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1 The Real and Complex Number System

1. If r is rational(r 6= 0) and x is irrational, prove that r + x and rx are
irrational.
Proof : Suppose r+x is rational, thenr+x = m

n ,m, n ∈ Z, and m,n have
no common factors. Then m = n(r + x). Let r = p

q , p, q ∈ Z, the former

equation implies that m = n(pq + x),i.e.,qm = n(p + qx),i.e.,x = mq−np
nq ,

which says that x can be written as the quotient of two integers. This is
contradict to the assumption that x is irrational. The proof for the case
rx is similar.

2. Prove that there is no rational number whose square is 12.
Proof : Suppose on the contrary, there is a rational number p satisfies
p2 = 12, then let p = m

n ,m, n ∈ Z, m, n have no common factors, so
m2

n2 = 12, i.e., m2 = 12n2, which shows m2 is even, m is even to. Suppose
m = 2k, then 4k2 = 12n2, i.e., k2 = 3n2, i.e., k2 can be divided by 3,
i.e., k can be divided by 3, so m can be divided by 3. Let k = 3p, then
k2 = 9p2,i.e.,9p2 = 3n2,i.e.,n2 = 3p2, so n2 can be divided by 3, i.e., n can
be divided by 3, which is contradict to our choice of m, n.

3. Prove Proposition 1.15.

4. Let E be a nonempty subset of an ordered set; suppose α is a lower bound
of E and β is an upper bound of E. Prove that α ≤ β.
Proof : ∀x ∈ E, α ≤ x and x ≤ β, since E is also an ordered set, which
implies that α ≤ β.

5. Let A be a nonempty set of real numbers which is bounded below. Let −A
be the set of all numbers −x, where x ∈ A. Prove that inf A = − sup(−A).
Proof : Suppose y is a lower bound of A, which means ∀x ∈ A, y ≤ x,
then −x ≤ −y, ∀ − x ∈ −A. In other words, −A is bounded above, thus
z = sup(−A) exists. What remains to prove is inf A = −z. According
to the previous process, −z is a lower bound of A, (*) and if w > −z,
then z > −w, i.e. −w is not an upper bound of −A, thus ∃y = −x ∈
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−A(x ∈ A), y > −w, i.e. −y < w, but −y = −(−x) = x, so x < w,
which shows that w is not a lower bound of A. Combined with (*), we
conclude that −z is the greatest lower bound of A, i.e. −z = inf A, thus
inf A = − sup(−A).

6. Fix b > 1.

(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove
that (bm)1/n = (bp)1/q. Hence it makes sense to define br = (bm)1/n.
Proof : There is unique positive real numbers r1 and r2, which satisfy
r1 = (bm)1/n and r2 = (bp)1/q, what we need to prove then becomes
r1 = r2. For rn1 = bm = bnr and rq2 = bp = bqr, thus rnq1 = bnrq = rqn2 ,
i.e.rnq1 = rnq2 , which means r1 = r2 if we take 1

nq root from both sides.

(b) Prove that br+s = brbs if r and s are rational.
Proof : Suppose r = m1

n1
and s = m2

n2
, then r + s = m1n2+m2n1

n1n2
,

thus (br+s)n1n2 = bm1n2+m2n1 , and (brbs)n1n2 = (br)n1n2(bs)n1n2 =
bm1n2bm2n1 = bm1n2+m2n1 , which shows (br+s)n1n2 = (brbs)n1n2 , i.e.
br+s = brbs.

(c) If x is real, define B(x) to be the set of all numbers bt, where t is
rational and t ≤ x. Prove that br = supB(r), when r is rational.
Hence it makes sense to define bx = supB(x) for every real x.
Proof : B(r) = {bt|t ∈ Q ∧ t ≤ r}. It’s easy to see that bt ≤ br,

t,r ∈ Q and t ≤ r. (Let r = m
n , t = p

q , then (bt)qn = (b
p
q )qn = bpn.

From t ≤ r, we can obtain that p
q ≤

m
n , which is equivalent to

pn ≤ qm. Thus, bpn ≤ bqm, for b > 1, by assumption. This means
that (bt)qn ≤ bqm, taking 1

qn root gives us bt ≤ bmn , i.e. bt ≤ br.)
**Why can we do the operation of taking 1

qn root and don’t affect
the direction of the inequality? The identity

bn − an = (b− a)(bn−1 + bn−2a+ · · ·+ an−1) (1)

tells us that (bt)qn− bqm = ((bt)n− bm)T (q), where T (q) > 0, thus if
(bt)qn ≤ bqm, then (bt)n ≤ bm. By rewriting bm as (b

m
n )n and using

(1) again tells us that bt ≤ bmn = br

Now, we know that br is an upper bound of B(r). Note that br ∈
B(r), so br must be the smallest upper bound of B(x), otherwise
there is an upper bound α of B(r) satisfies α < br, which is absurd
because br ∈ B(r).

(d) Prove that bx+y = bxby for all real x and y.
Proof : By definition, bx = supB(x), by = supB(y) and bx+y =
supB(x+ y).
We need to prove that bxby is the supremum of B(x+y). This can be
obtained from bx+y = supB(x + y) = sup{bu|u ∈ Q ∧ u ≤ x + y} =
sup{bs+t|s ∈ Q, t ∈ Q ∧ s ≤ x, t ≤ y} = sup{bsbt|s ∈ Q, t ∈ Q ∧ s ≤
x, t ≤ y}= sup{bs|s ∈ Q ∧ s ≤ x} sup{bt|t ∈ Q ∧ t ≤ y} = bxby.
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7. Fix b > 1, y > 0, and prove that there is a unique real x such that bx = y,
by completing the following outline. (This x is called the logarithm of y
to the base b.)

(a) For any positive integer n, bn − 1 ≥ n(b− 1).
Proof : bn − 1 = (b− 1)(1 + b+ · · ·+ bn−1) ≥ (b− 1)n, for b > 1.

(b) Hence b− 1 ≥ n(b1/n − 1).
Proof : Directly from (a).

(c) If t > 1 and n > (b− 1)/(t− 1), then b1/n < t.
Proof : b1/n ≤ b−1

n + 1 < (t− 1) + 1 = t, i.e. b1/n < t.

(d) If w is such that bw < y, then bw+(1/n) < y for sufficiently large n;
to see this apply part(c) with t = y · b−w.
Proof : Sufficiently large means n > (b− 1)/(y · b−w − 1).

(e) If bw > y, then bw−(1/n) > y for sufficiently large n.
Proof : bw = supB(w) = {br|r ∈ Q ∧ r ≤ w}, if bw > y, then y
is not an upper bound of B(w), so there exists r, r ∈ Q ∧ r ≤ w,
br > y, which also means br−(1/n) > y, for sufficiently large n. Thus,
bw−(1/n) = sup{bs|s ∈ Q ∧ s ≤ w − (1/n)} ≥ br−(1/n) > y.

(f) Let A be the set of all w such that bw < y, and show that x = supA
satisfies bx = y.
Proof : Suppose, if, bx > y, then by (e), bx−(1/n) > y for some
sufficiently large n(which means x is not the least upper bound of
A), which is contradict to the fact that x = supA; On the other
hand, if, bx < y, then by (d), bx+(1/n) < y, for some sufficiently
large n(which means x is not an upper bound of A), which is also
contradict to the fact x = supA. Thus, bx = y.

(g) Prove that this x is unique.
Proof : It’s sufficient to show that if x1 6= x2, then bx1 6= bx2 . This is
clearly from the definition of bx which says that bx = supB(x). (To
see this, suppose x1 > x2, then there must exist at least one r ∈ Q
that br ∈ B(x1) but br 6∈ B(x2). The case that x1 < x2 is similar.

8. Prove that no order can be defined in the complex field that turns it into
an ordered field. Hint: -1 is a square.
Proof : According to Definition 1.17, An ordered field is a field F which
is also an ordered set, such that (i) x+ y < x+ z if x, y, z ∈ F and y < z;
(ii)xy > 0 if x ∈ F , y ∈ F , x > 0, and y > 0.
Suppose C is an ordered field, then x2 > 0, if x > 0.(Here 0 means
(0, 0) ∈ C) If x < 0, then −x > 0, so (−x)2 > 0 and x2 = (−x)2 > 0.
We have show that x2 > 0 if x 6= 0. But if we take x = (0, 1), then
x2 = (−1, 0) > (0, 0). On the other hand, (1, 0)2 = (1, 0) > (0, 0)(*), by
(i) we have (−1, 0) + (1, 0) > (0, 0) + (1, 0), which gives (0, 0) > (1, 0), a
contradiction with (*).
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9. Suppose z = a + bi, w = c + di. Define z < w if a < c, and also if a = c
but b < d. Prove that this turns the set of all complex numbers into an
ordered set. (This type of order relation is called a dictionary order, or
lexicographic order, for obvious reasons.) Does this ordered set have the
least-upper-bound property?
Proof : According to Definition 1.6, An ordered set is a set S in which
an order is defined. An order on S is a relation, denoted by <, with the
following two properties: (i) If x ∈ S and y ∈ S then one and only one of
the statements x < y, x = y, y < x is true. (ii) If x, y, z ∈ S, if x < y
and y < z, then x < z.
To prove (i), it’s easily to see that w = z if and only if a = b ∧ c = d. To
prove (ii), let x = (a, b), y = (c, d) and z = (e, f), then x < y means a < c
or a = c ∧ b < d, y < z means c < e or c = e ∧ d < f . Combinations of
the four conditions will give either a < e or a = e ∧ b < f , which implies
x < z. So C turns to be an ordered set under this order definition.
This ordered set has the least-upper-bound property. Given any nonempty
set S of C. Let A = {a|z = (a, b) ∈ S}, B = {b|z = (a, b) ∈ S∧a = supA}.
Then we can easily see that supS = (supA, supB).

10. Suppose z = a+bi, w = u+iv, and a =
( |w|+u

2

)1/2
, b =

( |w|−u
2

)1/2
. Prove

that z2 = w if v ≥ 0 and that (z̄2 = w if v ≤ 0. Conclude that every
complex number(with one exception!) has two complex square roots.
Proof :

(a) If v ≥ 0, z2 = z·z = (a+bi)2 = (a2−b2+i(2ab) = u+i|v| = u+iv = w.

(b) If v < 0, (z̄)2 = (a− bi)2 = (a2− b2)− i(2ab) = u− i|v| = u+ iv = w.

(c) If w = 0, then u = 0∧v = 0, which implies a = 0∧b = 0, so z = z̄ = 0
is the unique square root of w. If w 6= 0, then according to the above
two statements, either x = z or x = z̄ is a square root of w, i.e.,
x2 = w. On the other hand we have known that (−x)2 = x2, so −x
is also a square root of w, and x = −x if and only if x = 0. Thus
we have shown that every complex number w will have two complex
square roots if w 6= 0.

11. If z is a complex number, prove that there exists an r ≥ 0 and a complex
number w with |w| = 1 such that z = rw. Are w and r always uniquely
determined by z?
Proof :Suppose z = (a, b), then we take r = |z| =

√
a2 + b2 ≥ 0 and

w = (ar ,
b
r ). Obviously, z = rw holds, and |w| =

√
a2

r2 + b2

r2 =
√

a2+b2

r2 = 1.

From the above definitions of r and w, we conclude that w and r always
uniquely determined by z. (In fact, if we take absolute value from both
sides of z = rw, we can obtain |z| = r|w| = r. So r is uniquely defined
and so is w).
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12. If z1, · · · , zn are complex, prove that |z1 + z2 + · · · + zn| ≤ |z1| + |z2| +
· · ·+ |zn|.
Proof : We can prove this by induction on n.
(i)n = 1, this is the trivial case;
(ii)Suppose the inequality holds when n = k. When n = k + 1, |z1 + z2 +
· · ·+zk+zk+1| = |(z1 +z2 + · · ·+zk)+zk+1| ≤ |z1 +z2 + · · ·+zk|+ |zk+1| ≤
(|z1| + |z2| + · · · + |zk|) + |zk+1| = |z1| + |z2| + · · · + |zk| + |zk+1|, which
completes our proof.

13. If x, y are complex, prove that ||x| − |y|| ≤ |x− y|.
Proof : |x| = |(x− y) + y| ≤ |x− y|+ |y| ⇒ |x| − |y| ≤ |x− y|, similarly,
|y| = |y − x + x| ≤ |y − x| + |x| = |x − y| + |x| ⇒ |y| − |x| ≤ |x − y| ⇒
|x| − |y| ≥ −|x− y|. Combining these two inequalities gives us the desired
result.

14. If z is a complex number such that |z| = 1, that is, such that zz̄ = 1,
compute |1 + z|2 + |1− z|2.
Proof :|1 + z|2 + |1− z|2 = (1 + z)(1 + z̄) + (1− z)(1− z̄) = 1 + z + z̄ +
zz̄ + 1− z − z̄ + zz̄ = 2 + 2zz̄ = 2 + 2 = 4.

15. Under what conditions does equality hold in the Schwarz inequality?
Proof : If equality hold in the Schwarz inequality, we have AB = |C|2,

i.e., |
n∑
j=1

aj b̄j |2 =
n∑
j=1

|aj |2
n∑
j=1

|bj |2.

From the proof of Theorem 1.35, this is equivalent to |Baj −Cbj | = 0,∀j,

i.e., Baj = Cbj ,∀j, i.e., aj
n∑
k=1

|bk|2 = bj
n∑
k=1

ak b̄k,∀j.

16. Suppose k ≥ 3, x, y ∈ Rk, |x− y| = d > 0, and r > 0. Prove:

(a) If 2r > d, there are infinitely many z ∈ Rk such that |z − x| =
|z− y| = r.
Proof : If 2r > d, then x, y, and z can form a triangle in the Rk.
The orbits of z forms a circle in the Rk, and it is obviously that the
number of z is infinite.

(b) If 2r = d, there is exactly one such z.
Proof : If 2r = d, then clearly z = x+y

2 is the only satisfied point,
which is the middle point of the line determined by the line with ends
x and y.

(c) If 2r < d, there is no such z.
Proof : This can be seen from the fact that |x−y| ≤ |x−z|+|z−y| =
|z− x|+ |z− y|, which tells us that d ≤ 2r.

How must these statements be modified if k is 2 or 1?
If k = 2, then in (a) there are two satisfied points z; (b), (c) still holds.
If k = 1, then in (a) there is no satisfied point z; (b), (c) still holds.
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17. Prove that |x + y|2 + |x − y|2 = 2|x|2 + 2|y|2, if x ∈ Rk and y ∈ Rk.
Interpret this geometrically, as a statement about parallelograms.
Proof : |x+y|2 + |x−y|2 = (x+y)(x̄+ ȳ)+(x−y)(x̄− ȳ) = 2xx̄+2yȳ =
2|x|2 + 2|y|2. This is to say, the sum of the square of the two diagonals is
twice of the sum of the square of the two edges of a parallelogram.

18. If k ≥ 2 and x ∈ Rk, prove that there exists y ∈ Rk such that y 6= 0 but
x · y = 0. Is this also true if k = 1?
Proof : We classify x into the following cases:

(a) x = 0, this case is trivial because each y 6= 0 satisfies x · y = 0.

(b) Now we suppose that x 6= 0, then at least one of the coordinates of
x is not 0.

i. If there is at least one(but not all) 0 in the coordinates of x, then
suppose xi = 0, let y be yi = 1 and yj = 0, ∀j 6= i, we can see
that y 6= 0 but x · y = 0.

ii. If all of the coordinates of x are not 0, then we can clarify k
according to its oddity.
When k is even, suppose x = (x1, ..., xk/2, xk/2+1, ..., xk), let
y = (xk, ..., xk/2+1,−xk/2, ...,−x1), then y 6= 0 and x · y = 0.
When k is odd, suppose x = (x1, ..., x(k+1)/2−1, x(k+1)/2, x(k+1)/2+1

, ..., xk),let y = (xk, ..., x(k+1)/2+1, 0,−x(k+1)/2−1, ...,−x1), then
y 6= 0(because k ≥ 2) and x · y = 0. This completes our proof.

19. Suppose a ∈ Rk, b ∈ Rk. Find c ∈ Rk and r > 0 such that |x − a| =
2|x− b| if and only if |x− c| = r.
The solution is 3c = 4b − a, 3r = 2|b − a|, but I doesn’t know how to
obtain it...

20. With reference to the Appendix, suppose that property (III) were omit-
ted from the definition of a cut. Keep the same definitions of order and
addition. Show that the resulting ordered set has the least-upper-bound
property, that addition satisfies axioms (A1) to (A4)(with a slightly dif-
ferent zero-element!) but that (A5) fails.
Proof : First we prove the resulting ordered set R has the least-upper-
bound property.
Let A is be a nonempty subset of R, and assume that β ∈ R is an upper
bound of A. Define γ to be the union of all α ∈ A. In other words, p ∈ γ
if and only if p ∈ α for some α ∈ A. We shall prove that γ ∈ R and that
γ = supA.
Since A is not empty, there exists an α0 ∈ A. This α0 is not empty. Since
α0 ⊂ γ, γ is not empty. Next, γ ⊂ β(since α ⊂ β for every αin A), and
therefore γ 6= Q. Thus γ satisfies property(I). To prove(II), pick p ∈ γ.
Then p ∈ α1 for some α1 ∈ A. If q < p, then q ∈ α1, hence q ∈ γ.
Thus γ ∈ R.
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It is clear that α ≤ γ for every α ∈ A.
Suppose δ < γ. Then there is an s ∈ γ and that s 6∈ δ. Since s ∈ γ, s ∈ α
for some α ∈ A. Hence δ < α, and δ is not an upper bound of A.
This gives the desired result: γ = supA.
Next, we will prove that the addition satisfies axioms (A1) to (A4):
(A1)We have to show that α + β is a cut. It is clear that α + β is a
nonempty subset of Q. Take r′ 6∈ α, s′ 6∈ β. Then r′ + s′ > r + s for all
choices of r ∈ α, s ∈ β. Thus r′ + s′ 6∈ α + β. It follows that α + β has
property(I).
Pick p ∈ α + β. Then p = r + s, with r ∈ α, s ∈ β. If q < p, then
q < r+ s⇒ q− s < r, so q− s ∈ α. Thus q = (q− s) + s ∈ α+ β and (II)
holds.
(A2)α+β is the set of all r+s, with r ∈ α, s ∈ β. By the same definition,
β + α is the set of all s + r. Since r + s = s + r for all r ∈ Q, s ∈ Q, we
have α+ β = β + α.
(A3)As above, this follows from the associative law in Q.
(A4)We have to modify the definition of 0∗ to be the set of all negative
rational numbers plus the number 0. (The reason will be clear if we look
back to the proof of (A4) on page 18, which use property (III) that has
been removed.)
If r ∈ α and s ∈ 0∗, then r+ s ≤ r, hence r+ s ∈ α. Thus α+ 0∗ ⊂ α. To
obtain the opposite inclusion, pick p ∈ α, then p = p+ 0 ∈ α + 0∗. Thus
α ⊂ α+ 0∗. We conclude that α+ 0∗ = α.
Finally, we will show that (A5) can no longer be held.
Suppose, on the contrary, ∀α, α ∈ R, there is a β ∈ R satisfies α+β = 0∗.
Let α to be the set of all negative rational numbers. Clearly α is a cut,
but we cannot find another cut β satisfies α + β = 0∗. (This needs a
little thinking...) This is why property(III) cannot be omitted from the
definition of cut.

2 Basic Topology

1. Prove that the empty set is a subset of every set.
Proof : If this is not true, then ∃A, ∅ 6⊆ A, which means there is at
least one x ∈ ∅ but x 6∈ A. Obviously this cannot be held since ∅ has no
elements.

2. A complex number z is said to be algebraic if there are integers a0, ..., an,
not all zero, such that a0z

n + a1z
n−1 + · · ·+ an−1z + an = 0. Prove that

the set of all algebraic numbers is countable.
Proof : A simple proof will be:
(i) z is a root of the n-degree polynomial a0x

n+a1x
n−1+· · ·+an−1x+an =

0, and we know the fact that each n-degree polynomial has n roots in the
complex plane(*);
(ii)The set of all n-degree polynomials with integral coefficients is count-
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able, so is the set of all polynomials with integral coefficients.
Combined (i) and (ii), we know that the set of all algebraic numbers is
countable.
But if we don’t know the fact (*), how to prove this? (I don’t know at
present...)

3. Prove that there exist real numbers which are not algebraic.
Proof : Suppose this is not the fact. Let A denote the set of all algebraic
numbers, then R ⊆ A. Since R is uncountable, so is A, which is contradict
to the result of 2.

4. Is the set of all irrational real numbers countable?
Proof : The answer is obviously No. To see this, let U denote the set of
all irrational real numbers. If U is countable, then R = Q∪U is countable,
which is contradict to the fact that R is uncountable.

5. Construct a bounded set of real numbers with exactly three limit points.
Proof : Let A = { 1

n |n ∈ I+}, B = {2 + 1
n |n ∈ I+}, C = {4 + 1

n |n ∈ I+}
and S = A ∪ B ∪ C, then S is bounded, since |x| < 6, ∀x ∈ S and S has
exactly 3 limit points, namely, 0, 2, and 4.

6. Let E′ be the set of all limit points of a set E. Prove that E′ is closed.
Prove that E and Ē have the same limit points. (Recall that Ē = E∪E′.)
Do E and E′ always have the same limit points?
Proof :

(a) Let p be a limit point of E′, then for every r > 0, there is a q ∈ E′
and q ∈ Nr(p). Since Nr(p) is open, there is a neighborhood Nq of
q, Nq ⊂ Nr(p) and since q is a limit point of E, there is a s ∈ Nq,
s 6= q and s ∈ E. Combining these facts, we get that for every r > 0,
there is an s ∈ Nr(p), s ∈ E, which is equivalent to say that p is a
limit point of E, thus p ∈ E′ and E′ is closed.

(b) ⇒: Suppose p is a limit point of E, since E ⊆ Ē, p is also a limit
point of Ē.
⇐: On the other hand, let p be a limit point of Ē, then ∀r > 0,
there is a q ∈ Ē ∧ q ∈ Nr(p). If q 6∈ E, then q ∈ E′ and q is a
limit point of E. Since Nr(p) is open, there is a neighborhood Nq
of q, Nq ⊂ Nr(p). Due to the fact that q is a limit point of E,
there is an s ∈ Nq, s 6= q ∧ s ∈ E. This is to say, ∀r > 0, there
is an t ∈ E ∧ t ∈ Nr(p) (Here, t will either be q or s in the above
statements). Thus p is a limit point of E.

(c) Obviously this is not the case. An easy example will be: E =
{(x, y)|x2 + y2 < 1, x ∈ R, y ∈ R}, thus E′ = {(x, y)|x2 + y2 =
1, x ∈ R, y ∈ R} and Ē = {(x, y)|x2 + y2 ≤ 1, x ∈ R, y ∈ R}. Thus
the set of all limit points of E is Ē and the set of all limit points of
E′ is E′ itself. Clearly E′ ⊂ Ē.
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7. Let A1, A2, A3, ... be subsets of a metric space.

(a) If Bn = ∪ni=1Ai, prove that B̄n = ∪ni=1Ān, for n = 1, 2, 3, ...
Proof :
⇒: Suppose p ∈ B̄n, then p ∈ Bn or p ∈ B′n. If p ∈ Bn, then p ∈ Ai,
for some 1 ≤ i ≤ n, thus p ∈ Āi and p ∈ ∪ni=1Āi. If p ∈ B′n, then
p is a limit point of Bn and ∀r > 0, there is a q ∈ Nr(p) ∧ q ∈ Bn,
i.e. q ∈ ∪ni=1Ai, since Ai ∈ Āi, thus q ∈ ∪ni=1Āi and p is a limit
point of ∪ni=1Āi. We have known Āi is closed, so is ∪ni=1Āi since n is
finite (Recall that a finite union of closed sets is also closed). Thus
p ∈ ∪ni=1Āi. This gives B̄n ⊆ ∪ni=1Āi.
⇐: Suppose p ∈ ∪ni=1Āi, then p ∈ Āi for some 1 ≤ i ≤ n, i.e.,
p ∈ Ai∪A′i. If p ∈ Ai, then p ∈ Bn, thus p ∈ B̄n; On the other hand,
if p ∈ A′i, then p is a limit point of Ai, since Ai ⊆ Bn, p is also a
limit point of Bn. Thus p ∈ B̄n. This gives ∪ni=1Āi ⊆ B̄n.

(b) If B = ∪∞i=1Ai, prove that B̄ ⊇ ∪∞i=1Āi.
Proof : Suppose p ∈ ∪∞i=1Āi, then p ∈ Āi for some i ≥ 1, i.e.,
p ∈ Ai ∪A′i. If p ∈ Ai, then p ∈ B; If p ∈ A′i, p is a limit point of Ai.
Since Ai ⊆ B, p is also a limit point of B, thus p ∈ B̄. This gives
∪∞i=1Āi ⊆ B̄.

Show, by an example, that this inclusion can be proper.
Let Ai = (1

i , 2], then Āi = [ 1
i , 2], B = ∪ni=1Āi = (0, 2] and B̄ = [0, 2]. But

0 6∈ Āi, ∀i ≥ 1, thus 0 6∈ ∪∞i=1Āi and ∪∞i=1Āi ⊂ B̄.

8. Is every point of every open set E ⊂ R2 a limit point of E? Answer the
same question for closed sets in R2.
Solution:
(i) The answer for open set is Yes. To see this, note that if p ∈ E and E is
open, ∃r > 0, Nr(p) ⊂ E. Let Nr′(p) be an arbitrary neighborhood of p.
If r′ ≥ r, then Nr(p) ⊆ Nr′(p); If r′ < r, we conclude that Nr′(p) contains
infinite number of points in E. Suppose on the contrary, this is not true.
Then ∃r′ > 0, r′ < r, Nr′(p) contains only finitely many points of E.
Let these points be denoted as p1, p2, ..., pn, and let δ = min{d(p, pi)|1 ≤
i ≤ n}, then δ > 0 and Nδ(p) contains no points of E other than p,
thus Nδ(p) 6⊆ E. But δ <= r′ < r ⇒ Nδ(p) ⊆ Nr′(p) ⊂ Nr(p) ⊆ E,
which is a contradiction. We have show that every neighborhood of p
contains infinitely many number of E and thus p is a limit point of E.
(Notes: Since E is an open subset of R2, E must contain infinitely many
points, according to Example 2.21. Thus, we only need to prove that every
neighborhood of a p ∈ E contains infinitely many points of E. This is easy
because every neighborhood of p is also an open subset of R2. This will
be an much shorter proof instead of the above given one.)
(ii) The answer for closed set is obviously No. To see this, consider the
set E = {( 1

n , 0)|n ∈ I+} ∪ {(0, 0)}. Clearly E is closed, but only 0 is a
limit point of E.
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9. Let E◦ denote the set of all interior points of a set E. E◦ is called the
interior of E.

(a) Prove that E◦ is always open.
Proof : Let p ∈ E◦, then p is an interior point of E, thus there is
a r > 0 such that Nr(p) ⊆ E. Furthermore, let q ∈ Nr(p), then
since Nr(p) is open, there is an neighborhood Nq of q, s.t., Nq ⊆
Nr(p) ⊆ E. Thus, q is an interior point of E and q ∈ E◦. This
means Nr(p) ⊆ E◦ and therefore E◦ is open.

(b) Prove that E is open if and only if E◦ = E.
Proof :
⇒: Suppose that E is open. Let p ∈ E◦, then p is an interior point
of E, since E is open, this gives p ∈ E and therefore E◦ ⊆ E; On
the other hand, let p ∈ E, then p is an interior point of E since E is
open, thus p ∈ E◦ and therefore E ⊆ E◦.
⇐: Suppose E◦ = E, let p be any point of E, then p is a point of
E◦. Thus p is an interior point of E and E is open.

(c) If G ⊆ E and G is open, prove that G ⊆ E◦.
Proof : Let p ∈ G, then p ∈ E since G ⊆ E. Furthermore, there
is a neighborhood NG(p) of p, s.t., NG(p) ⊆ G since G is open. Let
NE(p) = NG(p)∩E, then NE(p) is also a neighborhood of p because
p ∈ NE(p), and NE(p) ⊆ E. Therefore, p is an interior point of E.
Thus p ∈ E◦ and G ⊆ E◦.

(d) Prove that the complement of E◦ is the closure of the complement
of E.
Proof : We need to prove that (E◦)c = Ēc.
⇒: Let p ∈ (E◦)c, then p 6∈ E◦. Thus p is not an interior point of
E, which is to say, ∀r > 0, there is a q ∈ Nr(p) ∧ q 6∈ E, i.e., q ∈ Ec.
Therefore, p is a limit point of Ec and p ∈ Ēc. So (E◦)c ⊆ Ēc.
⇐: Let p ∈ Ēc, then p ∈ Ec or p ∈ (Ec)′. If p ∈ Ec, p 6∈ E and
p 6∈ E◦, thus p ∈ (E◦)c. If p ∈ (Ec)′, then p is a limit point of Ec.
∀r > 0, ∃q ∈ Nr(p) ∧ q ∈ Ec, i.e. q 6∈ E and thus q 6∈ E◦. Therefore,
q ∈ (E◦)c and p is a limit point of (E◦)c. Since E◦ is open, (E◦)c is
closed and p ∈ (E◦)c. So Ēc ⊆ (E◦)c.

(e) Do E and Ē always have the same interiors?
Solution: The answer will be No. To see this, let E = Q, then
Ē = R. Obviously, E◦ = ∅, but Ē◦ = R, if we let the whole space be
R.

(f) Do E and E◦ always have the same closures?
Solution: The answer is also No. To see this, let E = {x|x ∈
[0, 1] ∧ x ∈ Q} ∪ [2, 3], then Ē = [0, 1] ∪ [2, 3]. But E◦ = (2, 3) and
thus Ē◦ = [2, 3]. (The whole space is supposed to be R.)
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10. Let X be an infinite set. For p ∈ X and q ∈ X, define

d(p, q) =

{
1 (if p 6= q)
0 (if p = q).

Prove that this is a metric. Which subsets of the resulting metric space
are open? Which are closed? Which are compact?
Solution: First, we prove that d is a metric: (i) d(p, q) > 0, if p 6= q;
d(p, p) = 0. (ii) d(p, q) = d(q, p); (iii) d(p, q) = 1, d(p, r) + d(r, q) = 2, and
thus d(p, q) < d(p, r) + d(r, q). Therefore d is a metric.

(a) Every nonempty subset of X is open. To see this, let S ⊆ X and S
is not empty. Suppose p ∈ S, and some r < 1, then Nr(p) contains
the only point p. Clearly Nr(p) ⊆ S and thus S is open. In fact, the
empty set is trivially open, so every subset of X is open.

(b) Every nonempty subset of X is closed. To see this, let S ⊆ X, then
Sc is also a subset of X and due to (a), Sc is open. Thus, S is
closed. In fact, the empty set is trivially closed, so every subset of X
is closed.

(c) Clearly, every finite subset of X is compact. But any infinite subset
of X is not compact. To see this, let S ⊆ X and S is infinite. Suppose
0 < r < 1, then

⋃
p∈S

Nr(p) is an open cover of S. Clearly there can

be no finite subcover which can cover S, since each Nr(p) contains
only one point of S, namely, p. If there is one, then S will be finite,
which is an contradiction.

11. For x ∈ R1 and y ∈ R1,define

(a) d1(x, y) = (x− y)2;
Solution: Yes.

(b) d2(x, y) =
√
|x− y|;

Solution: Yes. The first two conditions are trivial. We next prove
the triangular inequality: Let x, y, z ∈ R1, then

√
|x− y|+

√
|y − z|−√

|x− z| ≥
√
|x− y|+

√
|y − z| −

√
|x− y|+ |y − z|. Suppose A =√

|x− y| +
√
|y − z| and B =

√
|x− y|+ |y − z|, then A2 − B2 =

2
√
|x− y

√
|y − z| ≥ 0, i.e., A2 ≥ B2, i.e., A ≥ B, since A,B ≥ 0.

(c) d3(x, y) = |x2 − y2|;
Solution: No. e.g. d(1,−1) = 0.

(d) d4(x, y) = |x− 2y|;
Solution: No. e.g. d(1, 1

2 ) = 0.

(e) d5(x, y) = |x−y|
1+|x−y| .

Solution: Yes. The first two conditions are trivial again. Let’s see
the triangular inequality: Suppose x, y, z ∈ R1, and a = |x − y|,
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b = |y − z|, c = |x − z|, then a, b, c ≥ 0. Thus d(x, y) + d(y, z) −
d(x, z) = a

1+a + b
1+b −

c
1+c = a(1+b)(1+c)+b(1+c)(1+a)−c(1+a)(1+b)

(1+a)(1+b)(1+c) =
a+b−c+2ab+abc
(1+a)(1+b)(1+c) , since a + b ≥ c, d(x, y) + d(y, z) − d(x, z) ≥ 0, i.e.,

d(x, y) + d(y, z) ≥ d(x, z).

Determine, for each of these, whether it is a metric or not.

12. Let K ⊆ R1 consist of 0 and the numbers 1/n, for n = 1, 2, 3, .... Prove
that K is compact directly from the definition (without using the Heine-
Borel theorem).
Proof : Suppose {Gα} is any open cover of K. Obviously, 0 is a limit
point of K. Since 0 ∈ K, 0 ∈ Gα0

for some α0. Furthermore, since Gα0

is open, there is a r > 0, Nr(0) ⊆ Gα0
. Let 1

N < r, N ∈ N, then N > 1
r

and when n > N , n ∈ N, 1
n <

1
N < r, which implies 1

n ∈ Nr(0) and thus
1
n ∈ Gα0 . Let Gαi denote the open set which covers the number 1

i , where

1 ≤ i ≤ N . Then K ⊆ Gα0 ∪ (
N⋃
i=1

Gαi) and therefore K is compact.

13. Construct a compact set of real numbers whose limit points form a count-
able set.
Solution: Let Ak = { 1

k+1 [1 + 1
nk ]|n ≥ 1 ∧ n ∈ N}, k ≥ 1 ∧ k ∈ N, i.e.,

A1 = { 1
2 [1 + 1

n ], n ≥ 1 ∧ n ∈ N}, A2 = { 1
3 [1 + 1

2n ], n ≥ 1 ∧ n ∈ N}, and

so on. Then Ak ⊆ ( 1
k+1 ,

1
k ]. Let A = {0} ∪ (

∞⋃
k=1

Ak), then A is com-

pact since A is closed and bounded (with Heine-Borel theorem). The set
L={0} ∪ { 1

n |n ≥ 1 ∧ n ∈ N} contains all of the limit points of A and L is
obviously countable.

14. Give an example of an open cover of the segment (0, 1) which has no finite
subcover.
Solution: Let Gn = ( 1

n+1 ,
1
n ), where n ≥ 1 ∧ n ∈ N; let Pn = ( 1

n+1 −
1
2 ( 1
n+1−

1
n+2 ), 1

n+1+ 1
2 ( 1
n−

1
n+1 )), n ≥ 1∧n ∈ N, i.e. Pn = ( 2n+3

2(n+1)(n+2) ,
2n+1

2n(n+1) ).

Clearly, C = (
∞⋃
n=1

Gn) ∪ (
∞⋃
n=1

Pn) is an open cover of (0, 1) but we can’t

find any finite subcover of C which also covers (0, 1).
Notes:
(i) Since (0, 1) ⊂ [0, 1], then every open cover of [0, 1] is also an open cover
of (0, 1), but the converse is not true. Thus the open cover that we need
to seek must not be an open cover of [0, 1].
(ii) The only difference between (0, 1) and [0, 1] is the two end points 0
and 1, which makes (0, 1) is open, but [0, 1] is closed (thus compact). The
reason that [0, 1] is compact but (0, 1) is not is clearly due to these two
end points, since the part that cannot be covered by some finite open sets
of a given open cover will be at the neighborhood of the end point. If the
end point is included, this part can be covered (actually with one open set
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instead of the infinite open sets needed if the end point is not included),
so is the whole interval.

15. Show that Theorem 2.36 and its Corollary become false(in R1, for exam-
ple) if the word “compact” is replaced by “closed” or by “bounded”.
Solution: Theorem 2.36 says that, If {Kα} is a collection of compact
subsets of a metric space X such that the intersection of every finite sub-
collection of {Kα} is nonempty, then

⋂
Kα is nonempty.

(i) If the word “compact” is replaced by “closed”, we have the following
counterexample: LetKn = [n,+∞), n ∈ N, thenKn is closed, Kn ⊃ Kn+1

and thus the intersection of every finite subcollection of {Kn} is nonempty.
But

⋂
Kn is empty. To see this, let x > 0 be any positive real number,

then there is an integer n such that n ≤ x < n + 1, according to the
archimedean property of R. Thus, x ∈ Kn but x 6∈ Kn+1, and x 6∈

⋂
Kn.

Therefore,
⋂
Kn = ∅.

(ii) If the word “compact” is replaced by “bounded”, we also have the
following counterexample: Let Kn = (0, 1

n ], n ≥ 1 ∧ n ∈ N, then Kn is
obviously bounded, Kn ⊃ Kn+1, and thus the intersection of every finite
subcollection of {Kn} is nonempty. But

⋂
Kn is empty. To see this, let

x ∈ (0, 1], then there is a positive integer N such that Nx > 1 according
to the archimedean property, which implies x > 1

N . Thus x 6∈ (0, 1
N ], i.e.,

x 6∈ KN , and x 6∈
⋂
Kn. Therefore,

⋂
Kn is empty.

Notes: Here we see that the compactness is essential for Theorem 2.36.

16. Regard Q, the set of all rational numbers, as a metric space, with d(p, q) =
|p− q|. Let E be the set of all p ∈ Q such that 2 < p2 < 3. Show that E
is closed and bounded in Q, but that E is not compact. Is E open in Q?
Proof : The fact that E is bounded is clear.
Next we show that E is closed. Suppose p is a limit point of E and p ∈ Q
(without loss of generality, we assume that p is positive, the case that p is
negative will be similar), then we need to show that p ∈ E. ∀ε > 0, there
is a q ∈ E ∧ q > 0, d(p, q) = |p− q| < ε, since p is a limit point of E. This
gives that q − ε < p < q + ε, i.e., p+ ε > q, i.e., (p+ ε)2 − 2 > q2 − 2 > 0,
i.e., p2 + 2pε + ε2 > 2. Due to the arbitrariness of ε, we conclude that
p2 ≥ 2. Since p ∈ Q, p2 6= 2, thus p2 > 2. Similarly, we have p − ε < q,
i.e., (p − ε)2 − 3 < q2 − 3 < 0, and thus p2 <= 3. Since p ∈ Q, p2 6= 3,
therefore p2 < 3. Now we have proved that 2 < p2 < 3, thus p ∈ E and E
is closed.
Finally, we need to show that E is not compact in Q. Suppose, on the
contrary, E is compact in Q, then according to Theorem 2.33, E is compact
in R, which is obviously wrong since E is even not closed in R.
It’s easy to see that E is open in Q.
Notes: Here we see an example of a set which is both closed and bounded
but not compact. Now we are convinced why the premise of the Heine-
Borel Theorem should be “in Rk”.
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17. Let E be the set of all x ∈ [0, 1] whose decimal expansion contains only
the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is
E perfect?
Solution:

(a) E is uncountable. If, on the contrary, E is countable, let the elements
of E be arranged as x1, x2, .... We denote xi as follows:

x1 = 0.x11x12...

x2 = 0.x21x22...

......

where xij = 4 or xij = 7, i, j ≥ 1∧ i, j ∈ N. Lets = s1s2... be defined
as

si =

{
4 if xii = 7
7 if xii = 4

Then s ∈ [0, 1] and s ∈ E, but s has at least one digit different from
each xi, which gives s 6∈ E, a contradiction. Therefore, E must be
uncountable.

(b) E is not dense in [0,1]. This is easy to be seen since if x ∈ E, x ≥ 0.4̇,
and every y ∈ [0, 0.3] cannot be a point or a limit point of E.

(c) E is closed. To see this, let p be any limit point of E, then we can
conclude that p ∈ E. Thus, we need to show that p ∈ [0, 1] and
p’s decimal expansion contains only the digits 4 and 7. The fact
that p ∈ [0, 1] is quite trivial. So next we will prove that p’s decimal
expansion contains only the digits 4 and 7. Suppose, on the contrary,
this is not true. Let p = 0.p1p2...., then there is a smallest n ∈ I+,
such that pn 6= 4 ∧ pn 6= 7. Let δ = min{|q − p||q ∈ E}, then it’s
clearly that δ > 0 since p 6∈ E and |q − p| is a metric. Pick an r
such that 0 < r < δ, then Nr(p) contains no points q ∈ E and thus
p cannot be a limit point of E, a contradiction.

(d) E is not perfect. e.g. p = 0.44 ∈ E, but its neighborhoodN0.001(0.44)
contains no points of E other than p. Thus p is not a limit point of
E.

18. Is there a nonempty perfect set in R1 which contains no rational number?
Solution: Yes. We will construct a nonempty perfect set contained in R
that contains no rational number.
We will begin with a closed interval, and then, imitating the construction
of Cantor set, we will inductively delete each rational number in it together
with an open interval. We will do it in such a way that the end points of
the open intervals will never be deleted afterwards.
Let E0 = [a0, b0] for some irrational numbers a0 and b0. Let {q1, q2, q3, ...}
be an enumeration of the rational numbers in [a0, b0]. For each qi, we will
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define an open interval (ai, bi) and delete it.
Let a1 and b1 be two irrational numbers such that a0 < a1 < q1 < b1 < b0.
Define E1 = E0\(a1, b1). Having defined E1, E2, ..., En, a1, a2, ..., an and
b1, b2, ..., bn, let’s define an+1 and bn+1:

If qn+1 ∈
n⋃
k=1

(ak, bk), then there exists an i ≤ n such that qn+1 ∈ (ai, bi).

Let an+1 = ai and bn+1 = bi.
Otherwise let an+1 and bn+1 be two irrational numbers such that a0 <
an+1 < qn+1 < bn+1 < b0, and which satisfy:

qn+1 − an+1 < min
i=1,2,...,n

{|qn+1 − bi|}

and
bn+1 − qn+1 < min

i=1,2,...,n
{|ai − qn+1|}

. Now define En+1 = En\(an+1, bn+1). Note that by our choice of an+1

and bn+1 any of the previous end points are not removed from En.

Let E =
∞⋂
n=1

En. E is clearly nonempty, does not contain any rational

number, and also it is compact, being an intersection of compact sets.
Now let us see that E does not have any isolated points. Let x ∈ E, and
ε > 0 be given. Choose a rational number qk such that x < qk < x + ε.
Then qk ∈ (ak, bk) and since x ∈ E we must have x < ak. which means
ak ∈ (x, x + ε), since ak < qk. But we know that ak ∈ E, so we have
shown that any point of E is a limit point, hence E is perfect.
Notes: There are two key points here:
(i) The essential idea is not only deleting the rational number but also a
segment which contains it. This guarantees the result set will be closed,
which is needed by the requirement of perfect sets. Furthermore, the set
hence obtained will be compact since it is both closed and bounded in R1,
and E is guaranteed to be nonempty, according to Theorem 2.36;
(ii) The two conditions for the choice of an+1 and bn+1 is also important,
which commits that we will not delete any previously chosen ai and bi
by removing the segment (an+1, bn+1). Furthermore, these two conditions
are not so trivial and need a deep thought.

19. (a) If A and B are disjoint closed sets in some metric space X, prove
that they are separated.
Proof : Since A and B are disjoint, A∩B = ∅. On the other hand, A
and B are closed, hence A = Ā and B = B̄. Thus A∩ B̄ = A∩B = ∅
and Ā ∩B = A ∩B = ∅, i.e., A and B are separated.

(b) Prove the same for disjoint open sets.
Proof : If A ∩ B̄ 6= ∅, then ∃p ∈ A ∩ B̄, i.e., p ∈ A and p ∈ B̄. Since
A ∩ B = ∅, p 6∈ B, thus p ∈ B′ and p is a limit point of B. Since
p ∈ A and A is open, there is a neighborhood Np of p, s.t., Np ⊆ A.
Hence there is a q ∈ Np such that q 6= p ∧ q ∈ B because p is a limit
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point of B. Therefore q ∈ A and q ∈ A ∩ B, which is contradict to
the fact that A ∩B is empty. We conclude that A ∩ B̄ = ∅.
In just the same way, we can prove that Ā ∩B = ∅. Hence A and B
are separated.

(c) Fix p ∈ X, δ > 0, define A to be the set of all q ∈ X for which
d(p, q) < δ, define B similarly, with > in place of <. Prove that A
and B are separated.
Proof : Clearly A is open since A is a neighborhood of p. Bc =
{q|q ∈ X ∧ d(p, q) ≤ δ}, we prove that Bc is closed. Let w be a limit
point of Bc, then ∀r > 0, there is a q ∈ Bc such that d(w, q) < r.
Thus d(p, w) ≤ d(p, q) + d(q, w) < δ + r. Due to the arbitrariness of
r, we conclude that d(p, w) ≤ δ and thus w ∈ Bc. Hence Bc is closed
and B is open. On the other hand, A and B are obviously disjoint.
Therefore, A and B are separated according to the result of (b).

(d) Prove that every connected metric space with at least two points is
uncountable.
Proof : Let X be a connected metric space with at least two points.
Suppose, on the contrary, X is countable. Fix p ∈ X, Let D =
{d(p, q)|q ∈ X ∧ q 6= p}, then D is not empty since X contains
at least two points. Furthermore, D is at most countable and D ⊂
(0,+∞) since the latter is uncountable. ([0,+∞) is perfect and hence
is uncountable according to Theorem 2.43. Thus (0,+∞) is clearly
uncountable.) Hence there is a δ > 0, δ 6∈ D. Define A = {q|q ∈
X, q 6= p, d(p, q) < δ} and B = {q|q ∈ X, q 6= p, d(p, q) > δ}, then
X = A ∪B. Since A and B are separated according to (c), X is not
connected, which is a contradiction.

20. Are closures and interiors of connected sets always connected? (Look at
subsets of R2.)
Solution:

(a) Closures of connected sets always connected.
Proof : Let E be a nonempty connected set. Suppose, on the con-
trary Ē is not connected, then Ē = A ∪ B, A,B 6= ∅, A ∩ B̄ = ∅,
and Ā ∩ B = ∅. Since E ⊆ Ē, E ⊆ A ∪ B. Define AE = E ∩ A
and BE = E ∩ B, then E = AE ∪ BE (since E = E ∩ (A ∪ B) =
(E ∩A) ∪ (E ∩B) = AE ∪BE).
Next, we need to show that AE and BE are nonempty and separated.
First if AE = ∅, then E = BE = E ∩ B and E ⊆ B. Thus Ē ⊆ B̄,
and A∩Ē ⊆ A∩B̄. Since A∩B̄ = ∅, A∩Ē = ∅, i.e., A∩(A∪B) = ∅,
i.e., (A ∩ A) ∪ (A ∩ B) = ∅, i.e., A ∪ (A ∩ B) = ∅, i.e., A = ∅, which
is contradict to our assumption. It’s almost the same to show that
BE is nonempty. Next, let we prove that AE and BE are separated.
Since AE = E ∩A, AE ⊆ A, then ĀE ⊆ Ā, thus ĀE ∩BE ⊆ Ā∩BE .
On the other hand, BE ⊆ B, hence Ā ∩ BE ⊆ Ā ∩ B, which implies
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ĀE ∩ BE ⊆ Ā ∩ B. But Ā ∩ B = ∅, thus ĀE ∩ BE = ∅. Similarly,
we can prove that AE ∩ B̄E = ∅. Therefore, we conclude that E
is separable, which is a contradiction to our assumption that E is
connected.
Notes: The converse cannot be true.

(b) Interiors of connected sets are not always connected.
A counterexample is: take two closed disks in R2 that intersect in
exactly one (boundary) point. e.g. A = {(x, y)|x2 + y2 ≤ 1, (x, y) ∈
R2}, B = {(x, y)|(x − 1)2 + y2 ≤ 1, (x, y) ∈ R2}. Let E = A ∪ B,
then E is connected. But E◦ is two disjoint open disks, which is
disconnected.
Notes: In R, it is true: every connected set is some interval(closed,
half closed etc) according to Theorem 2.47 and the interior is always
an interval again(open interval, namely segment), so connected. This
is why we need to Look at subsets of R2!

21. Let A and B be separated subsets of some Rk, suppose a ∈ A, b ∈ B, and
define

p(t) = (1− t)a + tb

for t ∈ R1. Put A0 = p−1(A), B0 = p−1(B). [Thus t ∈ A0 if and only if
p(t) ∈ A.]

(a) Prove that A0 and B0 are separated subsets of R1.
Proof : We need to show that A0∩B̄0 = ∅ and B0∩Ā0 = ∅. Suppose,
A0 ∩ B̄0 6= ∅, then there is an x ∈ A0 ∩ B̄0, i.e., x ∈ A0 and x ∈ B̄0.
If x ∈ B0, then p(x) ∈ A and p(x) ∈ B, which means p(x) ∈ A ∩B.
Thus A ∩ B 6= ∅, which is contradict to the fact that A and B are
separated. If x ∈ B′0, then x is a limit point of B0. We show that
p(x) is a limit point of B. To see this, let r > 0 be any given positive
real number, so Nr(p(x)) is a neighborhood of p(x) in Rk. Denote
δ = |b − a|, δ > 0 since a 6= b, and let ε = r

δ > 0. Because x is a
limit point of B0, there is a y ∈ B0 and |y − x| < ε. y ∈ B0 thus
p(y) ∈ B, and |p(y)− p(x)| = |((1− y)a + yb)− ((1− x)a + xb)| =
|(x − y)a + (y − x)b| = |(y − x)(b − a)| = |y − x||b − a| < εδ = r,
which means p(y) ∈ Nr(p(x)). Therefore, p(x) is a limit point of B
and p(x) ∈ B̄. Thus, p(x) ∈ A ∩ B̄ and A ∩ B̄ is nonempty, which
is again contradict to the fact that A and B are separated. Hence,
A0 ∩ B̄0 must be empty. The proof of Ā0 ∩B0 = ∅ is similar and we
omit it here.

