¢) —
Y2 (t)|, for ¢t € [a,b]. Since |y1(t) — y2(t)] < |1 (t)|, for t € [a,b], we have
g(t) > 0, for ¢ € [a,b]. Since v; and 2 are continuous on [a,b], g is con-
tinuous on [a,b]. Let u = inf g(t), ¢ € [a, b], then there is some ty € [a, b]
such that ¢(to) = p and therefore, > 0. We hence have g(t) > p, which
gives |y1(t)| > |7 (t) — v2(¢)| + p. Pick § such that 0 < 36/4 < p, and
[v1] > 8, |y2] > &. Choose trigonometric polynomials Py, P, such that
|P;(t) — v:(t)] < 6/4 for all t € [0,27], i = 1,2, thus Ind(y;) = Ind(P;),
i =1,2. Then we have

1| =0/4 > |y1 =2l +p—6/4> |y — 2| +35/4—0/4 = |y1 — 2| + /2,
which gives
|PL—Ps| = |(PL—71)+ (1 —72) + (2 —P2)| < [Pr—m1]+ |71 —72|+ |72 — P

<y =l +6/2 <|m|—6/4 < |Py.

By Exercise 25, we have Ind(P,) = Ind(P;) and therefore Ind(y;) =
Ind(Py) = Ind(Ps) = Ind(vy2).

Let f be a continuous complex function defined in the complex plane.
Suppose there is a positive integer n and a complex number ¢ # 0 such
that
lim 27" f(z) =c.

|z| =00
Prove that f(z) = 0 for at least one complex number z.
Note that this is a generalization of Theorem 8.8.
Proof: Assume f(z) # 0 for all z, define ~,.(t) = f(re') for 0 < r < oo,
0 <t < 27. We will prove the following statements about the curves ..
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Ind(~p) = 0.
Since yo(t) = f(0) for all ¢ € [0, 27x], and f(0) # 0. We have

2w 2m
Ind(vo) = —— / 0 g 1[0 4y,
2mi Jo - 70(t) 2mi Jo - f(0)

by Exercise 23.

Ind(~,) = n for all sufficiently large r.

Since
lim 27"f(z) = ¢,
|z| =00
we have
Tl;rrgo P e M f(re') = ¢, e, Thﬁrrolo e My (1) = c.

Then when 7 is sufficiently large, [r~"e= ™, (t) — ¢| < |c|, for all
t € [0,27]. Let g(t) = cr™e™*, t € [0,27], we hence have

19(8) =2 ()] = [ (t) = g(&)] = [r"e™ (r"e™ My (8) — ¢
= [P e e (1) — of < Jel - e = e = g(0)].
On the other hand, since g(t) is continuously differentiable, we have

1 /2’T J'(t) g = 1 [* (ermetty
0

T 2mi gty 2w J,  crmeint

Ind(g(t)) t=n.

Therefore, by Exercise 25, we have Ind(y) = Ind(g) = n, for suffi-
ciently large r.

Ind(~,) is a continuous function of r, on [0, c0).

Fix any = € [0, 00), for every 0 < y < oo, we have |v,(t) — 7.(¢)| =
|f(ye®) — f(xe™)|. Since f is continuous, given any e > 0, we

can pick a § > 0 such that |ye® — ze®| = |y — x| < § implies
|f(ye') — f(ze™)| < € and thus |v,(t) — 72(t)| < e. Note that here

different « may have different ¢, since [0, 00) is closed, but not com-

pact.

Let g = inf|f(2)]. Since ||z7"f(2)| — |c|]| < |[27™f(2) — ¢|] and
lim 2z "f(z) =¢, wehave lim |27 f(z)| = |c|, which gives |f(2)] —

|z| =00 |z] =00

oo when |z| — oo, for otherwise, if |f(z)| < M for some M > 0, we

must have lim |z7"f(z)| = lim |z|7"|f(2)] =0, but |c| # 0 since
|z| =00 |z| =00

¢ # 0. Now we have that there exists some R > 0 such that |z| > R
implies |f(z)| > p. Hence p = inf.cc|f(2)| = inf|.j<r |f(2)], and
since the set {z|z € C A |z| < R} is closed and bounded, thus com-
pact, there must exist some zg, |20| < R, |f(20)] = pu. Therefore,
w> 0.

Now, fix any = € [0,00), we can find a ¢ > 0 such that |y — z| < ¢,
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y € [0,00) implies |vx(t) = (t)] = [ (t) = @) < p < |,
for any ¢ € [0,27]. By Exercise 25, we have Ind(vy,) = Ind(ys), if
|y — 2| < 6. Hence Ind(v,) is a continuous function of r, on [0, c0).

Note that (a), (b) and (c) are contradictory, since n > 0 but (c)
and the fact that Ind(v,) is integer-valued imply that Ind(~,) must
be constant on [0, 00).

28. Let D be the closed unit disc in the complex plane. (Thus z € D if and

29.

only if |z| < 1.) Let g be a continuous mapping of D into the unit circle
T. (Thus, |g(z)| = 1 for every z € D.)

Prove that g(z) = —z for at least one z € T.

Proof: For 0 <r < 1,0 <t < 2, put 7.(t) = g(re®), and put ¥(t) =
e Uy (t). If g(z) # —=z for every z € T, then 9(t) # e "(—e) = —1
for every t € [0,27]. Since |¢(t)] = e~y (t)| = |n(t)| = |g(e?)] = 1,
Y(t) # —1, hence Ind(yy) = 0, by Exercise 24 and 26. It follows that
Ind(v;) = 1. To see this, suppose 6 > 0 so that |y,(¢)] > ¢ for all
t € [0,27]. Choose trigonometric polynomials P so that |P(t) — v1(¢)| <
§/4 for all t € [0,27]. Then we have [1(t)| = e~y (t)| = |11 (t)] > 4,
and [e™"P(t) — ¥(t)] = [e7"(P(t) — ()] = [P(t) = n(t)| < /4. Put
P*(t) = e " P(t) which is also a trigonometric polynomial. Hence by
Exercise 26, we must have Ind(P*(t)) = Ind(y(t)) = 0. Therefore,

2m / 27 eit * /
Ind( (1)) = Ind(P(t) = 5 / I;g;dt_;m 0 Mﬁ

B L /271' eitp*'(t) + ieit p* (t)]dt B L /271' P*’ (t) + Z'P*(t)]dt
©2mi eit P*(t) ©2mi P(t)
1 27 P*, (t) 1 27 P*/ (t)
= ldt =1+ — dt =1+ Ind(P*(t)) = 1.
omi )y Py T Yomi ), P + Ind(P7 (1))

But since v (t) = ¢g(0) # 0(note that |g(z)| = 1), Ind(y) = 0, by Exercise
23.

Fix any x € [0, 1], for every y € [0, 1], we have |y, (t) — 7. (t)| = |g(ye®) —
g(ze')|. Since g is continuous, given any € > 0, there exists a § > 0 such
that |ye — ze| = |y — x| < § implies |g(ye®) — g(ze')| < €, namely,
vy (t) — v2(t)] < eif |y — x| < 6. Let e = 1, pick the required §, we
then get bra(t) — 3 ()] = Py(®) - %) < 1 = ()] = lg(ze®)], and
by Exercise 25, Ind(v,) = Ind(7,) if |y — 2| < 6. Therefore, Ind(y,) is a
continuous function of 7, on [0,1]. Then as the same reason of Exercise
27, Ind(y0) = 0 and Ind(v1) = 1 gives the contradictory.

Prove that every continuous mapping f of D into D has a fixed point in
D.

(This is the 2-dimensional case of Brouwer’s fixed-point theorem.)
Proof: Assume f(z) # z for every z € D. Associate to each z € D the

131



point g(z) € T which lies on the ray that starts at f(z) and passes through
z. Then g maps D into T, g(z) = z if z € T, and g is continuous, because

9(2) = z = s(2)[f (2) — 2],

where s(z) is the unique nonnegative root of a certain quadratic equation
whose coefficients are continuous functions of f and z. By Exercise 28,
g(z) = —z for at least one z € T. Suppose zo € T satisfies g(z9) = —zo,
and on the other hand we must have g(zg) = 2o since zo € T. This gives
—2zp = zg, namely zy = 0, which contradicts the fact zo € T'.

30. Use Stirling’s formula to prove that

lim M -1
T—00 ICF(I)
for every real constant c.
Proof: ;
lim M —
T—00 xcl"(x)
I'(z+c) ' B e _
lim ((ercil)/e)HC*l\/277(1+671) ((.73 +c 1)/6) 27T(x s 1)
T—>00 xc . I'(x) ((g'; — 1)/6)171 27T(CE — 1)

(z—1)/e)*~1y/2m(a—1)
~ lim (z+c—1)/e)* "1 2n(x +c— 1)
g=oo  gc. ((x—1)/e)* 1/ 2r(x — 1)
— lim (r4+ec—1)"T"r+ec—1
oo x€.ec. (z— 1) 1/r -1

1 c—1 c c
= lim — - (1 c.(1 a1,
arglc}oec (I+ T ) (er— ) Jra:—l
1
=—.1-¢-1=1
eC

31. In the proof of Theorem 7.26 it was shown that

1-— "dx > ——
/_1( ) Y= 3/

for n = 1,2,3,.... Use Theorem 8.20 and Exercise 30 to show the more
precise result

lim \/ﬁ/_llu —2%)"dx = /7.

n—o0

Proof: We have

\/ﬁ/_ll(l —2%)"dx = 2\/5/01(1 — 2%)"dz.
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Let t = 22, then dt = 2xdzx, which gives dz = 2%/zdt = %t_lﬂdt, hence

2[/ 1— 22 "dx—2f/ -t t‘l/th f/ Y21 — t)"dt

e i1~ T(1/2)0(n+ 1)
7\/5/0 /2711 — t)(nFD) 1dt7\/ﬁl‘(1/2+(n+1))'

Then

| L I(1/2)T(n+1)
R I
o (n+ 1)Y2T(1/2)0(n + 1)
_nh_EI;o\F(n_’_l)lﬂf((n—f—l)+1/2)
r(1/2)

= lim vn =T(1/2) = /.
n—oo T'((n+1)+1/2)
- (n + 1)1/2 : ((n+1)172T(n+1))

Functions of several variables

. If S is a nonempty subset of a vector space X, prove (as asserted in Sec.
9.1) that the span of S is a vector space.

Proof: Let E be the span of S. Suppose yi, yo € E. Then y;, =
Zk CikXik, where i = 1,2 and x;; € S. We then have

yity2= Z C1kXok + Z CokX2k = Z CjXj,
k k J
where x; € §; and

cy; = Z(ccik)xik (i=1,2).

k

Therefore, both y; +y2 € E and ¢y; € E(i = 1,2). Hence E is a vector
space.

. Prove (as asserted in Sec. 9.6) that BA is linear if A and B are linear
transformations. Prove also that A~1! is linear and invertible.

Proof: We have
BA(Xl + XQ) = B(A(Xl + XQ)) = B(AXl + AXQ) = BAX1 + BAXQ,

and
BA(cx) = B(A(ex)) = B(cAx) = cBAx.

Hence BA is linear.
Suppose y; = Axy, yo = Axs, and y = Ax. Then

AN y1+y2) = A7 (Axy 4+ Axy) = AT A(xq + %)

133



=x1+x2=A"'y1 + A7y,

and
A7 ey) = A7 eAx) = A7 A(ex) = ex = cA7 .

Hence A~! is linear. Since A is invertible, A is one-to-one. Then A~! is
also one-to-one, and therefore A~! is invertible, by Theorem 9.5.

. Assume A € L(X,Y) and Ax = 0 only when x = 0. Prove that A is then
1-1.

Proof: Suppose that Ax = Ay, then A(x—y) = 0, which gives x—y = 0,
namely x = y. Therefore, A is 1-1.

. Prove (as asserted in Sec. 9.30) that null spaces and ranges of linear
transformations are vector spaces.

Proof:

(i) Suppose x € A (A) and y € A (A), then Ax = 0 and Ay = 0.
Therefore A(x +y) = Ax+ Ay =0, A(cx) = cAx =0, and thus x+y €
N (A), cx € A (A), which shows that .4 (A) is a vector space.

(i) Suppose y1 € Z(A) and y2 € Z(A), then there exist x; € X, x2 € X
such that Ax; = y; and Axy = yo. Therefore, y; + y2 = Ax; + Axy =
A(xy1 + x2) € Z(A), and cy; = cAx; = A(cx;) € #(A), which gives that
Z(A) is a vector space.