(b) Prove that there exists t0 ∈ (0, 1) such that p(t0) 6∈ A ∪B.
Proof : Let C = A0 ∩ (0, 1) and D = B0 ∩ (0, 1), then C ⊆ A0 and
D ⊆ B0. Thus C̄ ∩ D ⊆ Ā0 ∩ D ⊆ Ā0 ∩ B0 = ∅, since A0 and
B0 are separated according to (a). Therefore, C̄ ∩ D = ∅. In the
same reasoning process we can have C ∩ D̄ = ∅ and hence C and
D are separated. We next show that there exists t0 ∈ (0, 1) that
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t0 6∈ A0 ∪ B0. If this is not the truth, then ∀t ∈ (0, 1), t ∈ A0 ∪ B0,
i.e., t ∈ A0 or t ∈ B0. Hence t ∈ A0 ∩ (0, 1) or t ∈ B0 ∩ (0, 1),
i.e., t ∈ C or t ∈ D, i.e., t ∈ C ∪ D, which gives (0, 1) ⊆ C ∪ D.
On the other hand, we clearly have C ⊆ (0, 1) and D ⊆ (0, 1), thus
C ∪D ⊆ (0, 1). Therefore, we get C ∪D = (0, 1), which means (0, 1)
is not connected. But if we apply Theorem 2.47 on (0,1), we can
conclude that (0, 1) is connected, which is a contradiction. So, there
must exist t0 ∈ (0, 1) that t0 6∈ A0 ∪ B0, i.e., t0 6∈ A0 and t0 6∈ B0.
Thus, p(t0) 6∈ A and p(t0) 6∈ B, i.e., p(t0) 6∈ A ∪B.

(c) Prove that every convex subset of Rk is connected.
Proof : A subset E of Rk is convex if λx + (1− λ)y ∈ E, whenever
x ∈ E, y ∈ E, and 0 < λ < 1. If E is not connected, then E = A∪B,
A 6= ∅, B 6= ∅ and A, B are separated. Let a ∈ A, b ∈ B, let
p(λ) = (1 − λ)a + λb, for λ ∈ R1. Note that these are the same
conditions given in the premises, hence we can conclude that there
exists λ0 ∈ (0, 1) such that p(λ0) 6∈ A ∪ B according to (b). This is
to say, when a ∈ E, b ∈ E, there is λ0 ∈ (0, 1), (1− λ0)a + λ0b 6∈ E,
which is contradict to the assumption that E is convex. Therefore,
E must be connected.

22. A metric space is called separable if it contains a countable dense subset.
Show that Rk is separable.
Proof : Let Qk = {x = (x1, ..., xk)|x ∈ Rk ∧ xi ∈ Q, 1 ≤ i ≤ k}. Clearly,
Qk is a countable subset of Rk since Q is countable. Next, we show that
Qk is dense in Rk. To see this, let x be any point in Rk and x 6∈ Qk.
Denote x = (x1, x2, ..., xk). Let r > 0 be any positive real number. Since
Q is dense in R, there is a yi ∈ Q such that |yi − xi| < r√

k
, for 1 ≤ i ≤ k.

Put y = (y1, y2, ..., yk), then y ∈ Qk and |y − x| =

√
k∑
i=1

|yi − xi|2 <√
r2

k · k = r. Therefore, x is a limit point of Qk and we conclude that Qk

is dense in Rk. Hence Rk is a separable space.

23. A collection {Vα} of open subsets of X is said to be a base for X if the
following is true: For every x ∈ X and every open set G ⊆ X such that
x ∈ G, we have x ∈ Vα ⊆ G for some α. In other words, every open set in
X is the union of a subcollection of {Vα}.
Prove that every separable metric space has a countable base.
Proof : Let X be a separable metric space, then X contains a countable
dense subset Y . Suppose the elements of Y can be arranged as y1, y2, ...,
let C = {Vα} be the collection of all neighborhoods with rational radius
and center in Y , that is, C = {Nr(yi)|r > 0, r ∈ Q ∧ yi ∈ Y }. Clearly,
C is a collection of open sets and C is countable since both Y and Q are
countable. ∀x ∈ X, let G be an open set such that G ⊆ X and x ∈ G.
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Since x ∈ G and G is open, there is a r > 0 such that Nr(x) ⊆ G. If
x ∈ Y , since Q is dense in R, there is a r′ ∈ Q such that 0 < r′ < r,
and since Nr′(x) ∈ C, if we denote in another form that C = {Vα}, we
are convinced ourselves that x ∈ Nr′(x) = Vα ⊆ Nr(x) ⊆ G, for some
α. On the other hand, if x 6∈ Y , there is a y ∈ Y and y ∈ Nε(x),
ε ∈ Q ∧ ε < r

2 , for x is a limit point of Y since Y is a dense subset of
X. Then d(x, y) < ε, thus x ∈ Nε(y) and Nε(y) ∈ C. Furthermore, ∀z ∈
Nε(y), d(x, z) ≤ d(x, y) + d(y, z) < ε + ε = 2ε < r, and hence z ∈ Nr(x),
which implies Nε(y) ⊆ Nr(x). Combining these results together, we get
x ∈ Nε(y) ⊆ Nr(x) ⊆ G and Nε(y) ∈ C. Therefore, C is a base for X.

24. Let X be a metric space in which every infinite subset has a limit point.
Prove that X is separable.
Proof : Fix δ > 0, and pick x1 ∈ X. Having chosen x1, x2, ..., xj ∈ X,
choose xj+1 ∈ X, if possible, so that d(xi, xj+1) ≥ δ for i = 1, ..., j. Next,
we show that this process must stop after a finite number of steps. Sup-
pose, if it’s not, then we can obtain an infinite set E = {xi}∞i=1 such that
d(xi, xj) ≥ δ, for all i 6= j and i, j ≥ 1. E can have no limit point in
X. To see this, suppose p is a limit point of E, then N δ

2
(p) can have at

most one point of E. This is because if x ∈ E and x ∈ N δ
2
(p), y ∈ E and

y 6= x, then d(y, p) ≥ d(x, y)− d(x, p) > δ− δ
2 = δ

2 , which says y 6∈ N δ
2
(p).

Thus, if we let r = d(x, p) and pick a positive real number r′ such that
0 < r′ < r, Nr′(p) contains no point of E, which is absurd if p is a limit
point of E. Therefore, E has no limit point in E, which is contradict
to our assumption that “every infinite subset has a limit point”. Hence,
the previous process must stop after a finite number of steps and X can
therefore be covered by finitely many neighborhoods of radius δ (since
after finite number of steps, we cannot find any x in X, thus every x in
X has been covered by neighborhoods with radius δ and centered in the
points that have been selected).
Now, let’s take δ = 1

n , n = 1, 2, 3, ..., and consider the centers of the cor-

responding neighborhoods, namely, the set Y =
∞⋃
n=1
{y|X ⊆

⋃
N 1
n

(y), y ∈

X}. We will prove that Y is a countable dense subset of X. The fact that
Y is a countable subset of X is clear since every set in the above union is
finite and the total number of sets is countable. Pick p ∈ X and p 6∈ Y ,
and let r > 0 be an arbitrary positive real number, then there exists some
δ = 1

n for some sufficiently large positive integer n such that δ < r, and
p ∈ Nδ(y), for some y ∈ Y . Hence d(p, y) < δ < r and y ∈ Nr(p), which
implies that p is a limit point of Y . Therefore Y is dense in X, so X is
separable.

25. Prove that every compact metric space K has a countable base, and that
K is therefore separable.
Proof : For every positive integer n, there are finitely many neighborhoods
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of radius 1
n whose union covers K (C = {N 1

n
(p)}, p ∈ K forms an open

cover of K, then there is a finite subcover of C which stills covers K since K
is compact). Let O be the collection of all the finite subcovers which covers

K when taking n to be 1, 2, 3, ..., that is, O =
∞⋃
n=1
{N 1

n
(p)|K ⊆

⋃
N 1
n

(p)}.

We will show that O is a countable base of K.
∀x ∈ K and every open set G such that G ⊆ K and x ∈ G, there is
a r > 0 such that Nr(x) ⊆ G since G is open. For this r, there is a
sufficiently large n such that 0 < 1

n < r. If N 1
n

(x) ∈ O, then x ∈ N 1
n

(x) ⊆
Nr(x) ⊆ G. If N 1

n
(x) 6∈ O, then let ε = 1

2n , and x ∈ Nε(y) for some

y ∈ K such that Nε(y) ∈ O. Thus, d(x, y) < ε. Furthermore, ∀z ∈ Nε(y),
d(z, x) ≤ d(z, y) + d(y, x) < ε + ε = 2ε = 1

n < r, hence z ∈ Nr(x) and
Nε(y) ⊆ Nr(x). Taking these together, we have x ∈ Nε(y) ⊆ Nr(x) ⊆ G
and Nε(y) ∈ O. Therefore, O is a base of K and O is countable since every
set in the union is finite and the total number of sets is countable.
We have completed the proof that K has a countable base, and the result
that K is separable is due to the fact that if K is compact, then every
infinite subset of K has a limit point in K, by Theorem 2.37, and the
result of Exercise 24.

26. Let X be a metric space in which every infinite subset has a limit point.
Prove that X is compact.
Proof : By Exercise 23 and 24, X has a countable base. It follows that
every open cover of X has a countable subcover {Gn}, n = 1, 2, 3, ....
If no finite subcollection of {Gn} covers X, then the complement Fn of

G1∪· · ·∪Gn is nonempty for each n, but
∞⋂
n=1

Fn is empty. Let Kn =
n⋃
i=1

Gi,

then Fn = Kc
n. Since Kn ⊆ Kn+1, Fn ⊇ Fn+1 but each Fn is not empty.

Since
∞⋂
n=1

Fn is empty , then ∀x ∈ X, ∃N ∈ N, x ∈ FN but x 6∈ FN+1.

If E is a set which contains a point from each Fn, then we obtain a infinite
subset of X. We will show that E doesn’t have a limit point. Suppose,
on the contrary, if E has a limit point p, then there is an N such that
p ∈ FN but p 6∈ FN+1. In other words, p in KN for some N (thus Kn

for n ≥ N) and P in Gα for some 1 ≤ α ≤ N . Since Gα is open, there
is a neighborhood Np of p such that Np ⊆ Gα. Therefore, Np ⊆ Kn, for
n ≥ N , and Np ∩ Fn = ∅, for n ≥ N . This is contradict to the fact that
p is a limit point of E, since Np can only contain points of Fn, n < N
and thus Np ∩ E contains only finite number of points. Thus X must be
covered by some finite subcover of {Gn} and is compact.

27. Define a point p in a metric space X to be a condensation point of a set
E ⊆ X if every neighborhood of p contains uncountably many points of
E.
Suppose E ⊆ Rk, E is uncountable, and let P be the set of all condensation
points of E. Prove that P is perfect and that at most countably many
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points of E are not in P . In other words, show that P c ∩ E is at most
countable.
Proof :
(i)Let x be a limit point of P , and let Nx be any neighborhood of x.
Then there is a y ∈ Nx, y 6= x, such that y is a condensation point of E.
Since Nx is open, there is a neighborhood Ny of y such that Ny ⊆ Nx.
Therefore, Nx contains uncountably many points of E since Ny contains
uncountably many points of E, and hence x is a condensation point of E.
Thus, x ∈ P and P is closed.
(ii) Let {Vn} be a countable base of Rk since Rk is separable and every
separable metric space has a countable base. Let W be the union of those
Vn for which E ∩ Vn is at most countable and we will show that P = W c.
⇒: Let x be any point of P , then x is a condensation point of E. If
x ∈ W , then there is some m ∈ N, x ∈ Vm and E ∩ Vm is at most
countable. Because Vm is open, there is a neighborhood Ux of x, such
that Ux ⊆ Vm, and Ux contains uncountably many points of E since x is
a condensation point of E. Hence Vm contains uncountably many points
of E, which is a contradiction. So x 6∈W , i.e., x ∈W c, and thus P ⊆W c.
⇐: On the other hand, let x be any point of W c, then x 6∈ W . Let Nx
be any neighborhood of x, then since Nx is open and {Vn} is a countable
base of Rk, there is some m, m ∈ N, such that x ∈ Vm ⊆ Nx. Since
x 6∈ W , x 6∈ Vi if Vi ∩ E is at most countable, hence Vm ∩ E must be
uncountable. Vm ⊆ Nx implies that Vm ∩ E ⊆ Nx ∩ E and thus Nx ∩ E
must be uncountable, which is equivalent to say that x is a condensation
point of E. Therefore, x ∈ P and W c ⊆ P .
Now, we have completed the proof of P = W c. Consider any point x
in P , and let Nx be any neighborhood of x. Then there is some m such
that x ∈ Vm ⊆ Nx. Since x 6∈ W , Vm ∩ E is uncountable and thus Vm
is uncountable. Let y ∈ Vm ∩W c ⊆ Nx ∩W c ⊆ Nx and y 6= x (since W
is at most countable, then Vm ∩W is at most countable, thus Vm ∩W c

must be uncountable because Vm is uncountable), then y ∈ W c and thus
y ∈ P . This is to say, for every neighborhood Nx of x, there is a point
y ∈ Nx such that y 6= x and y ∈ P . Therefore x is a limit point of P .
Combined with (i), P is perfect and since W is at most countable, P = W c

implies that at most countably many points of E are not in P , namely,
those points x ∈ E and x ∈W (P c ∩ E = W ∩ E is at most countable).

28. Prove that every closed set in a separable metric space is the union of a
(possibly empty) perfect set and a set which is at most countable. (Corol-
lary : Every countable closed set in Rk has isolated points.)
Proof : Let E be a closed set and let P be the set of all condensation
points of E (P is possibly empty). Suppose p ∈ P , then every neighbor-
hood of p contains uncountably many points of E and thus p is a limit
point of E. Hence p ∈ E since E is closed, so P ⊆ E.
Let E = P ∪ (E − P ) = E ∪ (E ∩ P c), and according to Exercise 27, then
P is perfect and E ∩ P c is at most countable, which completes our proof.
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Proof of the Corollary:
Suppose, it is not true. Let E be a countable closed set in Rk, and E has
no isolated points. Then each point of E is a limit point of E and E is thus
perfect since E is closed. According to Theorem 2.43, E is uncountable,
which is a contradiction.

29. Prove that every open set in R1 is the union of an at most countable
collection of disjoint segments.
Proof : Let {Vβ} be the collection of open sets(segments) of R1 such that
centered at every p ∈ Q and with rational radius. Then according to
Exercise 22 and 23, we know that {Vβ} is a countable base of R1 and
hence every open set O in R1 is the union of a subcollection {Vα} of {Vβ},
i.e., O =

⋃
α Vα. Note that {Vα} is at most countable.

Next, we show how to get an at most countable collection of disjoint
segments by starting from {Vα}. Let E := ∅, and let {Vα} = {V1, V2, ...}
since {Vα} is at most countable. At step n, we add Vn to E according to
the following rule:
(i) If Vn ∩ Uγ = ∅, for every Uγ ∈ E, then add Vn directly into E;
(ii) Otherwise, let {Uγ} be the collection of sets in E such that Uγ∩Vn 6= ∅.
If Vn ⊆ Uγ for some γ, then we simply discard Vn, leaving E unchanged
and move on to Vn+1. Otherwise, we first replace each Uγ by Vn ∪Uγ and
then we check to see whether there are any two of Vn ∪ Uγ intersected,
and united them if any are found. Note that the union of two intersected
segments which are centered at rational numbers p1, p2 and with rational
radius r1 and r2 is still a segment centered at a rational number and with
rational radius. To see this, let two segment be V1 = (a1 = p1 − r1, b1 =
p1 + r1), V2 = (a2 = p2 − r2, b2 = p2 + r2), and let a1 < a2 < b1 < b2,
without loss of generality. Then V1∪V2 = (a1, b2), and V1∪V2 is centered
at a1+b2

2 , which is clearly a rational number; and with radius b2−a1
2 , which

is also a rational number. Hence V1 ∪ V2 ∈ {Vα} if V1, V2 ∈ {Vα}.
Therefore, we can convince us that the above construction is well defined
and each step can be terminated in finite sub steps. The resulted collection
E after each step n contains disjoint segments from {Vα}, and

⋃
γ(Uγ ∈

E) =
⋃n
i=1 Vi so we are sure that O = E at last. Furthermore, the number

of sets in E is less than or equal to n after each step n and thus E is at
most countable.

30. Imitate the proof of Theorem 2.43 to obtain the following result:
If Rk =

⋃∞
1 Fn, where each Fn is a closed subset of Rk, then at least one

Fn has a nonempty interior.
Equivalent statement : If Gn is a dense open subset of Rk, for n = 1, 2, 3, ...,
then

⋂∞
1 Gn is not empty (in fact, it is dense in Rk).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for
the general case.)
Proof : Suppose that, on the contrary, every Fn has an empty interior,
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which implies that ∀p ∈ Fn and let Np be any neighborhood of p, there
is a q ∈ Np, q 6= p and q 6∈ Fn, i.e., q ∈ F cn. Thus p is a limit point
of F cn. Because Rk =

⋃∞
1 Fn, F cn ⊆

⋃
m 6=n Fm, and p is a limit point of⋃

m 6=n Fm.

Now, let x1 be any point of F1, then x1 is a limit point of
⋃∞
m=2 Fm.

Let V1 be any neighborhood of x1, then there is a point x2 in V1 such
that x2 6∈ F1 and x2 ∈

⋃∞
m=2 Fm. Without loss of generality, we assume

x2 ∈ F2, and thus x2 is a limit point of
⋃
m6=2 Fm. But since x2 6∈ F1, x2

is not a limit point of F1 (because F1 is closed), and thus x2 must be a
limit point of

⋃∞
m=3 Fm. On the other hand, x2 is not a limit point of F1

suggests that there is a neighborhood V 1
2 of x2 such that V 1

2 ∩ F1 = ∅. If
we let V 2

2 be a neighborhood of x2 such that x1 6∈ V 2
2 and V̄ 2

2 ⊆ V1, and
denote V2 = V 1

2 ∩ V 2
2 , then V2 satisfies the following properties:

(i) V2 ∩ F1 = ∅ and thus x1 6∈ V2;
(ii) V̄2 ⊆ V1;
(iii) x2 is a limit point of

⋃∞
m=3 Fm.

The property (iii) allows us to continue the above construction steps.
Generally speaking, suppose xn has been picked and Vn has been con-
structed. Then xn is a limit point of

⋃∞
m=n+1 Fm and there is a point

xn+1 in Vn such that xn+1 6∈ Fn and xn+1 ∈
⋃∞
m=n+1 Fm. Without

loss of generality, we assume xn+1 ∈ Fn+1, and thus xn+1 is a limit
point of

⋃
m 6=n+1 Fm. Since xn+1 6∈ Fn, xn+1 is not a limit point of

Fn(because Fn is closed) and there is a neighborhood V 1
n+1 of xn+1 such

that V 1
n+1 ∩ Fn = ∅. If we let V 2

n+1 be a neighborhood of xn+1 such that
xn 6∈ V 2

n+1 and V̄ 2
n+1 ⊆ Vn, and denote Vn+1 = V 1

n+1 ∩ V 2
n+1, then Vn+1

satisfies the following properties:
(i) Vn+1 ∩ Fn = ∅ and thus xn 6∈ Vn+1;
(ii) V̄n+1 ⊆ Vn;.
(iii) According to our steps, xn+1 cannot be a limit point of Fi, 1 ≤ i ≤ n,
due to property (i) and (ii) (which implies Vn+1 ∩ Fi = ∅, for 1 ≤ i ≤ n).
Thus xn+1 must be a limit point of

⋃∞
m=n+2.

By (iii), xn+1 satisfies our induction hypothesis, and the construction can
proceed.
Since xn ∈ Vn and thus xn ∈ V̄n, each V̄n is nonempty. Since V̄n is closed
and bounded, V̄n is compact. Furthermore, by (ii), V̄n+1 ⊆ Vn ⊆ V̄n,⋂∞
n=1 V̄n is nonempty, according to the Corollary of Theorem 2.36. Then

there is some x ∈
⋂∞
n=1 V̄n. But by (i), (

⋂∞
n=1 V̄n) ∩ Fm = ∅, for every

m ∈ N, which means x 6∈ Fm, for every m ∈ N. Thus x 6∈
⋃∞
n=1 Fn, i.e.,

x 6∈ Rk, which is absurd.
Therefore, we conclude that at least one Fn has a nonempty interior.
Proof of the equivalent statement:
Suppose

⋂∞
1 Gn is empty, then (

⋂∞
1 Gn)c = Rk, i.e., Rk =

⋃∞
1 Gcn, and

Gcn is closed since Gn is open. Then according to the previous result, there
is at least one GcN has a nonempty interior. (GcN )◦ 6= ∅ means there is a
p ∈ (GcN )◦, and thus there is a neighborhood Np of p such that Np ⊆ GcN ,
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i.e., Np∩Gn = ∅ and thus p is not a limit point of Gn, which is contradict
to the assumption that Gn is dense in Rk.

3 Numerical sequences and series

1. Prove that convergence of {sn} implies convergence of {|sn|}. Is the con-
verse true?
Proof : Suppose {sn} converges to s, then ∀ε > 0, ∃N ∈ N such that
|sn − s| < ε, for all n ≥ N . Since ||sn| − |s|| ≤ |sn − s| < ε, we know that
|sn| converges to |s|.
The converse is not true. e.g., sn = (−1)n.

2. Calculate lim
n→∞

(
√
n2 + n− n).

Solution: lim
n→∞

(
√
n2 − n) = lim

n→∞
n√

n2+n+n
= lim
n→∞

1

1+
√

1+ 1
n

= 1.

3. If s1 =
√

2, and sn+1 =
√

2 +
√
sn, (n = 1, 2, 3, ...), prove that {sn}

converges, and that sn < 2 for n = 1, 2, 3, ....
Proof : We first prove that sn+1 > sn by induction.
(i)n = 1, s2 =

√
2 +
√
s1 >

√
2 = s1;

(ii)Suppose the inequality holds when n = k, i.e., sk+1 > sk. Let n = k+1,
then sk+2 − sk+1 =

√
2 +
√
sk+1 − sk+1 =

√
2 +
√
sk+1 −

√
2 +
√
sk =

√
sk+1−

√
sk√

2+
√
sk+1+

√
2+
√
sk

. Since sk+1 > sk by hypothesis,
√
sk+1 >

√
sk and

thus sk+2 > sk+1. Therefore, sn+1 > sn for all n ∈ N. Similarly, by
induction, we can show that sn < 2 for all n ∈ N. So, {sn} is monotonic
and bounded, thus {sn} converges.

4. Find the upper and lower limits of the sequence {sn} defined by s1 = 0;
s2m = s2m−1

2 ; s2m+1 = 1
2 + s2m.

Solution: We can obtain that s2m+1 = 1−( 1
2 )m and s2m+2 = 1

2 (1−( 1
2 )m),

for m ≥ 0. Thus lim sup
n→∞

sn = 1 and lim inf
n→∞

= 1
2 .

5. For any two real sequences {an}, {bn}, prove that lim sup
n→∞

(an + bn) ≤
lim sup
n→∞

an + lim sup
n→∞

bn, provided the sum on the right is not of the form

∞−∞.
Proof : Suppose, on the contrary, this is not true. For simplicity, let
A = lim sup

n→∞
an, B = lim sup

n→∞
bn, and C = lim sup

n→∞
(an + bn). Then, by

our assumption, A + B < C, i.e., A < C − B. Hence there is an S,
A < S < C − B, and since A = lim sup

n→∞
an, there is an N ∈ N such that

n ≥ N implies an < S. So, when n ≥ N , an + bn < S + bn and thus
lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

(S + bn), according to Theorem 3.19. That is,
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C ≤ lim sup
n→∞

(S+ bn) = S+ lim sup
n→∞

bn = S+B < (C −B) +B = C, which

is absurd. Therefore, C ≤ A+B.

6. Investigate the behavior(convergence or divergence) of
∑
an if

(a) an =
√
n+ 1−

√
n;

Solution: Let sn =
∑n
i=1 ai =

√
n+ 1 − 1, then s = lim

n→∞
sn → ∞

and thus
∑
an diverges.

(b) an =
√
n+1−

√
n

n ;

Solution: an =
√
n+1−

√
n

n = 1
n(
√
n+1+

√
n)

< 1
2n
√
n

= 1

2n
3
2

, then∑
an <

1
2

∑
1

n
3
2

. Since
∑

1
np converges when p > 1,

∑
an converges

by the comparison test.

(c) an = ( n
√
n− 1)n;

Solution: Since α = lim sup
n→∞

n
√
|an| = lim sup

n→∞
| n
√
n − 1| = 0 < 1,∑

an converges due to the root test.

(d) an = 1
1+z2 , for complex values of z.

Solution: When |z| > 1, |an+1

an
| = | z

n+1
zn+1+1 | = 1

|z|
|zn+1|
|zn+ 1

z |
. Since

|zn+1|
|zn+ 1

z |
≤ |z|n+1

||z|n− 1
|z| |

= |z|n+1

|z|n− 1
|z|

< |z|n+1
|z|n−1 , lim sup

n→∞
|an+1

an
| ≤ 1

|z| lim sup
n→∞

|z|n+1
|z|n−1 =

1
|z| < 1, and hence

∑
an converges due to the ratio test.

When |z| < 1, let z = |z|w, where w ∈ C and |w| = 1, then
an = 1

1+zn = 1
1+|z|nwn . Since |z| < 1, |z|n → 0 when n → ∞,

thus an → 1 when n→∞ and
∑
an diverges.

Finally, when |z| = 1, |an| = 1
|1+zn| ≥

1
1+|z|n = 1

2 , thus an cannot

→ 0 when n→∞ since otherwise |an| should → 0, too. Hence
∑
an

diverges.
Summarized,

∑
an converges when |z| > 1, and diverges when |z| ≤

1.

7. Prove that the convergence of
∑
an implies the convergence of

∑ √
an
n , if

an ≥ 0.
Proof : ∀ε > 0, since

∑
an converges, there is an N1 ∈ N such that

n > m > N1 implies |
n∑

k=m

ak| =
n∑

k=m

ak < ε, since an ≥ 0. On the

other hand, since
∑

1
n2 converges, there is an N2 ∈ N such that n >

m > N2 implies |
n∑

k=m

1
k2 | =

n∑
k=m

1
k2 < ε. Then let N = max(N1, N2)

and when n > m > N , we have |
n∑

k=m

√
ak
k | ≤

√
n∑

k=m

(
√
ak)2

n∑
k=m

( 1
k )2 =√

n∑
k=m

ak
n∑

k=m

1
k2 <

√
ε · ε = ε, by the Schwarz inequality. Hence,

∑ √
an
n

converges.
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8. If
∑
an converges, and if {bn} is monotonic and bounded, prove that∑

an
∑
bn converges.

Proof :
∑
an converges implies that ∀ε > 0, ∃N ∈ N, n > N and p ∈ I+

implies |
n+p∑
k=n+1

ak| < ε. Denote Am(n) =
m∑
k=1

an+k and put A0(n) = 0,

then |Am(n)| < ε for every m. Using summation by parts, we obtain

that |
p∑
k=1

an+kbn+k| = |
p∑
k=1

(Ak(n) − Ak−1(n))bn+k| = |
p∑
k=1

Ak(n)bn+k −
p∑
k=1

Ak−1(n)bn+k| = |
p∑
k=1

Ak(n)bn+k−
p−1∑
k=0

Ak(n)bn+(k+1)| = |
p−1∑
k=1

Ak(n)(bn+k−

bn+(k+1)) + Ap(n)bn+p − A0(n)bn+1| = |
p−1∑
k=1

Ak(n)(bn+k − bn+(k+1)) +

Ap(n)bn+p| (*), since we putA0(n) = 0. (*)≤ |
p−1∑
k=1

Ak(n)(bn+k−bn+(k+1))|+

|Ap(n)bn+p| ≤
p−1∑
k=1

|Ak(n)|·|(bn+k−bn+(k+1))|+|Ap(n)||bn+p| < ε(
p−1∑
k=1

|bn+k−

bn+(k+1)|+ |bn+p|) (**). Since {bn} is monotonic,
p−1∑
k=1

|bn+k − bn+(k+1)| =

|bn+1−bn+p| and then (**)=ε(|bn+1−bn+p|+ |bn+p|) ≤ ε(|bn+1|+ |bn+p|+
|bn+p|) (***). Since {bn} is bounded, |bn| ≤M , for every n ∈ N and some

M . Hence, (***)≤ ε · 3M , which gives |
p∑
k=1

an+kbn+k| < 3εM . Therefore,∑
anbn converges.

9. Find the radius of convergence of each of the following power series:

(a)
∑
n3zn: (Solution: α = 1, R = 1);

(b)
∑

2n

n! z
n: (Solution: α = 0, R =∞);

(c)
∑

2n

n2 z
n: (Solution: α = 2, R = 1

2 );

(d)
∑

n3

3n z
n: (Solution: α = 1

3 , R = 3).

10. Suppose that the coefficients of the power series
∑
anz

n are integers,
infinitely many of which are distinct from zero. Prove that the radius
of convergence is at most 1.
Proof : Let the radius of convergence is R, we first prove that power
series converges absolutely in the interior of the disk with radius R and
with the center at the origin. In other words,

∑
an|z|n converges when

|z| < R. Put cn = an|z|n, and apply the root test: lim sup
n→∞

n
√
|cn| =

|z| lim sup
n→∞

n
√
|an| = |z|

R < 1 and thus
∑
cn converges.

Next, suppose R > 1 and let α = lim sup
n→∞

n
√
|an| = 1

R < 1. Pick a β such

that α < β < 1, then there is an N ∈ N such that n
√
|an| < β for n > N ,
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i.e., |an| < βn < 1. Since by assumption, an are integers, an = 0 when
n > N . Thus the only possible an which are distinct from zero are in
the set E = {ai|1 ≤ i ≤ N}. But E is finite, which is contradict to our
hypothesis that there are infinitely many of an which are distinct from
zero. Therefore R ≤ 1.

11. Suppose an > 0, sn = a1 + · · ·+ an, and
∑
an diverges.

(a) Prove that
∑ an

1+an
diverges.

Proof : Note that an
1+an

> 1
2an when an < 1. Suppose that, on the

contrary,
∑ an

1+an
converges. Then an

1+an
= 1

1+ 1
an

→ 0 as n → ∞,

which gives 1
an
→∞ and thus an → 0 as n→∞. Hence ∃N ∈ N such

that n > N implies an < 1, and as a result an
1+an

> 1
2an when n > N .

Since
∑
an diverges, so is

∑ an
1+an

, which gives a contradiction.

(b) Prove that aN+1

sN+1
+ · · · aN+k

sN+k
≥ 1 − sN

sN+k
and deduce that

∑ an
sn

di-
verges.
Proof : Since sn is monotonically increasing, aN+1

sN+1
+ · · · aN+k

sN+k
≥

aN+1

sN+k
+ · · · aN+k

sN+k
= aN+1+···+aN+k

sN+k
= sN+k−sN

sN+k
= 1− sN

sN+k
.

Suppose, on the contrary,
∑ an

sn
converges, then ∀ε > 0, there is

an N ∈ N, such that |aN+1

sN+1
+ · · · + aN+k

sN+k
| < ε, ∀k ∈ I+. Hence

1− sN
sN+k

< ε, which gives sN
sN+k

> 1− ε, i.e., sN+k <
sN
1−ε . Fix N and

let k → ∞, this gives sn <
sN
1−ε as n → ∞ and sn is bounded. On

the other hand sn is monotonically increasing, hence sn converges,
which is contradict to the hypothesis that

∑
an diverges.

(c) Prove that an
s2n
≤ 1

sn−1
− 1

sn
and deduce that

∑ an
s2n

converges.

Proof : an
s2n

= sn−sn−1

s2n
< sn−sn−1

snsn−1
= 1

sn−1
− 1

sn
.

Then
m∑
n=1

an
s2n

< 1
s1

+
m∑
n=2

( 1
sn−1

− 1
sn

) = 1
s1

+ ( 1
s1
− 1

sm
) = 2

s1
− 1

sm
,

Since
∑
an diverges, sn → ∞ as n → ∞, and 1

sn
→ 0 as n → ∞.

Hence,
∑ an

s2n
≤ 2

s1
= 2

a1
and is bounded. On the other hand,

m∑
n=1

am
s2m

increases monotonically and thus converges.

(d) What can be said about
∑ an

1+nan
and

∑ an
1+n2an

?
Solution:
(i)
∑ an

1+nan
may converge or diverge. Let an = 1, then

∑
an diverges,

and
∑ an

1+nan
=
∑

1
n+1 diverges. On the other hand, let

an =

{
1 if n = 2k
1
n2 otherwise

, then
∑
am diverges, but

an
1 + nan

=

{ 1
1+2k

if n = 2k

1
n2+n otherwise
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, converges to 0, in either case.
(ii)
∑ an

1+n2an
converges, since an

1+n2an
= 1

n2+ 1
an

< 1
n2 and

∑
1
n2 con-

verges.

12. Suppose an > 0 and
∑
an converges. Put rn =

∞∑
m=n

am.

(a) Prove that am
rm

+ · · ·+ an
rn
> 1− rn

rm
if m < n, and deduce that

∑ an
rn

diverges.
Proof : Since ri > rj if i < j, amrm +· · ·+ an

rn
> am+···+an

rm
= rm−rn+1

rm
=

1− rn+1

rm
> 1− rn

rm
.

Suppose, on the contrary,
∑ an

rn
converges, then ∀ε > 0, ∃N ∈ N,

n > m > N implies |amrm + · · · + an
rn
| < ε, and thus ε > 1 − rn

rm
, i.e.,

rn
rm

> 1− ε, i.e., rn > (1− ε)rm (*). Fix this m, let s =
∞∑
k=1

ak since∑
ak converges, and let sn =

n∑
k=1

ak. Then there is a N ′ ∈ N such

that |sn−s| < (1−ε)rm if n > N ′, i.e., |rn+1| = rn+1 < (1−ε)rm(**).
Now, let K = max(m,N ′+ 1), and let n > K, then (*) and (**) tells
us just contradict things. Therefore

∑ an
rn

must diverge.

(b) Prove that an√
rn
< 2(
√
rn−
√
rn+1) and deduce that

∑ an√
rn

converges.

Proof : an√
rn

= rn−rn+1√
rn

=
(
√
rn+
√
rn+1)(

√
rn−
√
rn+1)√

rn
<

2
√
rn(
√
rn−
√
rn+1)√

rn
=

2(
√
rn −

√
rn+1).

Then
∑n
k=1

ak√
rk

< 2
∑n
k=1(
√
rn −

√
rn+1) = 2(

√
r1 −

√
rn+1). Be-

cause rn → 0 as n→∞,
∑ ak√

rk
≤ 2
√
r1 as n→∞. Since

∑n
k=1

ak√
rk

increases monotonically,
∑ ak√

rk
converges.

13. Prove that the Cauchy product of two absolutely convergent series con-
verges absolutely.
Proof : Let

∑
an and

∑
bn be two absolutely convergent series and

∑
cn

is their Cauchy product. Denote A =
∑∞
n=0 |an|, B =

∑∞
n=0 |bn|, then

Cn =
∑n
m=0 |cm| =

∑n
m=0 |

∑m
k=0 akbm−k| ≤

∑n
m=0

∑m
k=0 |ak||bm−k| =∑m

k=0 |ak|
∑n
m=0 |bm−k| =

∑n
k=0 |ak|

∑n−k
m=0 |bm| ≤

∑n
k=0 |ak|

∑∞
m=0 |bm| =

B
∑n
k=0 |ak| ≤ B

∑∞
k=0 |ak| = AB and thus Cn is bounded. On the other

hand, Cn increases monotonically, thus Cn converges.

14. If {sn} is a complex sequence, define its arithmetic means σn by σn =
s0+s1+···+sn

n+1 , (n = 0, 1, 2, ...).

(a) If lim sn = s, prove that limσn = s.
Proof : Since lim sn = s, ∀ε > 0, ∃N ∈ N, n > N implies |sn −
s| < ε. |σn − s| = | s0+s1+···+sn

n+1 − s| = | (s0−s)+(s1−s)+···+(sn−s)
n+1 | ≤

|s0−s|+|s1−s|+···+|sn−s|
n+1 =

∑N
k=0 |sk−s|
n+1 +

∑n
k=N+1 |sk−s|

n+1 <
∑N
k=0 |sk−s|
n+1 +
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(n−N)ε
n+1 <

∑N
k=0 |sk−s|
n+1 + ε. Pick N ′ > N , such that

∑N
k=0 |sk−s|
n+1 < ε

when n > N ′ and then |σn − s| <
∑N
k=0 |sk−s|
n+1 + ε < ε+ ε = 2ε when

n > N ′. Therefore limσn = s.

(b) Construct a sequence {sn} which does not converge, although limσn =
0.
Solution: sn = (−1)n.

(c) Can it happen that sn > 0 for all n and that lim sup sn = ∞, al-
though limσn = 0?
Solution: Yes. See this example: sn = k, if n = 2k; and sn = 1

2n ,
otherwise. Then sn > 0 for all n and lim sup sn = ∞. But sup-

pose 2k ≤ n < 2k+1, then σn = s0+s1+···+sn
n+1 =

∑k
i=1 i+

∑
m6=2j

1
2m

n+1 <
k(k+1)

2 +
∑n
m=0

1
2m

n+1 <
log2 n(log2 n+1)

2 +
∑∞
m=0

1
2m

n+1 =
log2 n(log2 n+1)

2 +2

n+1

= (log2 n)2+log2 n+4
2(n+1) → 0 when n→∞.

(d) Put an = sn − sn−1, for n ≥ 1. Show that sn − σn = 1
n+1

n∑
k=1

kak.

Assume that lim(nan) = 0 and that {σn} converges. Prove that {sn}
converges.

Proof : sn − σn = sn − s0+s1+···+sn
n+1 = (n+1)sn−(s0+s1+···+sn)

n+1 =
1

n+1 (nsn−
∑n−1
k=0 sk) = 1

n+1 ((sn−sn−1)+ · · ·+(sn−s0)) = 1
n+1 (an+

(an+an−1)+ · · ·+
∑1
k=n ak) = 1

n+1 (nan+(n−1)an−1 + · · ·+1 ·a1) =
1

n+1

∑n
k=1 kak.

Suppose limσn = σ, then ∀ε > 0, ∃N ∈ N, n > N implies |σn −
σ| < ε. On the other hand, lim(nan) = 0 implies that ∃N ′ ∈ N
s.t. |nan| < ε when n > N ′. Let K = max(N,N ′), and when
n > K, |sn − σ| = |(sn − σn) + (σn − σ)| ≤ |sn − σn| + |σn −
σ| < | 1

n+1

∑n
k=1 kak| + ε = | 1

n+1 (
∑K
k=1 kak +

∑n
k=K+1 kak)| + ε ≤

1
n+1 (|

∑K
k=1 kak|+|

∑n
k=K+1 kak|)+ε ≤

1
n+1 (|

∑K
k=1 kak|+

∑n
k=K+1 |kak|)+

ε = 1
n+1 (|

∑K
k=1 kak| + (n − K)ε) + ε < 1

n+1 |
∑K
k=1 kak| + 2ε. Pick

K ′ > K, such that 1
n+1 |

∑K
k=1 kak| < ε when n > K ′, then |sn−σ| <

ε+ 2ε = 3ε when n > K ′. Therefore, lim sn = σ.

(e) Derive the last conclusion from a weaker hypothesis: Assume M <
∞, |nan| ≤M for all n, and limσn = σ. Prove that lim sn = σ.

Proof : If m < n, then sn − σn = m+1
n−m (σn − σm) + 1

n−m

n∑
i=m+1

(sn −

si) (*). For these i, |sn − si| = |
∑n
k=i+1 ak| ≤ |

∑n
k=i+1 kak
i+1 | ≤

1
i+1

∑n
k=i+1 |kak| ≤

(n−i)M
i+1 ≤ (n−m−1)M

m+2 .
Fix ε > 0 and associate with each n the integer m such that satisfies
m ≤ n−ε

1+ε < m + 1. Then m+1
n−m ≤

1
ε and |sn − si| < Mε. Hence

lim sup
n→∞

|sn − σ| ≤ Mε by letting m →∞, thus n →∞ in (*). Since

ε was arbitrary, lim sn = σ.
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15. Definition 3.21 can be extended to the case in which the an lie in some
fixed Rk. Absolute convergence is defined as convergence of

∑
|an|. Show

that Theorems 3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 are
true in this more general setting. (Only slight modifications are required
in any of the proofs.)
Proof : The proofs of these Theorem are very similar, only replace an by
an and replace |an| by |an|.

16. Fix a positive number α. Choose x1 >
√
α, and define x2, x3, x4, ..., by

the recursion formula xn+1 = 1
2 (xn + α

xn
).

(a) Prove that {xn} decreases monotonically and that limxn =
√
α.

Proof : xn+1 − xn = 1
2 (xn + α

xn
)− xn = 1

2 ( αxn − xn) = 1
2xn

(α− x2
n).

We prove that xn >
√
α, for every n, by induction.

(i)n = 1, x1 >
√
α, which is trivial.

(ii)Suppose when n = k, xk >
√
α. Let n = k + 1, xk+1 = 1

2 (xk +
α
xk

) ≥ 1
2 · 2

√
xk · αxk =

√
α and the equality holds if and only if

xk = α
xk

, namely, xk =
√
α. Since xk >

√
α by hypothesis, we have

xk+1 >
√
α. Now we see xn >

√
α for every n and thus xn+1−xn < 0,

i.e., xn+1 < xn. Hence, xn decreases monotonically. Furthermore,
xn is bounded and thus xn converges. Suppose limxn = x, then
x = limxn = lim 1

2 (xn−1+ α
xn−1

) = 1
2 (limxn−1+ α

lim xn−1
) = 1

2 (x+ α
x ),

which gives x =
√
α. Thus limxn = x = α.

(b) Put εn = xn−
√
α, and show that εn+1 =

ε2n
2xn

<
ε2n

2
√
α

so that, setting

β = 2
√
α, εk+1 < β( ε1β )2n , (n = 1, 2, 3, ...).

Proof : εn+1 = xn+1 −
√
α = 1

2 (xn + α
xn

) −
√
α =

x2
n−2xn

√
α+α

2xn
=

(xn−
√
α)2

2xn
=

ε2n
2xn

<
ε2n

2
√
α

, since xn >
√
α.

Let β = 2
√
α, then εn+1 <

ε2n
β = β( εnβ )2 < β(

β(
εn−1
β )2

β )2 = β( εn−1

β )22

<

· · · < β( ε1β )2n

(c) This is a good algorithm for computing square roots, since the recur-
sion formula is simple and the convergence is extremely rapid. For
example, if α = 3 and x1 = 2, show that ε1/β <

1
10 and that there-

fore ε5 < 4 · 10−16, ε6 < 4 · 10−32.

Proof : α = 2 > 25
9 ,
√
α > 5

3 , then ε1
β = x1−

√
α

2
√
α

= 2−
√
α

2
√
α

=
1√
α
− 1

2 < 3
5 −

1
2 = 1

10 . Therefore, ε5 < β( ε1β )16 < 4 · 10−16, and

ε6 < β( ε1β )32 < 4 · 10−32, since β = 2
√
α < 2

√
4 = 4.

17. Fix α > 1. Take x1 >
√
α, and define xn+1 = α+xn

1+xn
= xn +

α−x2
n

1+xn
.

(a) Prove that x1 > x3 > x5 > · · · .
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(b) Prove that x2 < x4 < x6 < · · · .
Proof for (a) and (b): We first prove that x2n−1 >

√
α and

x2n <
√
α by induction.

(i)n = 1, x1 >
√
α by assumption. x2 −

√
α = α+x1

1+x1
−
√
α =

α+x1−
√
α−
√
αx1

1+x1
= (x1−

√
α)(1−

√
α)

1+x1
< 0, since α > 1 by assumption.

Thus the proposition holds.
(ii)Suppose when n = k, x2k−1 >

√
α and x2k <

√
α. Let n = k + 1,

then x2k+1 −
√
α = α+x2k

1+x2k
−
√
α = (x2k−

√
α)(1−

√
α)

1+x2k
> 0, since

x2k < 0 by hypothesis and α > 1 by assumption. x2k+2 −
√
α =

(x2k+1−
√
α)(1−

√
α)

1+x2k+1
< 0, since α > 1 by assumption.

Now, we see x2n−1 >
√
α and x2n <

√
α. Since x2n+1 − x2n−1 =

α+x2n

1+x2n
−x2n−1 =

α+
α+x2n−1
1+x2n−1

1+
α+x2n−1
1+x2n=1

−x2n−1 = α(1+x2n−1)+(α+x2n−1)
(1+x2n−1)+(α+x2n−1) −x2n−1 =

2α+(1+α)x2n−1

2x2n−1+(1+α) − x2n−1 =
2(α−x2

2n−1)

2x2n−1+(1+α) < 0, thus x2n+1 < x2n−1.

Similarly, we can show that x2n+2 − x2n =
2(α−x2

2n)
2x2n+(1+α) > 0 and thus

x2n+2 > x2n.

(c) Prove that limxn =
√
α.

Proof : Since x2n+1 = 2α+(1+α)x2n−1

2x2n−1+(1+α) , let lim supxn = limx2n+1 =

a, then a = limx2n+1 = lim 2α+(1+α)x2n−1

2x2n−1+(1+α) = 2α+(1+α) lim x2n−1

2 lim x2n−1+(1+α) =
2α+(1+α)a
2a+(1+α) , which gives a =

√
α. Similarly, since x2n+2 = 2α+(1+α)x2n

2x2n+(1+α) ,

let lim inf xn = limx2n+2 = b, then b = limx2n+2 = lim 2α+(1+α)x2n

2x2n+(1+α) =
2α+(1+α) lim x2n

2 lim x2n+(1+α) = 2α+(1+α)b
2b+(1+α) , which gives b =

√
α. Therefore,

lim supxn = lim inf xn =
√
α and limxn =

√
α.

(d) Compare the rapidity of convergence of this process with the one
described in Exercise 16.
Solution: Again, let εn = xn −

√
α. Then εn+1 = xn+1 −

√
α =

α+xn
1+xn

−
√
α = (xn−

√
α)(1−

√
α)

1+xn
= εn(1−

√
α)

1+xn
. Since x2 ≤ xn ≤ x1,

|1−
√
α|

1+x1
|εn| ≤ |εn+1| ≤ |1−

√
α|

1+x2
|εn|, thus the rapidity of convergence is

slower than in Exercise 16.

18. Replace the recursion formula of Exercise 16 by xn+1 = p−1
p xn + α

p x
−p+1
n ,

where p is a fixed positive integer, and describe the behavior of the result-
ing sequences {xn}.
Solution: Similar to Exercise 16, if x1 > p

√
α, then we can prove that

xn > p
√
α and xn+1 < xn, i.e., {xn} decreases monotonically. Thus,

limxn = p
√
α.

19. Associate to each sequence a = {αn}, in which αn is 0 or 2, the real num-

ber x(a) =
∞∑
n=1

αn
3n . Prove that the set of all x(a) is precisely the Cantor
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set described in Sec. 2.44.
Proof : Suppose W = {x(a)|a = {αn}, αn = 0 ∨ αn = 2} and Let E∅ =
[0, 1]. Remove the segment ( 1

3 ,
2
3 ), and let E0 = [0, 1

3 ], E2 = [ 2
3 , 1]. Remove

the middle thirds of these intervals, and let E00 = [0, 1
9 ], E02 = [ 2

9 ,
3
9 ],

E20 = [ 6
9 ,

7
9 ], E22 = [ 8

9 , 1]. Continuing in this way, we obtain 2n com-
pact sets {Ea1a2···an} in step n, where ai = 0 or ai = 2 for 1 ≤ i ≤ n.
It’s clearly to see that the Cantor set E = (

⋂∞
n=1En) ∩ E∅ and En =⋃

∀a1a2···an
Ea1a2···an . Thus E =

⋂∞
n=1En =

⋂∞
n=1

⋃
∀a1a2···an

Ea1a2···an =⋃
∀a1a2···

Ea1a2···. Furthermore, for every Ea1a2···an , we have Ea1 ⊇ Ea1a2 ⊇

· · · ⊇ Ea1a2···an . Since lim
n→∞

diamEa1a2···an = lim
n→∞

1
3n = 0, there is ex-

actly one point xa1a2··· in Ea1a2··· =
∞⋂
n=1

Ea1a2···an and xa1a2··· =
∞∑
n=1

an
3n .

To see this, we need to show that xa1a2··· =
∞∑
n=1

an
3n lies in every Ea1a2···an ,

n = 1, 2, · · · . We prove this by induction.

(i)n = 1, xa1a2··· = a1
3 +

∞∑
n=2

an
3n . If a1 = 0, Ea1 = E0 = [0, 1

3 ], and

xa1a2··· = 0 +
∞∑
n=2

an
3n ≤ 0 +

∞∑
n=2

2
3n = 1

3 . Obviously, xa1a2··· ≥ 0, thus

xa1a2··· ∈ E0; If a1 = 2, Ea1 = E2 = [ 2
3 , 1] and xa1a2··· = 2

3 +
∞∑
n=2

2
3n ≥

2
3 .

Obviously, xa1a2··· ≤
∞∑
n=1

2
3n = 1, thus xa1a2··· ∈ E2. Thus xa1a2··· ∈ Ea1 .

(ii)Suppose when n = k, xa1a2··· ∈ Ea1a2···ak and Ea1a2···ak = [a =
k∑

n=1

ak
3k
, a+ 1

3k
] (This can also be shown by induction easily). Let n = k+1,

then xa1a2··· =
k∑

n=1

ak
3k

+ ak+1

3k+1 +
∞∑

n=k+2

an
3n = a + ak+1

3k+1 +
∞∑

n=k+2

an
3n . If

ak+1 = 0, Ea1a2···ak+1
= [a, a + 1

3k+1 ], and xa1a2··· = a +
∞∑

n=k+2

an
3n ≤

a+
∞∑

n=k+2

2
3n = a+ 1

3k+1 . Since xa1a2··· ≥ a, xa1a2··· ∈ Ea1a2···ak+1
. On the

other hand, if ak+1 = 2, Ea1a2···ak+1
= [a + 2

3k+1 , a + 1
3k

] and xa1a2··· =

a+ 2
3k+1 +

∞∑
n=k+2

an
3n ≥ a+ 2

3k+1 . Since xa1a2··· ≤ a+ 2
3k+1 + 1

3k+1 = a+ 1
3k

,

xa1a2··· ∈ Ea1a2···ak+1
.

Therefore, we have proved that xa1a2··· ∈ Ea1a2···an , for every n. So xa1a2···
is just the only point contained in Ea1a2···. Since E =

⋃
∀a1a2···

Ea1a2··· =

{p|p ∈ Ea1a2···}, we have shown that x ∈ E implies x ∈ W and thus
E ⊆ W . On the other hand, for every x ∈ W , x has the form xa1a2···,
thus x ∈ Ea1a2··· and x ∈ E, namely, W ⊆ E. Hence E = W .