. Prove that to every A € L(R", R') corresponds a unique y € R™ such
that Ax = x -y. Prove also that ||4]| = |y|.

Proof: Let y = (y1,%2,...,Yn)%. Then we have Ae; = e; - y, which
gives y; = Ae;. Then for any x € R", suppose x = » ..., z;€;, we have
Ax =AY [ wie; =Y x;Ae; = > - x;y; = x - y. The existence and
uniqueness of y then are proved.

Since |Ax| = |x - y| < |x| - |y|, for all x € R, by Schwarz inequality, we
thus have ||A]| < |y|. On the other hand, sincey € R*, Ay =y -y = |y|?,
which gives [Ay| = [y|*. Since [Ay| < [|A]| - [y], we have |y[> < [|A]| - |y],
namely, |y| < ||4||. Therefore, ||A|| = |y|.

. If f(0,0) =0 and
fay)=ss i) £ 0.0),

prove that (D1 f)(z,y) and (
f is not continuous at (0, 0)
Proof: Suppose x,, = (%, %), then x,, — (0,0), as n — co. But

Do f)(z,y) exist at every point of R?, although

lim f(x,) = lim f(l,l): lim LRQ = 1 # 0,

n— oo nooo’ ‘N’ Mm n—o0 2/n2 2

which implies f is not continuous at (0, 0).
On the other hand, (D; f)(x,y) and (D1 f)(x, y) clearly exist at every point
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on the plane other than (0,0). Since
0-0

f(I,O)*f(0,0) = lim _0’
z—0 z—=0x —0

(D1£)(0,0) = limy

nd f0,y) - f(0,0) _0-0
. YY) — ) B
= 1 = =
(D2)(0,0) = limy OO —LED_ 2
we conclude that (D f)(z,y) and (Dof)(z,y) exist at every point of R2.

0,

. Suppose that f is a real-valued function defined in an open set £ C R",
and that the partial derivatives D1 f,..., D, f are bounded in E. Prove
that f is continuous in E.

Proof: Similarly as in the proof of Theorem 9.21, we fix x € E and
€ > 0. Since D;f are bounded in E, |D;f| < M; for some M; > 0. Put
M = maxi<ij<n M;, we thus have |D;f| < M, for 1 < i < n. Suppose
h =) hje;, |h| <r =¢/nM, put vo = 0, and v = hie; + -+ + hpey,
for 1 <k <n. Then

n

Fx+h) = f(x) = [fx+v5) = flx+ o))

Jj=1

Since v; = v;j_1 + hje;, the mean value theorem (Theorem 5.10) shows
that the jth summand is equal to

hi(D;f)(x +vj-1 + 0h;e;)
for some 6; € (0,1). It follows that

[f(x+h) = FX)| =D _[fx+vy) = f(x+v,1)]|
j=1

<Y x4 vy) = Fx A Vi)l = Y (D) (x + Vi1 + 05k e;))|
j=1

Jj=1

n
< MZ|hj| < Mnlh| <,
j=1

which shows that f is continuous in FE.

. Suppose that f is a differentiable real function in an open set £ C R"™,
and that f has a local maximum at a point x € E. Prove that f'(x) = 0.

Proof: Since 1 o) — £(x)
. X+ te;) — f(x
D, f(x) = lim : ,

and f(x+te;) < f(x), when |t| < r for some sufficiently small r > 0, due
to the local maximum of f(x). We thus have

foerte) =) oo ve o,
t - b) ) )
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10.

and

Ilctte) =109
and therefore D, f(x) > 0 and D; f(x) < 0, which give that D, f(x) = 0,
for 1 < j < n. It follows that f/(x) = 0 according to Theorem 9.17.

te (*Ta 0)7

If f is a differentiable mapping of a connected open set £ C R™ into R™,
and if f/(x) = 0 for every x € F, prove that f is constant in F.

Proof: Suppose that, on the contrary, f is not constant in E. Pick
any a € F, and let ¢ = f(a). Let A = {p|p € EAf(p) = ¢} and
B = {plp € ENf(p) # ¢}. Since a € A, A # (, and since f is not
constant, B # (). Clearly, E = AUDB and AN B = {.

(i) First, we prove that for any x € E, there exists an r > 0 such that
|p — x| < r implies f(p) = f(x). To see this, since F is open, given any
x € F, there is an open ball S C F| with center at x and radius r. Since S
is convex, by the corollary of Theorem 9.19, we known that f is constant
in S, which is the desired result.

(ii) Next, we will prove that AN B = (). Suppose q € F is a limit point
of A, then there is a r, > 0 such that |p — q| < r, implies f(p) = f(q).
Since q is a limit point of A, there is at least one p € A which satisfies
|[p —d| < rq. Therefore, we must have f(q) = f(p) = ¢, and therefore
q € A. It follow that A = A and hence ANB =ANDB = (.

(iii) Then, we will prove that AN B = (). Suppose that, on the contrary,
AN B # . There exists at least one q € AN B, that is, f(q) = c. Since
AN B =10, qis alimit point of B. By (i), we can find a r, > 0 such that
|p — d| < rq implies f(p) = f(q) = c. Since q is a limit point of B, there
exists at least one p € B such that |p — q| < 7. Therefore, f(p) = ¢ and
hence p € A, a contradictory since AN B = (). It follows that AN B = (.
By (ii) and (iii), we conclude that A and B are separated. Since E = AUB
and both A and B are nonempty, F is not connected, which is contradict
to our assumption. Therefore, f must be constant in FE.

If f is a real function defined in a convex open set £ C R™, such that
(D1f)(x) =0 for every x € E, prove that f(x) depends only on zo, ..., 2.
Show that the convexity of E' can be replaced by a weaker condition, but
that some condition is required. For example, if n = 2 and F is shaped
like a horseshoe, the statement may be false.

Proof: Fix x,, ..., z,, we then get a subset S of F whose any two points
only differs at x; in their coordinates. Let a and b be any two points in
S, a = (a1, z2,...,7,)" and b = (by,z2,...,2,)T. Then Xa + (1 — \)b =
(Aay + (1 — A)by, 29, ...,x,)T. Since E is convex, Aa+ (1 — \)b € E and
therefore, Aa+ (1 — A\)b € S, for 0 < A < 1. Hence S is convex. Apply
the corollary of Theorem 9.19, we conclude that f is constant in S, which
is the desired result.

By Exercise 9, we know that the convexity of F can be replaced by a
weaker condition, that is, every obtained S needs to be connected.
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. If f and g are differentiable real functions in R™, prove that

V(fg) = fVg+gVf

and that V(1/f) = —f 2V f wherever f # 0.

Proof: Since .

(VHx) =D (Dif)(x)e;,

i=1

we have N .
V(fg) =Y Di(fg)ei =Y [(Dif)g + f(Dig)le;
=1 =1
—gz eﬁfZ ig)e; = gV f+ fVg,
and

n

v(/f) =3 _(Di(1/f)e Z

i=1

Y (Dif)e =~V
i=1

. Fix two real numbers a and b, 0 < a < b. Define a mapping f = (f1, f2, f3)
of R? into R® by
fi(s,t) = (b4 acoss)cost
fa(s,t) = (b+acoss)sint
f3(s,t) = asins.

Describe the range K of f. (It is a certain compact subset of R3.)

(a) Show that there are exactly 4 points p € K such that

(VA)(E(p)) = 0.

Find these points.
Solution: Since

Vfi = (—asinscost, —(b+ acoss)sint)”,

Vf1 = 0 gives —asinscost = 0, —(b+ acoss)sint = 0. It follows
that

cost =0, b+acoss=0, i.e, coss=—b/a,
or
sint = 0, —asins =0, id.e., sins=0.

Since 0 < a < b, the first solution implies coss = —b/a < —1, which
is impossible. The second solution gives four points in R?, namely
p1 = (b+a,0,00T, po = (=b—0a,0,0)T, p3 = (b —a,0,0)T, and
P4 = (a — b, 0, O)T
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(b)

Determine the set of all q € K such that

(Vf3)(E~ (@) = 0.

Solution: Since V f3 = (acoss,0), Vf3 = 0 implies cos s = 0. Then
the set of all q € K satisfying (Vf3)(f~!(q)) = 0 has elements q
with form q = (bcost, bsint,a), or q = (bcost,bsint, —a).

Show that one of the points p found in part (a) corresponds to a
local maximum of fi, one corresponds to a local minimum, and that
the other two are neither (they are so-called “saddle points”).
Which of the points q found in part (b) correspond to maxima or
minima?

Solution: Clearly we have —(a +b) < fi(s,t) < (a + b), for all
(s,t) € R2, therefore, (b+ a,0,0)7 corresponds to a local maximum
of fi, and (—b—a,0,0)T corresponds to a local minimum. The other
two are neither.

Similarly, since —a < f3(s,t) < a, for all (s,t) € R?, the points with
form q = (bcost,bsint,a) correspond to maxima, and the points
with form q = (bcost, bsint, —a) correspond to minima.

Let A be an irrational real number, and define g(t) = f(¢, At). Prove
that g is a 1-1 mapping of R! onto a dense subset of K. Prove that

lg’'(1)]? = a® + \2(b + acost)?.

Proof: Since g(t) = f(t, At), we have
g1(t) = f1(t, A\t) = (b+ acost) cos(At)

g2(t) = fa(t, At) = (b+ acost) sin(\t)
g3(t) = f3(t, \t) = asint.

Suppose t1 # to, but g(t1) = g(t2), then asint; = asinty, which
gives sint; = sinte. Therefore, to = t1 + 2km, or to = (7 —t1) + 2k,
where k is some integer. If {5 = t; + 2k, then costs = costy, but
Mg = A(t1 + 2k7) = Aty + 2(kX)7, which means cos(Ata) # cos(At1)
and sin(Atz) # sin(At1). Hence g(t1) # g(t2), a contradiction. If
to = (m —t1) + 2km, we have Ato = A(2k + 1)m — M1, which also gives
cos(Atg) # cos(At1) and sin(Ata) # sin(At1). Hence g(t1) # g(t2),
also a contradiction. Therefore, g is a 1-1 mapping.

Next, we will prove that the range of g is a dense subset of K.
Let E = {(z,y)|A\(z +m -27) = y+n-2r,m,n € Z}. If we can
prove that F is dense in R?, then we know that f(E) is dense in
K, by Exercise 4 of Chap.4. Since for any (z,y) € E, if we put
t = x4+ m-2m, then At = Az +m - 27) = y + n - 27, which gives
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g(t) =f(t, \t) =f(x+m-2m,y+n-27) = f(z,y). Suppose the range
of g is G, it follows that f(E) C G. Since f(F) is dense in K, G is
dense in K and we are done.

Now, we begin to prove that E is dense in R2. Given any (z,y) € R?
and any € > 0, we need to show that there is at least one (s,t) € E
such that (s,t) € Nc(z,y). We put s = x, then it is sufficient to show
that the set F' = {A(x +m - 27) +n-2m,m,n € Z} is dense in R,
since then we can find at least one ¢ € F such that |t — y| < e. From
Exercise 25(b), we have known that the set S = {mA +n,m,n € Z}
is dense in R. Since Az +m - 27) + n - 21 = Az + 27 (mA + n),
|((AMxz+m-21)+n-27) —y| = |(Az+27(mA+n)) —y| = [2n(mA +
n) — (y — Az)| = 27|(mA +n) — (y — Az)/(27)|. Now pick m,n so
that |(mA +n) — (y — Az)/(27)| < €/(2m). This can be done since S
is dense in R. It follows that |(A(z +m - 27) +n - 27) —y| < ¢, for
the selected m,n. Therefore, F' is dense in R.

Since
g1(t) = —asintcos(At) + (b + acost)(—Asin(At))
= —bAsin(At) — asint cos(At) — Aa cos t sin(\t)
g5(t) = —asintsin(At) + (b + acost)(Acos(At))
= Abcos(At) — asintsin(At) + Aa cost cos(At)
g5(t) = acost,
we have

18" (O = (91(1))* + (9(t)* + (5(t))* = X*b* +a” sin” t + X*a” cos” ¢
+2abAsin t sin(\t) cos(At) + 2Xa? sint cos t sin(\t) cos(\t)
+2abA? cos t sin?(\t) — 2abA sin t sin(\t) cos(At)
—2Xa?sint cos t sin(\t) cos(\t) + 2abA? cos t cos?(At) + a” cos? t
= A%b? 4 a?sin® t + \?a® cos® t + a” cos? t + 2abA? cost
= a® + N2 (b + a® cos® t + 2abcost) = a® + A2 (b + acost)?.