20. Suppose {pn} is a Cauchy sequence in a metric space X, and some sub-
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sequence {pni} converges to a point p ∈ X. Prove that the full sequence
{pn} converges to p.
Proof : Since {pn} is a Cauchy sequence, then ∀ε > 0, there is an N ∈ N
such that n > m > N implies d(pn, pm) < ε. On the other hand,
for this ε, since some subsequence {pni} converges to a point p ∈ X,
there is an N ′ ∈ N such that nk > N ′ implies d(pnk , p) < ε. Let nk
be the smallest integer such that nk > max(N,N ′) + 1, when n > nk,
d(pn, p) ≤ d(pn, pnk) + d(pnk , p) < ε + ε = 2ε. Therefore, {pn} converges
to p.

21. Prove the following analogue of Theorem 3.10(b): If {En} is a sequence
of closed nonempty and bounded sets in a complete metric space X, if
En ⊇ En+1, and if lim

n→∞
diamEn = 0, then

⋂∞
1 En consists of exactly one

point.
Proof : Construct a sequence {pn} such that pn ∈ En for every n. Because
En is bounded for every n, diam En is well-defined for every n. Since
lim
n→∞

diam En = 0, ∀ε > 0, there is an N ∈ N such that n > N implies

diam En < ε, which is to say that d(pn, pm) < ε if n > m > N . Hence
{pn} is a Cauchy sequence in X, and {pn} converges to a point p ∈ X since
X is complete. Thus ∀ε > 0, there is an N ′ ∈ N such that d(pn, p) < ε if
n > N ′. Hence p is a limit point of En when n > N ′. Since pn ∈ En, p
is a limit point of En and thus is a limit point of Em, where 1 ≤ m ≤ n,
because En ⊆ Em. This is just to say, p is a limit point of En, for
every n ∈ N. Since En is closed for every n, p ∈ En for every n, thus
p ∈

⋂∞
1 En and E =

⋂∞
1 En is not empty. The fact that E =

⋂∞
1 En

contains no more than one point is clear since otherwise diam E > 0 and
thus diam En ≥ diam E > 0 since E ⊆ En. So lim

n→∞
diam En > 0, a

contradiction. Therefore, E contains exactly one point, namely, p.
Note: One might notice that our choice of {xn} is not unique. We remark
here that, no matter how we choose {xn}, it will converge to the point p
as long as xn ∈ En due to the condition lim

n→∞
diam En = 0.

22. Suppose X is a nonempty complete metric space, and {Gn} is a sequence
of dense open subsets of X. Prove Baire’s theorem, namely, that

⋂∞
1 Gn

is not empty. (In fact, it is dense in X.)
Proof : Let x1 ∈ G1, since G1 is open, there is a neighborhood V1 of x1

such that V1 ⊆ V̄1 ⊆ G1. (More specifically, we first pick a neighborhood
V ′1 = Nr(x1) of x1 such that V ′1 ⊆ G1. Let s be some positive real number
such that 0 < s < r, then N̄s(x1) ⊆ Nr(x1) and put V1 = Ns(x1).)
Suppose Vn has been constructed, pick xn+1 in Vn such that xn+1 6= xn.
Let Vn+1 be a neighborhood of xn+1 satisfies the following conditions:
(i)V̄n+1 ⊆ Vn;
(ii)xn 6∈ V̄n+1.
(iii)V̄n+1 ⊆ Gn+1;
(iv)diam Vn+1 <

1
2diam Vn.
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Since Gn+1 is dense in X, xn+1 ∈ Gn+1 or xn+1 is a limit point of Gn+1. If
the former case happens, since Gn+1 is open, we first pick a neighborhood
V 1
n+1 of xn+1 such that V̄ 1

n+1 ⊆ Gn+1. Then we can pick a neighborhood
V 2
n+1 of xn+1 satisfies (i) and (ii), since Vn is open and xn+1 ∈ Vn. Put
Vn+1 ⊆ V 1

n+1∩V 2
n+1 and let Vn+1 satisfy condition (iv) gives us the desired

neighborhood Vn+1 satisfying all the four conditions. If the latter case
happens, we first pick a neighborhood V 1

n+1 of xn+1 satisfying condition (i)
and (ii), and then choose an x′n+1 ∈ V 1

n+1 ∩Gn+1. Since Gn+1 is open, we
can pick a neighborhood V 2

n+1 of x′n+1 satisfying condition (iii). Replace
xn+1 by x′n+1 and let Vn+1 be a neighborhood of xn+1 (the previous x′n+1)
such that Vn+1 ⊆ V 1

n+1 ∩ V 2
n+1 and Vn+1 satisfies (iv), we get the desired

neighborhood Vn+1. So, in both cases, the above process can continue and
we can obtain a sequence of {Vn} satisfying conditions (i), (ii), (iii) and
(iv).
Since xn ∈ Vn, each V̄n is nonempty. What’s more, every V̄n is closed and
bounded. Furthermore, (i) tells us that V̄n+1 ⊆ V̄n and (iv) tells us that
diam V̄n = diam Vn <

1
2n−1 diam V1, for n > 1, thus lim

n→∞
diam V̄n = 0.

Hence the conditions in the premise of Exercise 21 are satisfied,
⋂∞

1 V̄n
contains exactly one point and thus is nonempty. By (iii), V̄n ⊆ Gn, so⋂∞

1 V̄n ⊆
⋂∞

1 Gn. Therefore,
⋂∞

1 Gn is nonempty, too.

23. Suppose {pn} and {qn} are Cauchy sequences in a metric space X. Show
that the sequence {d(pn, qn)} converges.
Proof : ∀ε > 0, since {pn} is a Cauchy sequence, there is an N1 ∈ N such
that n > m > N1 implies d(pn, pm) < ε; similarly, since {qn} is a Cauchy
sequence, there is an N2 ∈ N such that n > m > N2 implies d(qn, qm) < ε.
Let N = max(N1, N2), n > m > N implies that d(pn, qn) − d(pm, qm) ≤
(d(pn, pm) + d(pm, qm) + d(qm, qn))− d(pm, qm) = d(pn, pm) + d(qn, qm) <
2ε. Similarly, d(pm, qm)−d(pn, qn) < 2ε, and thus |d(pn, qn)−d(pm, qm)| <
2ε. Therefore, d(pn, qn) is a Cauchy sequence in R1 and hence converges
since R1 is complete.

24. Let X be a metric space.

(a) Call two Cauchy sequences {pn}, {qn} inX equivalent if lim
n→∞

d(pn, qn) =

0. Prove that this is an equivalence relation.
Proof :
(i)Reflexivity: since d(pn, pn) = 0, lim

n→∞
d(pn, pn) = 0;

(ii)Symmetry: since d(pn, qn) = d(qn, pn),
lim
n→∞

d(pn, qn) = lim
n→∞

d(qn, pn) = 0;

(iii)transitivity: if lim
n→∞

d(pn, qn) = 0, lim
n→∞

d(qn, rn) = 0, then 0 ≤
lim
n→∞

d(pn, rn) ≤ lim
n→∞

d(pn, qn) + lim
n→∞

d(qn, rn) = 0.

Hence lim
n→∞

d(pn, rn) = 0.

Therefore this is an equivalence relation.
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(b) Let X∗ be the set of all equivalence classes so obtained. If P ∈ X∗,
Q ∈ X∗, {pn} ∈ P , {qn} ∈ Q, define ∆(P,Q) = lim

n→∞
d(pn, qn); by

Exercise 23, this limit exists. Show that the number ∆(P,Q) is un-
changed if {pn} and {qn} are replaced by equivalent sequences, and
hence that ∆ is a distance function in X∗.
Proof : Suppose pn ∼ p′n and qn ∼ q′n.then
(i)∆(P,Q′) = lim

n→∞
d(pn, q

′
n) ≤ lim

n→∞
d(pn, qn) + lim

n→∞
d(qn, q

′
n) =

∆(P,Q) + 0 = ∆(P,Q);
(ii)∆(P ′, Q) = lim

n→∞
d(p′n, qn) ≤ lim

n→∞
d(p′n, pn) + lim

n→∞
d(pn, qn) =

0 + ∆(P,Q) = ∆(P,Q);
(iii)∆(P ′, Q′) = lim

n→∞
d(p′n, q

′
n) ≤ lim

n→∞
d(p′n, pn) + lim

n→∞
d(pn, qn) +

lim
n→∞

d(qn, q
′
n) = 0 + ∆(P,Q) + 0 = ∆(P,Q).

The opposite direction of (i), (ii), (iii) can be proved similarly and
hence we have ∆(P,Q) = ∆(P ′, Q) = ∆(P,Q′) = ∆(P ′, Q′).
Next we show that ∆ is a distance function in X∗ by checking the
three required conditions:
(i)∆(P, P ) = lim

n→∞
d(pn, p

′
n) = 0;

(ii)∆(P,Q) = lim
n→∞

d(pn, qn) = lim
n→∞

d(qn, pn) = ∆(Q,P );

(iii)∆(P,R) = lim
n→∞

d(pn, rn) ≤ lim
n→∞

d(pn, qn) + lim
n→∞

d(qn, rn) =

∆(P,Q) + ∆(Q,R).

(c) Prove that the resulting metric space X∗ is complete.
Proof : Let {Pn} be a Cauchy sequence in X∗, and denote Pk =
{pkn}, for every k ∈ N ({pkn} is an arbitrary Cauchy sequence of X
that belongs to Pk). We construct a sequence {sn} in X as follows:
For each n, find the smallest N ∈ N such that d(pnm, pnk) < 1

n if
k > m > N . Since Pn is a Cauchy sequence, this N must exists. Put
sn = pn(N+1).
Next, we show that {sn} is a Cauchy sequence in X. ∀ε > 0, since
{Pn} is a Cauchy sequence, there is an N1 ∈ N such that n > m > N1

implies ∆(Pm, Pn) < ε, i.e., lim
k→∞

d(pmk, pnk) < ε. Thus there is a

N2 ∈ N such that d(pmm′ , pnn′) < ε if n′ > m′ > N2. Choose an N3

such that 1
N3

< ε, and put N = max(N1, N2, N3). When n′ > m′ >

n > m > N , d(sm, pmm′) <
1
m < 1

N < ε, and d(sn, pnn′) <
1
n <

1
N <

ε. Therefore, d(sn, sm) ≤ d(sn, pnn′)+d(pnn′ , pmm′)+d(pmm′ , sm) <
3ε, which means that {sn} is a Cauchy sequence.
Let P be the equivalence class containing {sn}, then P ∈ X∗. Finally,
we will show that {Pn} converges to P .
∀ε > 0, there is an N1 ∈ N such that d(sn, sm) < ε if n > m > N1

since we have proved that {sn} is a Cauchy sequence in X. Choose
an N2 such that 1

N2
< ε, then when n′ > m′ > N2, d(pm′n′ , sm′) <

1
m′ <

1
N2

< ε. Let N = max(N1, N2), then when n′ > m′ > N ,
d(pm′n′ , sn′) ≤ d(pm′n′ , sm′) + d(sm′ , sn′) < 2ε. Fix m′, and let n′ →
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∞, we obtain that lim
n′→∞

d(pm′n′ , sn′) < 2ε, i.e., ∆(Pm′ , P ) < 2ε.

Putting these together, we get that ∀ε > 0, there is an N ∈ N such
that m′ > N implies ∆(Pm′ , P ) < 2ε. Therefore, {Pn} converges to
P .

(d) For each p ∈ X, there is a Cauchy sequence all of whose terms are p;
let Pp be the element of X∗ which contains this sequence. Prove that
∆(Pp, Pq) = d(p, q) for all p, q ∈ X. In other words, the mapping
ϕ defined by ϕ(p) = Pp is an isometry (i.e., a distance-preserving
mapping) of X into X∗.
Proof : ∆(Pp, Pq) = lim

n→∞
d(p, q) = d(p, q).

(e) Prove that ϕ(X) is dense in X∗, and that ϕ(X) = X∗ if X is com-
plete. By (d), we may identify X and ϕ(X) and thus regard X as
embedded in the complete metric space X∗. We call X∗ the comple-
tion of X.
Proof : Suppose T ∈ X∗ and T 6∈ ϕ(X), then let {tn} be any Cauchy
sequence in X that lies in T . We construct a sequence {Tn} in ϕ(X)
such that Tn = ϕ(tn). ∀ε > 0, there is an N ∈ N such that n > m >
N implies d(tn, tm) < ε. Hence ∆(Tm, T ) = lim

n→∞
d(tm, tn) < ε, i.e.,

{Tn} converges to T and thus T is a limit point of ϕ(X). Therefore,
ϕ(X) is dense in X∗.
If X is complete, ∀T ∈ X∗, choose any Cauchy sequence {tn} in
X such that {tn} ∈ T , then {tn} converges to some t ∈ X. We
conclude that ϕ(t) = T , since ∆(ϕ(t), T ) = lim

n→∞
d(t, tn) = 0. Thus

T ∈ ϕ(X), and X∗ ⊆ ϕ(X). Clearly, we have ϕ(X) ⊆ X∗ and
therefore ϕ(X) = X∗.

25. Let X be the metric space whose points are the rational number, with the
metric d(x, y) = |x− y|. What is the completion of this space? (Compare
Exercise 24.)
Proof : The completion of X is exactly the space R1 containing all the
real numbers and with the same metric d(x, y) = |x− y|. This is another
view of the relationship between Q and R, namely, R is the completion of
Q, a great result!

4 Continuity

1. Suppose f is a real function defined on R1 which satisfies lim
h→0

[f(x+ h)−
f(x− h)] = 0, for every x ∈ R1. Does this imply that f is continuous?

Solution: No. e.g., f(x) =

{
0, x = 0
1, otherwise

2. If f is a continuous mapping of a metric space X into a metric space X
into a metric space Y , prove that f(Ē) ⊆ f(E) for every set E ⊆ X.
(Ē denotes the closure of E.) Show, by an example, that f(Ē) can be a
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proper subset of f(E).
Proof : ∀y ∈ f(Ē), ∃x ∈ Ē such that f(x) = y. If x ∈ E, then y =
f(x) ∈ f(E) and thus y ∈ f(E). If x 6∈ E, then x is a limit point of E.
Given any ε > 0, since f is continuous, there is a δ > 0, s.t., dX(z, x) < δ
implies dY (f(z), f(x)) < ε. Because x is a limit point of E, there must
exists a x0 ∈ E such that dX(x0, x) < δ, and hence dY (f(x0), f(x)) < ε,
which means y = f(x) is a limit point of f(E). Therefore, y ∈ f(E) and
f(Ē) ⊆ f(E).
Note that f(Ē) can be a proper subset of f(E). e.g., E = X = Y = R1,

f(x) = x2

1+x2 , then Ē = E and f(Ē) = f(E) = [0, 1), but f(E) = [0, 1].

3. Let f be a continuous real function on a metric space X. Let Z(f) (the
zero set of f) be the set of all p ∈ X at which f(p) = 0. Prove that Z(f)
is closed.
Proof : Let q be a limit point of Z(f), we need to show that f(q) = 0. To
see this, suppose, on the contrary, f(q) 6= 0. Without loss of generality, we
assume that f(q) > 0. Since f is continuous, there is a neighborhood Nq
of q such that f(p) > 0 for all p ∈ Nq. Otherwise, for all neighborhoods
V of q, there is at least one point p ∈ V such that f(p) ≤ 0. Then
we can obtain a sequence {pn}, where |pn − q| < 1

n , namely, pn → q
when n → ∞, and f(pn) ≤ 0. But then lim

n→∞
f(pn) ≤ 0 and since f is

continuous, lim
x→q

f(x) = f(q), which means lim
n→∞

f(pn) = f(q), by Theorem

4.2. Thus f(q) ≤ 0, contradict with our assumption that f(q) > 0.
The existence of Nq tells us that no point p in Nq satisfies f(p) = 0, which
is again a contradiction since q is a limit point of Z(f). The case f(q) < 0
can be examined similarly. Therefore, we conclude that f(q) = 0. So
q ∈ Z(f) and Z(f) is closed.

4. Let f and g be continuous mappings of a metric space X into a metric
space Y , and let E be a dense subset of X. Prove that f(E) is dense in
f(X). If g(p) = f(p) for all p ∈ E, prove that g(p) = f(p) for all p ∈ X.
(In other words, a continuous mapping is determined by its values on a
dense subset of its domain.)
Proof : Suppose that q ∈ f(X) but q 6∈ f(E), then there is a p ∈ X but
p 6∈ E such that q = f(p). Since E is dense in X, p is a limit point of E.
Pick any ε > 0, let V = {y|dY (y, q) < ε} be a neighborhood of q, then V is
open. Since f is continuous, f−1(V ) is also open and p ∈ f−1(V ). Hence
there is a neighborhood Vp of p such that Vp ⊆ f−1(V ). Since p is a limit
point of E, there is a point x ∈ E such that x ∈ Vp. Thus x ∈ f−1(V ),
i.e., f(x) ∈ V and q is a limit point of f(E). Therefore f(E) is dense in
f(X).
Let h(x) = g(x)−f(x), for all x ∈ X. Then h(p) = 0, if p ∈ E, which gives
E ⊆ Z(h). By Exercise 3, Z(h) is closed, thus Ē ⊆ Z(h), according to
Theorem 2.27. Furthermore, since E is dense in X, every point x in X but
not in E is a limit point of E and thus x ∈ Ē. Therefore X ⊆ Ē ⊆ Z(h).
On the other hand, it is clear that Z(h) ⊆ X. Hence Z(h) = X, i.e.,
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h(p) = 0 for all p ∈ X, i.e., f(p) = g(p) for all p ∈ X.

5. If f is a real continuous function defined on a closed set E ⊆ R1, prove
that there exist continuous real functions g on R1 such that g(x) = f(x)
for all x ∈ E. (Such functions g are called continuous extensions of f
from E to R1.) Show that the result becomes false if the word “closed” is
omitted. Extend the result to vector-valued functions.
Proof : Let the graph of g be a straight line on each of the segments
which constitute the complement of E. Then g is continuous on R1 and
g(x) = f(x) for all x ∈ E.
Remark: Remember that Exercise 29, Chap 2 tells us that every open set
in R1 is the union of an at most countable collection of disjoint segments.
Since E is closed, Ec is open.
If E is not closed, then the result becomes false. e.g, let E = (0, 1) and
f(x) = 1

x . Clearly, f(x) is continuous on E. But we cannot extend it to
R1, since lim

x→0
f(x) =∞.

The result can be extended to vector-valued functions, namely:
If f : R1 → Rk is a vector-valued continuous function defined on a dense
subset E ⊆ R1, then there exist continuous vector-valued functions g :
R1 → Rk on R1 such that g(x) = f(x) for all x ∈ E. The proof of this is
the same, and the only difference is the straight lines should be interpreted
in Rk, not in R1.

6. If f is defined on E, the graph of f is the set of points (x, f(x)), for x ∈ E.
In particular, if E is a set of real numbers, and f is real-valued, the graph
of f is a subset of the plane.
Suppose E is compact, and prove that f is continuous on E if and only if
its graph is compact.
Proof :
⇒: Suppose E is compact and f is continuous on E, and let G be the
graph of f . Define g : E → G, such that g(x) = (x, f(x)), for all x ∈
E, then g is one-to-one and onto (namely, G = g(E)). Fix a p ∈ E,
since f is continuous on E, given any ε > 0, there is a δ > 0 such that
|x − p| < δ implies |f(x) − f(p)| < ε. Pick r such that r = min(δ, ε),
then when |x − p| < r ≤ ε, |f(x) − f(p)| < ε and thus |g(x) − g(p)| =√
|x− p|2 + |f(x)− f(p)|2 <

√
r2 + ε2 <

√
2ε. Hence g is continuous and

therefore, G is compact, since E is compact.
⇐: Recall that a function f : X → Y is continuous if and only if f−1(C)
is closed in X for every closed set C in Y .
Suppose E is compact. Let F be any closed subset of f(E), G be the
graph of f (G is compact by assumption), and define φ : G → E such
that φ(x, f(x)) = x for every (x, f(x)) ∈ G. Then φ is continuous, by
Example 4.11. Notice that f−1(F ) = φ((E×F )∩G). Since E is compact,
E is closed, and since F is closed, E × F is closed. Thus (E × F ) ∩ G is
compact, since G is compact. Then φ((E ×F )∩G) is compact, since φ is
continuous. So f−1(F ) is compact, thus is closed. Therefore, f must be
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continuous.

7. If E ⊆ X and if f is a function defined on X, the restriction of f to E is
the function g whose domain of definition is E, such that g(p) = f(p) for

p ∈ E. Define f and g on R2 by: f(0, 0) = g(0, 0) = 0, f(x, y) = xy2

x2+y4 ,

g(x, y) = xy2

x2+y6 if (x, y) 6= 0. Prove that f is bounded on R2, that g is

unbounded in every neighborhood of (0, 0), and that f is not continuous
at (0, 0); nevertheless, the restriction of both f and g to every straight
line in R2 are continuous!
Proof : |f(x, y)| = |x|y2

x2+y4 ≤
x2+y4

2(x2+y4) = 1
2 .

Given any r > 0 and M > 0, suppose Vr is a neighborhood of (0, 0),

namely,
√
x2 + y2 < r, for any (x, y) ∈ Vr, then there is a y, 0 < y < 1

2 (if
r ≥ 1), or 0 < y < r

2 (if r < 1) and 1
2y > M . Let x = y3, then x2 + y2 =

y6 + y2 = y2(y4 + 1) < 17
64 < 1 ≤ r2(if r ≤ 1), or < r6+r2

64 < r2

32 < r2(if
r < 1). Hence, (x, y) ∈ Vr, and g(x, y) = 1

2y > M . So g is unbounded in

every neighborhood of (0, 0).
Let {(xn, yn)} be a sequence such that lim

n→∞
yn = 0, yn 6= 0 and xn = y2

n,

for every n, then lim
n→∞

(xn, yn) = (0, 0), but f(xn, yn) = 1
2 , for every n.

Thus lim
n→∞

f(xn, yn) = 1
2 6= f(0, 0) = 0, and therefore f is not continuous

at (0, 0).
We classify the straight lines in R2 into the following cases:

(i)x = a, then f(x, y) = ay2

a2+y2 . If a = 0, f(x, y) = 0, and f is continuous,

and if a 6= 0, f(x, y) is continuous too, since ay2 and a2 + y2 are both
continuous. g is continuous can be proved similarly.

(ii)y = b, then f(x, y) = b2x
x2+b2 , and f is continuous, with the similar proof

of (i). g is continuous can be proved by the same process.
(iii)The most general case comes as y = ax + b, where a 6= 0. Then

f(x, y) = x(ax+b)2

x2+(ax+b)4 = P1(x)
P2(x) , where P1(x) and P2(x) are x’ polynomi-

als. Since P1(x) and P2(x) are continuous, by Example 4.11, f(x, y) is
continuous, too. g is continuous can be proved similarly.

8. Let f be a real uniformly continuous function on the bounded set E in
R1. Prove that f is bounded on E.
Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.
Proof : Suppose that, on the contrary, f is not bounded. Then for any
M > 0, there is an x ∈ E such that |f(x)| > M . Let M = n, we
can therefore obtain a sequence {xn} such that |f(xn)| > n, and thus
|f(xn)| → ∞, as n → ∞. Since E is bounded, so is xn. Then there is a
subsequence {xnk} of {xn} which converges, by Theorem 3.6(b). Denote
{xnk} as {yk}, and since {yk} converges in R1, {yk} is a Cauchy sequence.
Given any ε > 0, there is a δ > 0 such that |p−q| < δ implies |f(p)−f(q)| <
ε, for any p, q ∈ E, since f is uniformly continuous on E. For this δ, since
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{yk} is a Cauchy sequence, there exists an N such that |yn − ym| <
δ if n > m > N . Thus |f(yn) − f(ym)| < ε, and we have |f(yn)| ≤
|f(ym)| + |f(yn) − f(ym)| < |f(ym)| + ε. Fix m and let n → ∞, then
lim
n→∞

|f(yn)| < |f(ym)|+ ε, which is contradict to the way we choose {xn}
(Pick an integer N ′ such that N ′ > |f(ym)|+ ε, then |f(xn)| > N ′, when
n > N ′. Pick a K such that nK > N ′, then |f(xnK )| > N ′ > |f(ym)|+ ε).
Therefore, f must be bounded.
Remark: If E is not bounded, the conclusion will be false. e.g., Let
E = [0,+∞), and f(x) = x, for all x ∈ E. Clearly, f is uniformly
continuous (just take δ = ε in the definition of uniformly continuous).
But again clearly, f is unbounded on E.

9. Show that the requirement in the definition of uniform continuity can be
rephrased as follows, in terms of diameters of sets: To every ε > 0 there
exists a δ > 0 such that diamf(E) < ε for all E ⊆ X with diamE < δ.
Proof : The requirement in the definition of uniform continuity says that:
To every ε > 0 there exists a δ > 0 such that dX(p, q) < δ implies
dY (f(p), f(q)) < ε, for all p, q ∈ E. Since diamE = sup{dX(p, q)|p, q ∈ E}
and diamf(E) = sup{dY (f(p), f(q))|f(p), f(q) ∈ f(E)}, diamE < δ and
diamf(E) < ε, for all E ⊆ X.

10. Complete the details of the following alternative proof of Theorem 4.19:
If f is not uniformly continuous, then for some ε > 0 there are sequences
{pn}, {qn} in X such that dX(pn, qn)→ 0 but dY (f(pn), f(qn)) > ε. Use
Theorem 2.37 to obtain a contradiction.
Proof : Since X is compact, then Epn = {pn} is a infinite subset of E and
by Theorem 2.37, Epn has a limit point p in X. Similarly, Eqn = {qn} has
a limit point q in X. So, we can obtain a subsequence {pnk} of {pn} and
subsequence {qnk} of {qn} (also, see Theorem 3.6), such that {pnk} con-
verges to p and {qnk} converges to q. Therefore, dX(p, q) ≤ dX(p, pnk) +
dX(pnk , qnk) + dX(qnk , q) → 0, when nk → ∞. Hence dX(p, q) = 0
and p = q. On the other hand, dY (f(p), f(q)) ≥ dY (f(pnk), f(qnk)) −
dY (f(p), f(pnk)) − dY (f(q), f(qnk)) ≥ ε, when nk → ∞, which is absurd
if p = q.

11. Suppose f is a uniformly continuous mapping of a metric space X into
a metric space Y and prove that {f(xn)} is a Cauchy sequence in Y for
every Cauchy sequence {xn} in X. Use this result to give an alternative
proof of the theorem stated in Exercise 13.
Proof : Given any ε > 0, since f is uniformly continuous, there is a δ
such that dX(p, q) < δ implies dY (f(p), f(q)) < ε. Since {xn} is a Cauchy
sequence, there is an N ∈ N such that n > m > N implies dX(xn, xm) < δ.
Thus, dY (f(xn), f(xm)) < ε and {f(xn)} is a Cauchy sequence.

12. A uniformly continuous function of a uniformly continuous function is uni-
formly continuous.
State this more precisely and prove it.
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Statement: Let f be a uniformly continuous mapping of a metric space
X into a metric space Y , and g be a uniformly continuous mapping from
Y into a metric space Z. Prove that the mapping h = g ◦ f from X into
Z is also continuous.
Proof : Given any ε > 0, since g is uniformly continuous, there is a θ > 0
such that dY (y1, y2) < θ implies that dZ(g(y1), g(y2)) < ε. For this θ, since
f is uniformly continuous, there is a δ > 0 such that dX(x1, x2) < δ im-
plies that dY (y1, y2) = dY (f(x1), f(x2)) < θ, and thus dZ(g(y1), g(y2)) =
dZ(g(f(x1)), g(f(x2))) = dZ(h(x1), h(x2)) < ε. Therefore, h is uniformly
continuous.

13. Let E be a dense subset of a metric space X, and let f be a uniformly
continuous real function defined on E. Prove that f has a continuous ex-
tension from E to X(see Exercise 5 for terminology).(Uniqueness follows
from Exercise 4.)
Proof : For each p ∈ X and each positive integer n, let Vn(p) be the
set of all q ∈ E with d(p, q) < 1/n. Since f is uniformly continu-
ous on E, ∀ε > 0, there is a δ > 0 such that diamS < δ implies that
diamf(S) < ε, for every S ⊆ E. Therefore, for this δ, if we pick an N ∈ N
such that 2/N < δ, then when n > N , diamVn(p) < 2/n < δ and thus
diamf(Vn(p)) < ε. This is equivalent to say that lim

n→∞
diamf(Vn(p)) = 0,

and thus lim
n→∞

diamf(Vn(p)) = 0, since diamf(Vn(p)) = diamf(Vn(p)).

Because f is real, f(Vn(p)) is closed and bounded, and thus compact. Fur-
thermore, since Vn+1(p) ⊆ Vn(p), f(Vn+1(p)) ⊆ f(Vn(p)) and f(Vn+1(p)) ⊆
f(Vn(p)). Therefore,

⋂∞
n=1 f(Vn(p)) contains exactly one point, and we

define this as g(p).
Next, we shall prove that the function g so defined on X is the desired
extension of f .
First, if p ∈ E, then since f(p) ∈ f(Vn(p)), for every n, we have f(p) ∈⋂∞
n=1 f(Vn(p)) and thus g(p) = f(p).

Then, let p be any point of X. Given any ε > 0, we have shown that
there is an N ∈ N such that if diamVn(p) < 2/N(namely, n > N), then
diamf(Vn(p)) < ε. Let r = 2

N+1 , then when dX(q, p) < r/2, for any
q ∈ X, since E is dense in X, q is either a point of E, or is a limit point
of E. If q is a point of E, q ∈ VN+1(p) and g(q) = f(q) ∈ f(VN+1(p)),
then |g(q) − g(p)| < ε, since diamf(VN+1(p)) < ε and g(p) ∈ f(Vn(p)),
for every n. If q is a limit point of E, then g(q) ∈ f(Vn(q)), for every
n. Pick an x ∈ E such that dX(x, q) < r/2(this can be done since q is a
limit point of E), then dX(x, p) ≤ dX(x, q) + dX(p, q) < r/2 + r/2 = r.
Therefore, |g(x)−g(q)| < ε(since dX(x, q) < r/2 implies that x ∈ VN+1(q)
and diamVN+1(q) < 2

N+1 implies diamf(VN+1(q)) < ε, because f is uni-
formly continuous on E) and |g(x) − g(p)| < ε. Hence |g(q) − g(p)| ≤
|g(q)− g(x)|+ |g(x)− g(p)| < 2ε and thus g is continuous.
So g is the desired extension of f .
Remark1: Could the range space R1 be replaced by Rk? By any compact
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metric space? By any complete metric space? By any metric space?
The case of Rk and compact metric space both hold, since the key steps
involving “f is real” in the previous proof is that:
In R1, closedness and boundedness imply compactness, thus Vn(p) is com-
pact and Theorem 3.10(b) can be applied.
Note that if R1 is replaced by Rk, nothing is new, since the Heine-Borel
Theorem tells us in Rk, closedness with boundedness is equivalent to com-
pactness, and the proof process is the same. If R1 is replaced by compact
metric space , the compactness also results, since closed subsets of com-
pact space are compact.
If R1 is replaced by any complete metric space, recall Exercise 21 of Chap-
ter 3: If {En} is a sequence of closed nonempty and bounded sets in a
complete metric space X, if En ⊇ En+1, and if lim

n→∞
diamEn = 0, then⋂∞

1 En consists of exactly one point.
We thus can conclude that if R1 is replaced by any complete metric space,
the result also holds.
If R1 is replaced by any metric space, the result cannot always hold, since⋂n

1 En may be empty. For example, consider the metric space (Q, d),
where d(p, q) = |p− q|, for any p, q ∈ Q. Q is not complete, by the remark
under Definition 3.12; and closedness and boundedness not implies com-
pactness, by Exercise 16 of Chapter 2.
Remark2: We can also use the result of Exercise 11 to give an alternative
proof. This proof may be easier, and the cases stated in Remark1 will
be more clear under this circumstance. Next, we give out this alternative
proof:
Suppose p ∈ X, if p ∈ E, we define g(p) = f(p) and if p 6∈ E, since E
is dense in X, p is a limit point of E. Let {pn} be any sequence of E
which converges to p, then {pn} is a Cauchy sequence in E, since f is
uniformly continuous on E, {f(pn)} is a Cauchy sequence in R1. Then
{f(pn)} will converge to some q ∈ R1, since R1 is complete. We define
g(p) = q. Firstly, we will show that g is well-defined. That is, if sn → p
and tn → p, then lim

n→∞
f(sn) = lim

n→∞
f(tn) = q. Given any ε > 0, since f

is uniformly continuous, there is a δ > 0 such that dX(a, b) < δ implies
that |f(a)−f(b)| < ε, for every a, b ∈ E. Since sn → p, there is an N1 ∈ N
such that n > N1 implies dX(sn, p) < δ/2 and since tn → p, there is an
N2 ∈ N such that n > N2 implies dX(tn, p) < δ/2. Let N = max(N1, N2),
when n > N , we have dX(sn, tn) ≤ dX(sn, p) + dX(tn, p) < δ. Hence,
|f(sn) − f(tn)| < ε. Since f(sn) → q, there is an N3 such that when
n > N3, |f(sn) − q| < ε. Let N ′ = max(N,N3), and when n > N ′,
|f(tn)− q| ≤ |f(sn)− q|+ |f(sn)− f(tn)| < 2ε. Therefore, f(tn)→ q.
Now, we need to prove that g is continuous on X.
Let p ∈ X,
(i) If p ∈ E, then g(p) = f(p). Given any ε > 0, there is a δ > 0,
dX(a, b) < δ implies |f(a) − f(b)| < ε/2, for any a, b ∈ E. Let x ∈ X,
such that dX(x, p) < δ/2. If x ∈ E, then g(x) = f(x) and |g(x)− g(p)| <
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ε/2 < ε; if x 6∈ E, then x is a limit point of E. Suppose sn → x,
sn ∈ E, then g(x) = lim

n→∞
f(sn) = lim

n→∞
g(sn). Since sn → x, there is

an N1 ∈ N such that n > N1 implies dX(sn, x) < δ/2. Thus dX(sn, p) ≤
dX(sn, x) + dX(x, p) < δ, and |g(sn) − g(p)| = |f(sn) − f(p)| < ε/2. On
the other hand, since g(sn)→ g(x), there is an N2 ∈ N such that n > N2

implies |g(sn) − g(x)| ≤ ε/2. Let N = max(N1, N2), then when n > N ,
|g(x)− g(p)| ≤ |g(x)− g(sn)|+ |g(sn)− g(p)| < ε. Therefore, g is contin-
uous at p.
(ii) If p 6∈ E, then p is a limit point of E. Suppose tn → p, tn ∈ E,
then g(p) = lim

n→∞
f(tn) = lim

n→∞
g(tn). Given any ε > 0, since f is uni-

formly continuous on E, there is a δ > 0 such that dX(a, b) < δ implies
|f(a)− f(b)| < ε/3. Let x ∈ X, such that dX(x, p) < δ/3. Then if x ∈ E,
g(x) = f(x), and since tn → p, there is an N1 ∈ N such that n > N1

implies dX(tn, p) < δ/3. Thus dX(tn, x) ≤ dX(tn, p) + dX(x, p) < δ and
|g(tn)−g(x)| = |f(tn)−f(x)| < ε/3. Since g(tn)→ g(p), there is an N2 ∈
N such that n > N2 implies |g(tn) − g(p)| < ε/3. Let N = max(N1, N2),
then when n > N , |g(x) − g(p)| ≤ |g(x) − g(tn)| + |g(tn) − g(x)| < ε.
If x 6∈ E, then x is a limit point of E. Suppose sn → x, sn ∈ E,
then g(x) = lim

n→∞
f(sn) = lim

n→∞
g(sn). Thus there is an N1 such that

n > N1 implies that dX(sn, x) < δ/3. Since tn → p, there is an N2 ∈ N
such that n > N2 implies that dX(tn, p) < δ/3. Let N = max(N1, N2),
then when n > N , dX(sn, tn) ≤ dX(sn, x) + dX(x, p) + dX(tn, p) < δ,
and thus |g(sn) − g(tn)| = |f(sn) − f(tn)| < ε/3. Since g(sn) → g(x),
there is an N3 ∈ N such that n > N3 implies |g(sn) − g(x)| < ε/3;
and sine g(tn) → g(p), there is an N4 ∈ N such that n > N4 implies
|g(tn) − g(p)| < ε/3. Let N ′ = max(N,N3, N4), then when n > N ′,
|g(x)− g(p)| ≤ |g(x)− g(sn)|+ |g(sn)− g(tn)|+ |g(tn)− g(p)| < ε. There-
fore, g is continuous at p.
Combining (i) and (ii), we have shown that g is continuous at every point
p ∈ X.
Notes: The key point in the above process involving “f is real” is that
R1 is complete (thus every Cauchy sequence in R1 converges). Thus, if R1

is replaced by Rk, or by any compact metric space, or by any complete
metric space, the result also holds, according to Theorem 3.11.

14. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous
mapping of I into I. Prove that f(x) = x for at least one x ∈ I.
Proof : Suppose that, on the contrary, f(x) 6= x, for all the x ∈ I. Define
g(x) = f(x) − x, for x ∈ I, then g is continuous, too. Since f(I) ⊆ I,
g(0) = f(0) 6= 0, thus g(0) > 0; on the other hand, g(1) = f(1) − 1 < 0,
since f(1) 6= 1, by our assumption. Because g is continuous, and g(0) >
0 > g(1), there is a x0 ∈ I such that g(x0) = 0, by Theorem 4.23. Namely,
f(x0) = x0, which is contradict to our assumption. Therefore, f(x) = x
for at least one x ∈ I.

15. Call a mapping of X into Y open if f(V ) is an open set in Y whenever V
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is an open set in X.
Prove that every continuous open mapping of R1 into R1 is monotonic.
Proof : Suppose that, on the contrary, some f : R1 → R1 is continuous
open but not monotonic. Then there is an x ∈ R1 and a δ > 0 such that
(f(t)− f(x))(f(s)− f(x)) ≥ 0, for every t ∈ (x− δ, x) and s ∈ (x, x+ δ).
(More specifically, since f is open, f cannot be constant and furthermore,
f must have infinitely many different values. Since f is not monotonic,
there is x1 < x2 < x3 such that (f(x2) − f(x1))(f(x2) − f(x3)) > 0.
That is, either f(x2) > f(x1) and f(x2) > f(x3), or f(x2) < f(x1) and
f(x2) < f(x3). Without loss of generality, let x2 be the first case. Denote
E = [x1, x3], then since f is continuous, there is a p ∈ E, such that f(p) =
inf
x∈E

f(x). Because f(x2) > f(x1) and f(x2) > f(x3), p 6= x1 and p 6= x3.

Hence p ∈ (x1, x3), and since (x1, x3) is open, there is a δ > 0 such that
(p−δ, p+δ) ⊆ (x1, x3) ⊆ E. Obviously, (f(t)−f(p))(f(s)−f(p)) ≥ 0 (since
f(t) ≥ f(p) and f(s) ≥ f(p)), for every t ∈ (p − δ, p) and s ∈ (p, p + δ).
The second case of x2 can be dealt with similarly.)
Let V = (x− δ, x+ δ), so V is open. But then f(V ) cannot be open, since
f(x) ∈ f(V ) and f(x) is not an interior point of f(V ). (Otherwise, there
is an ε > 0 such that (f(x) − ε, f(x) + ε) ⊆ f(V ). Since f is continuous,
there is a δ′ > 0 such that |t − x| < δ′ implies |f(t) − f(x)| < ε. Let
r = min(δ, δ′), then when |t − x| < r, either f(t) ≥ f(x), for every
t ∈ (x − r, x + r), or f(t) ≤ f(x), for every t ∈ (x − r, x + r). If it is the
first case, f(x)−ε/2 6∈ f(V ) and if it is the second case, f(x)+ε/2 6∈ f(V ),
either gives us a contradiction.)
Remark: We can also show that every continuous open function must be
injective, and every continuous injective function is strictly monotonic.

16. Let [x] denote the largest integer contained in x, that is, [x] is the integer
such that x− 1 < [x] ≤ x; and let (x) = x− [x] denote the fractional part
of x. What discontinuities do the functions [x] and (x) have?
Solution: Clearly, both [x] and (x) are discontinuous at each integer-
valued point.

17. Let f be a real function defined on (a, b). Prove that the set of points at
which f has a simple discontinuity is at most countable.
Proof :
(i) Let E be the set on which f(x−) < f(x+). With each point of E,
associate a triple (p, q, r) of rational numbers such that

(a) f(x−) < p < f(x+);

(b) a < q < t < x implies f(t) < p;

(c) x < t < r < b implies f(t) > p.

The set of all such triples is countable. We next show that each triple is
associated with at most one point of E. Suppose that, on the contrary,
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there are two point of E are associated with one triple (p, q, r). Let these
two points be denoted as x1 and x2, without loss of generality, we let
x1 < x2. Then, there is a t ∈ (a, b) such that x1 < t < x2, we have the
following results:

(a) f(x1−) < p < f(x1+), f(x2−) < p < f(x2+);

(b) a < q < t < x2 implies f(t) < p;

(c) x1 < t < r < b implies f(t) > p.

Obviously, (b) and (c) are contradict, and thus each triple is associated
with at most one point of E. Therefore, E is at most countable.
(ii) Let F be the set on which f(x−) > f(x+), with nearly the same
procedure as (i), we can prove that F is at most countable (namely, with
changes in (a) by f(x−) > p > f(x+), in (b) by f(t) > p and in (c) by
f(t) < p).
(iii) Let G be the set on which f(x−) = f(x+) < f(x), then we can let
the above conditions (a), (b) and (c) be replaced as:

(a) f(x) = p;

(b) a < q < t < x implies f(t) < p;

(c) x < t < r < b implies f(t) < p;

Then if x1 and x2 are associated with the same triple (p, q, r), we have
f(x1) = f(x2) by (a). But (b) tells us f(x1) < p, since a < q < x1 <
x2 and (c) tells us f(x2) < p, since x1 < x2 < r < b. Both give us
contradictions. Thus, each triple is associated with at most one point of
G and G is at most countable.
(iv) Let H be the set on which f(x−) = f(x+) > f(x), with the same
procedure as (iii), we can prove that H is at most countable (namely,
change conditions (b) and (c) by f(t) > p).
Combining the results of (i), (ii), (iii), and (iv), we conclude that the set
of points at which f has a simple discontinuity is at most countable.

18. Every rational x can be written in the form x = m/n, where n > 0, and
m and n are integers without any common divisors. When x = 0, we take
n = 1.Consider the function f defined on R1 by

f(x) =

{
0 x irrational,
1
n (x = m

n ).

Prove that f is continuous at every irrational point, and that f has a
simple discontinuity at every rational point.
Proof : Fix an irrational number p. Given any ε > 0, there is an N ∈ N
such that 1/N < ε. Let x be any real number, suppose x = [x] + (x),
and p = [p] + (p), we pick an N ′ so large that if |x − p| < 1/N ′, then
[x] = [p]. Let M = max(N,N ′), when |x − p| < 1/M , we have |x − p| <
1/M < 1/N , and [x] = [p] so that |x − p| = |(x) − (p)| < 1/M . Since
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|(x)| < 1, if we let (x) = m
n , then m can only be one of the 2n− 1 values

0,±1, ...,±(n − 1). Next, we remove from the neighborhood V1/M (p) of
p those rational numbers with divisor smaller than or equal to M . Let
E = {|q − p||q is removed from V1/M (p)}, then E is finite, by our above
statements. Thus δ = minE > 0, δ ≤ 1/M , and Vδ(p) contains only
irrational numbers and those rational numbers with divisor larger than
M . Let x ∈ Vδ(p) (namely, |x − p| < δ), if x is irrational, f(x) = 0
and |f(x) − f(p)| = 0 < ε; and if x is rational, let x = m/n, we have
|f(x)− f(p)| = |f(x)| = 1/n < 1/M < 1/N < ε and therefore f is contin-
uous at x.
Let p = m

n be any rational number, then given any ε > 0, if we ap-
ply the skill in the previous proof process, we can obtain a neighborhood
Vδ(p)(except p) which contains only irrational numbers and rational num-
bers with divisor larger than M , where 1/M < ε. Thus 0 ≤ f(x) < ε, when
x ∈ Vδ(p) and x 6= p, and we have 0 ≤ f(p+) < ε, 0 ≤ f(p−) < ε. Since
ε is arbitrary, we have f(p+) = 0 and f(p−) = 0, but f(p) = 1/n 6= 0.
Therefore, f has a simple discontinuity at every rational point.

19. Suppose f is a real function with domain R1 which has the intermediate
value property: If f(a) < c < f(b), then f(x) = c for some x between a
and b.
Suppose also, for every rational r, that the set of all x with f(x) = r is
closed. Prove that f is continuous.
Proof : If xn → x0 but f(xn) > r > f(x0) for some r and all n, then
f(tn) = r for some tn between x0 and xn, since f has the intermediate
value property. Thus tn → x0. But then x0 is a limit point of the set E
of all x with f(x) = r, and by assumption, E is closed. Therefore, x0 ∈ E
and f(x0) = r, which is contradict to the assumption that f(x0) < r.
Hence, f must be continuous.

20. If E is a nonempty set of a metric space X, define the distance from x ∈ X
to E by ρE(x) = inf

z∈E
d(x, z).

(a) Prove that ρE(x) = 0 if and only if x ∈ Ē.
Proof :
⇒: Suppose that ρE(x) = 0, and x 6∈ Ē. Then x ∈ Ēc. Since Ē is
closed, Ēc is open. Thus there exists an r > 0, such that d(y, x) < r
implies y ∈ Ēc and y 6∈ Ē. Then d(z, x) ≥ r, for every z ∈ E and
inf
z∈E

d(x, z) ≥ r > 0, namely, ρE(x) > 0, a contradiction.

⇐: Suppose that x ∈ Ē. If x ∈ E, then since d(x, x) = 0, ρE(x)
is trivially 0; If x 6∈ E, then x is a limit point of E, thus given any
ε > 0, there is a z ∈ E such that d(z, x) < ε. We conclude that
ρE(x) = inf

z∈E
d(x, z) = 0, since every ε > 0 is not a lower bound of

d(x, z).

(b) Prove that ρE is a uniformly continuous function on X, by showing
that |ρE(x)− ρE(y)| ≤ d(x, y) for all x ∈ X, y ∈ X.
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Proof : Fix x, y, we have ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z), for
every z ∈ E, thus ρE(x) ≤ d(x, y) + ρE(y) and ρE(x) − ρE(y) ≤
d(x, y). Similarly, we have ρE(y) − ρE(x) ≤ d(x, y) and therefore
|ρE(x)− ρE(y)| ≤ d(x, y). Hence ρE is uniformly continuous.

21. Suppose K and F are disjoint sets in a metric space X, K is compact, F
is closed. Prove that there exists δ > 0 such that d(p, q) > δ if p ∈ K,
q ∈ F .
Show that the conclusion may fail for two disjoint closed sets if neither is
compact.
Proof : First, we will show that ρF (p) 6= 0, for every p ∈ K. Suppose that,
on the contrary, there is a q ∈ K such that ρF (q) = 0. Then by Exercise
20(a), q ∈ F̄ . Since F is closed, F̄ = F and q ∈ F , which is not possible
because K and F are disjoint, by assumption. Thus, for every p ∈ K,
ρF (p) > 0. Furthermore, by Exercise 20(b), we have ρF is continuous on
K, and since K is compact, let m = inf

p∈K
ρF (p), then there exists a point

q ∈ K, such that ρF (q) = m, by Theorem 4.15. Since ρF (q) > 0, we have
m > 0. Pick any δ such that 0 < δ < m, we have d(p, q) ≥ ρF (p) ≥ m > δ,
for every p ∈ K, q ∈ F .
If two disjoint sets are both closed but neither is compact, then the conclu-
sion may fail. For example, let E be the set of all positive integers, and let
F be the set of {n+ 1

n}, n ≥ 2, then both E and F are closed (in fact, E and
F both have no limit points). Clearly, since lim

n→∞
d(pn, qn) = lim

n→∞
1
n = 0,

for pn ∈ E, qn ∈ F , no δ > 0 can be found such that d(p, q) > δ for every
p ∈ E, q ∈ F .

22. Let A and B be disjoint nonempty closed sets in a metric space X, and
define

f(p) =
ρA(p)

ρA(p) + ρB(p)
(p ∈ X).

Show that f is a continuous function on X whose range lies in [0, 1], that
f(p) = 0 precisely on A and f(p) = 1 precisely on B. This establishes a
converse of Exercise 3: Every closed set A ⊆ X is Z(f) for some continuous
real f on X. Setting V = f−1([0, 1

2 )), W = f−1(( 1
2 , 1]), show that V and

W are open and disjoint, and that A ⊆ V , B ⊆W . (Thus pairs of disjoint
closed sets in a metric space can be covered by pairs of disjoint open sets.
This property of metric spaces is called normality.)
Proof :
(i) We first prove that ρA(p) + ρB(p) 6= 0, for every p ∈ X. Suppose
that, on the contrary, there is a q ∈ X such that ρA(q) + ρB(q) = 0, then
ρA(q) = 0 and ρB(q) = 0. Thus q ∈ Ā and q ∈ B̄, by Exercise 20(a).
Then q ∈ A and q ∈ B, since both A and B are closed, which is contradict
to our assumption that A and B are disjoint.
The fact that f is continuously then comes directly from Exercise 20(b)
and Theorem 4.9. Since 0 ≤ ρA(p) ≤ ρA(p) + ρB(p), for every p ∈ X, it’s
clear that f(X) ⊆ [0, 1].
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f(p) = 0⇔ ρA(p) = 0⇔ p ∈ Ā⇔ p ∈ A.
f(p) = 1⇔ ρA(p) = ρA(p) + ρB(p)⇔ ρB(p) = 0⇔ p ∈ B̄ ⇔ p ∈ B.
(ii) Fix any p ∈ V , then f(p) ∈ [0, 1

2 ), which gives 0 ≤ ρA(p) < ρB(p).
If ρA(p) 6= 0, we pick an r ∈ R1 such that 0 < ρA(p) < r < ρB(p),
then since ρA is uniformly continuous on X (by Exercise 20(b)), there is
a δ1 > 0 such that dX(x, p) < δ1 implies that 0 < ρA(x) < r; and since ρB
is uniformly continuous on X, there is a δ2 > 0 such that dX(x, p) < δ2
implies that ρB(x) > r. Let δ = min(δ1, δ2), then when dX(x, p) < δ, we
have 0 < ρA(x) < r < ρB(x) and thus 0 < f(x) < 1

2 . So f(x) ∈ (0, 1
2 ) and

x ∈ V .
If ρA(p) = 0 (f(p) = 0), since f is continuous on X, there is a δ > 0 such
that dX(x, p) < δ implies |f(x)− f(p)| < 1

2 , namely 0 ≤ f(x) < 1
2 . Thus,

x ∈ V .
Therefore, V is open. In just the same way, we can prove that W is open
(this case the condition becomes 0 ≤ ρB(p) < ρA(p). Next, we will prove
that V and W are disjoint. If V ∩W 6= ∅, there is a p ∈ X such that p ∈ V
and p ∈ W , which gives f(p) ∈ [0, 1

2 ) and f(p) ∈ ( 1
2 , 1], a contradiction.