(Note that we can also apply the chain rule to obtain g’(t).)

13. Suppose f is a differentiable mapping of R! into R? such that |f(t)| = 1

for every t. Prove that f'(¢) - £(¢) = 0.

Interpret this result geometrically.

Proof: Suppose (f)(t) = (f1(t), f2(t), f3(t))T, then |f(t)] = 1 implies
fE) + f3(8) + £3(t) = 1, for every t. Let g(t) = f7(t) + f3(t) + f3(t), we
then have g(t) = 1 for every ¢. Therefore, ¢’(t) = 0. On the other hand,
we have g/ (t) = 2(f1(£) () + fa(8)f3(8) + Fo(0)F4(£)) = 2/(£) - £(2). Hence
f'(t) - £(t) = 0, for every t.

This means the direction of the tangent line of the curve at point f(¢) is
perpendicular to to direction of f(¢).
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14. Define f(0,0) = 0 and

73

1‘2 + y2
(a) Prove that Dy f and Dof are bounded functions in R2. (Hence f is

continuous. )
Proof: At every point (x,y) # (0,0), we have

2%(2? 4+ 3y?) _ 2%(32% + 3y?) x?
D = < - ° <3
[(D1f)(z, )| (22 +y2)? — (22 + y2)? z24+y2 =7
and
2. 2002 4 o2 2
(Do) = L) Ty

= <
(22 +12)2 — (22 +y2)2 22 y2 =
Furthermore, we have

.0~ f0.0) _a=0

(e 0)_~}1£% x—0 ;1-1—>0x—0 1,
and
(D2.f)(0,0) = lim f(0,9) = f(0,0) _ . 0-0

y—>0 y—0 y=0y —0
Hence, Dy f and D f are bounded.

(b) Let u be any unit vector in R?. Show that the directional derivative
(Duf)(0,0) exists, and that its absolute value is at most 1.

Proof: By (a), we have (Dy f)(0,0) = (D1£)(0,0)u1+(D2f)(0,0)us =
uy. Hence |(Dyf)(0,0)| = |ui| < |u] < 1.

(c) Let v be a differentiable mapping of R! into R? (in other words, + is
a differentiable curve in R?), with v(0) = (0,0) and |7/(0)| > 0. Put
g(t) = f(7(t)) and prove that g is differentiable for every t € R!.

If v € ¢, prove that g € ¢’.

Proof:

(i) Since f is differentiable at every point other than (0,0), by The-
orem 9.21, it follows that g is differentiable for every ¢ # 0 (note
that in fact, we need v to be a 1-1 mapping). So we need only to
prove that g is differentiable for ¢ = 0. Since ~ is differentiable, we
have (t) —v(0) = +/(0)(t — 0) + r(t), where lim;_,o = ( ) = 0. Since
2(0) = (0,0), ~1(t) = 7/ (0)t + r{t), namely, 1 (£) = 4 (0}t + 1 (1) and
7a(t) = 7(0)¢ + 7a(t), where 7 = (1,72). Then,

O (v (0)t+7’1(t))
T00) = 20 5220 ~ G0 T ()2 + (B0 T (D)2
(0D + 301 0)*Pra(t) + 30t (1) + (1)

7 (0) 22 1 2+ (0)r1(£) + 1(0)ra(0))t + (e (D) + (ra(6))2)”
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which gives

g(t) — g(0) f(y(t)) = f(+(0)

~—

g'(0) = i = —g— = Jim t =
i OA(0)% + 3(41.(0)*ra (1) + 374 (0)t(r1 (1) + (ra (1)
50 [ (0) 22 + 2(7{ (0)r1 (8) + 1% (0)r2(6))t + (r1(£) + (r2(1))?)]
_ (74(0))% + 3(71.(0))2 ™ + 341 (0) (“4)? + (“1)?

120 |y (0)]2 4 2(7 (0) 22 + 75(0) 28 + (({2)% + (2)2)
_ (1(0))3

then the condition |y/(0)| > 0 implies ¢'(0) exists .

v(0)]*
Hence g is differentiable for ¢ = 0, and therefore differentiable for
every t € R
(ii) Since f is continuous at every point other than (0, 0), by Theorem
9.21, it follows that g € € for every t # 0, since ¢'(t) = f/(v(¢))7'(¢)
and f’, 7, ' are all continuous for ¢ # 0. Hence we only need to
prove that ¢’ is continuous at ¢ = 0, namely, lim;_,o¢'(t) = ¢'(0).
Since y(t) = v'(0)t + r(t) = t(+/'(0) + @),

g'(t) = (v (1) = (DLN () (1) + (D2f) (v(8) 72 (%)
_ (@2 ((n®))* +3(12(t)%) _, —2(n(8)*12(t)

O+ e~ O T+
we have
, £(71.(0) + Z-E))2(((v1 (0) + =2))2 + 3(¢(74(0) + 22))?)
lim ¢'(t) = lim t
o= <W%@+”Pw+@%mwf“m% o
22RO + 2P0 + =)
(#(7(0) + “D))2 4 (#(35(0) + 28))2)2
o GAO)2(OA0))? 4 3400, 20 O)
B Y e o ) R A CH OV EER EH ) B
(HODX(O4(0) + 540)) ~ 2054020500 _ GOD° _
(1 (0)2 + (14(0)2)° (0)P

Therefore ¢’ is continuous for ¢t = 0, and thus g € €.
In spite of this, prove that f is not differentiable at (0,0).
Proof: We have

fy M) = F(0,0) = (D)(0,0h + (D2f)(0,0)k)
B0k =0 (h2 + k2)1/2

S
T h—0,k—0 (h2 + k2)3/2°
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If we put x,, = (%,1), then x,, — (0,0) as n — oo. We thus get
. 2 Lo R h|k?
lim,, 00 R = 2%& # 0, which implies limp, 0 k0 ULZLW #

0. Therefore, f is not differentiable at (0, 0).

S 1=
=
-

15. Define f(0,0) = 0, and put

if (z,y) # (0,0).
(a) Prove, for all (z,y) € R?, that
4aty? < (2t + 9?2

Conclude that f is continuous.
Proof: Since (z* + y?)? — 42%y? = (2* — y?)? > 0, it follows that
4zty? < (z* + 9?)%. Then

42542 4%y
2, 2 2 2, 2 2
T = |4y —2xy——————| < x+y“+2x +—"
|f(z,y)| = | Y Y (J:4+y2)2| = Y [yl (4 1 42)2
4,2
= 2% 4 9% 4 222 \+x2-L<x2+ 2 4222 y| + 2?
R A A

Since
2 2 2 2
z° +y° + 227yl + 27 = 0, as (z,y) — (0,0),

we hence have |f(z,y)| — 0, as (x,y) — (0,0). Therefore, f(x,y) —
0, as (z,y) — (0,0), which means f(z,y) is continuous at (0,0
Since f(x,y) is obviously continuous at every point other than (0,0
we conclude that f is continuous.

(b) For 0 < 0 < 2w, —o0 <t < oo, define

).
)

3

go(t) = f(tcos@,tsinb).

Show that g¢(0) = 0, g;(0) =0, g;(0) = 2. Each gy has therefore a
strict local minimum at ¢ = 0.

In other words, the restriction of f to each line through (0,0) has a
strict local minimum at (0,0).

Proof:

4t* cos® 0 sin? 6
(t2 cost  + sin? 9)2’

go(t) = f(tcosh,tsinf) = t* — 2t3 cos? fsin § —

hence gy (0) = 0.

161> cos® 0 sin 0(2 cos* O(1 + sin §) + sin? 0)
(t2 cos* § + sin? 9)3 ’

gp(t) = 2t—6t cos® O sin O—
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hence g, (0) = 0, and

44(0) =ty 0= 90

!
~ lim gp(t)
t—0 ¢

= lim[2 — 6t cos® sin 6
t—0

B 16t2 cos® 0 sin 0(% cos* O(1 + sin §) + sin® 0)
(t2 cos* § + sin? 9)3

Therefore, each gy has therefore a strict local minimum at ¢ = 0.

] =2.

(¢) Show that (0,0) is nevertheless not a local minimum for f, since
f(z,2?) = —a*.
Proof: Since f(r,2%) = —a*, given any ¢ > 0, pick the point
(z0,90) = (1,1) if € > v/2, and (w0, yo) = (¢/2,¢2/4) if e < /2. Then
Vit +y2 = V2 <eif e > V2, and /22 + 43 = \/e2/4+€1/16 <
(€/2)(\/1+ €2/4) < (¢/2)(v/1+1/2) < (¢/2)-2 = e if e < /2. Tt fol-
lows that no matter which € > 0 chosen, we can pick a point (z, yo)
in N.(0,0) such that f(xo,y0) < 0= f(0,0). Therefore, (0,0) is not

a local minimum for f.

4

16. Show that the continuity of f’ at the point a is needed in the inverse
function theorem, even in the case n = 1: If

1
f(t) =t +2t*sin -

for t #0, and f(0) = 0, then f'(0) =1, f is bounded in (—1,1), but f is
not one-to-one in any neighborhood of 0.
Proof: we have

oy — i 4O = FO) o f ()
f(0) = lim ———~ = lim — ;

1
lim ——— lim fhm[ +2tsmt] 1.

On the other hand, when t # 0,

1 1,1 1 1
f)y=1+ 2[2tsin¥ +t? cos g(—t—Q)] =1 +4tsin¥ — 2cos o

and hence

. 1 1 . 1
}1_1)1(1)]“ (t) = tlgl(l)[l +4ts1n¥ — QCOSE] = tlgl(l)[l 72cos¥] # 1.
It follows that f’(t) is not continuous at 0.

Since | f/(t)| = |1+ 4tsin —2cos 1| < 1+4[t| +2 =344t <344 =7,
when 0 < |t| < 1. Thus f’ is bounded in (—1,1).

Now we will show that f is not one-to-one in any neighborhood of 0.
Suppose that, on the contrary, f is one-to-one in some neighborhood, say
N.(0), of 0, where e > 0. Pick some r such that 0 < r < €, then f is
one-to-one on [—r,r]. Let X = [—r,r], f(X) =Y, then f is a continuous
1-1 mapping from X onto Y. By Theorem 4.17, the inverse mapping f~!
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defined on Y by f~1(f(z)) = z, * € X is a continuous mapping of Y
onto X. Let V be any open subset of X, since f~! is continuous, f(V) is
also an open subset of Y, by Theorem 4.8. Then f is a continuous open
mapping from X onto Y, by Exercise 15 of Chap.4, f is monotonic on X.
Therefore, f'(t) > 0 for every ¢t € [—r,r]. But if we pick a sufficiently large
n so that 0 < tg = 7~ < r, then ¢y € [-r,r] and

f(to) = 1+4t¢ sin l—2 cos 1o 1—|—4L sin(2nm)—2cos(2nm) = —1 < 0,
to to 2nmw

a contradiction. Therefore, f cannot be one-to-one in any neighborhood
of 0.

Remark: In the above proof process, we use the fact that every con-
tinuous open mapping is monotonic. In fact, we can use the result that
every continuous injective mapping is monotonic, which could achieve our
conclusion more quickly.

17. Let f = (f1, f2) be the mapping of R? into R? given by

filz,y) =e"cosy,  fa(x,y) =€ siny.

(a) What is the range of f?
Solution: The range of f is R? except the point (0,0).

(b) Show that the Jacobian of f is not zero at any point of R?. Thus
every point of R? has a neighborhood in which f is one-to-one. Nev-
ertheless, f is not one-to-one in R2.

Proof: The Jacobian of f is

e*cosy —esiny

det .
e sin y e¥cosy

=e” >0,

for every (x,y) € R?. Since f € ¥”, by Theorem 9.21, every point
of R? has a neighborhood in which f is one-to-one, by the inverse
function theorem (Theorem 9.24). On the other hand, since f(x,y +
2nm) = f(z,y), f is not one-to-one on R2.

(¢c) Put a = (0,7/3), b = f(a), let g be the continuous inverse of f,
defined in a neighborhood of b, such that g(b) = a. Find an explicit
formula for g, compute f’(a) and g’(b), and verify the formula (52).
Solution: Let v = e®cosy, v = €% siny, then u? + v? = 2, which
gives z = L log(u? + v?). Since e® = (u? + v?)'/2, we have cosy =

u/e® = i )1/2,andsiny:v/ew—%,whichgivestany:

u2+11f2 T (u?+v

v/u. Since b = f(a) = f(0,7/3) = (1/2,/3/2), and therefore, y =
arctan(v/u). Let g = (g1, g2) be the continuous inverse of f, defined
in a neighborhood of b. Then

1
g1 (u,v) = B log(u? + v?), g2(u,v) = arctan(v/u).
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Clearly, g(b) = g(1/2,v/3/2) = (0,7/3) = a.
What’s more, since

_u_ v __

/ 21 52 21,2
g(uav)Z{_“t}’ v },

u24v?2 u2+ov2

we have
, 1 3 ) 1B
rw=[ g 7| em=[ % 7|
2 2 T2 2

and hence f'(a) - g’(b) = I, which gives

g'(b) = {f'(a)} " = {f'(g(b))} .
Therefore (52) holds.

(d) What are the images under f of lines parallel to the coordinate axes?
Solution:
(i) If the lines are parallel to the z-axis, namely, y = ¢, where ¢ is
some constant, then u = e” cosc, v = e” sin c.
(a) If c=nm + 7, then u =0, v = ke”, where k =1 or k = —1.
(b) If ¢ = nw + 7, then u = ke, where k=1or k= -1, v =0.
(c) Otherwise, v/u = tan ¢, namely, v = utanc, u > 0 or u < 0.
For all the three cases the image under f is a radial with the unique
end point (0,0) (but not including (0,0)).
(ii) If the lines are parallel to the y-axis, namely, = ¢, where c is
some constant, then u = e®cosy, v = esiny. Let k = e > 0, then
u? 4+ v2 = k2. Therefore, the image under f is a circle of R? which
centers at (0,0) and with radius k.

18. Answer analogous questions for the mapping defined by

u=1x%—y>? v = 2xy.

(a) The range of f is R%.

(b) The Jacobian of f is

20 —2y

det { % 2

} = 4(z* + 7).
Thus every point of R? except (0,0) has a neighborhood in which f
is one-to-one. Since f(z,x) = f(—x, —x), f is not one-to-one on R2.

(¢) Let a = (a1,a2) # (0,0), b = f(a), and let g be the continuous
inverse of f, defined in a neighborhood of b, such that g(b) = a. Since
u? +v? = (22 —y?)? + (2zy)? = (22 +9?)?, we have 2% + % = (u? +
v?)Y/2. Thus 2% = %((u2 + 022 4 y), and y? = %((u2 + 022 ).
We then can obtain g according to the signs of a; and as.
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19.

20.

Show that the system of equations
3x4+y—z+u?=0
r—y+2z+u=0

2042y —3z+2u =0

can be solved for x,y,u in terms of z; for x, z,u in terms of y; for y, z,u
in terms of z; but not for x,y, z in terms of u.
Proof: We have

3 1 -1 2u
f’(x,y,z,u):[l -1 2 1},

2 2 -3 2
and thus get
3 1 2u 3 -1 2u
A yu = { 1 -1 1 ], Ag ou = [ 1 2 1 }
2 2 2 2 -3 2
1 -1 2u 3 1 -1
Ay on = [ -1 2 1 ], Ay = [ 1 -1 2 ]
2 =3 2 2 2 -3

It follows that
det(Ay yo) =8u—12, det(Ay ) =21 — 14u,

det(Ay . u) =3 —2u, det(As,.)=0.

Since £(0,0,0,0) = 0, and det(Ay ), det(Ag 2 0), det(A4, ;) all # 0
at (0,0,0,0), the desired result then follows from the implicit function
theorem (Theorem 9.28).

Take n = m = 1 in the implicit function theorem, and interpret the
theorem (as well as its proof) graphically.

Solution: In the special case n = m = 1, the implicit function theorem
can be stated as:

Let f be a ¢’-mapping of an open set £ C R? into R! (i.e., f is a
continuously differentiable real function defined on a subset E of R?), such
that f(a,b) = 0 for some point (a,b) € E. Assume that (D;f)(a,b) # 0,
then there exist open sets U C R? and W C R!, with (a,b) € U and
b € W, having the following property:

To every y € W corresponds a unique x such that (z,y) € U and f(z,y) =
0.

If this = is defined to be g(y), then g is a ¢’-mapping of W into R!,
g(b) = a, f(g(y).y) =0, (y € W), and ¢ (b) = — 2200 The graphical

- N ) (D1f)(ab)"
interpretation is then easy to obtain.
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21. Define f in R? by

(a)

fz,y) = 223 — 322 + 23 + 3y

Find the four points in R? at which the gradient of f is zero. Show
that f has exactly one local maximum and one local minimum in R2.
Solution: The gradient of f is Vf = (62® — 6z,6y> + 6y). Let
Vf = 0, then 622> — 62 = 0, which gives x = 0 or z = 1, and
6y2 + 6y = 0, which gives y = 0 or y = —1. So we get the four points
at which the gradient of f is zero: (0,0), (0,—1), (1,0) and (1, —-1).
Since f(0,0) =0, f(0,—1) =1, f(1,0) = =1 and f(1,—1) = 0, we
claim that (0, —1) is the unique local maximum of f in R? and (1,0)
is the unique local minimum of f in R%. (The uniqueness is clear
since if any point (zg,y0) € R? is a local maximum/minimum of f,
then Vf(zg,y0) = 0.) To see this, let’s analyze each point one by
one:

(i)The point (0,0): Let (h,k) be any point in a neighborhood of
(0,0), then f(h,k) = 2h% — 3h% + 2k® + 3k?. Let k = h, then
f(h,k) = f(h,h) = 4h3, which shows that f(h,k) < 0 if b < 0
and f(h,k) > 0 if h > 0. Therefore, (0,0) cannot be a local maxi-
mum/minimum of f.

(ii) The point (0,-1): Similarly, let (h,—1 4 k) be any point in a
neighborhood of (0, —1), then f(h,—1+k)—1=2h%—3h%+2(-1+
k)3 +3(—14+k)?—1 = 2h3 —3h% +2k3 — 3k% = 2(h3 + k%) — 3(h2 +k2).
Since h3 + k3 < |h3+ k3| < |h3|+|k3| = |h|h? +|k|k? < B2+ K2, if |h],
|k| is sufficiently small (i.e.,(h? 4 k?)'/2 is sufficiently small), we then
have f(h,—1+k) —1 < 2(h? + k?) — 3(h? + k%) = —(h® + k?) < 0,
which gives f(h, —14 k) < 1 when (h? + k?)'/2 is sufficiently small.
This is the same to say that (0, —1) is a local maximum of f.

(iii) The point (1,0): Similarly, let (1+ h, k) be any point in a neigh-
borhood of (1,0), then f(1+h,k) — (=1) =2(1+ h)3 = 3(1 + h)? +
2k3 + 3k% 4+ 1 = 2h3 + 3h% + 2k3 + 3k% = 2(h3 + k3) + 3(h? + k?) >
2(—(h® + k2)) + 3(h% + k?) = h> + k* > 0, when (h? 4 k?)/? is
sufficiently small. This gives f(1+ h,k) > —1 when (h% + k?)'/2 is
sufficiently small and therefore, (1,0) is a local minimum of f.

(iv) The point (1,-1): Similarly, let (1 + h, —1+ k) be any point in a
neighborhood of (1,—1), then f(1+h,—1+k) =2(1+ h)® —3(1 +
R)?2 +2(—1+ k) + 3(—1 4 k)2 = 2h> + 3h% + 2k — 3Kk2. Let k = h,
then f(1+h,—1+k) = f(1+ h,—1+ h) = 4h®. Therefore, (1,—1)
cannot be a local maximum/minimum of f, due to the same reason
as (i).

Let S be the set of all (z,y) € R? at which f(x,y) = 0. Find
those points of S that have no neighborhoods in which the equation
f(z,y) = 0 can be solved for y in terms of = (or for z in terms of y).
Describe S as precisely as you can.

Solution: To satisfy the requirement in the hypothesis, we must
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22.

23.

24.

have 62 + 6y = 0, which gives y = 0 or y = —1 and f(x,y) = 0. If
y = 0, then 223 — 32? = 0, which gives x = 0, or 7 = 3/2; If y = —1,
then 22% — 322 + 1 = 0, which gives (x — 1)?(2z + 1) = 0, namely,
x =1orx = —1/2. Thus the points of S that have no neighborhoods
in which the equation f(z,y) = 0 can be solved for y in terms of x
are (0,0), (3/2,0), (1,-1) and (—1/2,-1).

Give a similar discussion for
fz,y) =223 + 6xy® — 322 + 3y°.

Solution: Since Vf = (622 + 6y? — 6z, 12zy + 6y), Vf = 0 gives 622 +
6y2 — 6z = 0 and 122y + 6y = 0. 12zy + 6y = O implies y = 0 or
r = —1/2, and if y = 0, 622 + 6y> — 62 = 0 implies * = 0 or x = 1; if
x = —1/2, 622 + 6y — 62 = 0 implies 6y + 9/2 = 0, which is impossible.
Therefore, we get the two points at which Vf = 0, namely, (0,0), (1,0),
and f(0,0) =0, f(1,0) = —1.

(i) Since f(h,h) = 8h3, (0,0) is not a local maximum/minimum of f.

(ii) f(1+h,k) = (=1) =21+ h)>+6(1 +h)k* —3(1+h)? +3k*+ 1 =
2h34+3h%+(94+6h)k? = (2h+3)(h?+3k?) > 0, if (h®+k?)'/? is sufficiently
small. Therefore, (1,0) is a local minimum of f.

Suppose f(z,y) = 0, and 122y + 6y = 0. Then y = 0 or x = —1/2. If
y =0, f(x,y) = 0 implies 2% — 322 = 0, which gives * = 0 or z = 3/2; If
x=-1/2, f(x,y) = 0 implies —1 = 0, which is absurd. So the points of
S that have no neighborhoods in which the equation f(z,y) = 0 can be
solved for y in terms of = are (0,0) and (3/2,0).

Define f in R3 by
F(xy1,y0) = 2%y + € + ya.

Show that f(0,1,—1) = 0, (D1f)(0,1,—1) # 0, and that there exists
therefore a differentiable function ¢ in some neighborhood of (1,—1) in
R?, such that g(1,—1) = 0 and

f(9(y1,92) 91, 92) = 0.

Find (D1g)(1,—1) and (D2g)(1, —1).

Solution: Clearly, f(0,1,—1) = 0. Since (D;f)(x,y1,y2) = 2xy; + €%,
(D2f)(x,y1,92) = @?, and (D3f)(z,y1,92) = 1, (D1f)(0,1,-1) = 1 #
0. Therefore, by the implicit function theorem, there exists a differ-
entiable function g in some neighborhood of (1,—1) in R?, such that
g9(1,—1) = 0 and f(g(y1,42),y1,92) = 0. ¢g'(1,—1) = —(A;) "' Ay, where
Ay = (le)(ov L, _1) =1, and Ay = ((DQf)(Ov 1, _1)7 (Ddf)(ov 1, _1)) =
(1,1). Hence, ¢'(1,—1) = (=1, 1), which gives (D1g)(1,—1) = —1 and
(D2g)(1,-1) = —1.

For (z,y) # (0,0), define £ = (f1, f2) by

$2 — y2 Ty

1.2+y2’ 1.2+y2'

fl('r7y) =
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Compute the rank of f'(z,y), and find the range of f.
Solution: Since

y(y2_$2) 7«'($2—y2) B y(y2 — J;Q) x(g)Q — y2)

Azy? — 4z
O B, [ S

(12+y2)2 (I2+y2)2 (x2 + y2)2

then given any (x,y) € R?, we have f'(x,%)(z,y)” = (0,0)”, which means
Z(f'(z,y)) = {(0,0)T}. Therefore, the rank of f'(x,y) is 0.

— T Y —
Letufxzﬂﬁ,vf

w7157 then u? + 4v? = 1, which means the range of f

is an ellipse on R2.

25. Suppose A € L(R™, R™), let r be the rank of A.

()

Define S as in the proof of Theorem 9.32. Show that SA is a projec-
tion in R™ whose null space is .4 (A) and whose range is Z(S).
Proof: Let Y = #(A), then dimY = r, which means Y has a base
{y1,.--,¥r}- Choose z; € R"™ so that Az; = y;(1 <14 <r), and define
a linear mapping S of Y into R"™ by setting S(c;y; + -+ + ¢yr) =
c1z1 + - - - + ¢z, for all scalars cq, ..., ¢,.

Let x € R",and y = Ax € Y. Then (SA)*x = SASAx = SAS(y) =
Sy = SAx, by (68). which means SA € L(R") is a projection in R™.
(i)Suppose x € A (A), then Ax = 0, which gives SAx = 0, and
hence x € A (SA).