Therefore, V and W are disjoint.
The fact A ⊆ V and B ⊆ W are clear, since x ∈ A implies f(x) = 0 and
x ∈ B implies f(x) = 1.

23. A real-valued function f defined in (a, b) is said to be convex if f(λx +
(1 − λ)y) ≤ λf(x) + (1 − λ)f(y) whenever a < x < b, a < y < b,
0 < λ < 1. Prove that every convex function is continuous. Prove that
every increasing convex function of a convex function is convex. (For
example, if f is convex, so is ef .)
If f is convex in (a, b) and if a < s < t < u < b, show that

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.
Proof : Suppose that, on the contrary, f is not continuous at some p ∈
(a, b). Then for this p, without loss of generality, there is some sequence
{xn} such that xn → p when n → ∞, but f(xn) > r > f(p) (and
thus if we let r < r1 < f(xn), r > r2 > f(p) and ε = r1 − r2 > 0,
then f(xn) − f(p) > r1 − r2 = ε > 0), for some r and all n. Then
xn = λnp + (1 − λn)x1, 0 < λn < 1, for n > 1. f(xn) − f(p) = f(λnp +
(1−λn)x1)−f(p) ≤ λnf(p)+(1−λn)f(x1)−f(p) = (1−λn)(f(x1)−f(p)),
which gives ε < f(xn)− f(p) ≤ (1− λn)(f(x1)− f(p)). Notice that when
xn → p, λn → 1 and 1− λn → 0. Hence f(xn)− f(p)→ 0 when n→∞,
namely, ε ≤ 0, which is absurd. The case f(xn) < r < f(p) will be
similar, by showing 0 ≥ ε to get a contradiction. Therefore, f must be
continuous.(Remark: Recall the method used in Exercise 19 again.)
Suppose f is convex, and g is increasing convex. Let h(x) = g(f(x)),
then h(λx+ (1− λ)y) = g(f(λx+ (1− λ)y)) ≤ g(λf(x) + (1− λ)f(y)) ≤
λg(f(x)) + (1− λ)g(f(y)) = λh(x) + (1− λ)h(y). Therefore, h is convex.
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We have t = u−t
u−ss+ t−s

u−su, and since u−t
u−s + t−s

u−s = 1, if we let λ(t) = u−t
u−s ,

then 0 < λ(t) < 1 for any t since s < t < u, and t = λ(t)s + (1 − λ(t))u.
Since f is convex, we have f(t) ≤ λ(t)f(s) + (1 − λ(t))f(u), which gives
us (u − s)f(t) ≤ (u − t)f(s) + (t − s)f(u). Then we have (u − s)f(t) ≤
(u−s)f(s)−(t−s)f(s)+(t−s)f(u)⇒ (u−s)(f(t)−f(s)) ≤ (t−s)(f(u)−
f(s))⇒ f(t)−f(s)

t−s ≤ f(u)−f(s)
u−s , and (u−s)f(t) ≤ (u−t)f(s)+(u−s)f(u)−

(u− t)f(u) ⇒ (u− t)(f(u)− f(s)) ≤ (u− s)(f(u)− f(t)) ⇒ f(u)−f(s)
u−s ≤

f(u)−f(t)
u−t . Combining these two result gives us the desired inequality.

24. Assume that f is a continuous real function defined in (a, b) such that

f(x+y
2 ) ≤ f(x)+f(y)

2 for all x, y ∈ (a, b). Prove that f is convex.
Proof : First, we will prove that if λ = 1

2n , n = 1, 2, ..., then f(λx+ (1−
λ)y) ≤ λf(x) + (1− λ)f(y). We can prove this by induction:

(i) n = 1, λ = 1
2 , then it is trivial that f(x+y

2 ) ≤ f(x)+f(y)
2 .

(ii) Suppose that when n = k, λ = 1
2k

, f(λx + (1 − λ)y) ≤ λf(x) +

(1 − λ)f(y). When n = k + 1, we have f( 1
2k+1x + (1 − 1

2k+1 )y) =

f(
( x
2k

+(1− 1

2k
)y)+y

2 ) ≤ f( x
2k

+(1− 1

2k
)y)+f(y)

2 ≤ 1
2 [( 1

2k
f(x) + (1 − 1

2k
)f(y)) +

f(y)](by hypothesis)= 1
2k+1 f(x) + (1− 1

2k+1 )f(y).

Furthermore, we can similarly prove that if λ =
n∑
i=1

ai
2i , where ai = 0 or

ai = 1, then f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (*):
(i) n = 1, λ = a1

2 . Since λ > 0, a1 = 1 and λ = 1
2 , then it is trivial that

f(x+y
2 ) ≤ f(x)+f(y)

2 .

(ii) Suppose that when n = k, λ =
k∑
i=1

ai
2i , f(λx+ (1−λ)y) ≤ λf(x) + (1−

λ)f(y). When n = k + 1, λ =
k+1∑
i=1

ai
2i .

If
k+1∑
i=1

ai
2i−1 < 1, we have

f(
k+1∑
i=1

ai
2i x+ (1−

k+1∑
i=1

ai
2i )y) = f(

[
k+1∑
i=1

ai
2i−1 x+(1−

k+1∑
i=1

ai
2i−1 )y]+y

2 ).

Since
k+1∑
i=1

ai
2i−1 < 1, we must have a1 = 0, then

k+1∑
i=1

ai
2i−1 =

k∑
i=0

ai+1

2i =
k∑
i=1

ai+1

2i and hence

f(
[
k+1∑
i=1

ai
2i−1 x+(1−

k+1∑
i=1

ai
2i−1 )y]+y

2 ) = f(
[
k∑
i=1

ai+1

2i
x+(1−

k∑
i=1

ai+1

2i
)y]+y

2 )

≤
f(

k∑
i=1

ai+1

2i
x+(1−

k∑
i=1

ai+1

2i
)y)+f(y)

2 ≤
k∑
i=1

ai+1

2i
f(x)+(1−

k∑
i=1

ai+1

2i
)f(y)+f(y)

2

(by hypothesis)=
k∑
i=1

ai+1

2i+1 f(x) + (1 −
k∑
i=1

ai+1

2i+1 )f(y) =
k+1∑
i=2

ai
2i f(x) + (1 −
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k+1∑
i=2

ai
2i )f(y) =

k+1∑
i=1

ai
2i f(x) + (1−

k+1∑
i=1

ai
2i )f(y), since a1 = 0.

If
k+1∑
i=1

ai
2i−1 > 1, we have

f(
k+1∑
i=1

ai
2i x+ (1−

k+1∑
i=1

ai
2i )y) = f(

[(
k+1∑
i=1

ai
2i−1−1)x+(2−

k+1∑
i=1

ai
2i−1 )y]+x

2 ).

Since
k+1∑
i=1

ai
2i−1 > 1, we must have a1 = 1, then

k+1∑
i=1

ai
2i−1 =

k∑
i=0

ai+1

2i =

1 +
k∑
i=1

ai+1

2i (notice that
k+1∑
i=1

ai
2i−1 < 2) and hence

f(
[(
k+1∑
i=1

ai
2i−1−1)x+(2−

k+1∑
i=1

ai
2i−1 )y]+x

2 ) = f(
[
k∑
i=1

ai+1

2i
x+(1−

k∑
i=1

ai+1

2i
)y]+x

2 )

≤
f(

k∑
i=1

ai+1

2i
x+(1−

k∑
i=1

ai+1

2i
)y)+f(x)

2 ≤
k∑
i=1

ai+1

2i
f(x)+(1−

k∑
i=1

ai+1

2i
)f(y)+f(x)

2

(by hypothesis)= (
k∑
i=1

ai+1

2i+1 + 1
2 )f(x) + ( 1

2 −
k∑
i=1

ai+1

2i+1 )f(y) = (
k+1∑
i=2

ai
2i +

1
2 )f(x) + ( 1

2 −
k+1∑
i=2

ai
2i )f(y) =

k+1∑
i=1

ai
2i f(x) + (1−

k+1∑
i=1

ai
2i )f(y), since a1 = 1.

Now, suppose that f is not convex, then there is some x0, y0 ∈ (a, b) and
some 0 < λ0 < 1, such that f(λ0x0+(1−λ0)y0) > λ0f(x0)+(1−λ0)f(y0).
Let g(λ) = f(λx0 + (1 − λ)y0) − (λf(x0) + (1 − λ)f(y0)), then we have

g(λ0) > 0 and g(λ) ≤ 0, for every λ =
n∑
i=1

ai
2i , ai = 0 or ai = 1, n = 1, 2, ....

Since f(p) is continuous, and p = h(λ) = λx0 + (1 − λ)y0 is continuous,
g(λ) is continuous. Let 0 < r < g(λ0) and ε = g(λ0) − r > 0, then there
is a δ > 0 such that |λ − λ0| < δ implies |g(λ) − g(λ0)| < ε, and thus
g(λ) > g(λ0) − ε = r > 0. But, for this δ, we can pick an N ∈ N such

that n ≥ N implies 1
2n < δ. Then choose λ1 =

n∑
i=1

ai
2i such that n > N

and |λ1 − λ0| < 1
2N

< δ, we have g(λ1) > 0, which is a contradiction.
Therefore, f must be convex.
Remark: Actually, every 0 < λ < 1 can be represented as the form

λ =
∞∑
i=1

ai
2i , where ai = 0 or ai = 1, namely, the binary representation of

λ. Hence, the result (*) can be generalized in the case when n→∞.

25. If A ⊆ Rk and B ⊆ Rk, define A+B to be the set of all sums ~x+ ~y with
~x ∈ A, ~y ∈ B.

(a) If K is compact and C is closed in Rk, prove that K + C is closed.
Proof : Take ~z 6∈ K + C, put F = ~z − C, the set of all ~z − ~y with
~y ∈ C. Then K and F are disjoint.(Otherwise, there is some ~x ∈ K
and ~x ∈ F . ~x ∈ F implies that ~z − ~x ∈ C, and since ~x ∈ K,
~z = (~z − ~x) + ~x ∈ C +K, contradicting to our choice of ~z.) Since C
is closed, F is closed. (Let ~p be a limit point of F , given any ε > 0,
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then there is a ~x in F such that |~x− ~p| < ε. Since ~x ∈ F , ~x = ~z − ~y,
for some ~y ∈ C. Thus |(~z − ~p)− ~y| < ε, which shows that ~z − ~p is a
limit point of C. Then ~z−~p ∈ C, since C is closed. Therefore, ~p ∈ F
and F is closed.) Because K is compact, by Exercise 21, there exists
a δ > 0 such that |~p − ~q| > δ if ~p ∈ K, ~q ∈ F . Now let V be the
open ball with center ~z and radius δ, we will prove that V does not
intersect K + C.
If, on the contrary, there is some ~p such that ~p ∈ V and ~p ∈ K + C.
Then |~p − ~z| < δ, and since ~p ∈ K + C, ~p = ~a +~b, with ~a ∈ K and
~b ∈ C. Thus |~a + ~b − ~z| < δ, which gives |~a − (~z − ~b)| < δ. Since
~b ∈ C, we have ~z −~b ∈ F and obtain a contradiction to our choice
of δ. Therefore, V does not intersect K +C and we have shown that
(K + C)c is open. Hence K + C is closed.

(b) Let α be an irrational real number. Let C1 be the set of all integers,
let C2 be the set of all nα with n ∈ C1. Show that C1 and C2 are
closed subsets of R1 whose sum C1 + C2 is not closed, by showing
that C1 + C2 is a countable dense subset of R1.
Proof : The fact that C1 and C2 are closed is clear since neither C1

nor C2 has a limit point in R1. The fact that C1 +C2 is countable is
also obvious, since both C1 and C2 are countable.
Now, we need to prove that C1+C2 is dense in R1. First, we will show
that given any ε > 0, there is m, n such that |mα+n| < ε⇔ |(mα)| <
ε. Since there is some N such that n > N implies 1/n < 1/N < ε,
we can divide the interval [0, 1) into N segments, namely, [0, 1/N),
[1/N, 2/N),..., [(N − 1)/N, 1). Since (m1α) 6= (m2α), if m1 6= m2,
there is at least two integers m1,m2 ∈ {1, 2, ..., N + 1} such that
(m1α) and (m2α) belong to the same segment. Let m′ = m1 −m2,
then |(m′α)| = |(m1α)− (m2α)| < 1/N < ε.
Next, we let δ = (m′α) = m′α + k > 0, without loss of generality,
for some integer k. Suppose p > 0 be any positive real number (the
case p < 0 will be similar), according to the archimedean property
of R1, there is an integer m3 such that m3δ > p and there is an
integer m4 such that m4(1/p) > 1/δ, namely, p < m4δ. Thus m3δ <
p < m4δ, and we can find a m5 such that m5δ ≤ p < (m5 + 1)δ.
Let β = m5δ = m5m

′α + m5k = mα + n(namely, m = m5m
′ and

n = m5k), then |β − p| < δ < ε. Since β ∈ C1 + C2, we have shown
that C1 + C2 is dense. The fact that C1 + C2 is not closed then is
clear, since otherwise every number of R1 is a limit point of C1 +C2

and thus C1 +C2 = R1, which is contradict to the fact that C1 +C2

is countable.

26. Suppose X,Y, Z are metric spaces, and Y is compact. Let f map X
into Y , let g be a continuous one-to-one mapping of Y into Z, and put
h(x) = g(f(x)) for x ∈ X.
Prove that f is uniformly continuous if h is uniformly continuous.
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Prove also that f is continuous if h is continuous.
Show (by modifying Example 4.21, or by finding a different example) that
the compactness of Y cannot be omitted from the hypotheses, even when
X and Z are compact.
Proof :
(i) Since Y is compact and g is continuous, g(Y ) is compact. On the
other hand, g is one-to-one and continuous implies g−1 : g(Y ) → Y is
continuous, by Theorem 4.17, and thus g−1 is uniformly continuous. Since
f(x) = g−1(h(x)), for every x ∈ X, f is therefore uniformly continuous if
h is uniformly continuous, by Exercise 12.
(ii) g−1 is continuous, thus if h is continuous, then h = g−1f is also
continuous, by Theorem 4.7.
(iii)As in Example 4.21, let X = [0, 2π], Y = [0, 2π) and Z be the unit
circle on the plane. Suppose f : X → Y such that f(x) = x, for x ∈
[0, 2π), and f(2π) = 0; g : Y → Z such that g(y) = (cos y, sin y), for any
y ∈ [0, 2π); h : X → Z, h(x) = (cosx, sinx), for any x ∈ [0, 2π), and
h(2π) = (1, 0).
We can easily check that h(x) = g(f(x)), for every x ∈ X. Furthermore,
h(x) is uniformly continuous (since |h(x)− h(y)| =√

(cosx− cos y)2 + (sinx− sin y)2 =
√

2(1− (cosx cos y + sinx sin y)) =√
2(1− cos(x− y)) = 2

√
(sin x−y

2 )2 = 2| sin x−y
2 | ≤ 2 |x−y|2 = |x− y|, and

h is continuous at 2π). But clearly, f is not continuous, even both X and
Z are compact.

5 Differentiation

1. Let f be defined for all real x, and suppose that |f(x)− f(y)| ≤ (x− y)2

for all real x and y. Prove that f is constant.

Proof : Fix any real x, and let φ(t) = f(t)−f(x)
t−x . Then we have 0 ≤ |φ(t)| =

|f(t)−f(x)|
|t−x| ≤ (t−x)2

|t−x| = |t − x|, and hence 0 ≤ lim
t→x
|φ(t)| ≤ lim

t→x
|t − x| = 0.

Therefore, lim
t→x
|φ(t)| = 0 and thus lim

t→x
φ(t) = 0. This is equivalent to say,

f ′(x) = lim
t→x

φ(t) = 0, for any real x. So f must be constant, by Theorem

5.11(b).

2. Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b),
and let g be its inverse function. Prove that g is differentiable and that

g′(f(x)) =
1

f ′(x)
(a < x < b).

Proof : Suppose that x1, x2 ∈ (a, b) and x1 < x2, then f(x1) − f(x2) =
f ′(θ)(x1 − x2), where θ ∈ (x1, x2). Since f ′(θ) > 0 and x1 < x2, we have
f(x1) < f(x2), therefore f is strictly increasing in (a, b).

Fix y = f(x), and let s = f(t). Define φ(s) = g(s)−g(y)
s−y = g(f(t))−g(f(x))

f(t)−f(x) =
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t−x
f(t)−f(x) = 1

f(t)−f(x)
t−x

. Since f is differentiable, f is continuous; further-

more, f is strictly increasing and thus is one-to-one. Hence s→ y implies
t→ x and then lim

s→y
φ(s) = lim

t→x
1

f(t)−f(x)
t−x

= 1

lim
t→x

f(t)−f(x)
t−x

= 1
f ′(x) . Therefore,

g is differentiable, and g′(f(x)) = g′(y) = lim
s→y

φ(s) = 1
f ′(x) .

3. Suppose g is a real function on R1, with bounded derivative (say |g′| ≤M).
Fix ε > 0, and define f(x) = x+ εg(x). Prove that f is one-to-one if ε is
small enough. (A set of admissible values of ε can be determined which
depends only on M .)
Proof : Suppose that x1, x2 ∈ R1 and x1 < x2, then f(x1) = x1 + εg(x1),
f(x2) = x2 + εg(x2) and f(x1) − f(x2) = (x1 − x2) + ε(g(x1) − g(x2)) =
(x1−x2)+εg′(θ)(x1−x2) = (x1−x2)(1+εg′(θ)), where θ ∈ (x1, x2). Since
|g′| ≤ M , if M = 0, then g′ = 0 so f(x1) − f(x2) = x1 − x2 and for any
ε > 0, f(x1) 6= f(x2), if x1 6= x2. Thus f is one-to-one. Now consider the
case M > 0, we have −M ≤ g′ ≤M , and 1− εM ≤ 1 + εg′(θ) < 1 + εM .
We can pick ε such that 0 < ε < 1

M , then 1 − εM > 0. Since x1 6= x2,
(x1− x2)(1 + εg′(θ)) 6= 0 so f(x1) 6= f(x2) and thus f is one-to-one, when
0 < ε < 1

M .

4. If

C0 +
C1

2
+ · · ·+ Cn−1

n
+

Cn
n+ 1

= 0.

where C0, ..., Cn are real constants, prove that the equation C0 + C1x +
· · ·+ Cn−1x

n−1 + Cnx
n = 0 has at least one real root between 0 and 1.

Proof : Define f(x) = C0x + C1

2 x
2 + · · · + Cn−1

n xn + Cn
n+1x

n+1, and let

g(x) = C0 +C1x+ · · ·+Cn−1x
n−1 +Cnx

n. Then we have f(0) = f(1) = 0,
and f ′(x) = g(x). Since f(1)− f(0) = f ′(θ)(1− 0) = f ′(θ) = g(θ), where
θ ∈ (0, 1), and since f(1)−f(0) = 0, we have g(θ) = 0, for some θ ∈ (0, 1),
which is exactly the required conclusion.

5. Suppose f is defined and differentiable for every x > 0, and f ′(x)→ 0 as
x→ +∞. Put g(x) = f(x+ 1)− f(x). Prove that g(x)→ 0 as x→ +∞.
Proof : g(x) = f(x + 1) − f(x) = f ′(θ)((x + 1) − x) = f ′(θ), where
θ ∈ (x, x + 1). When x → +∞, θ → +∞, too, and thus f ′(θ) → 0.
Therefore, g(x) = f ′(θ)→ 0.

6. Suppose

(a) f is continuous for x ≥ 0,

(b) f ′(x) exists for x > 0,

(c) f(0) = 0,

(d) f ′ is monotonically increasing.

Put

g(x) =
f(x)

x
(x > 0)
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and prove that g is monotonically increasing.
Proof : Let h(x) = x, then both f and h are continuous real functions
on [0,+∞) which are differentiable in (0,+∞). Given any x > 0, by the
generalized mean value theorem, we have (f(x) − f(0))h′(θ) = (h(x) −
h(0))f ′(θ), where θ ∈ (0, x). Since f(0) = 0, this gives f(x) = xf ′(θ), i.e.,

f ′(θ) = f(x)
x . Since f ′ is monotonically increasing and θ < x, we have

f ′(x) > f ′(θ) = f(x)
x , i.e., xf ′(x) > f(x) for any x > 0. Then g′(x) =

f ′(x)x−f(x)
x2 > 0 and hence g is monotonically increasing, by Exercise 2.

7. Suppose f ′(x), g′(x) exist, g′(x) 6= 0, and f(x) = g(x) = 0. Prove that

lim
t→x

f(t)

g(t)
=
f ′(x)

g′(x)
.

(This holds also for complex functions.)
Proof : We have

lim
t→x

f(t)
g(t) = lim

t→x
f(t)−f(x)
g(t)−g(x) = lim

t→x

f(t)−f(x)
t−x

g(t)−g(x)
t−x

=
lim
t→x

f(t)−f(x)
t−x

lim
t→x

g(t)−g(x)
t−x

= f ′(x)
g′(x) .

8. Suppose f ′ is continuous on [a, b] and ε > 0. Prove that there exists δ > 0
such that

|f(t)− f(x)

t− x
− f ′(x)| < ε

whenever 0 < |t− x| < δ, a ≤ x ≤ b, a ≤ t ≤ b. (This could be expressed
by saying that f is uniformly differentiable on [a, b] if f ′ is continuous on
[a, b].) Does this hold for vector-valued functions too?
Proof : Since [a, b] is compact and f ′ is continuous, f ′ is uniformly con-
tinuous on [a, b]. Then given any ε > 0, there is a δ > 0 such that
0 < |t − x| < δ implies |f ′(t) − f ′(x)| < ε, for any t, x ∈ [a, b]. We have

| f(t)−f(x)
t−x −f ′(x)| = | f

′(θ)(t−x)
t−x −f ′(x)| = |f ′(θ)−f ′(x)|, where θ ∈ (x, t)(if

t > x) or θ ∈ (t, x)(if x > t). Anyway, we have 0 < |θ − x| < |t − x| < δ,

and thus |f ′(θ)− f ′(x)| < ε, namely, | f(t)−f(x)
t−x − f ′(x)| < ε.

In the case of vector-valued functions, the above result also holds. To see
this, suppose that f : R1 → Rk, k ≥ 2 and let f = (f1, f2, ..., fk), then
f ′ = (f ′1, f

′
2, ..., f

′
k). Similar as the previous proof, since f ′ is continuous

on [a, b], f ′ is uniformly continuous on [a, b]. Hence given any ε > 0, there
is a δ > 0 such that 0 < |t − x| < δ implies |f ′(t) − f ′(x)| < ε√

k
, for

any t, x ∈ [a, b]. Since f(t)−f(x)
t−x = ( f1(t)−f1(x)

t−x , f2(t)−f2(x)
t−x , ..., fk(t)−fk(x)

t−x ) =
(f ′1(θ1), f ′2(θ2), ..., f ′k(θk)), where θi ∈ (x, t) if t > x, or θi ∈ (t, x) if t < x,
for 1 ≤ i ≤ k. Then we have |f ′i(θi) − f ′i(x)| ≤ |f ′(θi) − f ′(x)| < ε√

k
,

for 1 ≤ i ≤ k, and thus | f(t)−f(x)
t−x − f ′(x)| = |(f ′1(θ1), f ′2(θ2), ..., f ′k(θk)) −

f ′(x)| =
√

(f ′1(θ1)− f ′1(x))2 + · · ·+ (f ′k(θk)− f ′k(x))2 <
√

ε2

k · k = ε.

9. Let f be a continuous real function on R1, of which it is known that f ′(x)
exists for all x 6= 0 and that f ′(x)→ 3 as x→ 0. Does it follow that f ′(0)

54



exists?
Proof : f ′(0) = lim

x→0

f(x)−f(0)
x−0 = lim

x→0

f ′(θ)(x−0)
x−0 = lim

x→0
f ′(θ), where θ ∈

(0, x), if x > 0, or θ ∈ (x, 0), if x < 0. Anyway, x→ 0 implies θ → 0, and
thus f ′(θ)→ 3, which gives f ′(0) = lim

θ→0
f ′(θ) = 3.

10. Suppose f and g are complex differentiable functions on (0, 1), f(x)→ 0,
g(x) → 0, f ′(x) → A, g′(x) → B as x → 0, where A and B are complex
numbers, B 6= 0. Prove that

lim
x→0

f(x)

g(x)
=
A

B
.

Compare with Example 5.8.

Proof : We have f(x)
g(x) = { f(x)

x −A} ·
x
g(x) +A · x

g(x) . If we apply Theorem

5.13 to the real and imaginary parts of f(x)
x and g(x)

x , we can obtain that

lim
x→0

f(x)
x = A and lim

x→0

g(x)
x = B. Hence lim

x→0

f(x)
g(x) = lim

x→0
({ f(x)

x −A}·
x
g(x) )+

lim
x→0

A · x
g(x) = (A−A) · 1

B +A · 1
B = A

B .

11. Suppose f is defined in a neighborhood of x, and suppose f ′′(x) exists.
Show that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

Show by example that the limit may exist even if f ′′(x) does not.
Proof : The limit on the left side satisfies the hypothesis of Theorem 5.13,

and thus we have lim
h→0

f(x+h)+f(x−h)−2f(x)
h2 = lim

h→0

f ′(x+h)+f ′(x−h)(−1)
2h =

lim
h→0

f ′(x+h)−f ′(x−h)
2h = 1

2 lim
h→0
{ f
′(x+h)−f ′(x)

h + f ′(x)−f ′(x−h)
h } = 1

2{ lim
h→0

f ′(x+h)−f ′(x)
h +

lim
h→0

f ′(x−h)−f ′(x)
−h } = 1

2 (f ′′(x) + f ′′(x)) = f ′′(x).

12. If f(x) = |x|3, compute f ′(x), f ′′(x) for all real x, and show that f (3)(0)
does not exist.
Proof :
(i) When x > 0, f(x) = x3 and f ′(x) = lim

t→x
t3−x3

t−x = lim
t→x

(t−x)(t2+tx+x2)
t−x =

lim
t→x

t2 +tx+x2 = 3x2; when x < 0, f(x) = −x3 and f ′(x) = lim
t→x

−t3+x3

t−x =

− lim
t→x

t2 + tx + x2 = −3x2; and when x = 0, f ′(0+) = lim
t→0

t3−0
t−0 = 0,

f ′(0−) = lim
t→0

−t3−0
t−0 = 0, hence f ′(0) = 0.

(ii) When x > 0, f ′′(x) = lim
t→x

3t2−3x2

t−x = lim
t→x

3(t + x) = 6x; when x <

0, f ′′(x) = lim
t→x

−3t2+3x2

t−x = lim
t→x

(−3)(t + x) = −6x; and when x = 0,

f ′′(0+) = lim
t→0

3t2−0
t−0 = 0, f ′′(0−) = lim

t→0

−3t2−0
t−0 = 0, hence f ′′(0) = 0.

(iii) f (3)(0+) = lim
t→0

6t−0
t−0 = 6, and f (3)(0−) = lim

t→0

−6t−0
t−0 = −6, hence

f (3)(0) does not exist.
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13. Suppose a and c are real number, c > 0, and f is defined on [−1, 1] by

f(x) =

{
xa sin (|x|−c) (if x 6= 0).
0 (if x = 0).

Prove the following statements:

(a) f is continuous if and only if a > 0.
Proof : Since f(x) is continuous when x 6= 0, we only need to show
that f(x) is continuous at 0. We have lim

x→0
xa sin(|x|−c) = 0 if and

only if a > 0.

(b) f ′(0) exists if and only if a > 1.

Proof : We have f ′(0) = lim
x→0

xa sin(|x|−c)−0
x−0 = lim

x→0
xa−1 sin(|x|−c),

and when a > 1, f ′(0) = 0; when a ≤ 1, f ′(0) does not exist.

(c) f ′ is bounded if and only if a ≥ 1 + c.
Proof : We have f ′(x) = axa−1 sin(x−c) − cxa cos(x−c)x−c−1 =
axa−1 sin(x−c)− cxa−c−1 cos(x−c), when x > 0, and
f ′(x) = axa−1 sin((−x)−c) + cxa cos((−x)−c)(−x)−c−1 =
axa−1 sin((−x)−c) + c(−1)−c−1xa−c−1 cos(x−c), when x < 0. When
a ≥ c + 1, |f ′(x)| ≤ |a||x|a−1 + |c||x|a−c−1 ≤ |a|+ |c|, in both cases;
and when a < c+ 1, f ′(x)→∞ as x→ 0, in both cases.

(d) f ′ is continuous if and only if a > 1 + c.
Proof : Clearly, f ′(x) is continuous at any point x 6= 0. When
a ≤ 0, f ′(0) does not exist. According to (c), when 1 < a < 1 + c,
f ′(x) → ∞ as x → 0, but f ′(0) = 0 according to (c), hence f ′

is not continuous at 0. When a = 1 + c, f ′(x) = axa−1 sin(x−c) −
c cos(x−c) = (c+1)xc sin(x−c)−c cos(x−c) if x > 0, and lim

x→0+
f ′(x) =

lim
x→0+

[(c + 1)xc sin(x−c) − c cos(x−c)] = −c lim
x→0+

cos(x−c) and this

limit does not exist; similarly, if x < 0, f ′(x) = (c+1)xc sin((−x)−c)+
c(−1)−c−1 cos(x−c), and lim

x→0−
f ′(x) does not exist, by the same rea-

son. Hence f ′ is not continuous at 0. When a > 1+c, we have f ′(x) =
axa−1 sin(x−c) − cxa−c−1 cos(x−c), if x > 0, and lim

x→0+
f ′(x) = 0;

f ′(x) = axa−1 sin((−x)−c) + c(−1)−c−1xa−c−1 cos(x−c), if x < 0,
and lim

x→0−
f ′(x) = 0. Hence f ′ is continuous at 0.

Therefore, we can conclude that f ′ is continuous if and only if a >
1 + c.

(e) f ′′(0) exists if and only if a > 2 + c.

Proof : f ′′(0+) = lim
x→0+

f ′(x)−f ′(0)
x−0

= lim
x→0+

axa−2 sin(x−c)− cxa−c−2 cos(x−c) = 0, when a > 2 + c, and

does not exist when a < 2 + c;

f ′′(0−) = lim
x→0−

f ′(x)−f ′(0)
x−0
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= lim
x→0−

axa−2 sin((−x)−c) + c(−1)−c−1xa−c−2 cos(x−c) = 0, when

a > 2 + c, and does not exist when a < 2 + c.
Hence, we have f ′′(0) = 0, when a > 2 + c, and f ′′(0) does not exist
when a ≤ 2 + c.

(f) f ′′ is bounded if and only if a >= 2 + 2c.
Proof : f ′′(x) = a(a − 1)xa−2 sin(x−c) − acxa−c−2 cos(x−c) − c(a −
c−1)xa−c−2 cos(x−c)−c2xa−2c−2 sin(x−c), when x > 0; and f ′′(x) =
a(a − 1)xa−2 sin((−x)−c) + ac(−1)−c−1xa−c−2 cos(x−c) + c(a − c −
1)(−1)−c−1xa−c−2 cos(x−c)+c2(−1)−c−1xa−2c−2 sin(x−c), when x <
0. We have |f ′′(x)| ≤ |a(a − 1)||xa−2| + |ac||xa−c−2| + |c(a − c −
1)||xa−c−2| + |c2||xa−2c−2| ≤ |a(a − 1)| + |ac| + |c(a − c − 1)| + |c2|,
when a ≥ 2c + 2, and f ′′(x) → ∞, when a < 2c + 2 and x → 0, in
both cases.

(g) f ′′ is continuous if and only if a > 2 + 2c.
Proof : f ′′(x) is continuous at every x 6= 0. When a ≤ c + 2, f ′′(0)
does not exist; when c+2 < a < 2+2c, f ′′(x)→∞ when x→ 0, but
f ′′(0) = 0; when a = 2 + 2c, lim

x→0+
f ′′(x) and lim

x→0−
f ′′(x) does not

exist; and when a > 2 + 2c, lim
x→0+

f ′′(x) = lim
x→0−

f ′′(x) = 0 = f ′′(0),

hence f ′′(x) is continuous at 0.
Therefore, f ′′ is continuous if and only if a > 2 + 2c.

14. Let f be a differentiable real function defined in (a, b). Prove that f is
convex if and only if f ′ is monotonically increasing. Assume next that
f ′′(x) exists for every x ∈ (a, b), and prove that f is convex if and only if
f ′′(x) ≥ 0 for all x ∈ (a, b).
Proof :
(i)⇒: Suppose f is convex, then f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),
for any x, y ∈ (a, b) and 0 < λ < 1. Let x1, x2 ∈ (a, b), and x1 < x2. Since

f ′(x1) exists, f ′(x1) = lim
t→x1+

f(t)−f(x1)
t−x1

= lim
λ→1

f(λx1+(1−λ)x2)−f(x1)
λx1+(1−λ)x2−x1

≤

lim
λ→1

λf(x1)+(1−λ)f(x2)−f(x1)
(λ−1)(x1−x2) = lim

λ→1

(λ−1)(f(x1)−f(x2))
(λ−1)(x1−x2) = lim

λ→1

f(x1)−f(x2)
x1−x2

=

f(x1)−f(x2)
x1−x2

;

and since f ′(x2) exists, f ′(x2) = lim
t→x2−

f(t)−f(x2)
t−x2

= − lim
t→x2

f(t)−f(x2)
x2−t =

− lim
λ→0

f(λx1+(1−λ)x2)−f(x2)
x2−(λx1+(1−λ)x2) ≥ − lim

λ→0

λf(x1)+(1−λ)f(x2)−f(x2)
x2−(λx1+(1−λ)x2)

= − lim
λ→0

λ(f(x1)−f(x2))
λ(x2−x1) = lim

λ→0

f(x1)−f(x2)
x1−x2

= f(x1)−f(x2)
x1−x2

. Therefore, f ′(x1) ≤
f ′(x2) and f ′ is monotonically increasing.
⇐: Suppose f ′ is monotonically increasing, and let x, y be any two number
in (a, b) such that x < y. For every 0 < λ < 1, denote z = λx+ (1− λ)y,
hence z ∈ (x, y). Then f(λx + (1 − λ)y) − (λf(x) + (1 − λ)f(y)) =
f(z) − (λf(x) + (1 − λ)f(y)) = λ(f(z) − f(x)) + (1 − λ)(f(z) − f(y)) =
λf ′(θ)(z − x) + (1 − λ)f ′(φ)(z − y) = λf ′(θ)(λx + (1 − λ)y − x) + (1 −
λ)f ′(φ)(λx+ (1−λ)y−y) = λ(1−λ)(y−x)f ′(θ) + (1−λ)λ(x−y)f ′(φ) =
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λ(1 − λ)(y − x)(f ′(θ) − f ′(φ)), where θ ∈ (x, z), and φ ∈ (z, y). Since
then θ < φ and f ′ is monotonically increasing, we have f ′(θ) ≤ f ′(φ),
which gives f(λx + (1 − λ)y) − (λf(x) + (1 − λ)f(y)) ≤ 0 and thus
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). Therefore, f is convex.
(ii) Suppose f ′′(x) exists for every x ∈ (a, b).
⇒: If f is convex, then by (i), f ′ is monotonically increasing. Fix any

x ∈ (a, b), we have f ′′(x) = lim
t→x

f ′(t)−f ′(x)
t−x ≥ 0. (Since t < x implies

f ′(t) ≤ f ′(x) and t > x implies f ′(t) ≥ f ′(x).)
⇐: If f ′′(x) ≥ 0 for all x ∈ (a, b), we have that f ′ is monotonically
increasing, by Theorem 5.11, and thus f is convex by (i).

15. Suppose a ∈ R1, f is a twice-differentiable real function on (a,∞), and M0,
M1, M2 are the least upper bounds of |f(x)|, |f ′(x)|, |f ′′(x)|, respectively,
on (a,∞). Prove that M2

1 ≤ 4M0M2.
Does M2

1 ≤ 4M0M2 hold for vector-valued functions too?
Proof : If h > 0, Taylor’s theorem shows that f ′(x) = 1

2h [f(x + 2h) −
f(x)]− hf ′′(ξ) for some ξ ∈ (x, x+ 2h). Hence |f ′(x)| ≤ hM2 + M0

h , and

|f ′(x)|2 ≤ h2M2
2 +

M2
0

h2 + 2M0M2. Since x and h are both arbitrary, we

have M2
1 ≤ inf h2M2

2 +
M2

0

h2 + 2M0M2, which gives M2
1 ≤ 4M0M2.

To show that M2
1 = 4M0M2 can actually happen, take a = −1, define

f(x)

{
2x2 − 1 (−1 < x < 0),
x2−1
x2+1 (0 ≤ x <∞),

We will show that M0 = 1, M1 = 4, M2 = 4.
First, we have |f(x)| ≤ 1 when −1 < x < 0, and f(x) = 1− 2

x2+1 is strictly
decreasing when 0 ≤ x <∞, thus M1 = 1.
Then, f ′(x) = 4x when −1 < x < 0, and f ′(x) = 4x

(x2+1)2 when 0 <

x < ∞. Since f ′(0−) = lim
t→0−

f(t)−f(0)
t−0 = lim

t→0−
2t = 0 and f ′(0+) =

lim
t→0+

f(t)−f(0)
t−0 = lim

t→0+

2t
t2+1 = 0, thus f ′(0) = 0. (Actually, since f ′′ exists,

f ′ must be continuous.) Therefore, |f ′(x)| ≤ 4, when −1 < x < 0, and
f ′(x) = 4

x3+2x+ 1
x

when 0 < x < ∞. Thus f ′(x) → 0 as x → ∞ and

since f ′(0) = 0 and f ′(x) > 0 when 0 < x < ∞, there must be a point
x0 ∈ (0,∞) at which f ′(x) obtains its maximum (since f ′(x) is contin-
uous), or equivalently, g(x) = x3 + 2x + 1

x obtains its minimum at x0.
Hence g′(x0) = 0, which gives 3x2

0 + 2 − 1
x2
0

= 0, i.e., 3x4
0 + 2x2

0 − 1 = 0,

i.e., (x2
0 + 1)(3x2

0 − 1) = 0 and thus x2
0 = 1

3 . Therefore, x0 = 1√
3

and

sup f ′(x) = f ′(x0) = 3
√

3
4 when 0 ≤ x <∞. So we have M1 = 4.

Next, f ′′(x) = 4, when −1 < x < 0, and f ′′(x) = 4(1−3x2)
(x2+1)3 is strictly de-

creasing when 0 < x <∞, thus |f ′′(x)| ≤ 4. f ′′(0−) = lim
t→0−

f ′(t)−f ′(0)
t−0 =

4, and f ′′(0+) = lim
t→0+

f ′(t)−f ′(0)
t−0 = lim

t→0+

4
(t2+1)2 = 4, then f ′′(0) = 4.

Therefore, we have M2 = 4.
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In the case of vector-valued functions, M2
1 ≤ 4M0M2 also holds, which

will be clear after we prove Exercise 20.
By the result of Exercise 20, we have |f(x + 2h) − f(x) − f ′(x) · 2h| ≤
|f (2)(ξ)|

2 ·(2h)2, for some ξ ∈ (x, x+2h). Since |f ′(x)·2h|−|f(x+2h)−f(x)| ≤
|f ′(x)·2h−(f(x+2h)−f(x))| = |f(x+2h)−f(x)−f ′(x)·2h| ≤ |f

(2)(ξ)|
2 ·(2h)2,

we have |f ′(x) ·2h| ≤ |f(x+2h)−f(x)|+ |f
(2)(ξ)|

2 ·(2h)2, and hence |f ′(x)| ≤
1

2h |f(x + 2h) − f(x)| + h|f (2)(ξ)| ≤ 1
2h (|f(x + 2h)| + |f(x)|) + h|f (2)(ξ)| ≤

1
2h · 2M0 + hM2 = M0

h + hM2. The following proof is the same.

16. Suppose f is twice-differentiable on (0,∞), f ′′ is bounded on (0,∞), and
f(x)→ 0 as x→∞. Prove that f ′(x)→ 0 as x→∞.
Proof : Since f ′′ is bounded on (0,∞), we have M2 = sup |f ′′| ≤ M , for
some positive M . Let a → ∞ in Exercise 15, we have M0 = sup |f | → 0,
since f(x) → 0 as x → ∞. Then 0 ≤ M2

1 ≤ 4M0M2 ≤ 4MM0 → 0 as
x → ∞, and thus M1 = sup |f ′| → 0 as x → ∞. Therefore, f ′(x) → 0 as
x→∞.

17. Suppose f is a real, three times differentiable function on [−1, 1], such
that f(−1) = 0, f(0) = 0, f(1) = 1, f ′(0) = 0. Prove that f (3)(x) ≥ 3 for
some x ∈ (−1, 1). Note that equality holds for 1

2 (x3 + x2).
Proof : By Theorem 5.15(Taylor’s Theorem), we have f(β) = f(α) +

f ′(α)(β − α) + f ′′(α)
2 (β − α)2 + f(3)(x)

6 (β − α)3, where α, β ∈ [−1, 1] and
x is between α and β. Let β = 1, α = 0, then β − α = 1, we have

f(1) = f(0) + f ′(0) + f ′′(0)
2 + f(3)(s)

6 = f ′′(0)
2 + f(3)(s)

6 , for some s ∈ (0, 1).
Let β = −1, α = 0, then β − α = −1, we have f(−1) = f(0) + f ′(0) +
f ′′(0)

2 − f(3)(t)
6 = f ′′(0)

2 − f(3)(t)
6 , for some t ∈ (−1, 0). Since f(1) = 1,

f(−1) = 0, we have f (3)(s) + f (3)(t) = 6, then either f (3)(s) ≥ 3 or
f (3)(t) ≥ 3, which gives the desired result.

18. Suppose f is a real function on [a, b], n is a positive integer, and f (n−1)

exists for every t ∈ [a, b]. Let α, β, and P be as in Taylor’s theorem(5.15).
Define

Q(t) =
f(t)− f(β)

t− β
for t ∈ [a, b], t 6= β, differentiate f(t)− f(β) = (t− β)Q(t) n− 1 times at
t = α, and derive the following version of Taylor’s theorem:

f(β) = P (β) +
Q(n−1)(α)

(n− 1)!
(β − α)n.

Proof : We have f(t) = f(β)+(t−β)Q(t), then f ′(t) = Q(t)+(t−β)Q′(t),
f ′′(t) = 2Q′(t) + (t − β)Q′′(t), and in general, f (i)(t) = iQ(i−1)(t) + (t −
β)Q(i)(t), for 1 ≤ i ≤ n − 1. Thus, we have f (i)(α) = iQ(i−1)(α) +

(α− β)Q(i)(α). Hence P (β) + Q(n−1)(α)
(n−1)! (β − α)n =

n−1∑
k=0

f(k)(α)
k! (β − α)k +
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Q(n−1)(α)
(n−1)! (β−α)n =

n−2∑
k=0

f(k)(α)
k! (β−α)k+( f

(n−1)(α)
(n−1)! (β−α)n−1+Q(n−1)(α)

(n−1)! (β−

α)n) =
n−2∑
k=0

f(k)(α)
k! (β − α)k + ( (n−1)Q(n−2)(α)+(α−β)Q(n−1)(α)

(n−1)! (β − α)n−1 +

Q(n−1)(α)
(n−1)! (β − α)n) =

n−2∑
k=0

f(k)(α)
k! (β − α)k + Q(n−2)(α)

(n−2)! (β − α)n−1 = · · · =

f(α)+Q(α)(β−α) = f(α)−(f(α)−f(β)) = f(β), which gives the desired
result.

19. Suppose f is defined in (−1, 1) and f ′(0) exists. Suppose −1 < αn < βn <
1, αn → 0, and βn → 0 as n→∞. Define the difference quotients

Dn =
f(βn)− f(αn)

βn − αn
.

Prove the following statements:

(a) If αn < 0 < βn, then limDn = f ′(0).

Proof : Given any ε > 0. We have |Dn − f ′(0)| = | f(βn)−f(αn)
βn−αn −

f ′(0)| = | f(βn)−f(0)
βn−αn + f(0)−f(αn)

βn−αn − f ′(0)| = | f(βn)−f(0)
βn−0 · βn

βn−αn +
f(αn)−f(0)

αn−0 · −αnβn−αn−f
′(0)| = |( f(βn)−f(0)

βn−0 −f ′(0))· βn
βn−αn+( f(αn)−f(0)

αn−0 −
f ′(0)) · −αnβn−αn | ≤ |

f(βn)−f(0)
βn−0 − f ′(0)| · | βn

βn−αn |+ |
f(αn)−f(0)

αn−0 − f ′(0)| ·
| αn
βn−αn |. Since f ′(0) = lim

t→0

f(t)−f(0)
t→0 , and αn → 0, βn → 0 as n→∞,

lim
n→∞

f(αn)−f(0)
αn−0 = f ′(0), and lim

n→∞
f(βn)−f(0)

βn−0 = f ′(0). Thus there is

an N1 ∈ N such that n > N1 implies | f(αn)−f(0)
αn−0 − f ′(0)| < ε, and

there is an N2 ∈ N such that n > N2 implies | f(βn)−f(0)
βn−0 − f ′(0)| < ε.

Let N = max(N1, N2), then when n > N , |Dn − f ′(0)| < (| βn
βn−αn |+

| αn
βn−αn |)ε.

If αn < 0 < βn, then βn − αn > 0 and |Dn − f ′(0)| < (| βn
βn−αn | +

| αn
βn−αn |)ε = ( βn

βn−αn −
αn

βn−αn )ε = ε, when n > N . Therefore,

lim
n→∞

Dn = f ′(0).

(b) If 0 < αn < βn and { βn
βn−αn } is bounded, then limDn = f ′(0).

Proof : As in (a), if 0 < αn < βn and | βn
βn−αn | ≤M , for some M > 0,

then βn−αn > 0 and |Dn−f ′(0)| < (| βn
βn−αn |+|

αn
βn−αn |)ε = βn+αn

βn−αn ε =

(2 βn
βn−αn − 1)ε ≤ (2M + 1)ε (since 2 βn

βn−αn − 1 ≤ |2 βn
βn−αn − 1| ≤

2| βn
βn−αn |+ 1 ≤ 2M + 1). Therefore, lim

n→∞
Dn = f ′(0).

(c) If f ′ is continuous in (−1, 1), then limDn = f ′(0).
Give an example in which f is differentiable in (−1, 1)(but f ′ is not
continuous at 0) and in which αn, βn tend to 0 in such a way that
limDn exists but is different from f ′(0).
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Proof : We have lim
n→∞

Dn = lim
n→∞

f(βn)−f(αn)
βn−αn = lim

n→∞
f ′(ξn), where

ξn is between αn and βn. Since αn → 0 and βn → 0, as n→∞, we
know that ξn → 0 as n → ∞. Since f ′ is continuous, we conclude
that lim

n→∞
f ′(ξn) = f ′(0), which gives lim

n→∞
Dn = f ′(0).

Let f be the same function defined in Example 5.6(b), that is

f(x) =

{
x2 sin 1

x x 6= 0
0 x = 0

Then by Example 5.6(b), f is differentiable in (-1,1), but f ′ is not
continuous at 0. Let αn = 1

2nπ+π/2 , βn = 1
2nπ , then −1 < αn <

βn ≤ 1
2π < 1, and αn → 0, βn → 0, as n → ∞. We have Dn =

f(βn)−f(αn)
βn−αn =

( 1
2nπ )2 sin(2nπ)−( 1

2nπ+π/2
)2 sin(2nπ+π/2)

1
2nπ+π/2

− 1
2nπ

= − 4
2π+ π

2n
and

hence lim
n→∞

Dn = − lim
n→∞

4
2π+ π

2n
= − 2

π . But f ′(0) = 0, by Example

5.6(b).

20. Formulate and prove an inequality which follows from Taylor’s theorem
and which remains valid for vector-valued functions.
Proof : Taylor’s Theorem states the following facts: Suppose f is a real
function on [a, b], n is a positive integer, f (n−1) is continuous on [a, b],
f (n)(t) exists for every t ∈ (a, b). Let α, β be distinct points of [a, b], and
define

P (t) =

n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then there exists a point x between α and β such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n.

Thus, we have |f(β) − P (β)| = | f
(n)(x)
n! (β − α)n| = | f

(n)(x)
n! ||β − α|n ≤

sup |f(n)(t)|
n! |β − α|n, where t is between α and β.

This inequality also holds in the case of vector-valued functions. Specifi-
cally, suppose f is a continuous mapping of [a, b] into Rk, n is a positive
integer, f (n−1) is continuous on [a, b], f (n)(t) exists for every t ∈ (a, b). Let
α, β be distinct points of [a, b], and define

P(t) =

n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then there exists a point x between α and β such that

|f(β)−P(β)| ≤ |f
(n)(x)|
n!

|β − α|n.
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Now, we will give our proof.
Put z = f(β)−P(β), and define

φ(t) = z · f(t) (a ≤ t ≤ b).

Then φ is a real valued continuous function on [a, b], φ(n−1) is continuous
on [a, b], φ(n)(t) exists for every t ∈ (a, b). By Taylor’s Theorem, we have

φ(β) =

n−1∑
k=0

φ(k)(α)

k!
(β − α)k +

φ(n)(x)

n!
(β − α)n,

for some x between α and β. Since φ(t) = z · f(t), φ(k)(t) = z · f (k)(t) and
in particular, φ(k)(α) = z · f (k)(α). Then we have

φ(β) =

n−1∑
k=0

z · f (k)(α)

k!
(β − α)k +

z · f (n)(x)

n!
(β − α)n,

Since

P (β) =

n−1∑
k=0

f (k)(α)

k!
(β − α)k,

we have

φ(β) = z · P (β) +
z · f (n)(x)

n!
(β − α)n,

and hence

φ(β)− z · P (β) =
z · f (n)(x)

n!
(β − α)n.

On the other hand

φ(β)− z · P (β) = z · f(β)− z · P (β) = z · (f(β)− P (β)) = z · z = |z|2,

thus we have

|z|2 =
z · f (n)(x)

n!
(β − α)n = |z · f

(n)(x)

n!
(β − α)n| ≤ |z| · |f

(n)(x)|
n!

|β − α|n,

by Schwarz inequality. Therefore,

|z| ≤ |f
(n)(x)|
n!

|β − α|n, i.e., |f(β)−P(β)| ≤ |f
(n)(x)|
n!

|β − α|n,

which is the desired result.

21. Let E be a closed subset of R1. We saw in Exercise 22, Chap. 4, that there
is a real continuous function f on R1 whose zero set is E. Is it possible,
for each closed set E, to find such an f which is differentiable on R1, or
one which is n times differentiable, or even one which has derivatives of
all orders on R1?
Solution:
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22. Suppose f is a real function on (−∞,+∞). Call x a fixed point of f if
f(x) = x.

(a) If f is differentiable and f ′(t) 6= 1 for every real t, prove that f has
at most one fixed point.
Proof : Suppose that, on the contrary, f has more than one fixed
point. Let x1, x2 be two different fixed points of f , x1 < x2, and
define g(x) = f(x) − x. Then g(x1) = g(x2) = 0, and since g(x1) −
g(x2) = g′(ξ)(x1 − x2), for some ξ ∈ (x1, x2), we have g′(ξ) = 0,
namely, f ′(ξ) = 1, which is contradict to the assumption that f ′(t) 6=
1 for every real t.

(b) Show that the function f defined by

f(t) = t+ (1 + et)−1

has no fixed point, although 0 < f ′(t) < 1 for all real t.
Proof : Since et > 0, we have f(t) > t, for every real t, and thus f has

no fixed point. f ′(t) = e2t+et+1
e2t+2et+1 , and it’s clear that 0 < f ′(t) < 1,

for all real t.

(c) However, if there is a constant A < 1 such that |f ′(t)| ≤ A for all real
t, prove that a fixed point x of f exists, and that x = limxn, where
xi is an arbitrary real number and xn+1 = f(xn) for n = 1, 2, 3, ....
Proof : We first show that by starting from an arbitrary real number
x1 and apply xn+1 = f(xn), the resulted sequence {xn} converges.
To see this, suppose n ∈ N, m ∈ N, and n > m. Then |xn −
xn−1| = |f(xn−1)−f(xn−2)| = |f ′(ξ)(xn−1−xn−2)| = |f ′(ξ)||xn−1−
xn−2| ≤ A|xn−1 − xn−2|, where ξ is between xn−1 and xn−2. Hence
|xn − xn−1| ≤ A|xn−1 − xn−2| ≤ · · · ≤ An−2|x2 − x1|, and we have
|xn−xm| ≤ |xn−xn−1|+|xn−1−xn−2|+· · ·+|xm+1−xm| ≤ (An−2 +
An−3 + · · · + Am−1)|x2 − x1| = Am−1(1 + A + · · · + An−m−1)|x2 −
x1| < Am−1(1 + A + · · · )|x2 − x1| = Am−1 |x2−x1|

1−A . Since A < 1,

Am−1 → 0 when m → ∞. Then given any ε > 0, there is an

N ∈ N such that n > m > N implies Am−1 < (1−A)ε
|x2−x1| and thus

|xn−xm| < Am−1 |x2−x1|
1−A < ε. Therefore, {xn} is a Cauchy sequence

in R1, then {xn} converges to some x ∈ R1 since R1 is complete.
Next, we will show that x = lim

n→∞
xn is a fixed point of f , that

is, f(x) = x. Since xn+1 = f(xn), we have x = lim
n→∞

xn+1 =

lim
n→∞

f(xn) = f(x), for f is continuous.

(d) Show that the process described in (c) can be visualized by the zig-
zag path

(x1, x2)→ (x2, x2 → (x2, x3)→ (x3, x3)→ (x3, x4)→ · · · .

23. The function f defined by f(x) = x3+1
3 has three fixed points, say α, β,

γ, where −2 < α < −1, 0 < β < 1, 1 < γ < 2. For arbitrarily chosen x1,
define {xn} by setting xn+1 = f(xn).
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(a) If x1 < α, prove that xn → −∞ as n→∞.
Proof : We have f ′(x) = x2, for every x ∈ R1. If x1 < α < −1,
we have x2 − α = f(x1) − f(α) = f ′(ξ1)(x1 − α) = ξ2

1(x1 − α), for
some ξ1 ∈ (x1, α) and thus |x2 − α| = |ξ2

1 ||x1 − α| > α2|x1 − α|. In
general, we have xn − α = f(xn−1) − f(α) = f ′(ξn−1)(xn−1 − α) =
ξ2
n−1(xn−1 − α), for some ξn−1 ∈ (xn−1, α) and hence |xn − α| =
ξ2
n−1|xn−1 − α| = · · · = ξ2

n−1 · · · · · ξ2
1 |x1 − α|, where ξk ∈ (xk, α),

k = 1, 2, ..., n − 1. Therefore, ξ2
k > α2 > 1, for each k, and |xn −

α| > α2(n−1)|x1 − α|. Furthermore, by induction we known that
xn < α for each n (xn − α = ξ2

n−1(xn−1 − α), and if xn−1 < α, then
xn < α), and xn < xn−1(since xn − xn−1 = (xn −α)− (xn−1 −α) =
(ξ2
n−1−1)(xn−1−α) < 0). Hence, we have α−xn > α2(n−1)|x1−α|,

which gives xn < −α2(n−1)|x1 − α| + α. Since α < −1, α2 > 1,
α2(n−1) → +∞ as n→∞, thus xn → −∞ as n→∞.

(b) If α < x1 < γ, prove that xn → β as n→∞.
Proof :
(i) First, we prove that if −1 < x1 < 1, then xn → β as n→∞. We
have xn−β = f(xn−1)−f(β) = f ′(ξn−1)(xn−1−β) = ξ2

n−1(xn−1−β),
then |xn − β| = ξ2

n−1|xn−1 − β| = · · · = ξ2
n−1 · · · · · ξ2

1 |x1 − β|, where
ξi is between xi and β. Furthermore, since xn−β = ξ2

n−1(xn−1−β),
we have xn − xn−1 = (xn − β)− (xn−1 − β) = (ξ2

n−1 − 1)(xn−1 − β).
If −1 < x1 < β, we can show that −1 < xn < β and xn > xn−1

by induction, then let M = max(x2
1, β

2) < 1, we have |xn − β| =
ξ2
n−1 · · · · · ξ2

1 |x1 − β| < Mn−1|x1 − β|. Since M < 1, Mn−1 → 0
as n → ∞, then given any ε > 0, there is an N ∈ N such that
n > N implies Mn−1 < ε

|x1−β| , and hence |xn − β| < ε. Therefore,

lim
n→∞

xn = β.

If β < x1 < 1, we can also show by induction that β < xn < 1 and

xn < xn−1. then |xn − β| = ξ2
n−1 · · · · · ξ2

1 |x1 − β| < x
2(n−1)
1 |x1 − β|.

Since x1 < 1, by the same reason, we have lim
n→∞

xn = β.

(ii) Next, if x1 = −1, x2 = f(−1) = 0 ∈ (−1, 1), then we can apply
(i) for x2. If x1 = 1, x2 = f(1) = 2

3 , and then we can also apply (i)
for x2. Thus now, we can conclude that if −1 ≤ x1 ≤ 1, then xn → β
as n→∞.
(iii) Finally, if α < x1 < −1, we will show that there must exist an
N ∈ N such that n > N implies xn ≥ −1. Otherwise xn < −1 for all
n. Since f is strictly monotonically increasing, by induction, we can
easily show that α < xn < −1. What’s more, xn − xn−1 = (ξ2

n−1 −
1)(xn−1−α) > 0 implies that xn > xn−1, since ξn−1 ∈ (α, xn−1) and
thus ξ2

n−1 > 1. Then, {xn} is monotonically increasing and bounded,
hence {xn} must converge to some δ, by Theorem 3.14, and clearly,
δ 6= α, β, γ. By Exercise 22, we can show that δ is also a fixed point
of f , which is absurd. Therefore, there must be an N such that
n > N implies xn ≥ −1. Since xN+1 = f(xN ) and xN < −1, we
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have xN+1 = f(xN ) < f(−1) = 0. Then we can apply (i) to xN+1.
If 1 < x1 < γ, in a similar way, we can find an N such that n > N
implies xn ≤ 1. Since xN+1 = f(xN ) > f(1) = 2

3 , we can then apply
(i) to xN+1.

(c) If γ < x1, prove that xn → +∞ as n→∞.
Proof : The proof is very similar as (a). We have xn−γ = f(xn−1)−
f(γ) = f ′(ξn−1)(xn−1−γ), and thus |xn−γ| = ξ2

n−1 ·· · ··ξ2
1 |xn−1−γ|,

where ξk ∈ (γ, xk). Since xn − xn−1 = (ξ2
n−1 − 1)(xn−1 − γ) > 0,

we have xn > xn−1. Hence, |xn − γ| > γ2(n−1)|xn−1 − γ|, and thus
xn > γ + γ2(n−1)|xn−1 − γ|. Clearly, xn →∞ as n→∞.

Thus β can be located by this method, but α and γ cannot.

24. The process described in part (c) of Exercise 22 can of course also be
applied to functions that map (0,∞) to (0,∞).
Fix some α > 1, and put

f(x) =
1

2
(x+

α

x
), g(x) =

α+ x

1 + x
.

Both f and g have
√
α as their only fixed point in (0,∞). Try to explain,

on the basis of properties of f and g, why the convergence in Exercise 16,
Chap. 3, is so much more rapid than it is in Exercise 17. (Compare f ′

and g′, draw the zig-zags suggested in Exercise 22.)
Do the same when 0 < α < 1.
Solution: We have f ′(x) = 1

2 (1− α
x2 ), and thus f ′(

√
α) = 0. But g′(x) =

1−α
(1+x)2 and g′(

√
α) = 1−

√
α

1+
√
α

.

Suppose εk = xk −
√
α, then xk+1 = f(xk) = f(

√
α + εk) = f(

√
α) +

f ′(
√
α)εk + f ′′(ξk)

2 ε2k =
√
α + f ′′(ξk)

2 ε2k, for some ξk ∈ (
√
α, xk). Then

εk+1 = xk+1 −
√
α = f ′′(ξk)

2 ε2k ≤Mε2k, where M = sup |f ′′(x)|/2 = 1/2
√
α

and x ∈ (
√
α,+∞). (note that f ′′(x) = α

x3 ) This can explain why xn+1 =
f(xn) converges much more rapid then xn+1 = g(xn).

25. Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, f ′(x) ≥ δ >
0, and 0 ≤ f ′′(x) ≤M for all x ∈ [a, b]. Let ξ be the unique point in (a, b)
at which f(ξ) = 0.
Complete the details in the following outline of Newton’s method for com-
puting ξ.

(a) Choose x1 ∈ (ξ, b), and define {xn} by

xn+1 = xn −
f(xn)

f ′(xn
.

Interpret this geometrically, in terms of a tangent to the graph of f .

(b) Prove that xn+1 < xn and that lim
n→∞

xn = ξ.

Proof : Since xn+1 − xn = − f(xn)
f ′(xn) , f ′(xn) > 0 and f(xn) > 0 since
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xn ∈ (ξ, b)(we will prove this immediately), if f(xn) < 0, then there
is a α ∈ (xn, b) such that f(α) = 0, which is contradict to the hy-
pothesis that ξ is the unique point in (a, b) at which f(ξ) = 0. Hence,
xn+1 − xn < 0, which gives xn+1 < xn.
Now we prove that xn ∈ (ξ, b), for each xn. We prove this by induc-
tion.
(i) When n = 1, it’s trivial that x1 ∈ (ξ, b).

(ii) Suppose xk ∈ (ξ, b), when n = k + 1, let g(x) = x − f(x)
f ′(x) ,

then g(ξ) = ξ and g′(x) = f(x)f ′′(x)
(f ′(x))2 . xk+1 − ξ = g(xk) − g(ξ) =

g′(θk)(xk − ξ), where θk ∈ (ξ, xk). Thus f(θk) > 0 and xk+1 > ξ.

xk+1 − b = g(xk) − b = (xk − b) − f(xk)
f ′(xk) , since f(xk) > 0 (because

xk ∈ (ξ, b)), xk+1 − b < xk − b < 0. Therefore, xk+1 ∈ (ξ, b).
Next, we prove that lim

n→∞
xn = ξ. First, since xn is bounded and

monotonically decreasing, xn converges. Let x = lim
n→∞

xn, then

lim
n→∞

xn+1 = lim
n→∞

(xn − f(xn)
f ′(xn) ), which gives lim

n→∞
f(xn) = 0. Since f

is continuous, lim
n→∞

f(xn) = f(x), and then f(x) = 0. Since x ∈ (a, b)

and ξ is the unique point in (a, b) at which f(ξ) = 0, we conclude
that x = ξ, namely, lim

n→∞
xn = ξ.

(c) Use Taylor’s theorem to show that

xn+1 − ξ =
f ′′(tn)

2f ′(xn)
(xn − ξ)2

for some tn ∈ (ξ, xn).
Proof : By Taylor’s Theorem, f(ξ) = f(xn) + f ′(xn)(ξ − xn) +
f ′′(tn)

2 (ξ− xn)2, which gives 0 = f(xn) + f ′(xn)(ξ− xn) + f ′′(tn)
2 (ξ−

xn)2, i.e., xn − f(xn)
f ′(xn) = ξ + f ′′(tn)

2f ′(xn) (ξ − xn)2, i.e., xn+1 − ξ =
f ′′(tn)
2f ′(xn) (xn − ξ)2.

(d) If A = M/2δ, deduce that

0 ≤ xn+1 − ξ ≤
1

A
[A(x1 − ξ)]2

n

.

(Compare with Exercises 16 and 18, Chap. 3.)

Proof : Since 0 < δ ≤ f ′(x) and 0 ≤ f ′′(x) ≤ M , we have f ′′(tn)
2f ′(xn) ≤

M
2δ = A. Then by (d), we have xn+1−ξ ≤ A(xn−ξ)2 ≤ A ·(A(xn−1−
ξ)2)2 = A·A2(xn−1−ξ)22 ≤ A·A2 ·· · ··A2n−1

(x1−ξ)2n = A2n−1(x1−
ξ)2n = 1

A [A(x1−ξ)]2
n

. On the other hand, we have xn+1 ≤ ξ. Hence

0 ≤ xn+1 − ξ ≤ 1
A [A(x1 − ξ)]2

n

.

(e) Show that Newton’s method amounts to finding a fixed point of the
function g defined by

g(x) = x− f(x)

f ′(x)
.
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How does g′(x) behave for x near ξ?

Proof : Clearly, g(ξ) = ξ− f(ξ)
f ′(ξ) = ξ, and ξ is a fixed point of g. Since

g′(x) = f(x)f ′′(x)
(f ′(x))2 , we have g′(ξ) = 0, and |g′(x)| ≤ M

δ2 |f(x)|. Since f

is continuous, we have f(x)→ 0, when x→ ξ, then g′(x)→ 0, when
x→ ξ. (namely, g′ is continuous at 0)

(f) Put f(x) = x1/3 on (−∞,∞) and try Newton’s method. What
happens?
Solution: f is monotonically increasing on (−∞,∞) and f(x) = 0
if and only if x = 0. Since f ′(x) = 1

3x
−2/3 → ∞ as x → 0, the

hypothesis of applying Newton’s method does not hold. Furthermore,
we can compute that g(x) = −2x, and hence if x1 6= 0, xn+1 =
g(xn) = · · · = (−2)nx1 will diverge when n→∞.

26. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number
A such that |f ′(x)| ≤ |f(x)| on [a, b]. Prove that f(x) = 0 for all x ∈ [a, b].
Proof : Fix x0 ∈ [a, b], let M0 = sup |f(x)|, M1 = sup |f ′(x)| for a ≤ x ≤
x0. For any such x, we have |f(x)| ≤M1(x0 − a) ≤ A(x0 − a)M0. Hence
M0 = 0 if A(x0 − a) < 1. That is, f = 0 on [a, x0].
Now, if we let x0 = a+ 1

2A , then clearly A(x0 − a) = 1
2 < 1, hence f = 0

on [a, x0]. If we replace a by x0, then [a, b] became [x0, b], f(x0) = 0,
and |f ′(x)| ≤ A|f(x)| on [x0, b]. We can now proceed on by choose x1 =
x0 + 1

2A = a + 2 1
2A and show that f = 0 on [x0, x1], and so on. Since

xn = a+ (n+ 1) 1
2A , there is an N such that b− xN < 1

A and thus we can
finally stop at [xN , b] and show that f = 0 on [xN , b]. Therefore, f(x) = 0
for all x ∈ [a, b].

27. Let φ be a real function defined on a rectangle R in the plane, given by
a ≤ x ≤ b, α ≤ y ≤ β. A solution of the initial-value problem

y′ = φ(x, y), y(a) = c (α ≤ c ≤ β)

is, by definition, a differentiable function f on [a, b] such that f(a) = c,
α ≤ f(x) ≤ β, and

f ′(x) = φ(x, f(x)) (a ≤ b).

Prove that such a problem has at most one solution if there is a constant
A such that

|φ(x, y2)− φ(x, yi)| ≤ A|y2 − y1|

whenever (x, y1) ∈ R and (x, y2) ∈ R.
Proof : Suppose that, on the contrary, there are two solutions f1 and f2

corresponding to the same problem, then f ′1(x) = φ(x, f1(x)), f1(a) = c,
and f ′2(x) = φ(x, f2(x)), f2(a) = c. Let g(x) = f1(x) − f2(x), then g is
differentiable on [a, b], g(a) = f1(a) − f2(a) = 0, and |g′(x)| = |f ′1(x) −
f ′2(x)| = |φ(x, f1(x))− φ(x, f2(x))| ≤ A|f1(x)− f2(x)| = A|g(x)| on [a, b].
By Exercise 22, g(x) = 0 for all x ∈ [a, b]. That is, f1(x) = f2(x), for all
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x ∈ [a, b].
Note: Note that this uniqueness theorem does not hold for the initial-
value problem

y′ = y1/2, y(0) = 0,

which has two solutions: f(x) = 0 and f(x) = x2/4.

28. Formulate and prove an analogous uniqueness theorem for systems of dif-
ferential equations of the form

y′j = φj(x, y1, ..., yk), yj(a) = cj (j = 1, ..., k).

Note that this can be rewritten in the form y′ = φ(x,y), y(a) = c
where y = (y1, ..., yk) range over a k-cell, φ is the mapping of a (k+1)-cell
into the Euclidean k-space whose components are the functions φ1, ..., φk,
and c is the vector (c1, ..., ck). Use Exercise 26, for vector-valued functions.
Proof : In the case of vector-valued functions, we have a similar result as
Exercise 26. Specifically, suppose f is differentiable on [a, b], f(a) = 0, and
there is a real number A such that |f ′(x)| ≤ A|f(x)| on [a, b]. Then we
have f(x) = 0 for all x ∈ [a, b]. The proof is the same as in the real-value
case, by using Theorem 5.19 in place of the mean value theorem.
Now, we can formulate an analogous uniqueness theorem for the above
systems of differential equations by stating that such a problem has at
most one solution if there is a constant A such that |φ(x,y2)−φ(x,y1)| ≤
A|y2 − y1|. The proof is also the same as in Exercise 27, and with real-
valued functions replaced by vector-valued functions.

29. Specialize Exercise 28 by considering the system

y′j = yj+1 (j = 1, ..., k − 1),

y′k = f(x)−
∑
j=1

kgj(x)yj ,

where f, g1, ..., gk are continuous real functions on [a, b], and derive a
uniqueness theorem for solutions of the equation

y(k) + gk(x)y(k−1) + · · ·+ g2(x)y′ + g1(x)y = f(x),

subject to initial conditions

y(a) = c1, y′(a) = c2, ..., y(k−1)(a) = ck.

Proof : If we have that the above differentiable equation system has at
most one solution, then we can conclude that the give equation has at
most one solution, since every solution of the former is the solution of the
latter, and vice versa. Then the uniqueness theorem follows, by Exercise
28, that there is a constant A such that |φ(x,y1)−φ(x,y2)| ≤ A|y1−y2|.
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Or, equivalently, |y′1 − y′2| ≤ A|y1 − y2|.

We have |y′1 − y′2| =
√

(y′1 − y′2)2 + (y
(2)
1 − y(2)

2 )2 + · · ·+ (y
(k)
1 − y(k)

2 )2 =√
k−1∑
j=0

(y
(j)
1 − y

(j)
2 )2 + [(y

(k)
1 − y(k)

2 )2 − (y
(0)
1 − y(0)

2 )2] =√
k−1∑
j=0

(y
(j)
1 − y

(j)
2 )2 + [(

k∑
j=1

gj(x)(y
(j−1)
1 − y(j−1)

2 ))2 − (y
(0)
1 − y(0)

2 )2] ≤√
k−1∑
j=0

(y
(j)
1 − y

(j)
2 )2 + [(

k∑
j=1

g2
j (x)

k∑
j=1

(y
(j−1)
1 − y(j−1)

2 ))2 − (y
(0)
1 − y(0)

2 )2]

(by Schwarz inequality)≤

√
(1 +

k∑
j=1

g2
j (x))

k−1∑
j=0

(y
(j)
1 − y

(j)
2 )2

=

√
(1 +

k∑
j=1

g2
j (x))|y1 − y2|

≤

√
(1 +

k∑
j=1

M2
i )|y1−y2|, where Mi = sup gi(x), 1 ≤ i ≤ k and x ∈ [a, b].

(Note that since gi is continuous, gi is bounded on [a, b], and gi can achieve

its maximum and minimum on [a, b].) Let A =

√
(1 +

k∑
j=1

M2
i ), then we

have |y′1 − y′2| ≤ A|y1 − y2|, and then Exercise 28 applies.

6 The Riemann-Stieltjes integral

1. Suppose α increases on [a, b], a ≤ x0 ≤ b, α is continuous at x0, f(x0) = 1,
and f(x) = 0 if x 6= x0. Prove that f ∈ R(α) and that

∫
fdα = 0.

Proof : Given any ε > 0, since α is continuous at x0, there exists a δ > 0
such that |α(t)−α(x0)| < ε, if |t−x0| < δ. Let P be a partition of [a, b] such
that ∆xi < δ, for every i, and suppose x0 ∈ [xj−1, xj ], for some j. Then we
have U(P, f, α) = Mj∆αj = α(xj)−α(xj−1) and L(P, f, α) = mj∆αj = 0.
Hence U(P, f, α)− L(P, f, α) = α(xj)− α(xj−1) < ε, and thus f ∈ R(α).
Furthermore, since for every ε > 0 we can find a partition P of [a, b] such
that U(P, f, α) < ε, and since we have 0 = L(P, f, α) ≤ U(P, f, α), we

conclude that inf U(P, f, α) = 0, namely,
∫
fdα = 0. Clearly,

∫
fdα =

supL(P, f, α) = 0, we thus have
∫
fdα = 0.

2. Suppose f ≥ 0, f is continuous on [a, b], and
∫ b
a
f(x)dx = 0. Prove that

f(x) = 0 for all x ∈ [a, b]. (Compare this with Exercise 1.)
Proof : Suppose that, on the contrary, f(y) > 0 at some y ∈ [a, b]. Let
f(y) = M > 0, and let r be some positive real number such that 0 <
r < M , since f is continuous on [a, b], there exists a δ > 0 such that
|f(t)− f(y)| < M − r, if |t− y| < δ, which gives f(t)− f(y) > r−M and
thus f(t) > r −M +M = r > 0.
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Now let P be a partition of [a, b] such that ∆xi < δ, for every i, and

suppose y ∈ [xj−1, xj ] for some j. Then we have
∫ b
a
f(x)dx ≥ L(P, f) ≥

mj∆xj > 0, which is contradict to the assumption that
∫ b
a
fdx = 0.

3. Define three functions β1, β2, β3 as follows: βj(x) = 0 if x < 0, βj = 1
if x > 0 for j = 1, 2, 3; and β1(0) = 0, β2(0) = 1, β3(0) = 1

2 . Let f be a
bounded function on [−1, 1].

(a) Prove that f ∈ R(β1) if and only if f(0+) = f(0) and that then∫
fdβ1 = f(0).

Proof : Suppose f(0+) = f(0). Consider partitions P = {x0, x1, x2, x3},
where x0 = −1, x1 = 0 < x2 < x3 = 1. Then U(P, f, β1) = M2,
L(P, f, β1) = m2. If f(0+) = f(0), then M2 and m2 converges to
f(0) as x2 → 0. Thus f ∈ R(β1), and

∫
fdβ1 = f(0).

On the other hand, if f ∈ R(β1), then given any ε > 0, there ex-
ists a partition P of [−1, 1] such that U(P, f, β1) − L(P, f, β1) < ε.
Suppose 0 ∈ [xj−1, xj ], for some j. Then U(P, f, β1)− L(P, f, β1) =
Mj − mj < ε (since f is bounded, Mj = sup f(x), mj = inf f(x),
x ∈ [xj−1, xj ] must exist). Pick a δ > 0 such that [0, δ] ⊆ [xj−1, xj ],
then we have |f(t) − f(0)| ≤ Mj −mj < ε, if 0 < t < δ. Hence we
have f(0+) = lim

x→0+
f(x) = f(0).

(b) State and prove a similar result for β2.
Proof : For β2, we have f ∈ R(β2) if and only if f(0−) = f(0). The
proof is similar:
Suppose f(0−) = f(0). Consider partitions P = {x0, x1, x2, x3},
where x0 = −1 < x1 < x2 = 0, x3 = 1. Then U(P, f, β2) = M2,
L(P, f, β2) = m2. If f(0−) = f(0), then M2 and m2 converges to
f(0) as x1 → 0. Thus f ∈ R(β2), and

∫
fdβ2 = f(0).

On the other hand, if f ∈ R(β2), then given any ε > 0, there exists a
partition P of [−1, 1] such that U(P, f, β2)−L(P, f, β2) < ε. Suppose
0 ∈ [xj−1, xj ], for some j. Then U(P, f, β2) − L(P, f, β2) = Mj −
mj < ε. Pick a δ > 0 such that [−δ, 0] ⊆ [xj−1, xj ], then we have
|f(t)− f(0)| ≤Mj −mj < ε, if −δ < t < 0. Hence we have f(0−) =
lim
x→0−

f(x) = f(0).

(c) Prove that f ∈ R(β3) if and only if f is continuous at 0.
Proof : Suppose f is continuous at 0. Let 0 < δ < 1, consider par-
titions P = {x0, x1, x2, x3}, where x0 = −1, x1 = −δ, x2 = δ, x3 = 1.
Then U(P, f, β3) = M2, L(P, f, β3) = m2. If f is continuous at 0,
then M2 and m2 converges to f(0) as δ → 0. Thus f ∈ R(β3), and∫
fdβ3 = f(0).

On the other hand, if f ∈ R(β3), then given any ε > 0, there exists
a partition P of [−1, 1] such that U(P, f, β3)− L(P, f, β3) < ε.
If 0 6∈ P , then 0 ∈ (xj−1, xj), for some j, and U(P, f, β3)−L(P, f, β3) =
Mj −mj < ε. Pick a δ such that [−δ, δ] ⊆ [xj−1, xj ], then we have
|f(t) − f(0)| ≤ Mj −mj < ε, if −δ < t < δ. Hence f is continuous
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at 0.
If 0 ∈ P , suppose xj = 0, for some 0 < j < n. Then U(P, f, β3) −
L(P, f, β3) = (Mj − mj) · 1

2 + (Mj+1 − mj+1) · 1
2 < ε, which gives

Mj − mj < 2ε and Mj+1 − mj < 2ε. Now pick a δ > 0 such that
[−δ, δ] ⊆ [xj−1, xj+1], then we have |f(t)− f(0)| < 2ε, if −δ < t < δ.
(Note that if −δ < t < 0, |f(t) − f(0)| ≤ Mj − mj < 2ε, and if
0 < t < δ, |f(t) − f(0)| ≤ Mj+1 −mj+1 < 2ε.) Hence, f is continu-
ous at 0.

(d) If f is continuous at 0 prove that∫
fdβ1 =

∫
fdβ2 =

∫
fdβ3 = f(0).

Proof : If f is continuous at 0, then f(0) = f(0+) = f(0−). By (a),
(b), (c), we have the desired result.

4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that
f 6∈ R on [a, b] for any a < b.

Proof : Given any partition P of [a, b], we have U(P, f) =
n∑
i=1

1 · ∆xi =

b− a, and L(P, f) =
n∑
i=1

0 ·∆xi = 0. Hence U(P, f)−L(P, f) = b− a and

f 6∈ R.

5. Suppose f is a bounded real function on [a, b], and f2 ∈ R on [a, b]. Does
it follow that f ∈ R? Does the answer change if we assume that f3 ∈ R?
Solution: Even if f2 ∈ R on [a, b], we cannot conclude that f ∈ R on
[a, b]. For example, let f(x) = −1 for all irrational x, f(x) = 1 for all
rational x, similarly as Exercise 4, we have f 6∈ R. Clearly, f is bounded

and f2(x) = 1, for every x. Thus f2 ∈ R, and
∫ b
a
f2(x)dx = b− a.

If f3 ∈ R, however, we can conclude that f ∈ R, too. Since f is bounded
on [a, b], then f3 is bounded on [a, b]. Suppose m ≤ f3 ≤ M , φ = y

1
3 is

continuous (and one-to-one) on [m,M ]. Since f3 ∈ R, by Theorem 6.11,
we have f = φ(f3) ∈ R on [a, b].

6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded
real function on [0, 1] which is continuous at every point outside P . Prove
that f ∈ R on [0, 1].
Proof : Note that P can be covered by finitely many disjoint segments
whose total length can be as small as desired. (But how to prove this for-
mally?) Now, let ε > 0 be given, put M = sup |f(x)|, and let the finitely
many disjoint segments which cover P be (uj , vj) such that the sum of the
corresponding differences vj − uj is less than ε.
Remove the segments (uj , vj) from [0, 1] (if (uj , vj) 6⊆ [0, 1], remove their
intersection part). The remaining setK is compact, sinceK = (

⋂
(uj , vj)

c)∩
[0, 1] is an intersection of closed sets, thus K is a closed subset of [0, 1] and
[0, 1] is compact. Since f is continuous on K, f is uniformly continuous
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on K, and there exists a δ > 0 such that |f(s)− f(t)| < ε if s ∈ K, t ∈ K,
|s− t| < δ.
Now form a partition P ′ = {x0, x1, ..., xn} of [0, 1], as follows: If uj ∈ [0, 1],
uj ∈ P ′. If vj ∈ [0, 1], vj ∈ P ′. (But note that only u1 and vn will not in
[0, 1].) No point of any segment (uj , vj) occurs in P ′. If xi−1 is not one of
the uj , then ∆xi < δ.
Note that Mi −mi ≤ 2M for every i, and that Mi −mi ≤ ε unless xi−1

is one of the uj . Hence we have

U(P ′, f)− L(P ′, f) ≤ 2Mε+ ε(1− 0) = (2M + 1)ε.

Since ε is arbitrary, Theorem 6.6 shows that f ∈ R.

7. Suppose f is a real function on (0, 1] and f ∈ R on [c, 1] for every c > 0.
Define ∫ 1

0

f(x)dx = lim
c→0

∫ 1

c

f(x)dx

if this limit exists (and is finite).

(a) If f ∈ R on [0, 1], show that this definition of the integral agrees with
the old one.
Proof : Given any ε > 0, if we can prove that there exists an

r(0 < r < 1) such that 0 < c < r implies |
∫ 1

c
f(x)dx−

∫ 1

0
f(x)dx| < ε,

we are done.
Firstly, let’s show that if f ∈ R on [0, 1], f is bounded on [0, 1].
Suppose that f is unbounded, let P be any partition of [0, 1]. Then
there is at least one [xj−1, xj ] such that f is unbounded on [xj−1, xj ].
No matter which ε > 0 is given, we can put δ = xj − xj−1 and
find two points s, t ∈ [xj−1, xj ] such that f(s) − f(t) > ε

δ . Then
U(P, f) − L(P, f) > (f(s) − f(t))δ > ε, and hence f 6∈ R, a contra-
diction.

Next, Let P be any partition of [0, 1] such that c ∈ P , and let
Pc be the partition of [c, 1] with respect to P . Suppose xj = c,

then U(P, f) =
n∑
i=1

Mi∆xi =
j∑
i=1

Mi∆xi + U(Pc, f). Since f is

bounded on [0, 1], we have |f(x)| ≤ M , for every x ∈ [0, 1]. Then

|U(P, f) − U(Pc, f)| = |
j∑
i=1

Mi∆xi| ≤ M |
j∑
i=1

∆xi| = M(xj − x0) =

Mc. Given any ε > 0, we can pick an r (0 < r < 1) such that
r < ε/M . Then when 0 < c < r, we have Mc < Mr < ε, which gives
|U(P, f)− U(Pc, f)| < ε.

Since f ∈ R on [0, 1], we have
∫ 1

0
f(x)dx =

∫ 1

0
f(x)dx = inf U(P[0,1], f),

and
∫ 1

c
f(x)dx =

∫ 1

c
f(x)dx = inf U(P[c,1], f). Then for the above ε,
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we can choose a partition P1 of [0, 1] such that U(P1, f) <
∫ 1

0
f(x)dx+

ε. If c ∈ P1, we are done and put P ′ = P1; otherwise, let P2 =
P1∪{c}, then P2 is a refinement of P1 and thus U(P2, f) ≤ U(P1, f) <∫ 1

0
f(x)dx + ε, we put P ′ = P2. Now we find a partition P ′ of [0, 1]

such that c ∈ P ′ and
∫ 1

0
f(x)dx ≤ U(P ′, f) <

∫ 1

0
f(x)dx+ ε.

Similarly, for this ε and 0 < c < r, we can find a partition P ′c of

[c, 1] such that
∫ 1

c
f(x)dx ≤ U(P ′c, f) <

∫ 1

c
f(x)dx + ε. Now let

P (2) = P ′c ∪ {0}, then P (2) is a partition of [0, 1] and c ∈ P (2). Let
P ∗ be the common refinement of P ′ and P (2) (thus c ∈ P ∗) and
let P ∗c be the partition on [c, 1] with respect to P ∗, we then have∫ 1

0
f(x)dx ≤ U(P ∗, f) ≤ U(P ′, f) <

∫ 1

0
f(x)dx + ε (i.e., |U(P ∗, f) −∫ 1

0
f(x)dx| < ε),

∫ 1

c
f(x)dx ≤ U(P ∗c , f) ≤ U(P ′c, f) <

∫ 1

c
f(x)dx +

ε, (i.e., |
∫ 1

c
f(x)dx − U(P ∗c , f)| < ε) and |U(P ∗c , f) − U(P ∗, f)| <

ε. Therefore, |
∫ 1

c
f(x)dx −

∫ 1

0
f(x)dx| ≤ |

∫ 1

c
f(x)dx − U(P ∗c , f)| +

|U(P ∗c , f)−U(P ∗, f)|+ |U(P ∗, f)−
∫ 1

0
f(x)dx| < 3ε, which completes

our proof.

(b) Construct a function f such that the above limit exists, although it
fails to exist with |f | in place of f .
Solution: An example is f(x) = 1

x sin 1
x . Since we can find from

many mathematical analysis textbooks that
∫∞

1
sin x
x dx converges

but
∫∞

1
| sin xx |dx diverges. If we replace x by 1

t , then
∫∞

1
sin x
x dx =∫ 1

0
1
t sin 1

t dt and
∫∞

1
| sin xx |dx =

∫ 1

0
| 1t sin 1

t |dt. (But how to prove this
with the knowledge we have learned from this book is still not clear
to me...)

8. Suppose f ∈ R on [a, b] for every b > a where a is fixed. Define∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx

if this limit exists (and is finite). In that case, we say that the integral on
the left converges. If it also converges after f has been replaced by |f |, it
is said to converge absolutely.
Assume that f(x) ≥ 0 and that f decreases monotonically on [1,∞).

Prove that
∫∞

1
f(x)dx converges if and only if

∞∑
n=1

f(n) converges. (This

is the so-called “integral test” for convergence of series.)
Proof :
⇒: Suppose

∫∞
1
f(x)dx converges. Let {yn} be a real sequence such

that yn =
∫ n

1
f(x)dx, then {yn} converges. Thus given any ε > 0, there

is an N ∈ N such that n > m > N implies |yn − ym| < ε, which is
equivalent to say |

∫ n
m
f(x)dx| < ε. Since f(x) ≥ 0,

∫ n
m
f(x)dx ≥ 0,

and hence
∫ n
m
f(x)dx < ε. Now form a partition P = {x0 = m,x1 =

m+ 1, ..., xn−m = n} of [m,n], then U(P, f) =
n−m∑
k=1

Mk∆xk =
n−m∑
k=1

Mk =
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n−m∑
k=1

f(xk−1) =
n−m∑
k=1

f(m + k − 1) =
n−1∑
k=m

f(k) and similarly, L(P, f) =

n−m∑
k=1

f(xk) =
n−m∑
k=1

f(m+ k) =
n∑

k=m+1

f(k), since f(x) decreases monotoni-

cally.

Note that we have L(P, f) ≤
∫ n
m
f(x)dx =

∫ n
m
f(x)dx, and thus

n∑
k=m+1

f(k) ≤∫ n
m
f(x)dx < ε. Since f(x) ≥ 0, |

n∑
k=m+1

f(k)| =
n∑

k=m+1

f(k) < ε, then

∞∑
n=1

f(n) converges, by Cauchy criterion.

⇐: Suppose
∞∑
n=1

f(n) converges. Then given any ε > 0, there exists an

N ∈ N such that n > m > N implies |
n∑

k=m+1

f(k)| < ε, which gives

n∑
k=m+1

f(k) < ε since f(x) ≥ 0. Form the same sequence {yn} as the pre-

vious proof such that yn =
∫ n

1
f(x)dx. Let N ′ = N +1 and n′ > m′ > N ′,

then |yn′ − ym′ | = |
∫ n′
m′
f(x)dx| =

∫ n′
m′
f(x)dx. Now form a partition

P ′ = {x0 = m′, x1 = m′ + 1, ..., xn′−m′ = n′} of [m′, n′], then similarly

as the previous proof, we have U(P ′, f) =
n′−1∑
k=m′

f(k) =
n′−1∑

k=(m′−1)+1

f(k).

Since n′ > m′ > N ′ = N + 1, n′ − 1 > m′ − 1 > N ′ − 1 = N , hence
n′−1∑

k=(m′−1)+1

f(k) < ε, namely, U(P ′, f) < ε. Therefore |yn′ − ym′ | =

|
∫ n′
m′
f(x)dx| =

∫ n′
m′
f(x)dx ≤ U(P ′, f) < ε, and by Cauchy criterion, {yn}

converges.
Note that for any b > 1, we can find an n ∈ N such that n ≤ b ≤
n + 1, and thus

∫ n
1
f(x)dx ≤

∫ b
1
f(x)dx ≤

∫ n+1

1
f(x)dx. Therefore,∫∞

1
f(x)dx = lim

b→∞

∫ b
1
f(x)dx = lim

n→∞

∫ n
1
f(x)dx = lim

n→∞
yn. Since lim

n→∞
yn

exists,
∫∞

1
f(x)dx converges.

9. Show that integration by parts can sometimes be applied to the “im-
proper” integrals defined in Exercise 7 and 8. (State appropriate hy-
potheses, formulate a theorem, and prove it.) For instance show that∫ ∞

0

cosx

1 + x
dx =

∫ ∞
0

sinx

(1 + x)2
dx.

Show that one of these integrals converges absolutely, but that the other
does not.
Proof :
(i) Suppose F and G are differentiable functions on [a,∞), F ′ = f ∈ R,
and G′ = g ∈ R, on [a, b] for every b > a. What’s more, lim

b→∞
F (b)G(b),
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∫∞
a
F (x)g(x)dx and

∫∞
a
f(x)G(x)dx exists. Then∫ ∞

a

F (x)g(x)dx = lim
b→∞

F (b)G(b)− F (a)G(a)−
∫ ∞
a

f(x)G(x)dx.

To see this, similarly as in the proof of Theorem 6.22, letH(x) = F (x)G(x),

and we have
∫ b
a
H ′(x)dx = H(b)−H(a), namely

∫ b
a
F (x)g(x)dx = F (b)G(b)−

F (a)G(a)−
∫ b
a
f(x)G(x)dx, for every b > a. Let b→∞, we have the de-

sired result.
(ii)

∫∞
0

cos x
1+x dx = lim

b→∞
sin b
1+b −

sin 0
1+0 −

∫∞
0

sin x
−(1+x)2 dx =

∫∞
0

sin x
(1+x)2 dx.

(iii) We can show that
∫∞

0
sin x

(1+x)2 dx converges absolutely, but
∫∞

0
cos x
1+x dx

does not. To see this, define yn =
∫ n

0
| sin x|
(1+x)2 dx, then we have yn ≤ yn+1,

and 0 ≤ yn ≤
∫∞

0
1

(1+x)2 dx = 1. Hence {yn} converges, so is
∫∞

0
| sin x|
(1+x)2 dx.

But
∫∞

0
| cos x|
1+x does not converge. Since 0 ≤ | cosx| ≤ 1, we have | cosx| ≥

(cosx)2 = 1+cos 2x
2 . Then

∫∞
0
| cos x|
1+x ≥

∫∞
0

1
2(1+x)dx+

∫∞
0

cos 2x
2(1+x)dx. Since∫∞

0
1

2(1+x)dx diverges (i.e.,→∞), and |
∫∞

0
cos 2x
2(1+x)dx| =

1
4 |
∫∞

0
sin 2x

(1+x)2 dx| ≤
1
4

∫∞
0
| sin 2x|
(1+x)2 ≤

1
4

∫∞
0

1
(1+x)2 = 1

4 . Hence
∫∞

0
cos 2x
2(1+x)dx is bounded, and

therefore,
∫∞

0
| cos x|
1+x diverges. (→∞)

10. Let p and q be positive real numbers such that

1

p
+

1

q
= 1.

Prove the following statements.

(a) If u ≥ 0 and v ≥ 0, then

uv ≤ up

p
+
vq

q
.

Equality holds if and only if up = vq.
Proof : Consider the function f(x) = lnx, x ∈ (0,∞). We have
f ′(x) = 1

x > 0, and f ′′(x) = − 1
x2 < 0. Then we know that f(x) is

monotonically increasing, and g(x) = − lnx is convex.
Hence, − lnuv = −(lnu + ln v) = −( 1

p lnup + 1
q ln vq) ≥ − ln( 1

pu
p +

1qvq) (since 1
p + 1

q = 1, and − lnx is convex). Therefore, − lnuv ≥
− ln( 1

pu
p+ 1

q v
q) and thus lnuv ≤ ln( 1

pu
p+ 1

q v
q). Due to the monotone

property of lnx, we have uv ≤ 1
pu

p + 1
q v
q. Clearly, equality holds if

and only if up = vq.

(b) If f ∈ R(α), g ∈ R(α), f ≥ 0, g ≥ 0, and∫ b

a

fpdα = 1 =

∫ b

a

gqdα,
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then ∫ b

a

fgdα ≤ 1.

Proof : By (a), we have fg ≤ 1
pu

p + 1
q v
q, and hence,

∫ b
a
fgdα ≤∫ b

a
( 1
pu

p+ 1
q v
q)dα =

∫ b
a

1
pu

pdα+
∫ b
a

1
q v
q)dα = 1

p ·1 + 1
q ·1 = 1

p + 1
q = 1.

(c) If f and g are complex functions in R(α), then

|
∫ b

a

fgdα| ≤ {
∫ b

a

|f |pdα}1/p{
∫ b

a

|g|qdα}1/q.

This is Holder’s inequality. When p = q = 2 it is usually called the
Schwarz inequality. (Note that Theorem 1.35 is very special case of
this.)
Proof : We have that

|
∫ b
a
fgdα|

{
∫ b
a
|f |pdα}1/p{

∫ b
a
|g|qdα}1/q

≤
∫ b
a
|fg|dα

{
∫ b
a
|f |pdα}1/p{

∫ b
a
|g|qdα}1/q

,

and ∫ b
a
|fg|dα

{
∫ b
a
|f |pdα}1/p{

∫ b
a
|g|qdα}1/q

=

∫ b
a
|f ||g|dα

{
∫ b
a
|f |pdα}1/p{

∫ b
a
|g|qdα}1/q

,

which equals ∫ b

a

(
|f |p∫ b

a
|f |pdα

)1/p(
|g|q∫ b

a
|g|qdα

)1/qdα,

and by (a), we have∫ b

a

(
|f |p∫ b

a
|f |pdα

)1/p(
|g|q∫ b

a
|g|qdα

)1/qdα ≤
∫ b

a

[
1

p
(
|f |p∫ b

a
|f |pdα

)+
1

q
(
|g|q∫ b

a
|g|qdα

)]dα,

and∫ b

a

[
1

p
(
|f |p∫ b

a
|f |pdα

) +
1

q
(
|g|q∫ b

a
|g|qdα

)]dα =
1

p

∫ b
a
|f |pdα∫ b

a
|f |pdα

+
1

q

∫ b
a
|g|qdα∫ b

a
|g|qdα

,

and
1

p

∫ b
a
|f |pdα∫ b

a
|f |pdα

+
1

q

∫ b
a
|g|qdα∫ b

a
|g|qdα

=
1

p
+

1

q
= 1,

which gives

|
∫ b
a
fgdα|

{
∫ b
a
|f |pdα}1/p{

∫ b
a
|g|qdα}1/q

≤ 1.

Therefore,

|
∫ b

a

fgdα| ≤ {
∫ b

a

|f |pdα}1/p{
∫ b

a

|g|qdα}1/q.
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(d) Show that Holder’s inequality is also true for the “improper” integrals
described in Exercise 7 and 8.
Proof : As the case of Exercise 7, we have

|
∫ 1

c

fgdα| ≤ {
∫ 1

c

|f |pdα}1/p{
∫ 1

c

|g|qdα}1/q,

for every c > 0, and thus we have

lim
c→0
|
∫ 1

c

fgdα| ≤ lim
c→0
{
∫ 1

c

|f |pdα}1/p lim
c→0
{
∫ 1

c

|g|qdα}1/q,

which gives

|
∫ 1

0

fgdα| ≤ {
∫ 1

0

|f |pdα}1/p{
∫ 1

0

|g|qdα}1/q.

Similarly, as the case of Exercise 8, we have

|
∫ b

a

fgdα| ≤ {
∫ b

a

|f |pdα}1/p{
∫ b

a

|g|qdα}1/q,

for every b > a, and thus we have

lim
b→∞

|
∫ b

a

fgdα| ≤ lim
b→∞
{
∫ b

a

|f |pdα}1/p lim
b→∞
{
∫ b

a

|g|qdα}1/q,

which gives

|
∫ ∞
a

fgdα| ≤ {
∫ ∞
a

|f |pdα}1/p{
∫ ∞
a

|g|qdα}1/q.

11. Let α be a fixed increasing function on [a, b]. For u ∈ R(α), define

||u||2 =

{∫ b

a

|u|2dα
}1/2

.

Suppose f , g, h ∈ R(α), and prove the triangle inequality

||f − h||2 ≤ ||f − g||2 + ||g − h||2

as a consequence of the Schwarz inequality, as in the proof of Theorem
1.37.
Proof : First we prove that if u ∈ R, v ∈ R, than ||u+v||2 ≤ ||u||2 +||v||2.

We have ||u + v||2 =

{∫ b
a
|u + v|2dα

}1/2

, and hence ||u + v||22 =
∫ b
a
|u +

v|2dα ≤
∫ b
a

(|u|+ |v|)2dα(by Schwarz inequality) =
∫ b
a
|u|2dα+

∫ b
a
|v|2dα+

2
∫ b
a
|u||v|dα ≤

∫ b
a
|u|2dα +

∫ b
a
|v|2dα + 2(

∫ b
a
|u|2dα)1/2(

∫ b
a
|v|2dα)1/2 (by

Holder’s inequality)= ((
∫ b
a
|u|2dα)1/2 + (

∫ b
a
|v|2dα)1/2)2 = (||u||2 + ||v||2)2.

Therefore, ||u+ v|| ≤ ||u||2 + ||v||2.
If we replace u = f − g, v = g − h, then we have the desired result.

77



12. With the notations of Exercise 11, suppose f ∈ R(α) and ε > 0. Prove
that there exists a continuous function g on [a, b] such that ||f − g||2 < ε.
Proof : Let P = {x0, ..., xn} be any partition of [a, b], define

g(t) =
xi − t
∆xi

f(xi−1) +
t− xi−1

∆xi
f(xi)

if xi−1 ≤ t ≤ xi.
g is clearly continuous since g(xi+) = g(xi−) = f(xi) = g(xi). Then we
have

|f(t)− g(t)| = |xi − t
∆xi

(f(t)− f(xi−1)) +
t− xi−1

∆xi
(f(t)− f(xi))|,

which gives that

|f(t)−g(t)| ≤ |xi − t
∆xi

|·|f(t)−f(xi−1)|+| t− xi−1

∆xi
|·|f(t)−f(xi)| ≤Mi−mi,

for xi−1 ≤ t ≤ xi.
Since f ∈ R(α), f is bounded, we can suppose that |f | ≤ M on [a, b].
Furthermore, given any ε > 0, we can choose a partition P such that

U(P, f, α)−L(P, f, α) < ε2

2M , namely,
n∑
i=1

(Mi−mi)∆αi <
ε2

2M . Hence, we

have that

||f − g||2 =

{∫ b

a

|f − g|2dα
}1/2

=

{ n∑
i=1

∫ xi

xi−1

|f − g|2dα
}1/2

≤
{ n∑
i=1

∫ xi

xi−1

(Mi −mi)
2dα

}1/2

≤
{

2M

n∑
i=1

∫ xi

xi−1

(Mi −mi)dα

}1/2

=

{
2M

n∑
i=1

(Mi −mi)∆αi

}1/2

<

{
2M

ε2

2M

}1/2

= ε,

which gives the desired result.

13. Define

f(x) =

∫ x+1

x

sin(t2)dt.

(a) Prove that |f(x)| < 1/x if x > 0.
Proof : Put t2 = u (namely, t =

√
u), we have du = 2tdt = 2

√
udt,

or equivalently, dt = du√
u

. Hence f(x) =
∫ (x+1)2

x2
sinu√
u
du, and if we

integrate by parts, we have that f(x) = −( cos((x+1)2)
2(x+1) − cos(x2)

2x ) −∫ (x+1)2

x2
cosu
4u3/2 du = cos(x2)

2x − cos((x+1)2)
2(x+1) −

∫ (x+1)2

x2
cosu
4u3/2 du.

Then |f(x)| ≤ | cos(x2)
2x | + | cos((x+1)2)

2(x+1) | + |
∫ (x+1)2

x2
cosu
4u3/2 du| < 1

2x +

1
2(x+1) +

∫ (x+1)2

x2
1

4u3/2 du = 1
2x + 1

2(x+1) − ( 1
2(x+1) −

1
2x ) = 1

x , if x > 0.
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(b) Prove that

2xf(x) = cos(x2)− cos[(x+ 1)2] + r(x)

where |r(x)| < c/x and c is a constant.