On the other hand, suppose x € A" (SA), then SAx = 0, which gives
A(SAx) = 0. By (68), we have A(SAx) = AS(Ax) = Ax, which
shows that Ax = 0. Therefore, x € A4(A).

Thus, A (SA) = A (A).

(ii)Suppose z € Z(S), then z = Sy, for some y € Y. There is some
x € X such that y = Ax, which shows z = SAx and therefore,
z € Z(SA).

On the other hand, suppose z € Z(SA), then z = SAx. Since
Ax €Y, we have z € Z(95).

Hence, Z(SA) = Z(S).

Use (a) to show that
dim A (A) + dimZ(A) = n.

Proof:

(i) Since for any y € Y, we can write y = Y .._, ¢;y;, for some
¢, 1 <4 <r. Then Sy = Y.|_, ¢;z;, that is, Z(S) is spanned
by z;, 1 < i < r. Then dim#Z(S) < r, by Theorem 9.2. Since
H(SA) =#(SA), by (a), dimZ(SA) = dimZ(S) < r. Suppose k =
dimZ(SA), k <r, let {uy,...,u;} be a basis of Z(SA), then R"™ has
a basis containing uy, ..., u, by Theorem 9.3(c). Denote this basis by
{ui,...,u,}, then for any x € R", x can be written asx = ) . | z;u;.

Since Y28 | zju; € Z(SA), we have Y, | ziu; € A (SA), due to

K3
1=
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26.

27.

the fact that SA is a projection in R™. In particular, u; € A (SA),
k+1<i<n,andsince u; € 4/ (SA)(k+1 < i< n)is independent,
we must have dim.4"(SA) > n—k > n —r. Since 4 (SA) = A (A),
by (a), we hence have dim A (A) > n —r.

(ii) On the other hand, suppose dim.4"(A) = s, and let {vy, ..., vs} be
a basis of ./"(A), then by Theorem 9.3(c), R™ has a basis containing
V1i,...,Vs. Denote this basis by {vi,...,v,}, then for any x € R",
x can be written as x = Y .| x;v;. Since > i, z;v; € A (A), we
then have Ax = A(Y" vi) = AQC_  wivi) + A g Tivi) =
A wivi) = 2o ziAvy € Z(A). Hence {Avi}(s+1 <4 <
n spans Z(A), which gives dimZ(A) < n — s, namely, r < n — s.
Therefore dim. A (A) =s <n —r.

Combine (i) and (ii), we conclude that dim. A (A) = n—r = n —
dimZ(A). Tt follows that dim.4"(A) + dimZ(A) = n.

Show that the existence (and even the continuity) of D1af does not imply
the existence of Dy f. For example, let f(z,y) = g(x), where g is nowhere
differentiable.

Proof: By Theorem 7.18, there exists a real continuous function on the
real line which is nowhere differentiable. This gives the existence of g.
Note that Dof = 0, which gives D1of = 0, for any (x,y) € R?. Clearly,
D15 f is continuous. But D;f does not exist at any x since g is nowhere
differentiable.

Put f(0,0) =0, and
_ zy(@® —y?)
f(x7y) - .’II2 + yg
if (x,y) # (0,0). Prove that

(a) f, D1f, Dof are continuous in R?;
Proof:
(i) Since |zy| < (22 +y?)/2,

ay(x® —y?) eyl 2 =P 1
|f(z,y)| = | | = < o|a?

2
$2+y2 x2+y2 - 92 |

-y

)

and therefore,

1
lim z, < lim —|z?—4?| =0,
(z,y)—(0,0) (. u)l < (z,y)—(0,0) 2| v

which gives that

lim z,y) = 0= f(0,0),
(Ly)ﬁ(o,o)f( y) £(0,0)

namely, f is continuous at (0,0). Hence f is continuous in R2.

(ii) For (z,y) # (0,0), we have

I’(IA _ 4x2y2 _ y4)
(22 + 12)2

y(z® —y?)
2 + 32

(le)(x’y>: ’ (D2f)(may):

)
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and

f(x70 _f(070) . f(x,O)_
D150 = iy LG O < oy L0 =
(D21)(0.0) = ling HEDZIOD _ yy [O9)
Since
2 _ .2 A 2,2
(D] = L5 M <y
(D2l = |2V v el o Sy ]

(2 +y?)? (22 +y?)?
R Ap20? 22 42 Ap20?
<£L'|<|2 y2|2+ 2 yg 2):|x< 2 y2|+ 2 y2 2)
(2 +y?)? (22 +9?) 2 +y (22 4 y?)
<Jz[(1+1) = 2|z],

we have
lim D z, < lim =0,
oo PrI@YI<  lim 1]
lim D z,y)| < lim 2|z| =0,
o (PP @Yl < Jink o 2l

which gives

(x,y%EO,O)(le)(x’y) =0=(D1/)(0,0),

(z,y%zn(o,o)(DQf)(m’y) =0=(D2f)(0,0).

Therefore, Dy f and Dy f are continuous at (0,0) and thus are con-
tinuous in R2.

(b) Diaf and Do, f exists at every point of R?, and are continuous except
at (0,0);
Proof: We have

(D2f)(x,0) — (D2f)(0,0)

Di2f)(0,0) = i
D2f)(0.0) = Mo z—0
4
— g P2D@O oy,
(2,)—+(0,0) x (z,9)—(0,0) 4
and (DL F)(0.3) — (DL1)(0.0)
. yY) — 1 )
D 0,0)= 1 !
(L211)(0,0) ()5 (0,0) y—0
D, £)(0 2
(z,y)—(0,0) Y (z,y)—(0,0) Y
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For (z,y) # (0,0), we have

26 + 92ty — 9x2yt — 48
(22 + 2)3

(Draf)(z,y) =

)

and
4

xt — 4532y2 —y
(22 + y2)3

Then Di»f and Do f exist at every point of R?. Note that we have

(D1 f)(z,y) =

11

(D) =041, (D)) =141,

n2

and therefore, Dy f and Ds; f are not continuous at (0,0). It’s clear
that Diof and Ds; f are continuous at every point other than (0, 0).

(c) (D12f)(0,0) =1, and (D21 f)(0,0) = —1.
Proof: This has been showed in (b).

28. For t > 0, put

T (0 <z <WVP)
o, t) =4 —x+2vt (Vt<z<2V1)
0 (otherwise),

and put ¢(z,t) = —p(z,|t|) if t <O0.
Show that ¢ is continuous on R?, and

<D2¢)<x’ 0) =0

for all z. Define

Show that f(t) =t if |t| < ;. Hence

£(0) # / (D), 01

Proof:

(i) First we show that ¢ is continuous on R?. Note that we only need
to prove for the case t > 0. If t = 0, we then have ¢(z,t) = 0, for any
x, and clearly it is continuous. Now we assume that ¢ > 0. Fix some
(.’L’Q, to) € R2.

(a) If 0 < ¢ < \/fo, then ¢(xg,to) = xo. If we put g(x,t) = vVt —x, then g
is continuous on R? and g(z¢,t) > 0. Hence there is a neighborhood V.,
of (zo,t0) such that (z,t) € V;,, implies g(x,¢) > 0. Similarly, if we put
f(x,t) = x, then f is continuous on R? and f(xg,tp) > 0. Hence there is a
neighborhood V;., of (xg,to) such that (z,t) € V;,, implies f(z,t) > 0. Let
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r = min(ry,72), then for any (x,t) in V; of (zg,%), we have f(z,t) > 0
and g(z,t) > 0, namely, 0 < = < v/t. Therefore p(z,t) = x and given any
€ > 0, we can pick § = min(e, ), then for (z,t) € Vs of (xg,10), we have
(2, ) — @0, to)] = | — 0| < 8 < e

(b) If \/ty < zog < 24/fo, then similarly as (a), we can pick an r > 0,
such that (z,t) € V. of (zg,tp) implies vt < x < 2y/t. Then given any
e > 0, we can pick § = min(e/2, e\/to/4,7), then for any (z,t) € Vs of
(0, o), we have [p(z,£) — @0, to)| = [(—2 + 2VE) — (—z0 + 2/B5)| =
w0 — @+ 2(VE = VEo)| = |wo — @ + 21| < |z — 2] + 250k <
oo — ] + 2158l < 54 25/l < e/2+ /2=

(c) If zp < 0 or zg > 24/tg, then ¢(xg,to) = 0, and similarly as in (a) and
(b), we can pick neighborhood V. of (z¢, tp) such that (z,t) € V,. implies
x < 0or x> 2v/t, and therefore ¢(x,t) = 0.

(d) If 29 = 0, then @(xo, tg) = 0 < v/to, we then have lim, ¢)_,(0,40) ¢ (2, 1) =
0. To see this, note that if z < 0, then p(z,t) = 0 and thus

limy <o, (2,6 (0,t0) (@, ) = 05 if 2 > 0, then 0 < 2 < \/fo implies that for
any x we can pick a neighborhood of ¢y in which 0 < = < v/t and therefore
p(x,t) = x, thus lim, o, (2,6 (0,t0) ©(2, t) = 0. Similarly, if zo = /%o, then
¢(x0,t0) = V/To, and we have lim, 1, /75.1,) (2, 1) = V0. If 20 = 2+/10,
then p(z0,t9) = 0, and we have lim, ;) 2,/75,40) P(@: ) = 0.

Combine the above cases, we conclude that ¢ is continuous when t > 0,
and therefore is continuous on R2.

(ii) We have

(Da)(,0) = fim === = [ ="

If 2 < 0, then ¢(x,t) = 0, for all ¢, and thus (Dsp)(x,0) = 0. If z > 0,
then & > 24/|t| when [t| is sufficiently small, and therefore, ¢(x,t) = 0,
which gives (Day)(z,0) = 0. Hence (Dag)(z,0) = 0, for all x.

(iii) If |t| < 1/4, then \/|t| < 1/2 and therefore 24/]t| < 1. Then

1 24/ t|
£(t) = / ol t)dz = / o, t)da

-1

If t > 0, we have

2Vt Vi 2Vt
0= [ etwnde= [ ados [ ot 2viae =t
0 0 Vi
and if t < 0, we have
2v—t V=t 2%
f(t) = / p(z,t)dx = / (—z)dx + / (z — 2v/—t)dz = t.
0 0 V=t

Thus, f(t) =t if |{| < 1/4. Then f'(0) = 1. But [ (Dag)(z,0)dz = 0,
which shows f/(0) # fil(Dmp)(x,O)da:.
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29.

30.

Let F be an open set in R™. The classes €¢'(F) and €¢”(F) are defined in
the text. By induction, ¥¥)(E) can be defined as follows, for all positive
integers k: To say that f € €*)(E) means that the partial derivatives
D1 f,...,D,f belong to €*~D(E).

Assume f € €*)(E), and show (by repeated application of Theorem 9.41)
that the kth-order derivative

Diyiyvi f = Diy Diy...Di f

is unchanged if the subscripts i1,...,i; are permuted.
For instance, if n > 3, then

Di213f = D311 f

for every f € €.

Proof: It’s sufficient to prove that for any permutation iqis---i; of
{1,2,..,k}, Dijiy-i, = Di2..;. Therefore, it’s sufficient to prove that
for any p,q € {1,2,...,k}, Dj,.ccipviyiny, = Diyoiigerniyyi - S0 it’s sufficient
to prove that Dy, ... i, ...i, = Diy...i 3,4, for any consecutive i, ig. But
this is implied by Theorem 9.41, since f € €*)(E).

Let f € € (E), where E is an open subset of R". Fix a € E, and
suppose x € R™ is so close to 0 that the points

p(t) =a+itx

lie in £ whenever 0 < ¢ < 1. Define

for all t € R! for which p(t) € E.

(a) For 1 < k < m, show (by repeated application of the chain rule) that

h(k) (t) = Z(Dhlk f)(p(t»xil ©r Ly

The sum extends over all ordered k-tuples (iy,...,7;) in which each
i; is one of the integers 1,...,n.

Proof: We prove this by induction on k.

(i) k=1, then

n

() = f(p)P'(t) = f'(p(t)x = D _(Dif)(p(1)xs,

i=1

which is the desired result.
(ii) Suppose the result holds when k = s, that is

hO(t) =Y (Do, )0, - i
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The sum extends over all ordered s-tuples (i1, ..., 45) in which each ;
is one of the integers 1,...,n. When k = s + 1, we have

R () = (WD) = D (Diya, )@@, -2,

= Z(Dilmigf)/(p(t))xh Ty, = Z(Z(Dmmisf)(P(t))xj)l’il R

=) Z jinis )P, i) =Y (Diyoiy ) (P(E)) i, -

The sum extends over all ordered (s+ 1)-tuples (i1, ..., 4541) in which
each i; is one of the integers 1, ...,n, which is the desired result.

By Taylor’s theorem (5.15),

! p k) 0 h(m) ()

Z -
for some ¢ € (0,1). Use this to prove Taylor’s theorem in n variables
by showing that the formula

m—1
fla+x) Z,;Z (Do @), -, + 1)

represents f(a+ x) as the sum of its so-called “Taylor polynomial of
degree m — 1,” plus a remainder that satisfies

i %)

x—0 |X|m 1

=0.

Each of the inner sums extends over all ordered k-tuples (iy, ..., k),
as in part (a); as usual, the zero-order derivative of f is simply f, so
that the constant term of the Taylor polynomial of f at a is f(a).
Proof: By (a), h(1) = f(p(1)) = f(a+x), and h(¥)(0) =
Z(Dlllkf)(p(o))‘rh Cr Ly, = Z(Dil"'ikf)(a)xil © L forl1 <k <
m — 1, h{9(0) = h(0) = f(p(0)) = f(a).

h(m) (t) = Z(Dll?mf)(p(t))l‘“ g, and let

h(m)(t) _ Z(Dil”'i-mf)(p(t))xil © Ty,

m)! m!

r(x) =

we then have

100 160l _ | S (Dii (00,

T e i1

Z|( iveim ) PO |2y |- |2, | Mx[™ M
ml|x|m-1 = m!|x|m-1 - $| :
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Hence M
tim || < i “lx| =0,

x—0 |X|m 1| T x—=0m
and therefore,

r(x)

x—>0 | |X|m 1

‘ = 0 i.e., lim T =

The formula

A0 (m)

then gives us that

Z(Dil'”ikf)(a)xil T Ty, T+ T‘(X).

|

fla+x) =

x>~
Il

0

(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as
written in part (b). For instance, Dj;3 occurs three times, as Dii3,
D131, D311. The sum of the corresponding three terms can be written
in the form

(D2D3f)( )%xs

Prove (by calculating how often each derivative occurs) that the Tay-
lor polynomial in (b) can be written in the form

) (D1 Dy )(@) sy e

1 n
sl

Here the summation extends over all ordered n-tuples (s, ..., s, ) such
that each s; is a nonnegative integer, and s; +---+ s, < m — 1.
Proof: Fix sq,...,s, and let k = s; + - - - + s, then the coefficient of
a1 .- z®" in the Taylor polynomial in (b) will be

o (Df D f)(a) B _ (DD f)(a)

s1!e-sp! s1!e - sp! ’

which shows that the Taylor polynomial in (b) can be written in the

form (D' - Din f)(a)
1.,.. fln a 51 s
D

it
1
sy

n

31. Suppose f € €4 in some neighborhood of a point a € R?, the gradient of
fis 0 at a, but not all second-order derivatives of f are 0 at a. Show how
one can then determine from the Taylor polynomial of f at a (of degree
2) whether f has a local maximum, or a local minimum, or neither, at the
point a.
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Extend this to R™ in place of R2.
Proof: Since the gradient of f is 0 at a, we have

1

flatx) = f(a)+ 5> (Dii @)z, +r(x)

_ 1 Dy Dqo Z1
- f(a)+2(x1,x2){ D31 Doy }( To

)47 = @) + T Hx ),
then f has a local maximum at the point a if H is negatively determinant,
and f has a local minimum at the point a if H is positively determinant.
If we can find x and y so that x” Hx > 0, but y’ Hy < 0, then f has
neither a local maximum or local minimum at the point a.

The situation and conclusion in R" is similar as in R?, only now

Dy f Diof -+ Dinf
H— l Dorf Daaf -+ Dauf |

Integration of differential forms

. Let H be a compact convex set in R*, with nonempty interior. Let f €

¢ (H), put f(x) = 0 in the complement of H, and define fo as in
Definition 10.3.

Prove that |, g J is independent of the order in which the k integrations
are carried out.

Proof: Since H is a compact set in R*, H is closed and bounded, by
Theorem 2.41. Therefore, H is contained by some I*. Since f(x) = 0 in
the complement of H, we can define [, f = [,. f. But note that f may
be discontinuous on I*.

Now, suppose 0 < § < 1, given any x € H°, we associate a set B(x) of
points which lie in H' = H — H® (namely, the limit points of H) to x such
that S(x) ={y:|ll <i<k,y;, € H,y;; = x;,for j #i,and |y;; — z;| < 6}.
In the case that there are two or more y; for fixed 7, pick the one that gives
the minimal |y;; — 2;|(If again, two or more points satisfy this condition,
pick any one of them). Then it’s clear that given any x € H®, S(x) is
uniquely defined, since H is convex. Next, define d(x) = maxy,cs(x) [yi —
x|, for x € H®, and define

1 (x € H° and d(x) > 9)
g(x) =< d(x)/6 (x€ H° and d(x) < 9)
0 (x ¢ H®)

If we define F(x) = g(x)f(x), x € I*¥, then F € €(I*).
Put y = (21,...,2x), X = (y,z). For each y € I*~!  the set of all z}, such
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that F(y,xr) # f(y,zx) is either empty or two segments either of whose
length does not exceed §. Since 0 < g < 1, it follows that

b
Fecr(9)—froor ()] = | / (F(y. i)~ Fy, 2))dx] < 28[|]], (v € I*).

As 6 — 0, we have that fx_1 is a uniform limit of a sequence of continuous
functions. Thus fi_1 € € (I*71), and the further integrations present no
problems.

This proves the existence of the integral | g J- Moreover, we have that

[ Pexax— [ seax) < il

and this is true, regardless of the order in which the k single integrations
are carried out, by our definition of S(x). Since F € ¢(I*), [ F is unaf-
fected by any change in this order, by Theorem 10.2. Hence the same is
true of [ f.

This completes the proof.

. For i =1,2,3,..., let p; € €(R') have support in (27¢,2'7%), such that
f@i =1. Put

Fla,y) =Y lpi@) = irr(x)]ei(y)
i=1

Then f has compact support in R?, f is continuous except at (0,0), and

/dy/f(a:,y)dx:O but /dx/f(x,y)dy: L.

Observe that f is unbounded in every neighborhood of (0,0).

Proof: Since 2'7% < 1, then the support of f must be bounded. By the
definition of support, it is closed, and therefore, f has compact support
in B2, by Theorem 2.41.

Clearly, (0,0) is not in the support of f and therefore, f(0,0) = 0. On
the other hand, given any = € R!, there is at most one 4 such that x €
(27%,217%) and therefore, p;(x) # 0. Let y = x, then

o0

f(z,2) =Y i) = pin (@) pi(e) = ¢F (),

i=1

for some i if we keep x fixed. Since f p; = 1, we have that there is some
x; € (27%,217%) such that ¢;(z;) > 1, if i is sufficiently large. Suppose, on
the contrary, this is not true, then [¢; < 1- (2177 —27%) =277 < 1, if
i is sufficiently large, which is a contradictory since [ ¢; = 1. Note that
r; — 0if ¢ — oo, and hence

lim f(x;,2;) = @2 (z;) > 1# 0= £(0,0).

1—00
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Thus, f is not continuous at (0,0). Fix any (zo,y0) € R?, (z0,y0) # (0,0).
Suppose z¢ € (277,2179) and yo € (27F,217F), then f(xo,y0) = [¢r(z0) —
er+1(wo)ler(yo) = cpj(zo)pr(yo), where ¢ = 1(if j = k), ¢ = —1(if
j = k+1) and ¢ = O(otherwise). Since p; € € (R'), |p;| < M, for some
M > 0, and given any € > 0, we can get a § > 0 such that |y — yo| < /2
implies y € (27%,217%) and |px(y) — we(vo)| < €¢/M; |z — x0| < /2
implies z € (277,2'77). Then ((z —x0)% + (y —y0)?)*/? < § and | f (=, y) —
f(@o,y0)l = lew;(@)pr(y) — cpj(@o)pr(yo)| < [elM|pr(y) — wr(yo)l < e,
which means f(z,y) is continuous at (zo, yo)-

We have

[ [ 1w~ | "ty o) - gy € (27,2

—i

= /221i gpi(y)dy/[%(x) — pit1(z)]dz

—1i

/dm/f(x,y)dyZ/l; dw/sol(x)sol(y)dy

[ i [ @) - )y e 27202 2)

—1

= /2“ soi(y)dy(/soi(x)dfv—/%H(fﬂ)dx) =0,

and

_ / " (@) [erwis+ [ " s [teits) - eimswpiy

/2 -
- /1; o1 (z)dr + /jl @i(m)dw(/ i(y)dy — /Spiil(y)dy) —1

Note that in the previous statement, actually given any € > 0, there is
some z; € (27¢,217%) such that ¢;(z;) > e, if i is sufficiently large. Suppose
that, on the contrary, this is not true, then [¢; < e(2'7"—27") = €277 < 1
if 7 is sufficiently large, which is contradict to the fact f w; = 1. Therefore,
we must have
Jim f(@i,25) = 9 (2:) > e.

Since x; — 0 as ¢ — oo, this means in every neighborhood of (0,0), we
can pick some (z;, ;) such that f(z;,x;) > €. Since € is arbitrary, this is
equivalent to say that f is unbounded in every neighborhood of (0, 0).

3. (a) If F is as in Theorem 10.7, put A = F/(0), F1(x) = A~'F(x). Then
F1(0) = I. Show that

Fl(X) = Gn oGn—l O-:-- OGl(X)
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in some neighborhood of 0, for certain primitive mappings Gi,...,G,,.
This gives another version of Theorem 10.7:

F(x) = F/(0)G, 0 Gp_1 0 0 Gy(x).

Proof: The proof process is similar as that of Theorem 10.7. Let
H =F;, and put H = H;. Assume 1 < m < n — 1, and make the
following induction hypothesis (which evidently holds for m = 1):
V,, is a neighborhood of 0, H,,, € € (V,,,), H,,(0) = 0,
[H!,(0)](m;m) =1 and P,,_1H,,(x) = Pr_1%, (X € V).

We then have

n
HnL(X) - PnL—lX + Z ai(x)eiy

where a,,, ..., a, are real ¢’-functions in V;,,. Hence

n

H,, (0)e,, = Y (Dmav)(0)e;.

i=m

Since [H/, (0)](m;m) = 1, the previous equation gives that
(D7rba7n)(0) =1
Define

G (x) = X+ [am(X) — Tm]em (x € V).
Then G, € €'(Vy), Gy, is primitive, and G/, (0) is invertible, since
(Dyan)(0) =1 #0.
The inverse function theorem shows therefore that there is an open
set Uy, with 0 € U,, C V,,, such that G,, is a 1-1 mapping of
U, onto a neighborhood V41 of 0, in which G,,! is continuously
differentiable. Define H,,, 11 by

H,11(y) = Hp 0 Gl (y) (¥ € Vint1).

Then Hy, 1 € €' (Ving1), Hyg1(0) = 0, and [H;, ,(0)](m + 1;m +
1) =1 (by the chain rule). Also, for x € U,,,

PoH,,11(Gp(x) = PHp(X) = P [Pro1X + ap(X)en, + -+ -]

= Pno1x+ ap(X)em = PGy (x)
so that
PmHm-i-l(Y) =Pny (y S Vm-i-l)-

Our induction hypothesis holds therefore with m + 1 in place of m.
If we apply this with m = 1,...,n — 1, we successively obtain

Fi=H=H;=HzoG;=---=H,0G,_10---0Gy
in some neighborhood of 0. Since H, (x) = P,_1x + o, (x)e,, H, is

primitive. This completes the proof.
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(b) Prove that the mapping (z,y) — (y,x) of R? onto R? is not the
composition of any two primitive mappings, in any neighborhood of
the origin. (This shows that the flips B; cannot be omitted from the
statement of Theorem 10.7.)

Proof: We have A = F/(0) = [ 1 0
AGs o Gi(x), for certain primitive mappings G; and Gg. There-
fore, F' is not the composition of any two primitive mappings, in any
neighborhood of the origin.

01 } and by (a), P(x) =

4. For (z,y) € R?, define
F(x,y) = (e"cosy — 1,e"siny).
Prove that F = G5 o G1, where
Gi(z,y) = (e“cosy — 1,y)

Ga(u,v) = (u, (1 + u) tanv)

are primitive in some neighborhood of (0, 0).
Compute the Jacobians of G, Go, F at (0,0). Define

Hy(z,y) = (z,¢" siny)

and find
H;(u,v) = (h(u,v),v)

so that F = H; o Hy in some neighborhood of (0, 0).