Proof : As in (a), we have f(x) = cos(x2)
2x − cos((x+1)2)

2(x+1) −
∫ (x+1)2

x2
cosu
4u3/2 du,

and thus 2xf(x) = cos(x2) − cos[(x + 1)2] + r(x), where r(x) =
cos[(x+1)2]

x+1 − 2x
∫ (x+1)2

x2
cosu
4u3/2 du. Hence |r(x)| ≤ | cos[(x+1)2]|

x+1 +

2x|
∫ (x+1)2

x2

| cosu|
4u3/2 du| ≤ 1

x+1 + 2x|
∫ (x+1)2

x2
1

4u3/2 ≤ 1
x+1 + 2x| 1

2(x+1) −
1

2x | =
1

x+1 + 2x( 1
2x −

1
2(x+1) ) = 2

x+1 <
2
x .

(c) Find the upper and lower limits of xf(x), as x→∞.

(d) Does
∫∞

0
sin(t2)dt converge?

14. Deal similarly with

f(x) =

∫ x+1

x

sin(et)dt.

Show that
ex|f(x)| < 2

and that
exf(x) = cos(ex)− e−t cos(ex+1) + r(x),

where |r(x)| < Ce−x, for some constant C.
Proof : Similarly, put u = et, and then du = etdt = udt, namely, dt = du

u .

We thus have f(x) =
∫ ex+1

ex
sinu
u du = cos ex

ex − cos ex+1

ex+1 −
∫ ex+1

ex
cosu
u2 du.

Therefore, ex|f(x)| = | cos ex| + | cos ex+1|
e + ex|

∫ ex+1

ex
| cosu|
u2 du| < 1 + 1

e +

ex|
∫ ex+1

ex
1
u2 du| = 1 + 1

e + ex( 1
ex −

1
ex+1 ) = 2.

exf(x) = cos(ex)− cos(ex+1)
e − ex

∫ ex+1

ex
cosu
u2 du, which gives

r(x) = −ex
∫ ex+1

ex
cosu
u2 du. Hence |r(x)| = ex|

∫ ex+1

ex
cosu
u2 du|

< ex 1
e2x |

∫ ex+1

ex
cosudu| = e−x| sin(ex+1)−sin(ex)| ≤ 2e−x, which gives the

desired result.

15. Suppose f is a real, continuously differentiable function on [a, b], f(a) =
f(b) = 0, and ∫ b

a

f2(x)dx = 1.

Prove that ∫ b

a

xf(x)f ′(x)dx = −1

2

and that ∫ b

a

[f ′(x)]2dx ·
∫ b

a

x2f2(x)dx >
1

4
.
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Proof : We have∫ b

a

xf(x)f ′(x)dx = bf2(b)− af2(a)−
∫ b

a

f(x)(f(x) + xf ′(x))dx

= 0−(

∫ b

a

f2(x)dx+

∫ b

a

xf(x)f ′(x)dx) = −
∫ b

a

f2(x)dx−
∫ b

a

xf(x)f ′(x)dx,

which gives that∫ b

a

xf(x)f ′(x)dx = −1

2

∫ b

a

f2(x)dx = −1

2
.

By Holder’s inequality, we have

|
∫ b

a

xf(x)f ′(x)dx|2 ≤
∫ b

a

[f ′(x)]2dx ·
∫ b

a

x2f2(x)dx,

which gives ∫ b

a

[f ′(x)]2dx ·
∫ b

a

x2f2(x)dx ≥ 1

4
.

Since the equality cannot hold in this case, we have the desired result.

(Note that if the equality hold, then we have that f ′2(x)∫ b
a
f ′2(x)dx

= (xf(x))2∫ b
a

(xf(x))2dx
.

Equivalently, we have |f ′(x)| = M |xf(x)|, where M =

√ ∫ b
a
f ′2(x)dx∫ b

a
(xf(x))2dx

.

Since
∫ b
a
xf(x)f ′(x)dx = − 1

2 , we have f ′(x) = −Mxf(x) = Cxf(x)

(C = −M), namely, df(x)
dx = Cxf(x), i.e., df(x)

f(x) = Cxdx. Solving this

equation gives us that ln f(x) = 1
2Cx

2 + K ′, namely, f(x) = Ke(1/2)Cx2

,

where K = eK
′
> 0. But since f(a) = f(b) = 0, we have K = 0, a

contradiction.)

16. For 1 < s <∞, define

ξ(s) =

∞∑
n=1

1

ns
.

(This is Riemann’s zeta function, of great importance in the study of the
distribution of prime numbers.) Prove that

(a) ξ(s) = s
∫∞

1
[x]
xs+1 dx.

Proof : Let’s compute the difference between the integral over [1, N ]
and the Nth Partial sum of the series that defines ξ(s). This gives
that

|s
∫ N

1

[x]

xs+1
dx−

N∑
n=1

1

ns
| = |s

N−1∑
n=1

∫ n+1

n

[x]

xs+1
dx−

N∑
n=1

1

ns
|
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= |s
N−1∑
n=1

n

∫ n+1

n

1

xs+1
dx−

N∑
n=1

1

ns
| = |

N−1∑
n=1

(
n

ns
− n

(n+ 1)s
)−

N∑
n=1

1

ns
|

= |
N−1∑
n=1

(
n− 1

ns
− n

(n+ 1)s
)− 1

Ns
| = |0− N − 1

Ns
− 1

Ns
| = 1

Ns−1
.

Let N →∞ and we have

| lim
N→∞

s

∫ N

1

[x]

xs+1
dx− lim

n→∞

N∑
n=1

1

ns
| = 0,

which gives

s

∫ ∞
1

[x]

xs+1
dx =

∞∑
n=1

1

ns
, i.e., ξ(s) =

∞∑
n=1

1

ns
= s

∫ ∞
1

[x]

xs+1
dx.

(b)

ξ(s) =
s

s− 1
− s

∫ ∞
1

x− [x]

xs+1
dx,

where [x] denotes the greatest integer ≤ x. Prove that the integral
in (b) converges for all s > 0.
Proof : We have

s

s− 1
− s

∫ ∞
1

x− [x]

xs+1
dx =

s

s− 1
− s

∫ ∞
1

1

xs
dx+ s

∫ ∞
1

[x]

xs+1
dx

=
s

s− 1
− s · 1

s− 1
+ ξ(s) = ξ(s).

Furthermore,

0 ≤
∫ ∞

1

x− [x]

xs+1
dx ≤

∫ ∞
1

1

xs+1
dx =

1

s
.

Let

yn =

∫ n

1

x− [x]

xs+1
dx,

and we have 0 ≤ yn ≤ 1
s , for every n. Then {yn} is bounded and

since yn < yn+1, {yn} converges. Therefore,
∫∞

1
x−[x]
xs+1 dx converges.

17. Suppose α increases monotonically on [a, b], g is continuous, and g(x) =
G′(x) for a ≤ x ≤ b. Prove that∫ b

a

α(x)g(x)dx = G(b)α(b)−G(a)α(a)−
∫ b

a

Gdα.
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Proof : Take g real, without loss of generality. Given P = {x0, x1, ..., xn},
choose ti ∈ (xi−1, xi) so that g(ti)∆xi = G(xi)−G(xi−1). Then we have
that

n∑
i=1

α(xi)g(ti)∆xi =

n∑
i=1

α(xi)(G(xi)−G(xi−1))

=

n∑
i=1

[α(xi)G(xi)− α(xi−1)G(xi−1) + α(xi−1)G(xi−1)− α(xi)G(xi−1)]

=

n∑
i=1

[α(xi)G(xi)−α(xi−1)G(xi−1)]+

n∑
i=1

[α(xi−1)G(xi−1)−α(xi)G(xi−1)]

= G(b)α(b)−G(a)α(a)−
n∑
i=1

G(xi−1)[α(xi−1)− α(xi)]

= G(b)α(b)−G(a)α(a)−
n∑
i=1

G(xi−1)∆αi,

and equivalently,

n∑
i=1

α(xi)g(ti)∆xi +

n∑
i=1

G(xi−1)∆αi = G(b)α(b)−G(a)α(a).

Since

L(P, gα) ≤
n∑
i=1

α(xi)g(ti)∆xi ≤ U(P, gα)

and

L(P,G, α) ≤
n∑
i=1

G(xi−1)∆αi ≤ U(P,G, α),

which gives that

L(P, gα) + L(P,G, α) ≤ G(b)α(b)−G(a)α(a) ≤ U(P, gα) + U(P,G, α).

Notice that P is arbitrary, we thus obtain that∫ b

a

α(x)g(x)dx+

∫ b

a

Gdα ≤ G(b)α(b)−G(a)α(a) ≤
∫ b

a

α(x)g(x)dx+

∫ b

a

Gdα,

namely, ∫ b

a

α(x)g(x)dx+

∫ b

a

Gdα = G(b)α(b)−G(a)α(a),

which is the same to say that∫ b

a

α(x)g(x)dx = G(b)α(b)−G(a)α(a)−
∫ b

a

Gdα.
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18. Let γ1, γ2, γ3 be curves in the complex plane, defined on [0, 2π] by

γ1(t) = eit, γ2(t) = e2it, γ3(t) = e2πit sin(1/t).

Show that these three curves have the same range, that γ1 and γ2 are
rectifiable, that the length of γ1 is 2π, that the length of γ2 is 4π, and
that γ3 is not rectifiable.
Proof :
(i) Clearly, γ1, γ2 and γ3 all have the unit circle on the complex plane as
their range.
(ii) Since γ′1(t) = ieit and γ′2(t) = 2ie2it, both of which is continuous on
[0.2π]. By Theorem 6.27, we have that γ1 and γ2 are rectifiable. And thus

Λ(γ1) =
∫ 2π

0
|ieit|dt = 2π, Λ(γ2) =

∫ 2π

0
|2ie2it|dt = 4π.

19. Let γ1 be a curve in Rk, defined on [a, b]; let φ be a continuous 1-1 map-
ping of [c, d] onto [a, b], such that φ(c) = a; and define γ2(s) = γ1(φ(s)).
Prove that γ2 is an arc, a closes curve, or a rectifiable curve if and only if
the same is true of γ1. Prove that γ2 and γ1 have the same length.
Proof :
(i) Since γ2(s) = γ1(φ(s)), and φ is one-to-one, it’s clear that γ1 is one-to-
one if and only if γ2 is one-to-one. That is, γ2 is an arc if and only if γ1

is an arc.
(ii) First we prove that if φ(c) = a, then φ(d) = b. Suppose that on the
contrary, this is not the case. Then there must be an s0 ∈ [c, d], s0 6= c, d,
such that φ(s0) = b. Hence we have φ(c) < φ(s0) and φ(d) < φ(s0).
Take a λ such that max(φ(c), φ(d)) < λ < φ(s0), then φ(c) < λ < φ(s0),
φ(d) < λ < φ(s0). Since φ is continuous on [c, d], we have that there is
an s1 ∈ (c, s0) such that φ(s1) = λ; and similarly, there is an s2 ∈ (s0, d)
such that φ(s2) = λ. This is contradict to the fact that φ is one-to-one.
If γ1 is closed, we have that γ1(a) = γ1(b). Then we have γ2(c) =
γ1(φ(c)) = γ1(a) = γ1(b) = γ1(φ(d)) = γ2(d), hence γ2 is closed. And if
γ2 is closed, we have that γ2(c) = γ2(d), then we have γ1(a) = γ1(φ(c)) =
γ2(c) = γ2(d) = γ1(φ(d)) = γ1(b), hence γ1 is closed.

(iii)If γ1 is rectifiable, Λ(γ2) = sup Λ(Pγ2 , γ2) = sup
n∑
i=1

|γ2(xi)−γ2(xi−1)| =

sup
n∑
i=1

|γ1(φ(xi))−γ1(φ(xi−1))| = sup Λ(Pγ1 , γ1) = Λ(γ1), hence γ2 is rec-

tifiable. And if γ2 is rectifiable, Λ(γ1) = sup Λ(Pγ1 , γ1) = sup
n∑
i=1

|γ1(xi)−

γ1(xi−1)| = sup
n∑
i=1

|γ2(φ−1(xi))−γ2(φ−1(xi−1))| = sup Λ(Pγ2 , γ2) = Λ(γ2),

hence γ1 is rectifiable.
The fact that γ2 and γ1 have the same length is clear from the above proof
process.
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7 Sequences and series of functions

1. Prove that every uniformly convergent sequences of bounded functions is
uniformly bounded.
Proof : Suppose {fn(x)} converges to f(x) uniformly for all x ∈ E, and
{fn(x)} is bounded, for every n. Then we can pick an N ∈ N such
that n > N implies |fn(x) − f(x)| < 1, for all x ∈ E. which gives
that |f(x)| < |fN+1(x)| + 1. Let |fN+1(x)| ≤ M , then |f(x)| < M + 1.
Furthermore, we also have |fn(x)| < |f(x)|+ 1, for all n > N , which gives
|fn(x)| < M + 2, for all n > N . Suppose |fi(x)| ≤Mi, for 1 ≤ i ≤ N , and
let M ′ = max{M1,M2, ...,MN ,M + 2}, then we have |fn(x)| ≤ M ′, for
all n and x ∈ E. Hence {fn(x)} is uniformly bounded.

2. If {fn} and {gn} converge uniformly on a set E, prove that {fn + gn}
converges uniformly on E. If, in addition, {fn} and {gn} are sequences of
bounded functions, prove that {fngn} converges uniformly on E.
Proof :(i) Since {fn} and {gn} converge uniformly on E, there exist N1,
N2 ∈ N such that n > m > N1 implies |fn − fm| < ε/2 and n > m > N2

implies |gn − gm| < ε/2. Let N = max{N1, N2}), then when n > m > N ,
we have |(fn + gn)− (fm + gm)| = |(fn − fm) + (gn − gm)| ≤ |fn − fm|+
|gn − gm| < ε, and thus {fn + gn} converges uniformly on E, by Cauchy’s
criterion.
(ii) Since {fn} and {gn} converge uniformly on E and both of which
are bounded, by Exercise 1, {fn} and {gn} are uniformly bounded. Let
|fn| ≤Mf and |gn| ≤Mg, by (i) there is an N ∈ N such that n > m > N
implies that |fn − fm| < ε/2Mg and |gn − gm| < ε/2Mf . Hence we have
|fngn− fmgm| = |fn(gn− gm) + gm(fn− fm)| ≤ |fn||gn− gm|+ |gm||fn−
fm| < ε, when n > m > N . Therefore, {fngn} converges on E uniformly.

3. Construct sequences {fn}, {gn} which converge uniformly on some set E,
but such that {fngn} does not converge uniformly on E (of course, {fngn}
must converge on E).
Solution: Let fn(x) = x+ sin x

n , gn(x) = 1
x + sin x

n , x ∈ (0,+∞). Then fn
and gn converge uniformly to x and 1

x (since sup |fn − x| = sup | sin xn | =

| 1n | → 0, and sup |gn − 1
x | = sup | sin xn | = | 1n | → 0, when n → ∞). But

fngn = 1 + (sin x)2

n2 + (x + 1
x ) sin x

n does not converge uniformly to 1, since

sup |fngn−1| = sup | (sin x)2

n2 +(x+ 1
x ) sin x

n | = |
1
n2 +(2knπ+ 1

2knπ ) 1
n | = 2kπ

(k > 1), when n→∞.

4. Consider

f(x) =

∞∑
n=1

1

1 + n2x
.

For what values of x does the series converge absolutely? On what inter-
vals does it converge uniformly? On what intervals does it fail to converge
uniformly? Is f continuous wherever the series converges? Is f bounded?
Solution:
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(i) When x ≥ 1, we have 1 + n2x ≥ 1 + n2 > n2, which gives 1
|1+n2x| =

1
1+n2x <

1
n2 and hence |f(x)| = |

∞∑
n=1

1
1+n2x | ≤

∞∑
n=1

1
|1+n2x| ≤

∞∑
n=1

1
n2 . Since

∞∑
n=1

1
n2 converges, f(x) converges absolutely.

When 0 < x < 1, we have 1 + n2x > n2x, which gives 1
|1+n2x| <

1
n2x .

Hence, |f(x)| =
∞∑
n=1

1
1+n2x <

∞∑
n=1

1
n2x = 1

x

∞∑
n=1

1
n2 , which shows f(x) con-

verges absolutely.

When x = 0, we have f(x) =
∞∑
n=1

1. Clearly, f(x) diverges, so does |f(x)|.

When x < 0, |1 + n2x| ≥ ||x|n2 − 1|, and when n is sufficiently large

(suppose n > N), we have |x|n2 − 1 > 0. Hence, |f(x)| = |
∞∑
n=1

1
1+n2x | ≤

∞∑
n=1

1
|1+n2x| =

N∑
n=1

1
|1+n2x| +

∞∑
n=N+1

1
|1+n2x| ≤

N∑
n=1

1
|1+n2x| +

∞∑
n=N+1

1
|x|n2−1 ,

which gives that f(x) converges absolutely.
In summary, when x 6= 0, f(x) converges absolutely, and when x = 0,
f(x) diverges.

(ii)When x ∈ [a,+∞), where a > 0, by picking any r ∈ (0, a), we have that

1 + n2x > n2x > n2r, which gives 1
1+n2x <

1
n2r . Since

∞∑
n=1

1
n2r = 1

r

∞∑
n=1

1
n2

converges, f(x) converges uniformly on [a,+∞), by Theorem 7.10.
Similarly, when x ∈ (−∞, b], where b < 0, by (i) we have |1 + n2x| ≥
|x|n2 − 1 > 0, when n is sufficiently large (suppose n > N). Pick any
r ∈ (b, 0), we have |1 +n2x| ≥ |r|n2− 1, and thus 1

|1+n2x| ≤
1

|r|n2−1 . Since
∞∑
n=1

1
|r|n2−1 converges,

∞∑
n=N+1

1
|r|n2−1 also converges, we have

∞∑
n=N+1

1
|1+n2x|

converges uniformly, and therefore
∞∑
n=1

1
|1+n2x| converges uniformly.

In summary, f(x) converges uniformly on intervals such as (−∞, b] (b < 0)
or [a,+∞) (a > 0). Conversely, f(x) fails to converge uniformly on such
intervals that (0, a] (a > 0), [b, 0) (b < 0), and [b, a] (b < 0 and a > 0).

(iii) By (i), f(x) converges if and only if x 6= 0. For any x0 6= 0, we
can construct an interval such that x0 ∈ [a,+∞) (a > 0, if x0 > 0) or
x0 ∈ (−∞, b] (b < 0, if x0 < 0). By (ii), in either case, f(x) converges
uniformly on the constructed interval, then according to Theorem 7.12,
f(x) is continuous on the interval. Hence, in particular, f is continuous
at x0.

(iv) Clearly, f(x) cannot be bounded, since f(0) does not converge.
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5. Let

fn(x) =


0 (x < 1

n+1 ),

sin2 π
x ( 1

n+1 ≤ x ≤
1
n ),

0 ( 1
n < x).

Show that {fn} converges to a continuous function, but not uniformly.
Use the series

∑
fn to show that absolute convergence, even for all x,

does not imply uniform convergence.
Proof : Fix any x0 ∈ R, if x0 ≤ 0 or x0 > 1, then clearly fn(x0) = 0, for
every n; if x0 ∈ (0, 1], then there exist a unique N such that 1

N+1 ≤ x0 ≤
1
N , and thus when n > N , we have fn(x0) = 0. Hence, lim

n→∞
fn(x0) = 0,

which gives that f(x) = lim
n→∞

fn(x) = 0. Clearly, f(x) is continuous. To

see that the convergence is not uniform, let Mn = sup |fn(x) − f(x)| =

sup |fn(x)| = sup | sin2 π
x | = sup | 1−cos 2π/x

2 | = 1, since 1
n+1 ≤ x ≤ 1

n

implies 2nπ ≤ 2π
x ≤ 2(n+ 1)π. Then Mn = 1 when n→∞, and thus the

convergence is not uniform, by Theorem 7.9.
Let g(x) =

∑
fn(x), from the above statements we have known that for

any x0, g(x0) = sin2 π
x0

if x0 ∈ (0, 1], and g(x0) = 0 otherwise. Clearly,∑
fn(x0) converges absolutely. But fn cannot converge uniformly, since

g( 2
2n+1 ) = fn( 2

2n+1 ) = 1, for every n. This means, no matter which N

chosen, we can pick x = 2
2(N+1)+1 , so that |

N+p∑
n=N+1

fn(x)| = fN+1(x) = 1,

contradicting the Cauchy’s criterion.

6. Prove that the series
∞∑
n=1

(−1)n
x2 + n

n2

converges uniformly in every bounded interval, but does not converge ab-
solutely for any value of x.
Proof : Suppose a ≤ x ≤ b, then we can assume that |x| ≤ M , for

some M . Since
∞∑
n=1

(−1)n x
2+n
n2 =

∞∑
n=1

(−1)n x
2

n2 +
∞∑
n=1

(−1)n 1
n . By Theo-

rem 3.43 (Leibnitz),
∞∑
n=1

(−1)n 1
n converges. What’s more,

∞∑
n=1

(−1)n x
2

n2 ≤

M2
∞∑
n=1

(−1)n 1
n2 , and since |(−1)n 1

n2 | = 1
n2 and

∞∑
n=1

1
n2 converges, we have

∞∑
n=1

(−1)n 1
n2 converges. Therefore,

∞∑
n=1

(−1)n x
2+n
n2 converges uniformly, by

Theorem 7.10. (More specifically,
∞∑
n=1

(−1)n x
2

n2 converges uniformly by

Theorem 7.10, since |(−1)n x
2

n2 | = x2

n2 ≤ M2 1
n2 , and

∑
1
n2 converges. So

does
∞∑
n=1

(−1)n x
2+n
n2 .)

Clearly, |(−1)n x
2+n
n2 | = x2+n

n2 ≥ n
n2 = 1

n , and hence
∑
|(−1)n x

2+n
n2 | di-

verges, for any value of x, since
∑

1
n diverges.
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7. For n = 1, 2, 3, ..., x real, put

fn(x) =
x

1 + nx2
.

Show that {fn} converges uniformly to a function f , and that the equation

f ′(x) = lim
n→∞

f ′n(x)

is correct if x 6= 0, but false if x = 0.
Proof : Clearly, f(x) = lim

n→∞
fn(x) = 0, for any real x. Put Mn =

sup |fn(x) − f(x)| = sup | x
1+nx2 − 0| = sup | x

1+nx2 | = sup | 1
1/x+nx | = 1

2
√
n

(if and only if x =
√
n when the supremum is achieved), and we have

Mn → 0 when n → ∞. Therefore, fn converges uniformly, by Theorem
7.9.
f ′n(x) = 1−nx2

(1+nx2)2 = 2
(1+nx2)2 −

1
1+nx2 , and hence lim

n→∞
f ′n(x) = 0 = f ′(x),

when x 6= 0. But f ′n(0) = 2− 1 = 1 6= 0 = f ′(0).

8. If

I(x) =

{
0 (x ≤ 0),
1 (x > 0),

if {xn} is a sequence of distinct points of (a, b), and if
∑
|cn| converges,

prove that the series

f(x) =

∞∑
n=1

cnI(x− xn) (a ≤ x ≤ b)

converges uniformly, and that f is continuous for every x 6= xn.
Proof : Since |cnI(x−xn)| ≤ |cn| and

∑
|cn| converges, by Theorem 7.10,∑

cnI(x− xn) converges uniformly.

Let fN (x) =
N∑
n=1

cnI(x − xn), we have lim
t→x

fN (t) =
∑
xn<x

cn = fN (x), if

x 6= xn, and hence fN (x) is continuous, for every x 6= xn. Therefore,
f(x) is continuous if x 6= xn, by Theorem 7.12. (Clearly, when x =
xn, f(x) cannot be continuous, and only one side continuousness can be
committed.)

9. Let {fn} be a sequence of continuous functions which converges uniformly
to a function on a set E. Prove that

lim
n→∞

fn(xn) = f(x)

for every sequence of points xn ∈ E such that xn → x, and x ∈ E. Is the
converse of this true?
Proof : Since fn converges uniformly to f on E, then given any ε > 0,
there exists an N ∈ N such that n > N implies |fn(x) − f(x)| < ε/2,
for all x ∈ E. In particular, |fn(xn) − f(xn)| < ε/2, when n > N . On
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the other hand, since every fn is continuous on E, f is continuous on E,
by Theorem 7.12. Hence there is an M ∈ N such that n > M implies
|f(xn)− f(x)| < ε/2. Let N ′ = max(N,M), then when n > N ′, we have
|fn(xn) − f(x)| = |fn(xn) − f(xn) + f(xn) − f(x)| ≤ |fn(xn) − f(xn)| +
|f(xn)− f(x)| < ε, which is to say lim

n→∞
fn(xn) = f(x).

The converse should be expressed as: Let {fn} be a sequence of continuous
functions which converges to a function f , and if, for every sequence of
points xn ∈ E such that xn → x and x ∈ E, we have lim

n→∞
fn(xn) = f(x),

then {fn} converges to f uniformly.
This cannot be true, and Exercise 5 serves as a counterexample. By
Exercise 5, we have that f(x) = 0, for every x. If xn → x, then if we
suppose that 1

N+1 ≤ x ≤ 1
N , there must exist an M such that n > M

implies 1
N+1 ≤ xn ≤ 1

N . Let N ′ = max(N,M), then when n > N ′, we
must have fn(xn) = 0 and hence lim

n→∞
fn(xn) = 0 = f(x), which satisfies

the requirement of the hypothesis. But Exercise 5 has proved that the
convergence of {fn} is not uniform.

10. Letting (x) denote the fractional part of the real number x (see Exercise
16, Chap.4, for the definition), consider the function

f(x) =

∞∑
n=1

(nx)

n2
(x real).

Find all discontinuities of f , and show that they form a countable dense
set. Show that f is nevertheless Riemann-integrable on every bounded
interval.
Proof : We have know that (x) is discontinuous where x is an integer.

On the other hand, since | (nx)
n2 | ≤ 1

n2 , and
∑

1
n2 converges, we have that∑ (nx)

n2 converges uniformly, by Theorem 7.10. Let fN (x) =
N∑
n=1

(nx)
n2 ,

then fN (x) is discontinuous where any (nx) is discontinuous (1 ≤ n ≤ N).
This means when nx = m, m ∈ Z, fN (x) is discontinuous, which implies
that when x is rational, x = p

q , p, q ∈ Z then fn(x) is discontinuous, for
any n ≥ q. Since fN converges uniformly to f , if fN is continuous for
every N , f should also be continuous, by Theorem 7.12. Hence f(x) is
discontinuous at every rational point x, and clearly, Q is a countable dense
subset of R.
Suppose [a, b] is any bounded interval, and suppose gn(x) = (nx)

n2 , then we
have na ≤ nx ≤ nb, if x ∈ [a, b]. Since the number of integers lying in
[na, nb] is finite, we know that gn has only finitely many discontinuities in

[a, b]. Since |gn(x)| = | (nx)
n2 | ≤ 1

n2 ≤ 1, we see that gn(x) is bounded on
[a, b], for every n, then according to Theorem 6.10, we have that gn ∈ R,
for every n. Hence by the uniform converge of

∑
gn(x) and the Corollary

of Theorem 7.16, we have that f ∈ R.

11. Suppose {fn}, {gn} are defined on E, and
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(a)
∑
fn has uniformly bounded partial sums;

(b) gn → 0 uniformly on E;

(c) g1(x) ≥ g2(x) ≥ g3(x) ≥ · · · for every x ∈ E.

Prove that
∑
fngn converges uniformly on E.

Proof : Suppose AN (x) =
N∑
n=1

fn(x), since
∑
fn has uniformly bounded

partial sums, we have AN (x) ≤M , for all N ∈ N and x ∈ E.
Given any ε > 0, there is an integer N ′ such that gn(x) ≤ (ε/2M), for
every x ∈ E, and n ≥ N ′, since gn(x) converges to 0 uniformly, and gn(x)
is decreasing monotonically for every x ∈ E. For N ′ ≤ p ≤ q, we have

|
q∑

n=p
fn(x)gn(x)| = |

q∑
n=p

(An(x) − An−1(x))gn(x)| = |
q∑

n=p
An(x)gn(x) −

q−1∑
n=p−1

An(x)gn+1(x)| = |
q−1∑
n=p

An(x)(gn(x)−gn+1(x))+Aq(x)gq(x)−Ap−1(x)

gp(x)| ≤ |
q−1∑
n=p

An(x)(gn(x)− gn+1(x))|+ |Aq(x)gq(x)|+ |Ap−1(x)gp(x)| ≤

M(|
q−1∑
n=p

(gn(x)−gn+1(x))|+ |gq(x)|+ |gp(x)|) = M |
q−1∑
n=p

(gn(x)−gn+1(x))+

gq(x) + gp(x)| = 2Mgp(x) < ε, for every x ∈ E. Uniform convergence now
follows from Cauchy’s criterion.

12. Suppose g and fn(n = 1, 2, 3, ...) are defined on (0,∞), are Riemann-
integrable on [t, T ] whenever 0 < t < T <∞, |fn| ≤ g, fn → f uniformly
on every compact subset of (0,∞), and∫ ∞

0

g(x)dx <∞.

Prove that

lim
n→∞

∫ ∞
0

fn(x)dx =

∫ ∞
0

f(x)dx.

(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.)
Proof : Since |fn| ≤ g and

∫∞
0
g(x)dx < ∞, we have that

∫∞
0
fn(x)dx

exists. What’s more, since fn → f uniformly, we must have |f | ≤ g, on
every compact subset of (0,∞), and thus

∫∞
0
f(x)dx exists.

Since fn → f uniformly, we have that f(x) = lim sup
n→∞

fn(x) = lim inf
n→∞

fn(x).

Since |fn| ≤ g, we have −g ≤ fn ≤ g and thus 0 ≤ fn+g, for every n. Let
gn = inf(fi + g), where i ≥ n. Then 0 ≤ g1 ≤ g2 ≤ · · · , gn ≤ (fn + g), and
gn → (f + g) uniformly. Clearly, each

∫∞
0
gndx =

∫∞
0

(fn + g)dx exists.
Therefore, we have∫ ∞

0

(f + g)dx ≤ lim inf
n→∞

∫ ∞
0

(fn + g)dx,
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or equivalently, ∫ ∞
0

fdx ≤ lim inf
n→∞

∫ ∞
0

fndx.

Similarly, since fn ≤ g, we have g − fn ≥ 0. Let hn = inf(g − fi), where
i ≥ n. Then 0 ≤ h1 ≤ h2 ≤ · · · , hn ≤ g− fn, and hn → (g− f) uniformly.
Clearly, each

∫∞
0
hndx =

∫∞
0

(g − fn)dx exists. Therefore, we have∫ ∞
0

(g − f)dx ≤ lim inf
n→∞

∫ ∞
0

(g − fn)dx,

or equivalently,

−
∫ ∞

0

fdx ≤ lim inf
n→∞

[−
∫ ∞

0

fndx],

which is equivalent to

lim sup
n→∞

∫ ∞
0

fndx ≤
∫ ∞

0

fdx,

since

lim sup
n→∞

∫ ∞
0

fndx = − lim inf
n→∞

[−
∫ ∞

0

fndx].

(See Exercise 5, Chap. 1).
Combining the above two results gives us∫ ∞

0

fdx ≤ lim inf
n→∞

∫ ∞
0

fndx ≤ lim sup
n→∞

∫ ∞
0

fndx ≤
∫ ∞

0

fdx,

and hence∫ ∞
0

fdx = lim inf
n→∞

∫ ∞
0

fndx = lim sup
n→∞

∫ ∞
0

fndx = lim
n→∞

∫ ∞
0

fndx,

which is the desired result.

13. Assume that {fn} is a sequence of monotonically increasing functions on
R1 with 0 ≤ fn(x) ≤ 1 for all x and all n.

(a) Prove that there is a function f and a sequence {nk} such that

f(x) = lim
k→∞

fnk(x)

for every x ∈ R1. (The existence of such a pointwise convergent
subsequence is usually called Helly’s selection theorem.)
Proof : (i) Some subsequence {fni} converges at all rational points
r, say, to f(r), by Theorem 7.23.
(ii) Define f(x), for any x ∈ R1, to be sup f(r), the sup being taken
over all r ≤ x.
(iii) Now, we will show that fni(x) → f(x) at every x at which f
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is continuous. Since f is continuous at x, given any ε > 0, there
is a δ > 0 such that |y − x| < δ implies |f(y) − f(x)| < ε/2. Pick
two rational numbers r1 and r2 from N(x, δ) such that r1 ≤ x ≤ r2.
Since each fni is monotonically increasing on R1, we have fni(r1) ≤
fni(x) ≤ fni(r2). And since fni(r)→ f(r), for every rational number
r, there exists integersN1 andN2 such that ni > N1 implies |fni(r1)−
f(r1)| < ε/2 and ni > N2 implies |fni(r2) − f(r2)| < ε/2. If we let
N = max(N1, N2), then ni > N implies |fni(rk)−f(rk)| < ε/2, where
k = 1, 2. This gives that f(r1)− ε/2 < fni(r1) ≤ fni(x) ≤ fni(r2) <
f(r2) + ε/2, when ni > N . On the other hand, since r1, r2 ∈ N(x, δ),
we have that |f(r1) − f(x)| < ε/2 and |f(r2) − f(x)| < ε/2, which
gives that f(r1) > f(x) − ε/2 and f(r2) < f(x) + ε/2. Therefore,
f(x)− ε < f(r1)− ε/2 < fni(r1) ≤ fni(x) ≤ fni(r2) < f(r2) + ε/2 <
f(x) + ε, or shortly, f(x) − ε < fni(x) < f(x) + ε, when ni > N ,
which gives |fni(x)− f(x)| < ε, when ni > N . Hence, fni(x)→ f(x)
at every x at which f is continuous.
(iv) Now we will prove that f(x) is monotonically increasing on R1.
To see this, first suppose r1 and r2 to be two rational numbers and
r1 ≤ r2. Since every fni is monotonically increasing on R1, we have
fni(r1) ≤ fni(r2), for every ni. Since fni(r)→ f(r) on every rational
number r, we then have f(r1) ≤ f(r2). Now suppose x1 and x2

be two real numbers such that x1 ≤ x2, then f(x1) = sup f(r1),
r1 ≤ x1, and f(x2) = sup f(r2), r2 ≤ x2. Hence, f(x1) ≤ f(x2) and
f(x) is monotonically increasing on R1. (Since if x1 = x2, clearly
f(x1) = f(x2), and if x1 < x2, there exist a rational number r such
that x1 < r < x2, and thus fx1 ≤ f(r) ≤ f(x2).) Then by the similar
argument as in Theorem 4.30, we can conclude that the set of points
(denoted as E) where f is discontinuous is at most countable. Using
Theorem 7.23 again on the sequence {fni} (note that 0 ≤ fni(x) ≤ 1
still holds, for all the ni and x) gives us that there is a subsequence of
{fni} which converges (to f(x)) for every x ∈ E, and therefore this
subsequence of {fni} (and hence a subsequence of {fn}) converges for
every x ∈ R1, to a function g(x) (g(x) = f(x), where f is continuous
at x, but we cannot conclude this for those discontinuities of f). This
proves (a).

(b) If, moreover, f is continuous, prove that fnk → f uniformly on com-
pact sets.
Proof :

14. Let f be a continuous real function on R1 with the following properties:
0 ≤ f(t) ≤ 1, f(t+ 2) = f(t) for every t, and

f(t) =

{
0 (0 ≤ t ≤ 1

3 )
1 ( 2

3 ≤ t ≤ 1).
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Put Φ(t) = (x(t), y(t)), where

x(t) =

∞∑
n=1

2−nf(32n−1t), y(t) =

∞∑
n=1

2−nf(32nt).

Prove that Φ is continuous and that Φ maps I = [0, 1] onto the unit square
I2 ⊆ R2. If fact, show that Φ maps the Cantor set onto I2.
Proof : First, we have |2−nf(32n−1)| ≤ 2−n, and since

∑
2−n converges,∑

2−nf(32n−1t) converges uniformly, for every t, by Theorem 7.10. Since
f is continuous, each 2−nf(32n−1t) is continuous, and hence both x(t) and
y(t) is continuous. Therefore, Φ(t) is continuous, by Theorem 4.10. On
the other hand, each (x0, y0) ∈ I2 has the form

x0 =

∞∑
n=1

2−na2n−1, y0 =

∞∑
n=1

2−na2n

where each ai is 0 or 1. If

t0 =

∞∑
i=1

3−i−1(2ai),

(by Exercise 19, Chap.3, t0 is a point of the Cantor set) then we have

f(3kt0) = f(3k
∞∑
i=1

3−i−1(2ai)) = f(
∞∑
i=1

3k−i−1(2ai)) = f(
k−1∑
i=1

3k−i−1(2ai)+

∞∑
i=k

3k−i−1(2ai)) = f(2K +
∞∑
i=k

3k−i−1(2ai)) = f(
∞∑
i=k

3k−i−1(2ai))

= f(
∞∑
i=1

3−i(2ai+k−1)).

If ak = 0, then 0 ≤
∞∑
i=1

3−i(2ai+k−1) =
∞∑
i=2

3−i(2ai+k−1) ≤ 2
∞∑
i=2

3−i =

1/3, and hence f(
∞∑
i=1

3−i(2ai+k−1)) = 0 = ak; if ak = 1, then 2/3 ≤
∞∑
i=1

3−i(2ai+k−1) ≤ 2/3+
∞∑
i=2

3−i(2ai+k−1) ≤ 2/3+2
∞∑
i=2

3−i = 2/3+1/3 =

1, and hence f(
∞∑
i=1

3−i(2ai+k−1)) = 1 = ak. Now we have proved that

f(3kt0) = ak and therefore, f(32n−1t0) = a2n−1, f(32nt0) = a2n, which

gives that x(t0) =
∞∑
n=1

2−nf(32n−1t0) =
∞∑
n=1

2−na2n−1 = x0, and similarly,

y(t0) = y0. This means, for each (x0, y0) ∈ I2, we can find a t0 ∈ (Cantor
set) E, such that Φ(t0) = (x(t0), y(t0)) = (x0, y0). Hence, Φ maps E onto
I2. Since E ⊂ I, Φ also maps I onto I2.

15. Suppose f is a real continuous function on R1, fn(t) = f(nt) for n =
1, 2, 3, ..., and {fn} is equicontinuous on [0, 1]. What conclusions can you
draw about f?
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Solution: Since fn is equicontinuous on [0, 1], then given any ε > 0, there
exists a δ > 0, such that |x−y| < δ implies |fn(x)−fn(y)| < ε, x, y ∈ [0, 1]
and n ∈ N. Or, equivalently, |f(nx)− f(ny)| < ε, x, y ∈ [0, 1], |x− y| < δ,
and n ∈ N. In particular, |f(x)− f(y)| < ε, x, y ∈ [0, 1], and |x− y| < δ.
This means, f is uniformly continuous on [0, 1]. Hence, in general, f is
uniformly continuous on every interval [0, n], but for each of these interval,
the underlying δ′ = nδ is different for different n.

16. Suppose {fn} is an equicontinuous sequence of functions on a compact
set K, and {fn} converges pointwise on K. Prove that {fn} converges
uniformly on K.
Proof : Since {fn} is equicontinuous, given any ε > 0, there is a δ > 0
such that d(x, y) < δ, x, y ∈ K implies d(fn(x), fn(y)) < ε, for every
n. Let V (x, δ) be the set of points y ∈ K such that d(y, x) < δ, then⋃
x∈K V (x, δ) forms an open cover of K. Since K is compact, there are

finitely many points x1, x2, ..., xm ∈ K such that

K ⊆ V (x1, δ) ∪ V (x2, δ) ∪ · · · ∪ V (xm, δ). (∗)

Since fn converges pointwise on K, there is an N ∈ N such that n > N
implies d(fi(xs), fj(xs)) < ε, for every i ≥ N , j ≥ N , and 1 ≤ s ≤ m.
Given any x ∈ K, by (*), there is an xs, 1 ≤ s ≤ m, such that x ∈ V (xs, δ).
Therefore, we have d(fi(x), fj(x)) ≤ d(fi(x), fi(xs)) + d(fi(xs), fj(xs)) +
d(fj(xs), fj(x)) < 3ε, for i ≥ N , j ≥ N , and thus fn converges uniformly
on K, by Cauchy’s criterion.

17. Define the notions of uniform convergence and equicontinuity for map-
pings into any metric space. Show that Theorems 7.9 and 7.12 are valid
for mappings into any metric space, that Theorems 7.8 and 7.11 are valid
for mappings into any complete metric space, and that Theorems 7.10,
7.16, 7.17, 7.24, and 7.25 hold for vector-valued functions, that is, for
mappings into any Rk.
Solution: For mappings into any metric space, we have the following
definitions for the notion of uniform convergence and quicontinuity, with
minor modifications to Definition 7.7 and 7.22.
We say that a sequence of functions {fn}, n = 1, 2, 3, ..., converges uni-
formly on E of to a function f if for every ε > 0 there is an integer N such
that n ≥ N implies dY (fn(x), f(x)) ≤ ε for all x ∈ E. Here, every fn and
f is a mapping from E to a metric space Y , and dY is the metric of Y .
A family F of functions f defined on a set E in a metric space X into a
metric space Y is said to be equicontinuous on E if for every ε > 0 there
exists a δ > 0 such that dY (f(p), f(q)) < ε whenever dX(p, q) < δ, x ∈ E,
y ∈ E, and f ∈ F . Here dX and dY denote the metric of X and Y ,
respectively.

(a) The Mn in Theorem 7.9 should be rephrased as

Mn = sup
x∈E

dY (fn(x), f(x))
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in the current context, and clearly, this is still an immediate conse-
quence of our modified definition of uniform convergence.

(b) Theorem 7.12 says that, if {fn} is a sequence of continuous functions
on E, and if fn → f uniformly on E, then f is continuous on E.
This statement needs to be proved differently in the new context as
follows. Since {fn} → f uniformly, given any ε > 0, there is an
N ∈ N such that n ≥ N implies dY (fn(x), f(x)) < ε, for any x ∈ E.
Now, fix any x ∈ E, and since fN is continuous on E, there is a
δ > 0 such that dX(t, x) < δ, t ∈ E implies dY (fN (t), fN (x)) < ε.
Hence we have dY (f(t), f(x)) ≤ dY (f(t), fN (t))+dY (fN (t), fN (x))+
dY (fN (x), f(x)) < 3ε, for t ∈ E and dX(t, x) < δ, which show that f
is continuous on E.

(c) If we review the proof processes of Theorem 7.8 and 7.11, we can
find that the required condition which may not hold in an arbitrary
metric space is the equivalence of Cauchy sequences and convergent
sequences. Since now we know that the given metric space is com-
plete, this equivalence is guaranteed. Therefore, the proofs there
remain true, and only the metrics need to be replaced.

(d) By reviewing the proof processes of Theorem 7.10, 7.16, 7.17, 7.24,
and 7.25, it’s clear that all these procedures hold in the context of
Rk. We only need to replace f by f .

18. Let {fn} be a uniformly bounded sequence of functions which are Riemann-
integrable on [a, b], and put

Fn(x) =

∫ x

a

fn(t)dt (a ≤ x ≤ b).

Prove that there exists a subsequence {Fnk} which converges uniformly
on [a, b].
Proof : Theorem 6.20 has shown us that each Fn is continuous on [a, b],
and next we will show that {Fn} is equicontinuous. Since {fn} is uniformly
bounded, we have |fn(x)| ≤ M , for all n and x ∈ [a, b]. Then given any
ε > 0, choose a δ such that 0 < δ < ε/M . When |x− y| < δ, x, y ∈ [a, b],
we have

|Fn(x)− Fn(y)| = |
∫ x

a

fn(t)dt−
∫ y

a

fn(t)dt| = |
∫ y

x

fn(t)dt|

≤M |
∫ y

x

dt| = M |x− y| < Mδ < ε,

for all n and x, y ∈ [a, b], |x− y| < δ. Hence Fn is equicontinuous, by Def-
inition 7.22. Furthermore, we have |Fn(x)| = |

∫ x
a
fn(t)dt| ≤ M |

∫ x
a
dt| =

M |x − a| ≤ M(b − a), for every n and every x ∈ [a, b]. Thus {Fn} is
uniformly bounded (of course, pointwise bounded, too). Since [a, b] is
compact and Fn ∈ C ([a, b]), for every n, by Theorem 7.25, {Fn} contains
a uniformly convergent subsequence on [a, b], which is the desired result.
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19. Let K be a compact metric space, let S be a subset of C (K). Prove that S
is compact (with respect to the metric defined in Section 7.14) if and only if
S is uniformly closed, pointwise bounded, and equicontinuous. (If S is not
equicontinuous, then S contains a sequence which has no equicontinuous
subsequence, hence has no subsequence that converges uniformly on K.)
Proof : ⇒: Suppose S is compact, then by Theorem 2.34, S is (uniformly)
closed. Since every function in C (K) is bounded, and S is a subset of
C (K), S is clearly pointwise bounded. Given any ε > 0, for each f ∈ S, let
V (f, ε) be the set of all functions g ∈ S such that dC (K)(f, g) = ||f −g|| <
ε. Since S is compact, there are finitely many fi ∈ S, 1 ≤ i ≤ m, such
that

S ⊆ V (f1, ε) ∪ V (f2, ε) ∪ · · · ∪ V (fm, ε).

Since each fi, 1 ≤ i ≤ m, is continuous, and K is compact, each fi is
uniformly continuous on K. Hence, there is a δ > 0, such that d(x, y) < δ,
x, y ∈ K implies |fi(x) − fi(x)| < ε, for each 1 ≤ i ≤ m. Here d is the
metric of K. Now, for every f ∈ S, there is an fs, 1 ≤ s ≤ m, such that
f ∈ V (fs, ε), or, in other words, ||f − fs|| < ε. We then have that

|f(x)− f(y)| ≤ |f(x)− fs(x)|+ |fs(x)− fs(y)|+ |fs(y)− f(y)|

≤ ||f − fs||+ |fs(x)− fs(y)|+ ||fs − f || < 3ε,

where x, y ∈ K and d(x, y) < δ. This gives that S is equicontinuous.
⇐: Suppose S is uniformly closed, pointwise bounded, and equicontinu-
ous. Let E be any infinite subset of S, then E is pointwise bounded and
equicontinuous, too. By Theorem 7.25(b), we have that E contains a uni-
formly convergent subsequence on K. Suppose {fn} is this subsequence,
and {fn} converges to f uniformly, then f is a limit point of E. Note that
by Theorem 7.15, we know that C (K) is complete, so f ∈ C (K). What’s
more, since f is a limit point of E, f is also a limit point of S. Therefore,
f ∈ S since S is uniformly closed. Thus, by Exercise 2.26, we have that S
is compact.

20. If f is continuous on [0, 1] and if∫ 1

0

f(x)xndx = 0 (n = 0, 1, 2, ...),

prove that f(x) = 0 on [0, 1].
Proof : If we can show that ∫ 1

0

f2(x) = 0,

then f(x) = 0 follows immediately. Since f is continuous on [0, 1], by The-
orem 7.26 (Weierstrass’s Theorem), there exists a sequence of polynomials
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Pn such that lim
n→∞

Pn(x) = f(x) uniformly on [0, 1]. Then by Theorem

7.16, we have that∫ 1

0

f2(x)dx =

∫ 1

0

f(x)( lim
n→∞

Pn(x))dx = lim
n→∞

∫ 1

0

f(x)Pn(x)dx.

Since ∫ 1

0

f(x)xndx = 0 (n = 0, 1, 2, ...),

we thus have that ∫ 1

0

f(x)Pn(x)dx = 0,

no matter which Pn(x) is. Therefore,∫ 1

0

f2(x)dx = 0

and hence f(x) = 0 on [0, 1].

21. Let K be the unit circle in the complex plane (i.e., the set of all z with
|z| = 1), and let A be the algebra of all functions of the form

f(eiθ) =

N∑
n=0

cne
inθ (θ real).

Then A separates points on K and A vanishes at no point of K, but
nevertheless there are continuous functions on K which are not in the
uniform closure of A .
Proof : Since |z| = 1, we can write z = eiθ for some θ. The functions in
A then can be rewritten as

f(z) =

N∑
n=0

cnz
n.

Clearly, A separates points on K and A vanishes at no point of K. But
there are continuous functions on K which are not in the uniform closure
of A . To see this, note that, for every f ∈ A , we have∫ 2π

0

f(eiθ)eiθdθ =

∫ 2π

0

(

N∑
n=0

cne
inθ)eiθdθ

=

∫ 2π

0

(

N∑
n=0

cne
i(n+1)θ)dθ =

N∑
n=0

∫ 2π

0

cne
i(n+1)θdθ = 0.

And what’s more, for every g in the closure of A , we have g = lim
n→∞

fn,

and fn → g uniformly, fn ∈ A . Therefore,∫ 2π

0

geiθdθ = lim
n→∞

∫ 2π

0

fne
iθdθ = 0.
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Pick h(eiθ) = e−iθ. Clearly, h is continuous on K. However,∫ 2π

0

h(eiθ)eiθdθ =

∫ 2π

0

e−iθeiθdθ =

∫ 2π

0

dθ = 2π 6= 0.

Thus, h is not in the closure of A .

22. Assume f ∈ R(α) on [a, b], and prove that there are polynomials Pn such
that

lim
n→∞

∫ b

a

|f − Pn|2dα = 0.

Proof : As in Exercise 6.11, for u ∈ R(α), define

||u||2 = {
∫ b

a

|u|2dα}1/2.

By Exercise 6.12, we known that, for f ∈ R(α) and ε > 0, there exists a
continuous function g on [a, b] such that ||f − g||2 <

√
ε/2. What’s more,

by Weierstrass’s Theorem, since g is continuous on [a, b], there exists a
sequence of polynomials Pn such that lim

n→∞
Pn = g uniformly on [a, b].

This means, there is an integer N such that n > N implies |g − Pn| <√
ε/2
√
α(b)− α(a), i.e.,

∫ b
a
|g−Pn|2dα < ε/4 and thus ||g−Pn||2 <

√
ε/2.

By Exercise 6.11, we have that

||f − Pn||2 ≤ ||f − g||2 + ||g − Pn||2 <
√
ε, for n > N.

Thus, ∫ b

a

|f − Pn|dα = (||f − Pn||2)2 < ε, for n > N.

Since ε is arbitrary, we have

lim
n→∞

∫ b

a

|f − Pn|2dα = 0.

23. Put P0 = 0, and define, for n = 0, 1, 2, ...,

Pn+1(x) = Pn(x) +
x2 − P 2

n(x)

2
.