Solution: G2oG(z,y) = G2(Gi(z,y)) = Ga(e® cosy—1,y) = (e* cosy—
1,e*cosytany) = (e cosy — 1,e"siny) = F(x,y).

Jc,(0,0) = 1, Jg,(0,0) = 1, and Jp(0,0) = Ja,(G1(0,0)) - I, (0,0) =
Jc,(0,0)-Jg,(0,0) =1.

Since F = Hy o Hy, we have h(u,v) =e*cosy — 1, u = x and v = e* siny.

Hence h(u,v) = ve2* —v? — 1.

5. Formulate and prove an analogue of Theorem 10.8, in which K is a com-
pact subset of an arbitrary metric space. (Replace the functions ¢; that
occur in the proof of Theorem 10.8 by functions of the type constructed
in Exercise 22 of Chap.4)

Proof: We need to prove the following version of Theorem 10.8:
Suppose K is a compact subset of an arbitrary metric space X, and {V,}
is an open cover of K. Then there exist functions 11,...,10s € € (X) such
that

(a) 0<4¢; <1lforl<i<s;
(b) each v; has its support in some V,, and
(¢) Y1(z) 4+ -+ ¢s(x) =1 for every z € K.
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7.

Here is the proof:
Associate with each € K an index a(z) so that € V(). Then there
are open balls B(z) and W (z), centered at x, with

B(x) CW(zx) CW(x) C Vi)
Since K is compact, there are points 1, ..., s in K such that

Define

= , (zeX,1<i<ys),
pwe(a) (®) + PpET(E)

where pg(z) = in]fﬂ d(z,z) and d is the metric of X. By Exercise 22 of
zE

Chap.4, we know that ¢; is a continuous function on X whose range lies
in [0, 1], that ¢(x) = 0 on W¢(x;) and ¢(x) =1 on B(x). Define ¢ = ¢
and

Yigr = (L=p1) - (1= pi)pip
fori=1,...,s — 1.
Properties (a) and (b) then are clear. The relation

Yr+ i =1=(1—p1) - (1-¢i)

is trivial for ¢ = 1. Suppose it holds for some i < s, addition of the above
two equations yields the previous equation with ¢ + 1 in place of i. It
follows that

Y dila) =1-[[1 —¢i(@)] (€ X).

i=1 i=1
If x € K, then x € B(z;) for some ¢, hence p;(z) = 1, and the product in
the last equation is 0. This proves (c).

Strengthen the conclusion of Theorem 10.8 by showing that the functions
1; can be made differentiable, and even infinitely differentiable. (Use
Exercise 1 of Chap.8 in the construction of the auxiliary functions ¢;.)

Proof: Let the radius of B(x;) and W (x;) be r; and R;, define ¢; to be

1 (Ix —xi| <y
X—T; 2
pi(x) = § exp(—Ep) (i <Ix—x| < Ri) |
0 (Ix —xi| > R;)

then the proof process is the same as that of Theorem 10.8.

(a) Show that the simplex Q" is the smallest convex subset of R* that
contains 0, eq, ..., €.
Proof: First we will prove the following statement by induction:
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Suppose E is convex, p; € E, A\; > 0,and > \; = 1, then _ \jz; € E.
(i) The case i = 1 is trivial;

(ii) Suppose the statement holds when ¢ = n. Let i = n + 1, then we
have Y7\, = 1, and

n+1 n .
A
Z A = Z AititAn41@ns1 = (1=Anga) Z mxi_’_)‘n-‘rlxn-ﬂ.
= =t =1
Since
— N (1 Apa) = 1,
;1_)‘"+1 1_>\n+1; R D W ( 1+1)

Dy 173\7"“961 € E, by induction hypothesis. Therefore, 1! \iz; €
FE due to the convexity of E.
Suppose now E C R*, FE is convex and E contains e;, 0 < i < k,
ey = 0. For every x € QF, x = Zf:o Aie;, 0 < i <k, where \; <0,
and Zf:o A; = 1. Therefore, we must have x € F, which means
Q" CE.

(b) Show that affine mapping take convex sets to convex sets.
Proof: Suppose E is convex, f(x) = £(0) + Ax is an affine mapping
defined on E. For any yi, y2 € f(E), there exists x1, xo € E
such that f(x;) = y1 and f(x3) = y2. Suppose 0 < A < 1, then
Ay1+ (1= N)y2 = A£(0) + Ax1) + (1 — N)(£(0) + Axo) = £(0) +
A(Ax1 + (1 — A)x32). Since E is convex, Ax; + (1 — A\)x2 € E, and
hence Ay1 + (1 — M)y € £(E), which gives that f(E) is convex.

8. Let H be the parallelogram in R? whose vertices are (1, 1), (3,2), (4,5), (2,4).
Find the affine map T which sends (0,0) to (1,1), (1,0) to (3,2), (0,1) to
(2,4). Show that Jr = 5. Use T to convert the integral

a:/ e* Ydxdy
H

to an integral over I? and thus compute a.

Solution:
o= 1)(2)+ (1)

Clearly, J; = 5, and therefore

)
o= 5/ e =2 dtds = ~(e —1)(1 —e™?).
12 2

9. Define (z,y) = T'(r,6) on the rectangle

0<r<a, 0<0<2m
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by the equations
x =rcosé, y=rsind.

Show that T maps this rectangle onto the closed disc D with center at
(0,0) and radius a, that T is one-to-one in the interior of the rectangle,
and that Jr(r,0) =r. If f € €(D), prove the formula for integration in
polar coordinates:

/Df(x,y)do:dy/oa /OQW f(T(r,0))rdrdd.

Proof: Denote the rectangle 0 < r < a, 0 < 6 < 27 by E. Since
22+ 9% =12 < a? T(E) C D. Let (z9,y0) be any point of D, then
23 +y2 < a® Pick r, 0 < r < a, and 23 + y2 = 72, and let 6 be
xg =rcosb, yo = rsinf, 0 < 0 < 27. Then (zg,y0) = T(r,0). Hence T
maps E onto D.

In the interior of FE, we have 0 < r < a and 0 < 6 < 27w. Suppose
T(r1,601) = (z,y) and T(r2, 02) = (x,y), then 2% +4? = r} = r2 and hence
ry = ro > 0. Therefore cosf; = cosfy and sinf; = sinfs, which gives
01 = 05, since 0 < 61,05 < 2w. Thus T is one-to-one in the interior of the
rectangle E, and clearly Jr(r,0) = r.

Now, let Dy be the interior of D, minus the interval from (0,0) to (a,0),
and let Ey be the interior of £. Then T maps Ej one-to-one onto Dy,
and Jr(r,0) = r # 0, for all (r,0) € Ey. Theorem 10.9 thus applies to
continuous functions whose support lies in Dg. To remove this restriction,
let’s proceed as in Example 10.4.

Define ¢(z,y) on R? as follows:

(ii) When (z,y) € Dy, since T is one-to-one and onto from Ey to Dy, there
exist an unique (r,0) € Ey such that T(r,0) = (z,y). Let 0 < § < a/2.
(it.a) p(x,y) =1, when § <r <a—¢ and § < 0 < 27 — §;

ii.b) p(z,y) =%, when 0 <7 <0 and § <0 < 27 — §;

Eii.c) o(z,y) = %5, whena —d <7 <aand § <0 <21 —§;
(ii.d) cp(x,y):g,when§§r§a75and0<9<6;

(il.e) p(z,y) = 2 when § <r <a—d and 2r — § < 0 < 2m;
(iL.f) (z,y) = %%, when 0 <r < § and 0 < § < §;

(il.g) o(x,y) = W, when 0 <r < § and 2 — 0 < 0 < 27;
(ii.i) p(z,y) = (ag;)e,Whena—6<r<aand0<9<5;

(ii.j) p(z,y) = W*fe),whena—5<r<aand 2r — 0 <0 < 2m.

Note that ¢(z, ) is continuous on R? since T is one-to-one and continuous
on Ey. As in Example 10.4, define F(z,y) = f(z,y)p(z,y), (z,y) € D,
then F € €(D). The area of R? where F is different from f is 2(76% +
7ra2—71'(a—5)2—|—[7m2—7T(52—(7ra2—7r(a—6)2)]-%) = 2(277@(5—&—%&(@—26)) =
da(a — 20 4 4m). Hence

| / F(z, y)dzdy - / f(,y)dady| < Sa(a — 25 + 4m)| ]|
D D
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10.

As 6 — 0, we get

/f(x,y)dxdy: lim/ F(z,y)dzdy.
D 6—0 D

Since the support of F lies in Dy = T(Ey), and T is a 1-1 €’-mapping
from Ey to Dy, Jp(r,8) = r # 0 for all (r,0) € Ey, Theorem 10.9 gives
that

/DF(%y)d;vdy:/DO F(m,y)dxdy:/ F(T(r,0))rdrdd,

Ey

and thus
a 2m
/ f(z,y)dady = lim/ F(T(r,0))rdrdd :/ / f(T(r,0))rdrdd.
D 6=0J g, o Jo
Let a — oo in Exercise 9 and prove that

/R flay)dudy = /0 h /O (. 0))rdrds,

for continuous functions f that decrease sufficiently rapidly as |z| + |y| —
oo. (Find a more precise formulation.) Apply this to

fx,y) = exp(—2® — y°)

to derive formula (101) of Chap.8.
Proof: The above statement holds when

lim |f(T(r,0))r*** =0, A>0

=00

Let’s see how to prove this. Since

/ f(z,y)dzdy = lim / f(x,y)dedy
R2 a—oo Jp

~ lim /0 ’ /O (. 0))rdrdd = /0 h /O (. 0))rdrds,

a— o0

if the last limit exists.
To prove the existence of the last limit, it is to say that given any € > 0,
there exists an A > 0, such that a’ > a > A implies

|/aa /027r f(T(r,0))rdrdd| < e.

Pick A; > 0 such that a > A; implies |f(T(r,0))|r*** < 1, namely,
|f(T(r,0))| < r=27*. Since

|/aal KW f(T(r,0))rdrdd| < /a A%f(T(r,G))VdrdH
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11.

a’ 27 )
< / / P A drdf = =5 (a7 — a=?),
a 0 A

for @’ > a > A;. Now pick A, > 0 such that ' > a > A, implies

' <a* < Ay < 2. Let A = max(A;, Ay), then when a’ > a > A,
2
|/ / (T r@rdrd9\<—( H—ad)
2 Xe
AT X =ay o AT AE
<>\(a +a )<>\ o =€

Apply this result to f(z,y) = exp(—2% — y?) gives that

2m
/ exp(—z? — 32 dxdy—/ / exp(—r?)rdrdf = r.
R2

Therefore,
/ e ds = Nz

Define (u,v) = T(s,t) on the strip
0<s < o0, O0<t<1

by setting u = s — st, v = st. Show that T" is a 1-1 mapping of the strip
onto the positive quadrant @ in R?. Show that Jr(s,t) = s.
For z > 0, y > 0, integrate

s—1

wTle MY le?

over @, use Theorem 10.9 to convert the integral to one over the strip,
and derive formula (96) of Chap.8 in this way.

(For this application, Theorem 10.9 has to be extended so as to cover
certain improper integrals. Provide this extension.)

Proof: For any (u,v) € @, we can pick (s,t) from the strip such that
s=u+vandt= " (s1,t1), (s2,t2) are in the
trip, and T'(s1,t1) = T(S2,t2), then s1 — s1t1 = s2 — Sote and s1t1 = sata.
Summing up these two equations gives s; = s > 0, and by the second
equation we have ¢; = to. Hence T is one-to-one. Clearly, Jr(s,t) = s.
The extension of Theorem 10.9 here should be:

Suppose T is a 1-1 €’-mapping of an open set E C R* into RF such that
Jr(x) # 0 for all x € E. If f is a continuous function on R* whose support
lies in T(E), then

|y = [ rreo)lmax.
Now, we have

e} 1
/ u”te T Y e dudy = / / (s — st)® Le= (=8 (st)y~Letsdsdt
Q 0 Jo
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12.

[e’e) 1 1
:/ s“y*le*SdS/ ty’l(l—t)””’ldt:F(ery)/ 11— t)vldt,
0 0 0

namely,

e} 0o 1
/ ux_le_“du/ vl dy :F(x+y)/ 11 —t)vtat,
0 0 0
namely,
1
I(z)(y) =T(z+ y)/ " 1 — )Y tdt,
0

and therefore,

! z—1 _ \y—1 _ F(m)F(y)
/0 (1 —1) dt*irxjuy .

Let I? be the set of all u = (uy,...,uy) € R¥ with 0 < u; < 1 for all 4; let
QF be the set of all x = (x1,...,2;) € R* with z; >0, Y x; < 1. (I*is
the unit cube; QF is the standard simplex in R*.) Define x = T'(u) by

Ty =u1,xe = (1 —up)ug, ...,rp = (I —up) - (1 — ugp—1)up.

Show that .

k
=1

i=1
Show that T maps I*¥ onto QF, that T is 1-1 in the interior of I*, and that
its inverse S is defined in the interior of Q* by u; = z; and

Lq

U; =
=z = —mi

for ¢ = 2, ..., k. Show that
Jr(u) = (1 —u)* 11 —up)* 2 (1= w7,
and
Js(x) = [(1—z1)(1 =21 =)+ (L—a1 — - —xp—1)]

Proof: We prove the first equation by induction.
(i) The equation holds when k =1 trivially;
(ii) Suppose the equation holds when k = n, that is,

n

Zmi =1- ][] - w).

i=1

Let Kk =n+ 1, then

n+1 n n
Zl’i = ZZ’Z +£L’n+1 =1- H(]. —’U,Z)
i=1 i=1 i=1
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n+1

H1 = ur) - (1= up)uny = 1= (1= w).
i=1

The fact that 7" maps I* onto QF, that T is 1-1 in the interior of I*, and
that its inverse S so defined can be checked easily.
Since T"(u) is a lower-left triangular matrix,

JT(U) = (1 — ul)k_l(l — UQ)k_Q s (1 — uk_l).

Note that Js(x) = [Jr(u)] "L, and 1 —u; = 1 — 21, 1 —u; = T T

l—zy——ziq”
Substitute these into Jr(u), we can get

Js(x)=[(1—z)(1 -2y —x0) - (1 =2y — - —2p_1)] "

13. Let rq, ..., be nonnegative integers, and prove that

rleergl
it athdx = .
/k ! k (k—|—7“1—|-'~-—|—7“k)!

Proof:
/ oyt mptdx = / upt o [(T—ug) e (1 — up—n Jug]™
Qk I*

(1 —u) 11 —up)f 2 (1 —up_1)du

= / u;l e u;k(l _ ul)r2+"'+7"k+(k3*1) L. (1 _ uk_l)Tk+1du
Ik

1 1
= (/0 ugn-i-l)—l(l — ul)err...JrrkJr(kfl)dul) - (A ul(chCIl+1)71

! D(ri4+1)0(ro 4+ rg + k)
1 — ) TEF2) =1, ). / Tk = ! 2 k
(1= ug-1) Uk-1) (0 " duy) T(ry+-+rp + (k+1))

T(ro+D0(rg+---+rpe+(k—1))  T(reg_1+DI(rp +2) 1

L(ro+--- 4+ +k) I(rg—1 +7x+3) Crk 1
T +1) - T(re—1 + DT (1% 4 2) rile e (rg + 1)1

Fri4+-4re+k+1)0rp+1)  (k+ri4+-+r)llre+1)
rileeerp_qlrg!
(k4+m+-+rp)

Note that the special case 71 = - - - = 7, = 0 shows that the volume of Q¥
is 1/k!.

14. Prove formula (46).
Proof: s(ji,....jk) = [] sgn(jq — jp) = (=1)Na+" Vi where N, is
p<q
the number of those j, such that ¢ < p but j; > j,. Then it’s clear that

(1, -, Jk) = 8(j1, .-, j ) due to the meaning of £(jy, ..., jx)-
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15.

16.

If w and A are k- and m-forms, respectively, prove that
WAX=(=DF"AAw.

Proof: Because of (57), the result follows if it is proved for the special
case
w= fdx;, M=gdxy,

where f,g € €(F), dx; is a basic k-form, and dz s is a basic m-form. Then
wA M= fgdx; ANdxy, AN w = fgdrjy ANdrg.

Since
dry Ndry =dxy N--- Ndxg, Ndxg, A--- ANdxy,,,

and
dry Ndxr =dxj, N--- Ndxj,, Ndxg, N--- ANdxg,,

it’s clear that
dey Ndxy = (—1)kmd$J ANdxg
and therefore,
WAX= (=D A Aw.

If £ <2 and o = [po, P1, ---, Pk] is an oriented affine k-simplex, prove that
0%0 = 0, directly from the definition of the boundary operator 0. Deduce
from this that 9?¥ = 0 for every chain W.

Proof: By 10.29,

k

Jdo = Z(_:l)j [pOa oy Pi—1,Pj+1, ---»Pk]-
7=0

Now, if ¢ < j, let 0;; be the (k — 2)-simplex obtained by deleting p; and
p; from o. We will show that each o;; occurs twice in 0?0, with opposite
sign.

The (k — 1)-simplex obtained by deleting p; is:

oi = (=1)'[P0; -+, Pi—1, Pit 1, -+ Pk,
and the (k — 1)-simplex obtained by deleting p; is:
0; = (=1)[P0; --s Pj—1, Pj+1s - Pkl-
Then the (k — 2)-simplex obtained by deleting p; from o; is:
oij = (—1)"(=1) " [P0, --s Pic 15 Pist1s -os Pj—1, Pjt1s s Pr]s
and the (k — 2)-simplex obtained by deleting p; from o; is:
0ji = (= 1) (=1)" [P0y ey Pie15 Pit 15 oy Pj—1s Pjt1s s Pk

Clearly, 0;; and 0; have opposite signs. Thus §%c = 0.
Suppose ¥ = > ®;, and ®; = T'o;, then 9¥ = > 9P, = > T(9o;), and
therefore, 9>V = >~ 9?°®; = >~ T(d%0;) = 0.
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17.

18.

Put J? = 7 + 75, where
7'1:[0,61,62], T2:7[0,82792+el].

Explain why it is reasonable to call J? the positively oriented unit square
in R%2. Show that 9J2 is the sum of 4 oriented affine 1-simplexes. Find
these. What is 9(my — 72)?

Proof: Clearly, both 7 and 75 have Jacobian 1;0. Since

87'1 = [el,el + 62] — [O,el + 62} + [O,el],

= —[82782 + 61] + [0,62 + e1] — [O,QQ],

we have
8J? = oty + 01 = [0,91] + [el,el +e2] + [82 +e1,e2] + [6270],

which is the same as OI?. So it is reasonable to call J? the positively
oriented unit square in R?.
Since

71— T2 = [0,€1,e1 + €3] + [0,e2, €5 + €],

8(7’177'2) = [el, e1+eg]7[0, e1+ez]+[0, e1]+[eQ, 624’61]7[0, e2+e1]+[0, 62]
= [e1,e; +ex] +[e) +e2,0]+[0,e1] + [ez,e2 + e1] + [e2 + €1, 0] + [0, eo].

Consider the oriented affine 3-simplex
o1 =[0,e1,e1 + ez,€1 + ez + €3]

in R%. Show that oy (regarded as a linear transformation) has determi-
nant 1. Thus o, is positively oriented.
Let 09, ..., 0g be five other oriented 3-simplexes, obtained as follows: There
are five permutations (i1,142,43) of (1,2,3), distinct from (1,2,3). Asso-
ciate with each (i1,12,143) the simplex

s(i1,12,13)[0, €;,, €5, + €y, €, + €, +€;,]

where s is the sign that occurs in the definition of the determinant. (This
is how 7 was obtained from 71 in Exercise 17.)

Show that o9, ..., 06 are positively oriented.

Put J? = o1 + --- 4+ 0. Then J3 may be called the positively oriented
unit cube in R3.

Show that 9J3 is the sum of 12 oriented affine 2-simplexes. (These 12
triangles cover the surface of the unit cube I3.)

Show that x = (1,22, 23) is in the range of o1 if and only if 0 < z3 <
o <xp <L

Show that the range of o1, ...,04 have disjoint interiors, and that their
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union covers I3. (Compared with Exercise 13; note that 3!=6.)
Proof: Since Ae; = p; — po for 1 < i < k, we have

-l

which gives det(A) = 1. Thus o is positively oriented.

Let A(i1,42,13) be the corresponding linear transformation of o (i1, is, i3) =
[0,ei,,€i, + €i,,€;, + €, + €;;]. Define matrix P(i1,42,43) such that
P(k,ig) =1fork =1,2,3and P(k,j) = 0 otherwise. Then P(i1,i2,i3)A =
A(iy,i2,13), and therefore, det[A(i1,ia,i3)] = det[A]det[P(iy,i2,i3)] =
det[P(iy,42,13)]. Note that

o O =
O = =

det[P(i177;2,’i3)] = S(il,’ig,ig)a(17i1)a(2,i2)a(3,ig) = S(il,ig, 2‘3)7

by Definition 9.33. Hence det[A(il, ig, ’Lg)] = S(le7 ig, 23) If we let B(il, iQ, ’Lg)
denote the corresponding linear transformation of

S(il, ig, Zg)[o, €;,,€4, + €;,, €, + €, + eig], then

det[B(il, i27 23)] = S(il, iz, ’i3) det[A(ih ig, 23)] = (S(il, ’ig, ig))2 =1>0.
So 09, ..., 04 are positively oriented.

Note that 80’(i1, 9, i3) = S(il, 12, 7;3){[91'1 ,€;, +€;,,€;, +e;, +ei3] — [0, e; +
€iy; €y + €, + €] + [0, €, +e;, +e;,] —[0,e,,€;, +ep]}

Thus, do(1,2,3) = [e1,e1 + e3,e1 + €2 +e3] —[0,e1 + ez, €1 + €3+ €3]+
[0,e1,e1 + €2+ e3] — [0,e1,€1 + €3],

00(1,3,2) = —[ei,e1 + ez, e; + e3 + €3] + [0,e; + e3,e1 + €3 + €] —
[0,e1,e; +e3+ex]+[0,e1,e + €3],
80(2,1,3) = 7[62762 —+ €1, e —+ €] —+ 63] + [0,62 —+ €1, e —+ (31 —+ 63} —

[0,e2,e2 +e; + e3] + [0,ez, e + €],

00(2,3,1) = [ez,ea+e3,€5+e3+e1]—[0,e3+e3,ea+es+e;|+[0, e, e+
es + e1] — [0,62,62 + 63},

80(3,2, 1) = —[63783 + eg,e3 + ey + 61] + [0,63 + eq,e3 + ey + el] —
[0,83,83 —+ €2 —+ 61] —+ [0,83,83 —+ 82}7

80’(3, 1,2) = [eg,e3+e1,e3+e1 +e2]7[0,e3+e1,e3+e1 +62}+[0,e3,63+
e; + e3] — [0, e3,e3 + 1], and thus

6
8]3 = Zaai = [91,91 +eo,e] + e +e3} — [0761761 +e2]
=1

—le1,e1 +es,e; +e3+ex] +[0,e1,e1 + e3)
—[ea,e2 + €1,e2 + €1 +e3] +[0,e2,e3 + €]
[e2,e2 + e3,e2 + €5 + e1] — [0, e2, €2 + €3]
—les,e3 +e3,e3+ ey +e1]+ [0,e3,e3 + e

[es,es +er,e3+ e +ex] —[0,e3,e3+ €]
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= If0< 23 <xzo<xy <1,let ug = x3, uso = 22 — 23, U] = T1 — T2, then
w;p >0,4=1,2,3, and Y u; = 1 < 1. Therefore, u = (u, ugz,u3) € Q3,
and o1(u) = Au = (uy + ug + us, us + uz, usz) = (21, x2, xr3) = x. Hence x
is in the range of o;.

<: If x is in the range of oy, then there exists u € @2, such that oy (u) =
Au = x. That is 1 = w1 + us + us, x2 = us + ug, and 3 = ug, u; < 0,
i=1,2,3, > u; <1. Therefore, 0 < x5 < a9 <27 < 1.

Similarly as the above statements, we can prove that x is in the range of
o(i1,12,13) if and only if 0 < z;, < x5, <z, < 1. Then it’s clear that
the ranges of g1, ..., 0 have disjoint interiors. Since every o; has the same
volume as Q> (since every o; has Jacobian 1), namely 1/3! = 1/6, and
thus 6 of them gives a total volume of 1, which is exactly the volume of
I3. Note that the range of every o; lies in I, and since they have disjoint
interiors, we can conclude that their union covers I3.
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