Prove that
lim
n→∞

Pn(x) = |x|,

uniformly on [−1, 1]. (This makes it possible to prove the Stone-Weierstrass
theorem without first proving Theorem 7.26.)
Proof : First, we will prove that 0 ≤ Pn(x) ≤ Pn+1(x) ≤ |x| if |x| ≤ 1 by
induction.
(i)n = 0, then P1(x) = P0(x) +

x2−P 2
0 (x)

2 = x2

2 ≥ 0 = P0, and clearly
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P1(x) ≤ |x| since |x| ≤ 1.
(ii) Suppose n = k, we have 0 ≤ Pk(x) ≤ Pk+1(x) ≤ |x|, if |x| ≤ 1. When
n = k + 1, we have that

|x| − Pk+2(x) = |x| − Pk+1(x)−
x2 − P 2

k+1(x)

2

= (|x| − Pk+1(x))(1− |x|+ Pk+1(x)

2
).

Since Pk+1(x) ≤ |x|, |x| − Pk+2(x) ≥ (|x| − Pk+1(x))(1 − |x|) ≥ 0, which
gives Pk+2(x) ≤ |x|. What’s more, we have Pk+2(x) − Pk+1(x) = (|x| −
Pk+1(x)) − (|x| − Pk+2(x)) = (|x| − Pk+1(x))(1 − (1 − |x|+Pk+1(x)

2 )) =

(|x| − Pk+1(x))( |x|+Pk+1(x)
2 ) ≥ 0 and thus Pk+1(x) ≤ Pk+2(x). Therefore,

0 ≤ Pk+1(x) ≤ Pk+2(x) ≤ |x| and we are done.

Next, since |x| − Pn(x) = [|x| − Pn−1(x)][1 − |x|+Pn−1(x)
2 ] for n ≥ 1, and

0 ≤ Pn(x) ≤ |x|, we have that |x| − Pn(x) ≤ [|x| − Pn−1(x)][1 − |x|2 ].

Apply this inequality n times, we get |x| −Pn(x) ≤ (|x| −P0)(1− |x|2 )n =

|x|(1 − |x|2 )n. Assume y = |x|, and f(y) = y(1 − y
2 )n. Then f ′(y) = (1 −

y
2 )n−ny

2 (1− y
2 )n−1. Let f ′(y) = 0, we get y0 = 2

n+1 . Since f ′′(y) = −n2 (1−
y
2 )n−2(2− (n+1)

2 y), we have f ′′(y0) = −n2 (1− 1
n+1 )n−2 < 0. Therefore, y0

is the point at which we get the maximum value of f(y). Hence we have
f(y) ≤ f(y0) = 2

n+1 (1 − 1
n+1 )n < 2

n+1 , which gives |x| − Pn(x) < 2
n+1 .

Then, given any ε > 0, there is an integer N such that n > N implies
|x| − Pn(x) < 2

n+1 < ε. Combined with the fact 0 ≤ Pn(x) ≤ Pn+1(x) ≤
|x|, we have that lim

n→∞
Pn(x) = |x| (by Theorem 3.14), and clearly, the

convergence is uniform, if x ∈ [−1, 1].

24. Let X be a metric space, with metric d. Fix a point a ∈ X. Assign to
each p ∈ X the function fp defined by

fp(x) = d(x, p)− d(x, a) (x ∈ X).

Prove that |fp(x)| ≤ d(a, p) for all x ∈ X, and that therefore fp ∈ C (X).
Prove that

||fp − fq|| = d(p, q)

for all p, q ∈ X.
If Φ(p) = fp it follows that Φ is an isometry (a distance-preserving map-
ping) of X onto Φ(X) ⊆ C (X).
Let Y be the closure of Φ(X) in (X). Show that Y is complete.
Conclusion: X is isometric to a dense subset of a complete metric space
Y .
Proof :
(i) Since d(x, p) ≤ d(x, a) + d(p, a), we have fp(x) = d(x, p) − d(x, a) ≤
d(p, a) = d(a, p); and since d(x, a) ≤ d(x, p) + d(p, a), we have fp(x) =
d(x, p) − d(x, a) ≥ −d(p, a) = −d(a, p). Therefore, −d(a, p) ≤ fp(x) ≤
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d(a, p) and hence |fp(x)| ≤ d(a, p), for all x ∈ X. Since it’s clear that
fp(x) is continuous, therefore fp ∈ C (X).
(ii) ||fp − fq|| = sup

x∈X
|fp(x) − fq(x)| = sup

x∈X
|d(x, p) − d(x, q)|. Since

|d(x, p)− d(x, q)| ≤ d(p, q), for all x ∈ X, we have sup
x∈X
|d(x, p)− d(x, q)| ≤

d(p, q). On the other hand, p ∈ X and |d(p, p)−d(p, q)| = d(p, q), we thus
have sup

x∈X
|d(x, p) − d(x, q)| = d(p, q), namely ||fp − fq|| = d(p, q), for all

p, q ∈ X.
(iii) Let {fn} be any Cauchy sequence in Y , to show that Y is complete, we
must show that {fn} converges to some f ∈ Y . Clearly, {fn} is a Cauchy
sequence in C (X), and since C (X) is complete, {fn} must converge to
some f ∈ C (X). Therefore, f is a limit point of C (X), and actually, a
limit point of Y . Since Y is the closure of Φ(X) in C (X), Y is closed and
thus f ∈ Y . Hence, Y is complete. (In fact, every closed subset E of a
complete metric space X is complete. See the remark under Definition
3.12.)

25. Suppose φ is a continuous bounded real function in the strip defined by
0 ≤ x ≤ 1, −∞ < y <∞. Prove that the initial-value problem

y′ = φ(x, y), y(0) = c

has a solution. (Note that the hypotheses of this existence theorem are
less stringent than those of the corresponding uniqueness theorem; see
Exercise 27, Chap.5.)
Proof : Fix n. For i = 0, ..., n, put xi = i/n. Let fn be a continuous
function on [0, 1] such that fn(0) = c, f ′n(t) = φ(xi, fn(xi)) if xi < t <
xi+1, and put ∆n(t) = f ′n(t) − φ(t, fn(t)), except at the points xi, where
∆n(t) = 0. Then

fn(x) = c+

∫ x

0

[φ(t, fn(t)) + ∆n(t)]dt.

Choose M <∞ so that |φ| ≤M .
(a)|f ′n| = |φ(xi, fn(xi))| ≤ M , and |∆n| ≤ |f ′n| + |φ| ≤ 2M . Clearly,
∆n ∈ R since φ is continuous on [0, 1], and |fn| ≤ |c| + |

∫ x
0

[φ(t, fn(t)) +

∆n(t)]dt| = |c|+ |
∫ x

0
f ′n(t)dt| ≤ |c|+ |

∫ 1

0
f ′n(t)dt| ≤ |c|+M = M1 on [0, 1],

for all n.
(b)We have |fn(x) − fn(y)| = |

∫ x
y
f ′n(t)dt| ≤ M |x − y|, for all n and all

x, y ∈ [0, 1]. Then given any ε > 0, we can pick δ = ε/M > 0, and when
|x − y| < δ we get |f(x) − f(y)| ≤ M |x − y| < Mδ = ε, which is to say
that {fn} is equicontinuous on [0, 1].
(c)By (a), (b) and Theorem 7.25(b), there is some subsequence {fnk} of
{fn} which converges to some f , uniformly on [0, 1].
(d)Since φ is uniformly continuous on the rectangle 0 ≤ x ≤ 1, |y| ≤ M1,
given any ε > 0, we can pick a δ > 0 such that when |fnk(t) − f(t)| < δ,
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|φ(t, fnk(t)) − φ(t, f(t))| < ε, for any t ∈ [0, 1]. Since fnk → f uniformly,
there is an N > 0 such that nk > N implies |fnk(t) − f(t)| < δ, for all
t ∈ [0, 1]. Therefore, φ(t, fnk(t))→ φ(t, f(t)) uniformly on [0, 1].
(e)Since φ is uniformly continuous on the rectangle 0 ≤ x ≤ 1, |y| ≤ M1,
for any given ε > 0, there is a r > 0 such that

√
(x1 − x2)2 + (y1 − y2)2 <

r implies |φ(x1, y1) − φ(x2, y2)| < ε. Since fn is uniformly continuous
on [0, 1], there is a δ > 0 such that |xi − t| < δ implies |fn(xi) −
fn(t)| < r/

√
2. Let δ′ = min(δ, r/

√
2), then when |xi − t| < δ′, we have√

(xi − t)2 + (fn(xi)− fn(t))2 <
√
r2 = r and therefore, |φ(xi, fn(xi)) −

φ(t, fn(t))| < ε, namely, |∆n(t)| < ε. Since xi = i/n and t ∈ (xi, xi+1),
there is an integer N such that n > N implies |xi − t| < 1/n < δ′, which
means when n > N , |∆n(t)| < ε, for all t ∈ [0, 1]. Hence, ∆n(t) → 0
uniformly on [0, 1].
(f)Hence we have

f(x) = lim
nk→∞

fnk(x) = c+ lim
nk→∞

∫ x

0

[φ(t, fnk(t)) + ∆nk(t)]dt

= c+

∫ x

0

φ(t, f(t))dt.

This f is a solution solution of the given problem, since f ′(x) = φ(x, f(x))
and f(0) = c.

26. Prove an analogous existence theorem for the initial-value problem

y′ = Φ(x,y), y(0) = c,

where now c ∈ Rk, and Φ is a continuous bounded mapping of the part
of Rk+1 defined by 0 ≤ x ≤ 1,y ∈ Rk. (Compare Exercise 28, Chap.5.)
Proof : Due to the similarity of the proof process as Exercise 7.25, here I
just sketch the proof outlines.
Fix n. For i = 0, ..., n, put xi = i/n. Let fn be a continuous function
on [0, 1] such that fn(0) = c, f ′n(t) = Φ(xi, fn(xi)) if xi < t < xi+1, and
put ∆n(t) = f ′n(t)−Φ(t, fn(t)), except at the points xi, where ∆n(t) = 0.
Then

fn(x) = c +

∫ x

0

[Φ(t, fn(t)) + ∆n(t)]dt.

Choose M <∞ so that |Φ| ≤M .
(a)|f ′n| ≤ M , |∆n| ≤ 2M , ∆n ∈ R, and |fn| ≤ |c| + M = M1, say, on
[0, 1], for all n.
(b){fn} is equicontinuous on [0, 1], since |f ′n| ≤M .
(c)Some {fnk} converges to some f , uniformly on [0, 1], by using a vector-
valued version of Theorem 7.25.
(d)Since Φ is uniformly continuous on the rectangle 0 ≤ x ≤ 1, |y| ≤M1,
Φ(t, fnk(t))→ Φ(t, f(t)) uniformly on [0, 1].
(e)∆n(t)→ 0 uniformly on [0, 1], since ∆n(t) = Φ(xi, fn(xi))−Φ(t, fn(t))
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in (xi, xi+1).
(f)Hence f(x) = c +

∫ x
0

Φ(t, f(t))dt. This f is a solution of the given prob-
lem.

8 Some special functions

1. Define

f(x) =

{
e−1/x2

(x 6= 0),
0 (x = 0).

Prove that f has derivatives of all orders at x = 0, and that f (n)(0) = 0
for n = 1, 2, 3, ....
Proof : Let y = 1/x, then f(x) = g(y) = e−y

2

, when x 6= 0. Clearly,

g(n)(y) = e−y
2

Pn(y), where Pn(y) is some n-order polynomial of y, for
n = 1, 2, 3, .... Now we prove f (n)(0) = 0 by induction.

(i)When n = 1, f (1)(0) = lim
x→0

f(x)−f(0)
x−0 = lim

y→∞
ye−y

2

= 0, by Theorem

8.6(f).

(ii)Suppose f (k)(0) = 0. When n = k+1, f (k+1)(x) = lim
x→0

f(k)(x)−f(k)(0)
x−0 =

lim
y→∞

yg(k)(y) = lim
y→∞

ye−y
2

Pk(y) = 0, according to Theorem 8.6(f).

Therefore, f (n)(0) = 0, for n = 1, 2, 3, ....

2. Let aij be the number in the ith row and jth column of the array

−1 0 0 0 · · ·
1/2 −1 0 0 · · ·
1/4 1/2 −1 0 · · ·
1/8 1/4 1/2 −1 · · ·
· · · · · · · · · · · · · · ·

so that

aij =

 0 (i < j),
−1 (i = j),
2j−i (i > j).

Prove that ∑
i

∑
j

aij = −2,
∑
j

∑
i

aij = 0.

Proof :

∑
i

∑
j

aij =
∑
i

(−1 +
∑
j<i

aij) =
∑
i

(−1 +

i−1∑
j=1

aij)

=
∑
i

(−1 +

i−1∑
j=1

2j−i) =
∑
i

(−1 + 2−i
i−1∑
j=1

2j)
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=
∑
i

(−1 + 2−i2(2i−1 − 1)) =
∑
i

(−1 + 1− 21−i) = −2

∞∑
i=1

2−i = −2.

∑
j

∑
i

aij =
∑
j

(−1 +
∑
i>j

aij) =
∑
j

(−1 +

∞∑
i=j+1

aij)

=
∑
j

(−1 +

∞∑
i=j+1

2j−i) =
∑
j

(−1 + 2j
∞∑

i=j+1

2−i)

=
∑
j

(−1 + 2j2−j) =
∑
j

(−1 + 1) =
∑
j

0 = 0.

3. Prove that ∑
i

∑
j

aij =
∑
j

∑
i

aij

if aij ≥ 0 for all i and j(the case +∞ = +∞ may occur).
Proof : Suppose, first, s =

∑
i

∑
j aij converges, that is, s < +∞. Since

aij ≥ 0,
∑
j |aij | =

∑
j aij = bi, and

∑
i bi converges. By Theorem 8.3,∑

i

∑
j aij =

∑
j

∑
i aij .

Next, suppose s =
∑
i

∑
j aij = +∞. Let smn =

∑m
i=1

∑n
j=1 aij , given

any M > 0, since s = +∞ and aij ≥ 0, there exists some m1, n1 such that
sm1n1

> M . Clearly tn1m1
=
∑n1

j=1

∑m1

i=1 aij = sm1n1
> M , therefore,

t =
∑
j

∑
i aij = +∞.

Thus,
∑
i

∑
j aij =

∑
j

∑
i aij .

4. Prove the following limit relation:

(a) lim
x→0

bx−1
x = log b (b > 0).

Proof : By Theorem 5.13, we have

lim
x→0

bx − 1

x
= lim
x→0

ex log b − 1

x
= lim
x→0

ex log b log b = log b.

(b) lim
x→0

log(x+1)
x = 1.

Proof : By Theorem 5.13, we have

lim
x→0

log(x+ 1)

x
= lim
x→0

1

x+ 1
= 1.

(c) lim
x→0

(1 + x)1/x = e.

Proof : Let y = (1 + x)1/x, then log y = log(1+x)
x , and

lim
x→0

log y = lim
x→0

log(1 + x)

x
= 1.

Since log(x) is continuous, this implies log(limx→0 y) = 1. On the
other hand, log e = 1, and due to the monotonicity of log(x), we have
limx→0 y = e, namely, limx→0(1 + x)1/x = e.
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(d) lim
n→∞

(1 + x
n )n = ex.

Proof : If x = 0, then limn→∞(1 + x
n )n = limn→∞ 1 = 1 = e0.

Suppose x 6= 0, let y = n/x, then limn→∞(1 + x
n )n = limy→∞[(1 +

1
y )y]x. Due to the continuity of xα, this leads to limy→∞[(1+ 1

y )y]x =

[limy→∞(1 + 1
y )y]x = ex, by Theorem 3.31.

5. Find the following limits

(a) lim
x→0

e−(1+x)1/x

x .

Solution: Let y = (1 + x)1/x, then log y = 1/x log(1 + x), namely,
x log y = log(1+x). Differentiate both sides gives: log y+x(1/y)y′ =
1/(1 + x), i.e., y′ = (1/(1 + x)− log y)y/x = (1/(1 + x)− 1/x log(1 +

x))(1+x)1/x/x = ( 1
x(1+x)−

log(1+x)
x2 )(1+x)1/x = ( 1

x−
1

1+x−
log(1+x)

x2 )(1+

x)1/x, and therefore, limx→0 y
′ = limx→0(1/x− 1/(x+ 1)− 1/x)e =

e limx→0(−1/(x+ 1)) = −e.
By Theorem 5.13, limx→0

e−y
x = limx→0−y′ = e.

(b) lim
n→∞

n
logn [n1/n − 1].

Solution: Let y = x1/x, then log y = 1
x log x.

Therefore, limx→+∞ log y = 0, by (45) on page 181, and hence
limx→+∞ y = 1, due to the continuity and monotonicity of log(x).
We then have

lim
n→∞

n

log n
[n1/n − 1] = lim

x→+∞

x

log x
[x1/x − 1] = lim

x→+∞

x1/x − 1

log x/x

= lim
x→+∞

y′

(1− log x)/x2
,

by Theorem 5.13. With the similar process as in (a), we have y′ =
x1/x(1−log x)

x2 . Therefore,

lim
x→+∞

y′

(1− log x)/x2
= lim
x→+∞

x1/x(1− log x)/x2

(1− log x)/x2
= lim
x→+∞

x1/x

= lim
x→+∞

y = 1.

(c) lim
x→0

tan x−x
x(1−cos x) .

Solution: Since ex =
∑∞
n=0

xn

n! and cosx = 1
2 (eix + e−ix), we have

cosx = 1− x2/2! + x4/4!− · · · . Then

lim
x→0

tanx− x
x(1− cosx)

= lim
x→0

tanx− x
x3/2!− x5/4! + · · ·

= lim
x→0

1/ cos2 x− 1

3x2/2

= lim
x→0

2 sin2 x

3x2 cos2 x
=

2

3
.
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(d) lim
x→0

x−sin x
tan x−x .

Solution: Similarly as in (c), we have sinx = x−x3/3!+x5/5!−· · · .
Then

lim
x→0

x− sinx

tanx− x
= lim
x→0

x3/3!− x5/5! + · · ·
tanx− x

= lim
x→0

3x2/3!

sin2 x/ cos2 x

= lim
x→0

x2 cos2 x

2 sin2 x
=

1

2
.

6. Suppose f(x)f(y) = f(x+ y) for all real x and y.

(a) Assuming that f is differentiable and not zero, prove that

f(x) = ecx

where c is a constant.
Proof : Since f is differentiable, we have

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim
x→0

f(x)− 1

x
,

since f(0) = f(0 + 0) = f(0)f(0) and f(0) 6= 0(so f(0) = 1). Fix
some integer m, and let pn = m/n, then pn → 0 when n → ∞,

thus we have limn→∞
f(m/n)−1

m/n = f ′(0). Since [f(m/n)]n = f(n ·
(m/n)) = f(m), we have f(m/n) = f(m)1/n. Therefore, f ′(0) =

(1/m) limn→∞
f(m)1/n−1

1/n = log f(m)/m, by Exercise 4(a). Note that

the above process is immaterial with m, or in other words, for any
integer m, we must have log f(m)/m = c, where c = f ′(0). Hence,
we have f(m) = ecm. Then for any rational number p = m/n,
[f(p)]n = f(np) = f(m) = ecm and thus f(p) = ecm/n = ecp. Since
f is differentiable, f is continuous, and since Q is dense in R and
f(p) = ecp for every p ∈ Q, we have f(x) = ecx for every x ∈ R,
according to Exercise 4.4.

(b) Prove the same thing, assuming only that f is continuous.
Proof : f(m) = f(m·1) = [f(1)]m, and hence log f(1) = log f(m)/m.
Let c = log f(1), then log f(m)/m = c for every m. The following
proof is the same as in (a). Note that only continuity of f is enough,
and differentiable is not required.

7. If 0 < x < π/2, prove that

2

π
<

sinx

x
< 1.

Proof : First, we will prove that sinx < x < tanx, for 0 < x < π/2. Let
f(x) = tanx − x, then f ′(x) = 1/ cos2 x − 1 = sin2 x/ cos2 x > 0, which
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gives f(x) > f(0) = 0, namely, tanx > x. Next, let g(x) = x − sinx,
then g′(x) = 1 − cosx > 0, hence g(x) > g(0) = 0, namely, x > sinx.
Therefore, sinx < x < tanx, for 0 < x < π/2.
Since sin x

x − 1 = sin x−x
x < 0, we have sin x

x < 1; and let h(x) = sin x
x ,

then h′(x) = x cos x−sin x
x2 < 0, since x < tanx gives x cosx − sinx < 0.

Therefore, h(x) > h(π/2) = 2/π, namely. 2/π < sinx/x < 1.

8. For n = 0, 1, 2, .., and x real, prove that

| sinnx| ≤ n| sinx|.

Note that this inequality may be false for other values of n. For instance,

| sin 1

2
π| > 1

2
| sinπ|.

Proof : We prove this by induction.
(i)When n = 0, sin 0x = 0 · sinx and the inequality holds.
(ii)Suppose the inequality holds when n = k, namely, | sin kx| ≤ k| sinx|.
Let n = k+1, then | sin(k+1)x| = | sin kx cosx+cos kx sinx| ≤ | sin kx cosx|+
| cos kx sinx| ≤ | sin kx|+ | sinx| ≤ k| sinx|+ | sinx| = (k+ 1)| sinx|. This
proves the inequality.

9. (a) Put sN = 1 + 1
2 + · · ·+ (1/N). Prove that

lim
N→∞

(sN − logN)

exists. (The limit, often denoted by γ, is called Euler’s constant. Its
numerical value is 0.5772.... It is not known whether γ is rational or
not.)
Proof : Let tn = sn − log n, it’s sufficient to show that {tn} is a
Cauchy sequence.
Suppose n > m, we have |tn − tm| = |(sn − log n)− (sm − logm)| =
|(sn − sm) + log(m/n)| = |

∑n
k=m+1 1/k + log(m/n)|.

It’s easy to see that∫ n

m+1

1

t
dt <

n∑
k=m+1

1

k
<

∫ n

m

1

t
dt,

and therefore

log(
n

m+ 1
) <

n∑
k=m+1

1

k
< log(

n

m
),

which gives

log(
n

m+ 1
) + log(

m

n
) <

n∑
k=m+1

1

k
+ log(

m

n
) < log(

n

m
) log(

m

n
),
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namely,

log(
m

m+ 1
) < tn − tm < 0.

Hence, |tn − tm| < log(1 + 1/m). Given any ε > 0, there exists
an integer N > 0 such that m > N implies log(1 + 1/m) < ε (or,
m > 1/(eε − 1)), namely, |tn − tm| < ε, when n > m > N . Thus,
{tn} is a Cauchy sequence, as we desire.

(b) Roughly how large must m be so that N = 10m satisfies sN > 100?
Solution: Since {tn} converges to γ, there exists some N > 0, such
that n ≥ N implies |tn − γ| < 0.1, namely, γ − 0.1 < tn < γ + 0.1,
or, log n+ γ − 0.1 < sn < log n+ γ + 0.1, which gives, log n < sn <
logn +1. Let N = 10m, this gives m log 10 < sN < m log 10 + 1. For
sN > 100, we must have m log 10 ≥ 100, which gives m ≥ 44.

10. Prove that
∑

1/p diverges; the sum extends over all primes. (This shows
that the primes form a fairly substantial subset of the positive integers.)
Proof : Given N , let p1, ..., pk be those primes that divide at least one
integer ≤ N . Then

N∑
n=1

1

n
≤

k∏
j=1

(
1 +

1

pj
+

1

p2
j

+ · · ·
)

=

k∏
j=1

(
1− 1

pj

)−1

≤ exp

k∑
j=1

2

pj
.

The last inequality holds because

(1− x)−1 ≤ e2x

if 0 ≤ x ≤ 1
2 . To see this, let f(x) = e2x(1−x), then f ′(x) = e2x(1−2x) ≥

0, for 0 ≤ x ≤ 1
2 . Hence, f(x) ≥ f(0) = 1, which gives e2x ≥ (1− x)−1.

Since
∑

1
n diverges, it’s clear that

∑
1
p from above.

11. Suppose f ∈ R on [0, A] for all A <∞, and f(x)→ 1 as x→ +∞. Prove
that

lim
t→0

t

∫ ∞
0

e−txf(x)dx = 1 (t > 0).

Proof : Fix some t > 0, e−tx is strictly decreasing on [0,+∞). When
x = 0, e−tx = 1 and when x → +∞, e−tx → 0. Given any ε > 0, since
f(x)→ 1 as x→ +∞, we can pick some A′ > 0 such that x > A′ implies
|f(x)− 1| < ε, namely, 1− ε < f(x) < 1 + ε. We hence have

(1− ε)t
∫ ∞
A′

e−txdx < t

∫ ∞
A′

e−txf(x)dx < (1 + ε)t

∫ ∞
A′

e−txdx.

Since

t

∫ ∞
A′

e−txdx = −
∫ ∞
A′

e−txd(−tx) = −e−tx
∣∣∣∣∞
A′

= e−tA
′
.
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Let t→ 0, we have e−tA
′ → 1 and thus

1− ε < lim
t→0

t

∫ ∞
A′

e−txf(x)dx < 1 + ε,

which gives

| lim
t→0

t

∫ ∞
A′

e−txf(x)dx− 1| < ε.

Since ε > 0 is arbitrary, this leads to

lim
t→0

t

∫ ∞
A′

e−txf(x)dx = 1.

On the other hand, since f ∈ R on [0, A] for all A <∞, f ∈ R on [0, A′],

thus |f | ∈ R on [0, A′], by Theorem 6.13(b). Let M =
∫ A′

0
|f(x)|dx, we

then have

|
∫ A′

0

e−txf(x)dx| ≤
∫ A′

0

|e−tx||f(x)|dx ≤
∫ A′

0

|f(x)|dx = M.

Therefore,

0 ≤ |t
∫ A′

0

e−txf(x)dx| ≤ tM.

Let t→ 0, we have

lim
t→0
|t
∫ A′

0

e−txf(x)dx| = 0,

and thus

lim
t→0

t

∫ A′

0

e−txf(x)dx = 0.

We hence have

lim
t→0

t

∫ ∞
0

e−txf(x)dx = lim
t→0

t

∫ A′

0

e−txf(x)dx

+ lim
t→0

t

∫ ∞
A′

e−txf(x)dx = 0 + 1 = 1.

12. Suppose 0 < δ < π, f(x) = 1 if |x| ≤ δ, f(x) = 0 if δ < |x| < π, and
f(x+ 2π) = f(x) for all x.

(a) Compute the Fourier coefficients of f .
Solution:

c0 =
1

2π

∫ π

−π
f(x)dx =

1

2π

∫ δ

−δ
dx =

δ

π
.

and

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

∫ δ

−δ
e−inxdx =

sinnδ

nπ
, (n 6= 0).
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(b) Conclude that

∞∑
n=1

sin(nδ)

n
=
π − δ

2
(0 < δ < π).

Proof : Let y =
∑+∞
n=1 cn. Since c−n = cn, we have

∑−1
n=−∞ cn =∑+∞

n=1 c−n =
∑+∞
n=1 cn = y, and therefore, 2y + c0 =

∑+∞
n=−∞ cn =

f(0) (since f(x) =
∑+∞
n=−∞ cne

inx). This gives 2y+ δ
π = 1, and thus

y = 1−δ/π
2 . So

∞∑
n=1

sin(nδ)

n
=

∞∑
n=1

πcn = πy =
π − δ

2
.

(c) Deduce from Parseval’s theorem that

∞∑
n=1

sin2(nδ)

n2δ
=
π − δ

2
.

Proof : Let y =
∑+∞
n=1 |cn|2. Since c−n = cn, we have

∑−1
n=−∞ |cn|2 =∑+∞

n=1 |c−n|2 =
∑+∞
n=1 |cn|2 = y, and therefore,

2y + |c0|2 =

+∞∑
n=−∞

|cn|2 =
1

2π

∫ π

−π
|f(x)|2dx,

by Parseval’s theorem, which gives

2y +
δ2

π2
=
δ

π
, i.e., y =

δ/π − δ2/π2

2
.

Hence,
∞∑
n=1

sin2(nδ)

n2δ
=

∞∑
n=1

π2

δ
|cn|2 =

π2

δ
y =

π − δ
2

.

(d) Let δ → 0 and prove that∫ ∞
0

(
sinx

x
)2dx =

π

2
.

Proof : Let A > 0 be any positive real number, and let f(x) =
( sin x

x )2. First we prove that f ∈ R on every [0, A]. Define

g(x) =

{
f(x) (x > 0)
1 (x = 0)

Since
lim
x→0

g(x) = lim
x→0

f(x) = 1 = g(0),
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g(x) is continuous on every [0, A] and hence g ∈ R on [0, A]. Since∫ A

0

f(x)dx = lim
c→0

∫ A

c

f(x)dx = lim
c→0

∫ A

c

g(x)dx =

∫ A

0

g(x)dx,

f ∈ R on every [0, A].
Let P ∗ = {x0 = 0, x1 = δ, ..., xm = A}(suppose (m− 1)δ < A < mδ)
be a partition on [0, A] (see Exercise 6.7(a)). Suppose P = {y0 =
0, y1, ..., yk = A} is any other partition on [0, A]. Choose δ > 0 small
enough so that xni−1

= ni−1δ ≤ yi < xni = niδ, for 1 ≤ i < k. We
then have

|
∑
ni

[f(niδ)∆xni −M1i(yi − xni−1
)−M2i(xni − yi)]|

≤
∑
ni

[|f(niδ)|∆xni +M1i(yi − xni−1
) +M2i(xni − yi)]

≤
∑
ni

[M∆xni+M(yi−xni−1
)+M(xni−yi)] = 2M

∑
ni

∆xni = 2Mkδ,

where M = sup
x∈[0,A]

|f(x)|, M1i = sup
x∈[yi−1,yi]

|f(x)|

and M2i = sup
x∈[yi,yi+1]

|f(x)|. Therefore, we have

∑
ni

f(niδ)∆xni ≤
∑
ni

[M1i(yi − xni−1) +M2i(xni − yi)] + 2Mkδ.

This gives

m∑
n=1

f(xn)∆xn =

m∑
n=1

f(nδ)δ ≤ U(P, f) + 2Mkδ,

and thus

lim
δ→0

m∑
n=1

f(xn)∆xn ≤ U(P, f).

Since P is arbitrary, we have

lim
δ→0

m∑
n=1

f(nδ)δ ≤
¯∫ A

0

f(x)dx, i.e., lim
δ→0

m∑
n=1

sin2(nδ)

n2δ
≤

¯∫ A

0

f(x)dx.

On the other hand, we have

|
∑
ni

[f(niδ)∆xni −m1i(yi − xni−1)−m2i(xni − yi)]|

≤
∑
ni

[|f(niδ)|∆xni +m1i(yi − xni−1
) +m2i(xni − yi)]

109



≤
∑
ni

[M∆xni+M(yi−xni−1
)+M(xni−yi)] = 2M

∑
ni

∆xni = 2Mkδ,

where M = sup
x∈[0,A]

|f(x)|, m1i = inf
x∈[yi−1,yi]

|f(x)|

and m2i = inf
x∈[yi,yi+1]

|f(x)|. Therefore, we have

∑
ni

f(niδ)∆xni ≥
∑
ni

[m1i(yi − xni−1) +m2i(xni − yi)]− 2Mkδ.

This gives

m∑
n=1

f(xn)∆xn =

m∑
n=1

f(nδ)δ ≥ L(P, f)− 2Mkδ,

and thus

lim
δ→0

m∑
n=1

f(xn)∆xn ≥ L(P, f).

Since P is arbitrary, we have

lim
δ→0

m∑
n=1

f(nδ)δ ≥
∫ A

0

f(x)dx, i.e., lim
δ→0

m∑
n=1

sin2(nδ)

n2δ
≥
∫ A

0

f(x)dx.

Hence, ∫ A

0

f(x)dx ≤ lim
δ→0

m∑
n=1

sin2(nδ)

n2δ
≤

¯∫ A

0

f(x)dx.

Since f ∈ R on [0, A],

lim
δ→0

m∑
n=1

sin2(nδ)

n2δ
=

∫ A

0

f(x)dx.

Thus, ∫ ∞
0

(
sinx

x
)2dx =

∫ ∞
0

f(x)dx = lim
A→∞

∫ A

0

f(x)dx

= lim
δ→0

∞∑
n=1

sin2(nδ)

n2δ
= lim
δ→0

π − δ
2

=
π

2
.

(e) Put δ = π/2 in (c). What do you get?
Solution: We get

∞∑
n=1

1− (−1)n

n2
=
π2

4
.
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13. Put f(x) = x if 0 ≤ x < 2π, and apply Parseval’s theorem to conclude
that

∞∑
n=1

1

n2
=
π2

6
.

Proof : By computing the Fourier coefficients of f , we get

c0 =
1

2π

∫ π

−π
f(x)dx =

1

2π

∫ π

−π
xdx = 0,

and

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

∫ π

−π
xe−inxdx =

(−1)n+1

in
(n 6= 0).

Thus |cn|2 = 1
n2 . Let y =

∑+∞
i=1 |cn|2, then

∑−1
n=−∞ |cn|2 =

∑+∞
n=1 |c−n|2 =∑+∞

n=1 |cn|2 = y. Hence

2y + |c0|2 =

+∞∑
n=−∞

|cn|2 =
1

2π

∫ π

−π
|f(x)|2dx =

1

2π

∫ π

−π
x2dx,

which gives

2y =
π2

3
, i.e., y =

π2

6
, i.e.,

∞∑
n=1

1

n2
=
π2

6
.

14. If f(x) = (π − |x|)2 on [−π, π], prove that

f(x) =
π2

3
+

∞∑
n=1

4

n2
cosnx

and deduce that
∞∑
n=1

1

n2
=
π2

6
,

∞∑
n=1

1

n4
=
π4

90
.

Proof : Compute the Fourier coefficients of f , we get

c0 =
1

2π

∫ π

−π
f(x)dx =

1

2π

∫ π

−π
(π − |x|)2dx =

π2

3
,

and

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

∫ π

−π
(π − |x|)2e−inxdx =

2

n2
(n 6= 0).

Hence,

f(x) =

+∞∑
n=−∞

cne
inx =

π2

3
+

+∞∑
n=1

2

n2
einx +

−1∑
n=−∞

2

n2
einx
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=
π2

3
+

+∞∑
n=1

2

n2
einx +

+∞∑
n=1

2

n2
e−inx =

π2

3
+

∞∑
n=1

2

n2
(einx + e−inx)

=
π2

3
+

∞∑
n=1

2

n2
2 cosnx =

π2

3
+

∞∑
n=1

4

n2
cosnx.

Put x = 0, we get

f(0) =
π2

3
+

∞∑
n=1

4

n2
= π2,

which gives
∞∑
n=1

1

n2
=
π2

6
.

Since cn = 2
n2 , we have |cn|2 = 4

n4 , for n 6= 0. Let y =
∑+∞
n=1 |cn|2, then

since cn = c−n, we have

2y + |c0|2 =

+∞∑
n=−∞

|cn|2 =
1

2π

∫ π

−π
|f(x)|2dx =

1

2π

∫ π

−π
(π − |x|)4dx,

which gives

2y +
π4

9
=
π4

5
, i.e., 2y =

4π4

45
, i.e., y =

2π4

45
.

Hence,
∞∑
n=1

1

n4
=

1

4
y =

π4

90
.

15. With Dn as defined in (77), put

KN (x) =
1

N + 1

N∑
n=0

Dn(x).

Prove that

KN (x) =
1

N + 1
· 1− cos(N + 1)x

1− cosx

and that

(a) KN ≥ 0,

(b) 1
2π

∫ π
−πKN (x)dx = 1,

(c) KN (x) ≤ 1
N+1 ·

2
1−cos δ if 0 < δ ≤ |x| ≤ π.
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If sN = sN (f ;x) is the Nth partial sum of the Fourier series of f , consider
the arithmetic means

σN =
s0 + s1 + · · ·+ sN

N + 1
.

Prove that

σN (f ;x) =
1

2π

∫ π

−π
f(x− t)KN (t)dt,

and hence prove the Fejer’s theorem:
If f is continuous, with period 2π, then σN (f ;x) → f(x) uniformly on
[−π, π].
Proof :
(i)Since

Dn(x) =

n∑
k=−n

eikx =
sin(n+ 1

2 )x

sin(x2 )
,

we have

N∑
n=0

Dn(x) =

N∑
n=0

sin(n+ 1
2 )x

sin(x2 )
=

N∑
n=0

2 sin(x2 ) sin(n+ 1
2 )x

2 sin2(x2 )

=
1

1− cosx

N∑
n=0

[cosnx− cos(n+ 1)x] =
1− cos(N + 1)x

1− cosx
.

Hence,

KN (x) =
1

N + 1

N∑
n=0

Dn(x) =
1

N + 1
· 1− cos(N + 1)x

1− cosx
.

(ii)Next, we prove:

(a) The fact KN ≥ 0 is clear.

(b) Since

1

2π

∫ π

−π
Dn(x)dx =

1

2π

∫ π

−π

n∑
k=−n

eikxdx =

n∑
k=−n

1

2π

∫ π

−π
eikxdx = 1,

we have

1

2π

∫ π

−π
KN (x)dx =

1

2π

∫ π

−π
(

1

N + 1

N∑
n=0

Dn(x))dx =
1

N + 1

N∑
n=0

1

2π

∫ π

−π
Dn(x)dx

=
1

N + 1

N∑
n=0

1 =
1

N + 1
· (N + 1) = 1.
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(c) Let g(x) = 1 − cosx, then g′(x) = sinx. If 0 < δ ≤ x ≤ π, then
sinx ≥ 0 and thus g(x) ≥ g(δ) = 1− cos δ; and if −π ≤ x ≤ −δ, then
sinx ≤ 0 and thus g(x) ≥ g(−δ) = 1 − cos δ. That is, 1 − cosx ≥
1− cos δ, for 0 < δ ≤ |x| ≤ π. Therefore,

KN (x) ≤ 1

N + 1
· 2

1− cosx
≤ 1

N + 1
· 2

1− cos δ
, 0 < δ ≤ |x| ≤ π.

(iii)Since

sn(f ;x) =
1

2π

∫ π

−π
f(x− t)Dn(t)dt,

we have

σN (f ;x) =
1

N + 1

N∑
n=0

sn(f ;x) =
1

N + 1

N∑
n=0

1

2π

∫ π

−π
f(x− t)Dn(t)dt

=
1

2π

∫ π

−π
f(x− t)( 1

N + 1

N∑
n=0

Dn(t))dt =
1

2π

∫ π

−π
f(x− t)KN (t)dt.

(iv)Since f is continuous on [−π, π], f is uniformly continuous on [−π, π].
Given any ε > 0, there exists some 0 < δ < π such that |x−y| < δ implies
|f(x)− f(y)| < ε/2, for any x, y ∈ [−π, π].
Due to (ii)(b), and KN (t) = KN (−t), put M = sup |f(x)| for x ∈ [−π, π],
we have

|σN (f ;x)− f(x)| = | 1

2π

∫ π

−π
(f(x− t)− f(x))KN (t)dt|

≤ 2M · 1

2π

∫ −δ
−π

KN (t)dt+
1

2π

∫ δ

−δ
|f(x−t)−f(x)|KN (t)dt+2M · 1

2π

∫ π

δ

KN (t)dt

<
2M

π

∫ π

δ

KN (t)dt+
ε

2
(

1

2π

∫ π

−π
KN (t)dt) ≤ 2M

π
(π−δ) 1

N + 1
· 2

1− cos δ
+
ε

2

=
4M(π − δ)

(N + 1)π(1− cos δ)
+
ε

2
< ε, for sufficiently large N.

Therefore, σN (f ;x)→ f(x) uniformly on [−π, π].

16. Prove a pointwise version of Fejer’s theorem:
If f ∈ R and f(x+), f(x−) exist for some x, then

lim
n→∞

σN (f ;x) =
1

2
[f(x+) + f(x−)].

Proof : Since f(x+), f(x−) exist for some x, Given any ε > 0, there exist
some δ1 > 0 and δ2 > 0 such that x < t < x+ δ1 implies |f(t)− f(x+)| <
ε/2 and x− δ2 < t < x implies |f(t)− f(x−)| < ε/2. Let δ = min(δ1, δ2),
then x < t < x+ δ implies |f(t)− f(x+)| < ε/2 and x− δ < t < x implies
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|f(t) − f(x−)| < ε/2. Since f ∈ R, f is bounded, and thus |f | ≤ M , for
some M > 0. As in Exercise 15(iv), we have

|σN (f ;x)−f(x+) + f(x−)

2
| = | 1

2π

∫ π

−π
(f(x−t)−f(x+) + f(x−)

2
)KN (t)dt|

= | 1

2π

∫ −δ
−π

(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt

+
1

2π

∫ δ

−δ
(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt

+
1

2π

∫ π

δ

(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt|

≤ 1

2π

∫ −δ
−π
|f(x− t)− f(x+) + f(x−)

2
|KN (t)dt

+| 1

2π

∫ δ

−δ
(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt|

+
1

2π

∫ π

δ

|f(x− t)− f(x+) + f(x−)

2
|KN (t)dt

≤ 2M · 1

2π

∫ −δ
−π

KN (t)dt+ | 1

2π

∫ δ

−δ
(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt|

+2M
1

2π

∫ π

δ

KN (t)dt ≤ 4M(π − δ)
(N + 1)π(1− cos δ)

+| 1

2π

∫ δ

−δ
(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt|,

and since

| 1

2π

∫ δ

−δ
(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt| =

| 1

2π

∫ 0

−δ
(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt

+
1

2π

∫ δ

0

(f(x− t)− f(x+) + f(x−)

2
)KN (t)dt|

| 1

2π

∫ 0

−δ
[(f(x− t)− f(x+)) +

f(x+)− f(x−)

2
]KN (t)dt

+
1

2π

∫ δ

0

[(f(x− t)− f(x−)) +
f(x−)− f(x+)

2
]KN (t)dt|

= | 1

2π

∫ 0

−δ
(f(x− t)− f(x+))KN (t)dt+

1

2π

∫ 0

−δ

f(x+)− f(x−)

2
KN (t)dt
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+
1

2π

∫ δ

0

(f(x− t)− f(x−))KN (t)dt+
1

2π

∫ δ

0

f(x−)− f(x+)

2
KN (t)dt|

= | 1

2π

∫ 0

−δ
(f(x− t)− f(x+))KN (t)dt+

f(x+)− f(x−)

2
· 1

2π

∫ δ

0

KN (t)dt

+
1

2π

∫ δ

0

(f(x− t)− f(x−))KN (t)dt+
f(x−)− f(x+)

2
· 1

2π

∫ δ

0

KN (t)dt|

= | 1

2π

∫ 0

−δ
(f(x− t)− f(x+))KN (t)dt+

1

2π

∫ δ

0

(f(x− t)− f(x−))KN (t)dt|

≤ 1

2π

∫ 0

−δ
|f(x− t)− f(x+)|KN (t)dt+

1

2π

∫ δ

0

|f(x− t)− f(x−)|KN (t)dt|

<
ε

2
· ( 1

2π

∫ 0

−δ
KN (t)dt+

1

2π

∫ δ

0

KN (t)dt) =
ε

2
· 1

2π

∫ δ

−δ
KN (t)dt

≤ ε

2
· 1

2π

∫ π

−π
KN (t)dt =

ε

2
,

we hence have

|σN (f ;x)− f(x+) + f(x−)

2
| < 4M(π − δ)

(N + 1)π(1− cos δ)
+
ε

2
< ε,

for sufficiently large N , which is the same to say:

lim
n→∞

σN (f ;x) =
1

2
[f(x+) + f(x−)].

17. Assume f is bounded and monotonic on [−π, π), with Fourier coefficients
cn, as given by (62).

(a) Use Exercise 17 of Chap. 6 to prove that {ncn} is a bounded se-
quence.
Proof : We have

ncn = n
1

2π

∫ π

−π
f(x)e−inxdx = − 1

2iπ

∫ π

−π
f(x)(e−inx)′dx

= − 1

2iπ
(f(x)e−inx|π−π −

∫ π

−π
e−inxdf),

Since f is bounded, |f | ≤M . Then

|ncn| =
1

2π
|f(x)e−inx|π−π −

∫ π

−π
e−inxdf | ≤

1

2π
(|f(π)e−inπ|+ |f(−π)einπ|+

∫ π

−π
|e−inx|df)

≤ 1

2π
(2M + f(π)− f(−π)) ≤ 1

2π
· 4M =

2M

π
.

Therefore, {ncn} is bounded.
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(b) Combine (a) with Exercise 16 and with Exercise 14(e) of Chap. 3,
to conclude that

lim
N→∞

sN (f ;x) =
1

2
[f(x+) + f(x−)]

for every x.
Proof : Let a0(f ;x) = c0, an(f ;x) = cne

inx + c−ne
−inx, n ≥ 1, and

hence an(f ;x) = sn(f ;x)−sn−1(f ;x), for n ≥ 1. Since |nan(f ;x)| =
|n(cne

inx+c−ne
−inx)| ≤ n(|cneinx|+ |c−ne−inx|) ≤ |ncn|+ |−nc−n|,

nan(f ;x) is bounded. Therefore, according to Exercise 14(e) of Chap.
3, since

lim
N→∞

σN (f ;x) =
1

2
[f(x+) + f(x−)],

we have

lim
N→∞

sN (f ;x) =
1

2
[f(x+) + f(x−)],

for every x.
Note that, since f is monotonic, f(x+) and f(x−) exist at every
point of x of (−π, π), by Theorem 4.29; and since f is monotonic,
f ∈ R, by Theorem 6.9. Therefore, the hypothesis of f in Exercise
16 holds.

(c) Assume only that f ∈ R on [−π, π] and that f is monotonic in some
segment (α, β) ⊆ [−π, π]. Prove that the conclusion of (b) holds for
every x ∈ (α, β). (This is an application of the localization theorem.)
Proof : Define a function g such that:
(i)g is bounded and monotonic on [−π, π);
(ii)g = f on (α, β).
By (b), we have

lim
N→∞

sN (g;x) =
1

2
[g(x+) + g(x−)] =

1

2
[f(x+) + f(x−)],

for every x ∈ (α, β). By the localization theorem, we have

lim
N→∞

sN (f ;x) = lim
N→∞

sN (g;x) =
1

2
[f(x+) + f(x−)],

for every x ∈ (α, β).

18. Define

f(x) = x3 − sin2 x tanx g(x) = 2x2 − sin2 x− x tanx.

Find out, for each of these two functions, whether it is positive or negative
for all x ∈ (0, π/2), or whether it changes sign. Prove your answer.
Solution: I’ve no idea at the current time.

117



19. Suppose f is a continuous function on R1, f(x + 2π) = f(x), and α/π is
irrational. Prove that

lim
N→∞

1

N

N∑
n=1

f(x+ nα) =
1

2π

∫ π

−π
f(t)dt

for every x.
Proof : We first prove this for f(x) = eikx.
(i)k = 0, then f(x) = 1, and we have

lim
N→∞

1

N

N∑
n=1

f(x+ nα) = 1 =
1

2π

∫ π

−π
f(t)dt.

(ii)k 6= 0, then we have

1

2π

∫ π

−π
f(t)dt =

1

2π

∫ π

−π
eiktdt = 0,

and

lim
N→∞

1

N

N∑
n=1

f(x+ nα) = lim
N→∞

1

N

N∑
n=1

eik(x+nα)

= lim
N→∞

1

N
eikx

N∑
n=1

eiknα = lim
N→∞

eikx

N
· e

ik(N+1)α − eikα

eikα − 1
= 0.

Note that this is due to the fact that α/π is irrational. To see this, let
α = βπ, where β is some irrational number. Then kα = kβπ 6= 2mπ, for
every integer m. Hence eikα 6= 1. On the other hand we have k(N+1)α =
kNα+ kα = kNβπ + kα 6= kα+ 2mπ, for every integer m if N 6= 0, and
therefore, eik(N+1)α 6= eikα if N 6= 0. Since |eiθ| = 1, for every real θ, we
have the previous result and thus,

lim
N→∞

1

N

N∑
n=1

f(x+ nα) = 0 =
1

2π

∫ π

−π
f(t)dt.

Next, we will prove this for every f which satisfies the given hypothesis.
We have

σN (f ;x+mα) =
1

N + 1

N∑
n=0

sn =
1

N + 1

N∑
n=0

n∑
k=−n

cke
ik(x+mα),

then

lim
M→∞

1

M

M∑
m=1

σN (f ;x+mα) =
1

N + 1

N∑
n=0

n∑
k=−n

ck lim
M→∞

1

M

M∑
m=1

eik(x+mα)
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=
1

N + 1

N∑
n=0

n∑
k=−n

ck
1

2π

∫ π

−π
eiktdt =

1

N + 1

N∑
n=0

c0 = c0.

Since f is continuous, and f(x+2π) = f(x), by Fejer’s theorem, σN (f ;x)→
f(x) uniformly on [−π, π], and thus uniformly on R1. Thus given any
ε > 0, there exists an integer N0 > 0 such that N > N0 implies

|σN (f ;x+mα)− f(x+mα)| < ε,

for any x and m. Hence,

| 1

M

M∑
m=1

σN (f ;x+mα)− 1

M

M∑
m=1

f(x+mα)|

= | 1

M

M∑
m=1

(σN (f ;x+mα)− f(x+mα))|

≤ 1

M

M∑
m=1

|σN (f ;x+mα)− f(x+mα)| < 1

M

M∑
m=1

ε = ε,

for N > N0. Therefore, we have

| lim
M→∞

1

M

M∑
m=1

σN (f ;x+mα)− lim
M→∞

1

M

M∑
m=1

f(x+mα)| < ε,

for N > N0, and thus

lim
N→∞

lim
M→∞

1

M

M∑
m=1

σN (f ;x+mα) = lim
M→∞

1

M

M∑
m=1

f(x+mα),

for every x, which gives

lim
M→∞

1

M

M∑
m=1

f(x+mα) = lim
N→∞

c0 = c0 =
1

2π

∫ π

−π
f(t)dt.

20. The following simple computation yields a good approximation to Stir-
ling’s formula.
For m = 1, 2, 3, ..., define

f(x) = (m+ 1− x) logm+ (x−m) log(m+ 1)

if m ≤ x ≤ m+ 1, and define

g(x) =
x

m
− 1 + logm
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if m − 1
2 ≤ x < m + 1

2 . Draw the graphs of f and g. Note that f(x) ≤
log x ≤ g(x) if x ≥ 1 and that∫ n

1

f(x)dx = log(n!)− 1

2
log n > −1

8
+

∫ n

1

g(x)dx.

Integrate log x over [1, n]. Conclude that

7

8
< log(n!)− (n+

1

2
) log n+ n < 1

for n = 2, 3, 4, .... (Note: log
√

2π ∼ 0.918.) Thus

e7/8 <
n!

(n/e)n
√
n
< e.

Proof :
(i)First we prove f(x) ≤ log x ≤ g(x) if x ≥ 1.
Since (− log x)′′ = (−1/x)′ = 1/x2 > 0 for x > 0, − log x is convex on
(0,+∞). Hence,

− log(λm+ (1− λ)(m+ 1)) ≤ λ(− logm) + (1− λ)(− log(m+ 1))

for every 0 < λ < 1. For m ≤ x ≤ m + 1, put λ = m + 1 − x, we have
0 ≤ λ ≤ 1, and therefore,

log((m+1−x)m+(x−m)(m+1)) ≥ (m+1−x) logm+(x−m) log(m+1),

namely,

log x ≥ (m+ 1− x) logm+ (x−m) log(m+ 1) i.e., log x ≥ f(x).

On the other hand, put

h(x) = g(x)− log x =
x

m
− 1 + logm− log x, m− 1

2
≤ x < m+

1

2
,

we have h′(x) = 1/m − 1/x. Let h′(x) = 0, we get x = m. Since
h′′(x) = 1/x2 > 0 for any m − 1

2 ≤ x < m + 1
2 , h(x) ≥ h(m) = 0, which

gives g(x) ≥ log x, for any m− 1
2 ≤ x < m+ 1

2 .
Note that the above statements hold for every m = 1, 2, 3, ..., and there-
fore, we have f(x) ≤ log x ≤ g(x) for all x ≥ 1.
(ii)Next we will prove that∫ n

1

f(x)dx = log(n!)− 1

2
log n > −1

8
+

∫ n

1

g(x)dx.

We have ∫ n

1

f(x)dx =

n−1∑
m=1

∫ m+1

m

f(x)dx
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=

n−1∑
m=1

∫ m+1

m

[(m+ 1− x) logm+ (x−m) log(m+ 1)]dx

=

n−1∑
m=1

[log(1 +
1

m
)

∫ m+1

m

xdx+ (m+ 1) logm−m log(m+ 1)]

=

n−1∑
m=1

[
2m+ 1

2
log(1 +

1

m
) + (m+ 1) logm−m log(m+ 1)]

=

n−1∑
m=1

[
1

2
log(

m+ 1

m
) + logm] =

1

2
log n+ log((n− 1)!) = log(n!)− 1

2
log n,

and∫ n+1/2

1/2

g(x)dx =

n∑
m=1

∫ m+1/2

m−1/2

g(x)dx =

n∑
m=1

∫ m+1/2

m−1/2

(
x

m
− 1 + logm)dx

n∑
m=1

[logm−1+
1

m
·
∫ m+1/2

m−1/2

xdx =

n∑
m=1

[logm−1+
1

m
·m] =

n∑
m=1

logm = log(n!).

Since ∫ 1

1/2

g(x)dx =

∫ 1

1/2

(x− 1)dx = −1

8
,

and ∫ n+1/2

n

g(x)dx =

∫ n+1/2

n

(
x

n
− 1 + log n)dx

=
1

2n
· (n+

1

4
) +

1

2
(log n− 1) =

1

8n
+

1

2
log n,

we have∫ n

1

g(x)dx =

∫ n+1/2

1/2

g(x)dx−
∫ 1

1/2

g(x)dx−
∫ n+1/2

n

g(x)dx

= log(n!) +
1

8
− 1

8n
− 1

2
log n =

∫ n

1

f(x)dx+
1

8
− 1

8n
<

∫ n

1

f(x)dx+
1

8
.

Therefore, ∫ n

1

f(x)dx = log(n!)− 1

2
log n > −1

8
+

∫ n

1

g(x)dx.

(iii) Since f(x) ≤ log x ≤ g(x) if x ≥ 1, integrate over [1, n] gives us∫ n

1

f(x)dx <

∫ n

1

log xdx <

∫ n

1

g(x)dx,
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namely, ∫ n

1

f(x)dx < n log n− (n− 1) <

∫ n

1

g(x)dx, i.e.,

log(n!)− 1

2
log n < n log n− (n− 1) < log(n!)− 1

2
log n+

1

8
,

which gives
7

8
< log(n!)− (n+

1

2
) log n+ n < 1.

Thus,
7

8
< log(

n!en

nn
√
n

) < 1, i.e., e7/8 <
n!

(n/e)n
√
n
< e.

Note that since

7

8
− log

√
2π < log(n!)− (n+

1

2
) log n+ n− log

√
2π < 1− log

√
2π,

then

−0.043 < log(
n!en

nn
√

2πn
) < 0.082,

which gives

e−0.043 <
n!en

nn
√

2πn
< e0.082, i.e., 0.958 <

n!

(n/e)n
√

2πn
< 1.085.

21. Let

Ln =
1

2π

∫ π

−π
|Dn(t)|dt (n = 1, 2, 3, ...).

Prove that there exists a constant C > 0 such that

Ln > C log n (n = 1, 2, 3, ...),

or, more precisely, that the sequence

{Ln −
4

π2
log n}

is bounded.
Proof : No idea at the current time...

22. If α is real and −1 < x < 1, prove Newton’s binomial theorem

(1 + x)α = 1 +

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
xn.

Show also that

(1− x)−α =

∞∑
n=0

Γ(n+ α)

n!Γ(α)
xn
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if −1 < x < 1 and α > 0.
Proof :
(i) First, we prove that

lim
n→∞

[(
n+m

n

)]1/n

= 1, m ∈ I+.

Since (
n+m

n

)
=

(n+m)!

n!m!
,

By Stirling’s formula, we have

lim
n→∞

[(
n+m

n

)]1/n

= lim
n→∞

[
(n+m)!

n!m!

]1/n

= lim
n→∞

[
[(m+ n)/e]m+n

√
2π(m+ n)

m!(n/e)n
√

2πn

]1/n

= lim
n→∞

[
(m+ n)m

m!em
·
(

1 +
m

n

)n
·

√(
1 +

m

n

)]1/n

= lim
n→∞

[
(m+ n)m

m!em
·
[(

1 +
m

n

) n
m
]m
·

√(
1 +

m

n

)]1/n

= lim
n→∞

[
(m+ n)m

m!em
· em · 1

]1/n

= lim
n→∞

[
(m+ n)m

m!

]1/n

= lim
n→∞

(m+ n)m/n = lim
n→∞

[
n

(
1 +

m

n

)]m/n
= 1.

(ii) Next, denote the right side by f(x), we will prove that the series
converges. Since |x| < 1, it’s sufficient to show that

lim sup
n→∞

∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!

∣∣∣∣1/n ≤ 1.

(ii.a) If α is 0 or any positive integer, suppose α = N , then n > N implies
α(α− 1) · · · (α− n+ 1) = 0, and therefore,

lim sup
n→∞

∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!

∣∣∣∣1/n = 0.

(ii.b) Suppose α > 0 and α is not an integer, then there exists some integer
m ≥ 0 such that m < α < m+1. Then we have α−(m+1)+1 = α−m > 0
and α− (m+ 2) + 1 = α− (m+ 1) < 0. Therefore, when n > m+ 1, we
can rewrite

α(α− 1) · · · (α− n+ 1)

n!
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as

α(α− 1) · · · (α− (m+ 1) + 1) · (α− (m+ 2) + 1) · · · (α− n+ 1)

n!
.

Let

M =

∣∣∣∣α(α− 1) · · · (α− (m+ 1) + 1)

∣∣∣∣,
then∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!

∣∣∣∣ = M ·
∣∣∣∣ (α− (m+ 2) + 1) · · · (α− n+ 1)

n!

∣∣∣∣
= M · ((m+ 1)− α) · · · ((n− 1)− α)

n!
.

Since m < α < m+ 1, we have

((m+ 1)− α) · · · ((n− 1)− α)

n!
≤ ((m+ 1)−m) · · · ((n− 1)−m)

n!

=
(n− 1−m)!

n!
=

(n− (m+ 1))!(m+ 1)!

n!(m+ 1)!
=

1(
n

n−(m+1)

)
(m+ 1)!

.

Hence,

lim sup
n→∞

∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!

∣∣∣∣1/n
= lim sup

n→∞

[
M · ((m+ 1)− α) · · · ((n− 1)− α)

n!

]1/n

≤ lim sup
n→∞

[
M · 1(

n
n−(m+1)

)
(m+ 1)!

]1/n

= 1,

due to the fact that

lim sup
n→∞

[(
n

n− (m+ 1)

)]1/n

= lim
n→∞

[(
n

n− (m+ 1)

)]1/n

n′=n−(m+1)−−−−−−−−−→= lim
n′→∞

[(
n′ + (m+ 1)

n′

)](1/n′)(n′/(n′+(m+1)))

= 1.

(ii.c) If α < 0, we have −α > 0. Suppose m ≤ −α < m+ 1, then∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!

∣∣∣∣ =
(−α)((−α) + 1) · · · ((−α) + (n− 1))

n!

<
(m+ 1)((m+ 1) + 1) · · · ((m+ 1) + (n− 1))

n!
=

(m+ n)!

n!m!
=

(
n+m

n

)
.
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Therefore,

lim sup
n→∞

∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!

∣∣∣∣1/n < lim sup
n→∞

[(
n+m

n

)]1/n

= lim
n→∞

[(
n+m

n

)]1/n

= 1.

Combine (ii.a), (ii.b), (ii.c), we get the desired result that the series con-
verges for any real α.
(iii) Next, we prove that

(1 + x)f ′(x) = αf(x).

Since

f ′(x) =

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
nxn−1,

we have

(1 + x)f ′(x) = (1 + x)

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
nxn−1

=

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
nxn−1 +

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
nxn

= α+

∞∑
n=2

α(α− 1) · · · (α− n+ 1)

n!
nxn−1

+

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
nxn

= α+

∞∑
n=1

α(α− 1) · · · (α− (n+ 1) + 1)

(n+ 1)!
(n+ 1)xn

+

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
nxn

= α+

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
(α− n+ n)xn

= α(1 +

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

n!
xn) = αf(x).

(iv) Solve
(1 + x)f ′(x) = αf(x)
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gives us

(1 + x)
df(x)

dx
= αf(x), i.e.,

df(x)

f(x)
= α

dx

(1 + x)
,

and therefore,

log f(x) = α log(1 + x) + C, i.e., f(x) = C ′(1 + x)α.

Since f(0) = 1, we get C ′ = 1 and hence f(x) = (1 + x)α.
(v) Substitute −x as x, −α as α, we have

(1− x)−α = 1 +

∞∑
n=1

(−α)(−α− 1) · · · (−α− n+ 1)

n!
(−x)n

= 1 +

∞∑
n=1

α(α+ 1) · · · (α+ n− 1)

n!
xn =

∞∑
n=0

Γ(n+ α)

n!Γ(α)
xn,

since

Γ(n+ α) = (α+ n− 1)Γ(α+ n− 1) = · · · = (α+ n− 1) · · · (α+ 1)αΓ(α).

23. Let γ be a continuously differentiable closed curve in the complex plane,
with parameter interval [a, b], and assume that γ(t) 6= 0 for every t ∈ [a, b].
Define the index of γ to be

Ind(γ) =
1

2πi

∫ b

a

γ′(t)

γ(t)
dt.

Prove that Ind(γ) is always an integer.
Compute Ind(γ) when γ(t) = eint, a = 0, b = 2π.
Explain why Ind(γ) is often called the winding number of γ around 0.
Proof :
(i) Since γ is continuously differentiable, γ

′

γ is continuous on [a, b]. Define

ϕ(x) =

∫ x

a

γ′(t)

γ(t)
dt, x ∈ [a, b],

then ϕ(a) = 0 and by Theorem 6.20, ϕ′ = γ′

γ .
Solve this equation gives us

dϕ

dx
=

dγ

γdx
, i.e., dϕ =

dγ

γ
,

which gives
ϕ = log γ + C, i.e., γ = C ′ exp(ϕ),
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where C ′ 6= 0 is some constant. Since γ(a) = γ(b) (γ is closed), we must
have expϕ(b) = expϕ(a) = 1(because ϕ(a) = 0). Note that

Ind(γ) =
1

2πi

∫ b

a

γ′(t)

γ(t)
dt =

1

2πi
(ϕ(b)− ϕ(a)) =

ϕ(b)

2πi
,

and therefore, ϕ(b) = 2πiInd(γ). Combining with the fact expϕ(b) = 1
gives that Ind(γ) is an integer.
(ii) When γ(t) = eint, a = 0, b = 2π, we have

Ind(γ) =
1

2πi

∫ 2π

0

(eint)′

eint
dt =

1

2πi
in

∫ 2π

0

dt = n.

(iii) Here, I will explain why Ind(γ) is often called the winding number of
γ around 0.
By (ii), if Ind(γ) = n, then we have Ind(γ) = Ind(eint). By Theorem
6.17, eint, t ∈ [0, 2π] is rectifiable, and its length

Λ(eint) =

∫ 2π

0

|(eint)′|dt =

∫ 2π

0

|ineint|dt = 2πn.

Since the length of the unit circle on the complex plane is 2π, we know
that the length of eint, t ∈ [0, 2π] is n times the length of the unit circle.
What’s more, since eint, t ∈ [0, 2π] has the same range as the unit circle,
it seems as the curve eint, t ∈ [0, 2π] winds around 0 along the edge of the
unit circle n times.

24. Let γ be as in Exercise 23, and assume in addition that the range of γ
does not intersect the negative real axis. Prove that Ind(γ) = 0.
Proof : We first prove that for 0 ≤ c < ∞, Ind(γ + c) is a continuous
function of c.
Suppose 0 ≤ x, y <∞, we have

|Ind(γ + x)− Ind(γ + y)| = | 1

2πi

∫ b

a

[
γ′(t)

γ(t) + x
− γ′(t)

γ(t) + y
]dt|

=
1

2π
|
∫ b

a

γ′(t)(y − x)

(γ(t) + x)(γ(t) + y)
dt| ≤ 1

2π

∫ b

a

|γ′(t)||y − x|
|γ(t) + x||γ(t) + y|

dt.

Since γ is continuously differentiable, |γ′| ≤ M for some M > 0, |γ| ≥ m
for some m > 0, since γ 6= 0 and γ is continuous. (Or m = inf |γ(t)|, for
t ∈ [a, b], and since γ is continuous (so |γ| is continuous), we must have
some t0 ∈ [a, b], for which |γ(t0)| = m. Since γ(t) 6= 0 for every t ∈ [a, b],
m > 0.) On the other hand, since the range of γ does not intersect the
negative real axis, we have |γ + x| ≥ |γ| ≥ m and |γ + y| ≥ |γ| ≥ m.
Hence,

1

2π

∫ b

a

|γ′(t)||y − x|
|γ(t) + x||γ(t) + y|

dt ≤ (b− a)M

2πm2
|y − x|.
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Then given any ε > 0, we can pick a δ such that 0 < δ < 2πm2

(b−a)M ε. When

|y − x| < δ, we have

|Ind(γ + x)− Ind(γ + y)| ≤ (b− a)M

2πm2
|y − x| < (b− a)M

2πm2
δ < ε.

This shows that for 0 ≤ c <∞, Ind(γ + c) is a continuous function of c.
On the other hand, Exercise 23 tells us that Ind(γ) is always an integer,
so Ind(γ+ c) must be an integer, for every 0 ≤ c <∞, since γ+ c satisfies
the hypothesis of Exercise 23 if γ satisfies them. Therefore, Ind(γ + c)
must be a constant, for 0 ≤ c < ∞. To prove this, we only need to
show that Ind(γ+ c) is constant on every interval [0, A]. Since Ind(γ+ c)
is continuous, it is uniformly continuous on [0, A]. Then there exists a
δ > 0 such that |y − x| < δ implies |Ind(γ + y) − Ind(γ + x)| < 1.
Since Ind(γ + c) is integer-valued, this implies Ind(γ + y) = Ind(γ + x)
if |y − x| < δ. Pick an r such that 0 < r < δ, then there is an integer
N such that Nr ≤ A < (N + 1)r. In each interval [ir, (i + 1)r], where
0 ≤ i ≤ N , Ind(γ + c) is an constant, say Ind(γ + ir). Hence we have
Ind(γ+ir) = Ind(γ+(i+1)r), for every 0 ≤ i ≤ N , which is equivalent to
say that Ind(γ+c) is constant on [0, A], for every positive A and therefore,
Ind(γ+ c) is constant on [0,∞). Since Ind(γ+ c)→ 0 as c→∞, we have

Ind(γ) = Ind(γ + 0) = lim
c→∞

Ind(γ + c) = 0.

25. Suppose γ1 and γ2 are curves as in Exercise 23, and

|γ1(t)− γ2(t)| < |γ1(t)| (a ≤ t ≤ b).

Prove that Ind(γ1) = Ind(γ2).
Proof : Put γ = γ2/γ1. Then |1− γ| < 1, hence Ind(γ) = 0, by Exercise
24. Also, since

γ′

γ
=

(γ2/γ1)′

γ2/γ1
=

(γ′2γ1 − γ′1γ2)/γ2
1

γ2/γ1
=
γ′2γ1 − γ′1γ2

γ2γ1
=
γ′2
γ2
− γ′1
γ1
,

we have

Ind(γ) =
1

2πi

∫ b

a

γ′(t)

γ(t)
dt =

1

2πi

∫ b

a

[
γ′2(t)

γ2(t)
− γ
′
1(t)

γ1(t)
]dt = Ind(γ2)−Ind(γ1),

which gives Ind(γ1) = Ind(γ2).

26. Let γ be a closed curve in the complex plane (not necessarily differentiable)
with parameter interval [0, 2π], such that γ(t) 6= 0 for every t ∈ [0, 2π].
Choose δ > 0 so that |γ(t)| > δ for all t ∈ [0, 2π]. If P1 and P2 are
trigonometric polynomials such that |Pj(t)− γ(t)| < δ/4 for all t ∈ [0, 2π]
(their existence is assured by Theorem 8.15), prove that

Ind(P1) = Ind(P2)
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by applying Exercise 25.
Define this common value to be Ind(γ).
Prove that the statements of Exercises 24 and 25 hold without any differ-
entiability assumption.
Proof : Clearly, Pj(t), t ∈ [0, 2π] satisfy the hypothesis of Exercise 23,
namely, they are continuously differentiable and closed nonzero curves.
Since |P1(t) − γ(t)| < δ/4, we have |P1(t)| > |γ(t)| − δ/4 > 3δ/4. Thus,
|P1(t) − P2(t)| = |(P1(t) − γ(t)) − (P2(t) − γ(t))| ≤ |P1(t) − γ(t)| +
|P2(t) − γ(t)| < δ/2 < 3δ/4 < |P1(t)|, and by Exercise 25, we have
Ind(P1) = Ind(P2).
If we define this common value to be Ind(γ), the statements of Exercise
24 and 25 hold without any differentiability assumption.
First, consider the statement of Exercise 24. Since |γ(t)| > δ and |P (t)−
γ(t)| < δ/4, we have |P (t)| > |γ(t)| − δ/4 > 3δ/4. Thus if the range
of γ does not intersect the negative real axis, so does P . Then we have
Ind(P ) = 0, since P satisfy the hypothesis of Exercise 23 and 24. Hence
Ind(γ) = 0.
Next, consider the statement of Exercise 25. Let g(t) = |γ1(t)| − |γ1(t)−
γ2(t)|, for t ∈ [a, b]. Since |γ1(t) − γ2(t)| < |γ1(t)|, for t ∈ [a, b], we have
g(t) > 0, for t ∈ [a, b]. Since γ1 and γ2 are continuous on [a, b], g is con-
tinuous on [a, b]. Let µ = inf g(t), t ∈ [a, b], then there is some t0 ∈ [a, b]
such that g(t0) = µ and therefore, µ > 0. We hence have g(t) ≥ µ, which
gives |γ1(t)| ≥ |γ1(t) − γ2(t)| + µ. Pick δ such that 0 < 3δ/4 < µ, and
|γ1| > δ, |γ2| > δ. Choose trigonometric polynomials P1, P2 such that
|Pi(t) − γi(t)| < δ/4 for all t ∈ [0, 2π], i = 1, 2, thus Ind(γi) = Ind(Pi),
i = 1, 2. Then we have

|γ1| − δ/4 ≥ |γ1− γ2|+µ− δ/4 > |γ1− γ2|+ 3δ/4− δ/4 = |γ1− γ2|+ δ/2,

which gives

|P1−P2| = |(P1−γ1)+(γ1−γ2)+(γ2−P2)| ≤ |P1−γ1|+|γ1−γ2|+|γ2−P2|

< |γ1 − γ2|+ δ/2 < |γ1| − δ/4 < |P1|.

By Exercise 25, we have Ind(P1) = Ind(P2) and therefore Ind(γ1) =
Ind(P1) = Ind(P2) = Ind(γ2).

27. Let f be a continuous complex function defined in the complex plane.
Suppose there is a positive integer n and a complex number c 6= 0 such
that

lim
|z|→∞

z−nf(z) = c.

Prove that f(z) = 0 for at least one complex number z.
Note that this is a generalization of Theorem 8.8.
Proof : Assume f(z) 6= 0 for all z, define γr(t) = f(reit) for 0 ≤ r < ∞,
0 ≤ t ≤ 2π. We will prove the following statements about the curves γr.
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(a) Ind(γ0) = 0.
Since γ0(t) = f(0) for all t ∈ [0, 2π], and f(0) 6= 0. We have

Ind(γ0) =
1

2πi

∫ 2π

0

γ′0(t)

γ0(t)
dt =

1

2πi

∫ 2π

0

0

f(0)
dt = 0,

by Exercise 23.

(b) Ind(γr) = n for all sufficiently large r.
Since

lim
|z|→∞

z−nf(z) = c,

we have

lim
r→∞

r−ne−intf(reit) = c, i.e., lim
r→∞

r−ne−intγr(t) = c.

Then when r is sufficiently large, |r−ne−intγr(t) − c| < |c|, for all
t ∈ [0, 2π]. Let g(t) = crneint, t ∈ [0, 2π], we hence have

|g(t)− γr(t)| = |γr(t)− g(t)| = |rneint(r−ne−intγr(t)− c)|

= |rneint| · |r−ne−intγr(t)− c| < |c| · |rneint| = |crneint| = |g(t)|.

On the other hand, since g(t) is continuously differentiable, we have

Ind(g(t)) =
1

2πi

∫ 2π

0

g′(t)

g(t)
dt =

1

2πi

∫ 2π

0

(crneint)′

crneint
dt = n.

Therefore, by Exercise 25, we have Ind(γ) = Ind(g) = n, for suffi-
ciently large r.

(c) Ind(γr) is a continuous function of r, on [0,∞).
Fix any x ∈ [0,∞), for every 0 ≤ y < ∞, we have |γy(t) − γx(t)| =
|f(yeit) − f(xeit)|. Since f is continuous, given any ε > 0, we
can pick a δ > 0 such that |yeit − xeit| = |y − x| < δ implies
|f(yeit) − f(xeit)| < ε and thus |γy(t) − γx(t)| < ε. Note that here
different x may have different δ, since [0,∞) is closed, but not com-
pact.
Let µ = inf |f(z)|. Since ||z−nf(z)| − |c|| ≤ |z−nf(z) − c| and
lim
|z|→∞

z−nf(z) = c, we have lim
|z|→∞

|z−nf(z)| = |c|, which gives |f(z)| →

∞ when |z| → ∞, for otherwise, if |f(z)| ≤ M for some M > 0, we
must have lim

|z|→∞
|z−nf(z)| = lim

|z|→∞
|z|−n|f(z)| = 0, but |c| 6= 0 since

c 6= 0. Now we have that there exists some R > 0 such that |z| > R
implies |f(z)| > µ. Hence µ = infz∈C |f(z)| = inf |z|≤R |f(z)|, and
since the set {z|z ∈ C ∧ |z| ≤ R} is closed and bounded, thus com-
pact, there must exist some z0, |z0| ≤ R, |f(z0)| = µ. Therefore,
µ > 0.
Now, fix any x ∈ [0,∞), we can find a δ > 0 such that |y − x| < δ,
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y ∈ [0,∞) implies |γx(t) − γy(t)| = |γy(t) − γx(t)| < µ ≤ |γx(t)|,
for any t ∈ [0, 2π]. By Exercise 25, we have Ind(γy) = Ind(γx), if
|y − x| < δ. Hence Ind(γr) is a continuous function of r, on [0,∞).

Note that (a), (b) and (c) are contradictory, since n > 0 but (c)
and the fact that Ind(γr) is integer-valued imply that Ind(γr) must
be constant on [0,∞).

28. Let D̄ be the closed unit disc in the complex plane. (Thus z ∈ D̄ if and
only if |z| ≤ 1.) Let g be a continuous mapping of D̄ into the unit circle
T . (Thus, |g(z)| = 1 for every z ∈ D̄.)
Prove that g(z) = −z for at least one z ∈ T .
Proof : For 0 ≤ r ≤ 1, 0 ≤ t ≤ 2π, put γr(t) = g(reit), and put ψ(t) =
e−itγ1(t). If g(z) 6= −z for every z ∈ T , then ψ(t) 6= e−it(−eit) = −1
for every t ∈ [0, 2π]. Since |ψ(t)| = |e−itγ1(t)| = |γ1(t)| = |g(eit)| = 1,
ψ(t) 6= −1, hence Ind(ψ) = 0, by Exercise 24 and 26. It follows that
Ind(γ1) = 1. To see this, suppose δ > 0 so that |γ1(t)| > δ for all
t ∈ [0, 2π]. Choose trigonometric polynomials P so that |P (t) − γ1(t)| <
δ/4 for all t ∈ [0, 2π]. Then we have |ψ(t)| = |e−itγ1(t)| = |γ1(t)| > δ,
and |e−itP (t) − ψ(t)| = |e−it(P (t) − γ1(t))| = |P (t) − γ1(t)| < δ/4. Put
P ∗(t) = e−itP (t) which is also a trigonometric polynomial. Hence by
Exercise 26, we must have Ind(P ∗(t)) = Ind(ψ(t)) = 0. Therefore,

Ind(γ1(t)) = Ind(P (t)) =
1

2πi

∫ 2π

0

P ′(t)

P (t)
dt =

1

2πi

∫ 2π

0

(eitP ∗(t))′

eitP ∗(t)
dt

=
1

2πi

∫ 2π

0

[
eitP ∗

′
(t) + ieitP ∗(t)

eitP ∗(t)
]dt =

1

2πi

∫ 2π

0

[
P ∗
′
(t) + iP ∗(t)

P ∗(t)
]dt

=
1

2πi

∫ 2π

0

[
P ∗
′
(t)

P ∗(t)
+ i]dt = 1 +

1

2πi

∫ 2π

0

P ∗
′
(t)

P ∗(t)
dt = 1 + Ind(P ∗(t)) = 1.

But since γ0(t) = g(0) 6= 0(note that |g(z)| = 1), Ind(γ0) = 0, by Exercise
23.
Fix any x ∈ [0, 1], for every y ∈ [0, 1], we have |γy(t)− γx(t)| = |g(yeit)−
g(xeit)|. Since g is continuous, given any ε > 0, there exists a δ > 0 such
that |yeit − xeit| = |y − x| < δ implies |g(yeit) − g(xeit)| < ε, namely,
|γy(t) − γx(t)| < ε if |y − x| < δ. Let ε = 1, pick the required δ, we
then get |γx(t) − γy(t)| = |γy(t) − γx(t)| < 1 = |γx(t)| = |g(xeit)|, and
by Exercise 25, Ind(γx) = Ind(γy) if |y − x| < δ. Therefore, Ind(γr) is a
continuous function of r, on [0, 1]. Then as the same reason of Exercise
27, Ind(γ0) = 0 and Ind(γ1) = 1 gives the contradictory.

29. Prove that every continuous mapping f of D̄ into D̄ has a fixed point in
D̄.
(This is the 2-dimensional case of Brouwer’s fixed-point theorem.)
Proof : Assume f(z) 6= z for every z ∈ D̄. Associate to each z ∈ D̄ the
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point g(z) ∈ T which lies on the ray that starts at f(z) and passes through
z. Then g maps D̄ into T , g(z) = z if z ∈ T , and g is continuous, because

g(z) = z − s(z)[f(z)− z],

where s(z) is the unique nonnegative root of a certain quadratic equation
whose coefficients are continuous functions of f and z. By Exercise 28,
g(z) = −z for at least one z ∈ T . Suppose z0 ∈ T satisfies g(z0) = −z0,
and on the other hand we must have g(z0) = z0 since z0 ∈ T . This gives
−z0 = z0, namely z0 = 0, which contradicts the fact z0 ∈ T .

30. Use Stirling’s formula to prove that

lim
x→∞

Γ(x+ c)

xcΓ(x)
= 1

for every real constant c.
Proof :

lim
x→∞

Γ(x+ c)

xcΓ(x)
=

lim
x→∞

Γ(x+c)

((x+c−1)/e)x+c−1
√

2π(x+c−1)
· ((x+ c− 1)/e)x+c−1

√
2π(x+ c− 1)

xc · Γ(x)

((x−1)/e)x−1
√

2π(x−1)
· ((x− 1)/e)x−1

√
2π(x− 1)

= lim
x→∞

((x+ c− 1)/e)x+c−1
√

2π(x+ c− 1)

xc · ((x− 1)/e)x−1
√

2π(x− 1)

= lim
x→∞

(x+ c− 1)x+c−1
√
x+ c− 1

xc · ec · (x− 1)x−1
√
x− 1

= lim
x→∞

1

ec
· (1 +

c− 1

x
)c · (1 +

c

x− 1
)x−1 ·

√
1 +

c

x− 1

=
1

ec
· 1 · ec · 1 = 1.

31. In the proof of Theorem 7.26 it was shown that∫ 1

−1

(1− x2)ndx ≥ 4

3
√
n

for n = 1, 2, 3, .... Use Theorem 8.20 and Exercise 30 to show the more
precise result

lim
n→∞

√
n

∫ 1

−1

(1− x2)ndx =
√
π.

Proof : We have

√
n

∫ 1

−1

(1− x2)ndx = 2
√
n

∫ 1

0

(1− x2)ndx.
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Let t = x2, then dt = 2xdx, which gives dx = 1
2
√
t
dt = 1

2 t
−1/2dt, hence

2
√
n

∫ 1

0

(1− x2)ndx = 2
√
n

∫ 1

0

(1− t)n 1

2
t−1/2dt =

√
n

∫ 1

0

t−1/2(1− t)ndt

=
√
n

∫ 1

0

t1/2−1(1− t)(n+1)−1dt =
√
n

Γ(1/2)Γ(n+ 1)

Γ(1/2 + (n+ 1))
.

Then

lim
n→∞

√
n

∫ 1

−1

(1− x2)ndx = lim
n→∞

√
n

Γ(1/2)Γ(n+ 1)

Γ(1/2 + (n+ 1))

= lim
n→∞

√
n

(n+ 1)1/2Γ(1/2)Γ(n+ 1)

(n+ 1)1/2Γ((n+ 1) + 1/2)

= lim
n→∞

√
n

Γ(1/2)

(n+ 1)1/2 · Γ((n+1)+1/2)
((n+1)1/2Γ(n+1))

= Γ(1/2) =
√
π.

9 Functions of several variables

1. If S is a nonempty subset of a vector space X, prove (as asserted in Sec.
9.1) that the span of S is a vector space.
Proof : Let E be the span of S. Suppose y1, y2 ∈ E. Then yi =∑
k cikxik, where i = 1, 2 and xik ∈ S. We then have

y1 + y2 =
∑
k

c1kx2k +
∑
k

c2kx2k =
∑
j

cjxj ,

where xj ∈ S; and

cyi =
∑
k

(ccik)xik (i = 1, 2).

Therefore, both y1 + y2 ∈ E and cyi ∈ E(i = 1, 2). Hence E is a vector
space.

2. Prove (as asserted in Sec. 9.6) that BA is linear if A and B are linear
transformations. Prove also that A−1 is linear and invertible.
Proof : We have

BA(x1 + x2) = B(A(x1 + x2)) = B(Ax1 +Ax2) = BAx1 +BAx2,

and
BA(cx) = B(A(cx)) = B(cAx) = cBAx.

Hence BA is linear.
Suppose y1 = Ax1, y2 = Ax2, and y = Ax. Then

A−1(y1 + y2) = A−1(Ax1 +Ax2) = A−1A(x1 + x2)
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= x1 + x2 = A−1y1 +A−1y2,

and
A−1(cy) = A−1(cAx) = A−1A(cx) = cx = cA−1y.

Hence A−1 is linear. Since A is invertible, A is one-to-one. Then A−1 is
also one-to-one, and therefore A−1 is invertible, by Theorem 9.5.

3. Assume A ∈ L(X,Y ) and Ax = 0 only when x = 0. Prove that A is then
1-1.
Proof : Suppose that Ax = Ay, then A(x−y) = 0, which gives x−y = 0,
namely x = y. Therefore, A is 1-1.

4. Prove (as asserted in Sec. 9.30) that null spaces and ranges of linear
transformations are vector spaces.
Proof :
(i) Suppose x ∈ N (A) and y ∈ N (A), then Ax = 0 and Ay = 0.
Therefore A(x + y) = Ax +Ay = 0, A(cx) = cAx = 0, and thus x + y ∈
N (A), cx ∈ N (A), which shows that N (A) is a vector space.
(ii) Suppose y1 ∈ R(A) and y2 ∈ R(A), then there exist x1 ∈ X, x2 ∈ X
such that Ax1 = y1 and Ax2 = y2. Therefore, y1 + y2 = Ax1 + Ax2 =
A(x1 + x2) ∈ R(A), and cyi = cAxi = A(cxi) ∈ R(A), which gives that
R(A) is a vector space.

5. Prove that to every A ∈ L(Rn, R1) corresponds a unique y ∈ Rn such
that Ax = x · y. Prove also that ||A|| = |y|.
Proof : Let y = (y1, y2, ..., yn)T . Then we have Aei = ei · y, which
gives yi = Aei. Then for any x ∈ Rn, suppose x =

∑n
i=1 xiei, we have

Ax = A
∑n
i=1 xiei =

∑n
i=1 xiAei =

∑n
i=1 xiyi = x · y. The existence and

uniqueness of y then are proved.
Since |Ax| = |x · y| ≤ |x| · |y|, for all x ∈ Rn, by Schwarz inequality, we
thus have ||A|| ≤ |y|. On the other hand, since y ∈ Rn, Ay = y ·y = |y|2,
which gives |Ay| = |y|2. Since |Ay| ≤ ||A|| · |y|, we have |y|2 ≤ ||A|| · |y|,
namely, |y| ≤ ||A||. Therefore, ||A|| = |y|.

6. If f(0, 0) = 0 and

f(x, y) =
xy

x2 + y2
if(x, y) 6= (0, 0),

prove that (D1f)(x, y) and (D2f)(x, y) exist at every point of R2, although
f is not continuous at (0, 0).
Proof : Suppose xn = ( 1

n ,
1
n ), then xn → (0, 0), as n→∞. But

lim
n→∞

f(xn) = lim
n→∞

f(
1

n
,

1

n
) = lim

n→∞

1/n2

2/n2
=

1

2
6= 0,

which implies f is not continuous at (0, 0).
On the other hand, (D1f)(x, y) and (D1f)(x, y) clearly exist at every point
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on the plane other than (0, 0). Since

(D1f)(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x− 0
= lim
x→0

0− 0

x− 0
= 0,

and

(D2f)(0, 0) = lim
y→0

f(0, y)− f(0, 0)

y − 0
=

0− 0

y − 0
= 0,

we conclude that (D1f)(x, y) and (D2f)(x, y) exist at every point of R2.

7. Suppose that f is a real-valued function defined in an open set E ⊆ Rn,
and that the partial derivatives D1f, ...,Dnf are bounded in E. Prove
that f is continuous in E.
Proof : Similarly as in the proof of Theorem 9.21, we fix x ∈ E and
ε > 0. Since Dif are bounded in E, |Dif | ≤ Mi for some Mi > 0. Put
M = max1≤i≤nMi, we thus have |Dif | ≤ M , for 1 ≤ i ≤ n. Suppose
h =

∑
hjej , |h| < r = ε/nM , put v0 = 0, and vk = h1e1 + · · · + hkek,

for 1 ≤ k ≤ n. Then

f(x + h)− f(x) =

n∑
j=1

[f(x + vj)− f(x + vj−1)].

Since vj = vj−1 + hjej , the mean value theorem (Theorem 5.10) shows
that the jth summand is equal to

hj(Djf)(x + vj−1 + θjhjej)

for some θj ∈ (0, 1). It follows that

|f(x + h)− f(x)| = |
n∑
j=1

[f(x + vj)− f(x + vj−1)]|

≤
n∑
j=1

|f(x + vj)− f(x + vj−1)| =
n∑
j=1

|hj(Djf)(x + vj−1 + θjhjej)|

≤M
n∑
j=1

|hj | ≤Mn|h| < ε,

which shows that f is continuous in E.

8. Suppose that f is a differentiable real function in an open set E ⊆ Rn,
and that f has a local maximum at a point x ∈ E. Prove that f ′(x) = 0.
Proof : Since

Djf(x) = lim
t→0

f(x + tej)− f(x)

t
,

and f(x + tej) ≤ f(x), when |t| < r for some sufficiently small r > 0, due
to the local maximum of f(x). We thus have

f(x + tej)− f(x)

t
≥ 0, t ∈ (0, r),
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and
f(x + tej)− f(x)

t
≤ 0, t ∈ (−r, 0),

and therefore Djf(x) ≥ 0 and Djf(x) ≤ 0, which give that Djf(x) = 0,
for 1 ≤ j ≤ n. It follows that f ′(x) = 0 according to Theorem 9.17.

9. If f is a differentiable mapping of a connected open set E ⊆ Rn into Rm,
and if f ′(x) = 0 for every x ∈ E, prove that f is constant in E.
Proof : Suppose that, on the contrary, f is not constant in E. Pick
any a ∈ E, and let c = f(a). Let A = {p|p ∈ E ∧ f(p) = c} and
B = {p|p ∈ E ∧ f(p) 6= c}. Since a ∈ A, A 6= ∅, and since f is not
constant, B 6= ∅. Clearly, E = A ∪B and A ∩B = ∅.
(i) First, we prove that for any x ∈ E, there exists an r > 0 such that
|p − x| < r implies f(p) = f(x). To see this, since E is open, given any
x ∈ E, there is an open ball S ⊆ E, with center at x and radius r. Since S
is convex, by the corollary of Theorem 9.19, we known that f is constant
in S, which is the desired result.
(ii) Next, we will prove that Ā ∩ B = ∅. Suppose q ∈ E is a limit point
of A, then there is a rq > 0 such that |p − q| < rq implies f(p) = f(q).
Since q is a limit point of A, there is at least one p ∈ A which satisfies
|p − q| < rq. Therefore, we must have f(q) = f(p) = c, and therefore
q ∈ A. It follow that Ā = A and hence Ā ∩B = A ∩B = ∅.
(iii) Then, we will prove that A ∩ B̄ = ∅. Suppose that, on the contrary,
A ∩ B̄ 6= ∅. There exists at least one q ∈ A ∩ B̄, that is, f(q) = c. Since
A ∩B = ∅, q is a limit point of B. By (i), we can find a rq > 0 such that
|p− q| < rq implies f(p) = f(q) = c. Since q is a limit point of B, there
exists at least one p ∈ B such that |p− q| < rq. Therefore, f(p) = c and
hence p ∈ A, a contradictory since A ∩B = ∅. It follows that A ∩ B̄ = ∅.
By (ii) and (iii), we conclude that A and B are separated. Since E = A∪B
and both A and B are nonempty, E is not connected, which is contradict
to our assumption. Therefore, f must be constant in E.

10. If f is a real function defined in a convex open set E ⊆ Rn, such that
(D1f)(x) = 0 for every x ∈ E, prove that f(x) depends only on x2, ..., xn.
Show that the convexity of E can be replaced by a weaker condition, but
that some condition is required. For example, if n = 2 and E is shaped
like a horseshoe, the statement may be false.
Proof : Fix x2, ..., xn, we then get a subset S of E whose any two points
only differs at x1 in their coordinates. Let a and b be any two points in
S, a = (a1, x2, ..., xn)T and b = (b1, x2, ..., xn)T . Then λa + (1 − λ)b =
(λa1 + (1 − λ)b1, x2, ..., xn)T . Since E is convex, λa + (1 − λ)b ∈ E and
therefore, λa + (1 − λ)b ∈ S, for 0 < λ < 1. Hence S is convex. Apply
the corollary of Theorem 9.19, we conclude that f is constant in S, which
is the desired result.
By Exercise 9, we know that the convexity of E can be replaced by a
weaker condition, that is, every obtained S needs to be connected.
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11. If f and g are differentiable real functions in Rn, prove that

∇(fg) = f∇g + g∇f

and that ∇(1/f) = −f−2∇f wherever f 6= 0.
Proof : Since

(∇f)(x) =

n∑
i=1

(Dif)(x)ei,

we have

∇(fg) =

n∑
i=1

Di(fg)ei =

n∑
i=1

[(Dif)g + f(Dig)]ei

= g

n∑
i=1

(Dif)ei + f

n∑
i=1

(Dig)ei = g∇f + f∇g,

and

∇(1/f) =

n∑
i=1

(Di(1/f))ei =

n∑
i=1

0−Dif

f2
ei

= −f−2
n∑
i=1

(Dif)ei = −f−2∇f.

12. Fix two real numbers a and b, 0 < a < b. Define a mapping f = (f1, f2, f3)
of R2 into R3 by

f1(s, t) = (b+ a cos s) cos t

f2(s, t) = (b+ a cos s) sin t

f3(s, t) = a sin s.

Describe the range K of f . (It is a certain compact subset of R3.)

(a) Show that there are exactly 4 points p ∈ K such that

(∇f1)(f−1(p)) = 0.

Find these points.
Solution: Since

∇f1 = (−a sin s cos t,−(b+ a cos s) sin t)T ,

∇f1 = 0 gives −a sin s cos t = 0, −(b + a cos s) sin t = 0. It follows
that

cos t = 0, b+ a cos s = 0, i.e., cos s = −b/a,

or
sin t = 0, −a sin s = 0, i.e., sin s = 0.

Since 0 < a < b, the first solution implies cos s = −b/a < −1, which
is impossible. The second solution gives four points in R3, namely
p1 = (b + a, 0, 0)T , p2 = (−b − a, 0, 0)T , p3 = (b − a, 0, 0)T , and
p4 = (a− b, 0, 0)T .
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(b) Determine the set of all q ∈ K such that

(∇f3)(f−1(q)) = 0.

Solution: Since ∇f3 = (a cos s, 0), ∇f3 = 0 implies cos s = 0. Then
the set of all q ∈ K satisfying (∇f3)(f−1(q)) = 0 has elements q
with form q = (b cos t, b sin t, a), or q = (b cos t, b sin t,−a).

(c) Show that one of the points p found in part (a) corresponds to a
local maximum of f1, one corresponds to a local minimum, and that
the other two are neither (they are so-called “saddle points”).
Which of the points q found in part (b) correspond to maxima or
minima?
Solution: Clearly we have −(a + b) ≤ f1(s, t) ≤ (a + b), for all
(s, t) ∈ R2, therefore, (b+ a, 0, 0)T corresponds to a local maximum
of f1, and (−b−a, 0, 0)T corresponds to a local minimum. The other
two are neither.
Similarly, since −a ≤ f3(s, t) ≤ a, for all (s, t) ∈ R2, the points with
form q = (b cos t, b sin t, a) correspond to maxima, and the points
with form q = (b cos t, b sin t,−a) correspond to minima.

(d) Let λ be an irrational real number, and define g(t) = f(t, λt). Prove
that g is a 1-1 mapping of R1 onto a dense subset of K. Prove that

|g′(t)|2 = a2 + λ2(b+ a cos t)2.

Proof : Since g(t) = f(t, λt), we have

g1(t) = f1(t, λt) = (b+ a cos t) cos(λt)

g2(t) = f2(t, λt) = (b+ a cos t) sin(λt)

g3(t) = f3(t, λt) = a sin t.

Suppose t1 6= t2, but g(t1) = g(t2), then a sin t1 = a sin t2, which
gives sin t1 = sin t2. Therefore, t2 = t1 + 2kπ, or t2 = (π− t1) + 2kπ,
where k is some integer. If t2 = t1 + 2kπ, then cos t2 = cos t1, but
λt2 = λ(t1 + 2kπ) = λt1 + 2(kλ)π, which means cos(λt2) 6= cos(λt1)
and sin(λt2) 6= sin(λt1). Hence g(t1) 6= g(t2), a contradiction. If
t2 = (π− t1) + 2kπ, we have λt2 = λ(2k+ 1)π−λt1, which also gives
cos(λt2) 6= cos(λt1) and sin(λt2) 6= sin(λt1). Hence g(t1) 6= g(t2),
also a contradiction. Therefore, g is a 1-1 mapping.
Next, we will prove that the range of g is a dense subset of K.
Let E = {(x, y)|λ(x + m · 2π) = y + n · 2π,m, n ∈ Z}. If we can
prove that E is dense in R2, then we know that f(E) is dense in
K, by Exercise 4 of Chap.4. Since for any (x, y) ∈ E, if we put
t = x + m · 2π, then λt = λ(x + m · 2π) = y + n · 2π, which gives
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g(t) = f(t, λt) = f(x+m ·2π, y+n ·2π) = f(x, y). Suppose the range
of g is G, it follows that f(E) ⊆ G. Since f(E) is dense in K, G is
dense in K and we are done.
Now, we begin to prove that E is dense in R2. Given any (x, y) ∈ R2

and any ε > 0, we need to show that there is at least one (s, t) ∈ E
such that (s, t) ∈ Nε(x, y). We put s = x, then it is sufficient to show
that the set F = {λ(x + m · 2π) + n · 2π,m, n ∈ Z} is dense in R,
since then we can find at least one t ∈ F such that |t− y| < ε. From
Exercise 25(b), we have known that the set S = {mλ+ n,m, n ∈ Z}
is dense in R. Since λ(x + m · 2π) + n · 2π = λx + 2π(mλ + n),
|(λ(x+m · 2π) + n · 2π)− y| = |(λx+ 2π(mλ+ n))− y| = |2π(mλ+
n) − (y − λx)| = 2π|(mλ + n) − (y − λx)/(2π)|. Now pick m,n so
that |(mλ+ n)− (y − λx)/(2π)| < ε/(2π). This can be done since S
is dense in R. It follows that |(λ(x + m · 2π) + n · 2π) − y| < ε, for
the selected m,n. Therefore, F is dense in R.
Since

g′1(t) = −a sin t cos(λt) + (b+ a cos t)(−λ sin(λt))

= −bλ sin(λt)− a sin t cos(λt)− λa cos t sin(λt)

g′2(t) = −a sin t sin(λt) + (b+ a cos t)(λ cos(λt))

= λb cos(λt)− a sin t sin(λt) + λa cos t cos(λt)

g′3(t) = a cos t,

we have

|g′(t)|2 = (g′1(t))2 + (g′2(t))2 + (g′3(t))2 = λ2b2 + a2 sin2 t+λ2a2 cos2 t

+2abλ sin t sin(λt) cos(λt) + 2λa2 sin t cos t sin(λt) cos(λt)

+2abλ2 cos t sin2(λt)− 2abλ sin t sin(λt) cos(λt)

−2λa2 sin t cos t sin(λt) cos(λt) + 2abλ2 cos t cos2(λt) + a2 cos2 t

= λ2b2 + a2 sin2 t+ λ2a2 cos2 t+ a2 cos2 t+ 2abλ2 cos t

= a2 + λ2(b2 + a2 cos2 t+ 2ab cos t) = a2 + λ2(b+ a cos t)2.

(Note that we can also apply the chain rule to obtain g′(t).)

13. Suppose f is a differentiable mapping of R1 into R3 such that |f(t)| = 1
for every t. Prove that f ′(t) · f(t) = 0.
Interpret this result geometrically.
Proof : Suppose (f)(t) = (f1(t), f2(t), f3(t))T , then |f(t)| = 1 implies
f2

1 (t) + f2
2 (t) + f2

3 (t) = 1, for every t. Let g(t) = f2
1 (t) + f2

2 (t) + f2
3 (t), we

then have g(t) = 1 for every t. Therefore, g′(t) = 0. On the other hand,
we have g′(t) = 2(f1(t)f ′1(t)+f2(t)f ′2(t)+f3(t)f ′3(t)) = 2f ′(t) · f(t). Hence
f ′(t) · f(t) = 0, for every t.
This means the direction of the tangent line of the curve at point f(t) is
perpendicular to to direction of f(t).
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14. Define f(0, 0) = 0 and

f(x, y) =
x3

x2 + y2
if(x, y) 6= (0, 0).

(a) Prove that D1f and D2f are bounded functions in R2. (Hence f is
continuous.)
Proof : At every point (x, y) 6= (0, 0), we have

|(D1f)(x, y)| = x2(x2 + 3y2)

(x2 + y2)2
≤ x2(3x2 + 3y2)

(x2 + y2)2
= 3 · x2

x2 + y2
≤ 3,

and

|(D2f)(x, y)| = x2 · (2|x||y|)
(x2 + y2)2

≤ x2(x2 + y2)

(x2 + y2)2
=

x2

x2 + y2
≤ 1.

Furthermore, we have

(D1f)(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x− 0
= lim
x→0

x− 0

x− 0
= 1,

and

(D2f)(0, 0) = lim
y→0

f(0, y)− f(0, 0)

y − 0
= lim
y→0

0− 0

y − 0
= 0.

Hence, D1f and D2f are bounded.

(b) Let u be any unit vector in R2. Show that the directional derivative
(Duf)(0, 0) exists, and that its absolute value is at most 1.
Proof : By (a), we have (Duf)(0, 0) = (D1f)(0, 0)u1+(D2f)(0, 0)u2 =
u1. Hence |(Duf)(0, 0)| = |u1| ≤ |u| ≤ 1.

(c) Let γ be a differentiable mapping of R1 into R2 (in other words, γ is
a differentiable curve in R2), with γ(0) = (0, 0) and |γ′(0)| > 0. Put
g(t) = f(γ(t)) and prove that g is differentiable for every t ∈ R1.
If γ ∈ C ′, prove that g ∈ C ′.
Proof :
(i) Since f is differentiable at every point other than (0, 0), by The-
orem 9.21, it follows that g is differentiable for every t 6= 0 (note
that in fact, we need γ to be a 1-1 mapping). So we need only to
prove that g is differentiable for t = 0. Since γ is differentiable, we

have γ(t) − γ(0) = γ′(0)(t − 0) + r(t), where limt→0
r(t)
t = 0. Since

γ(0) = (0, 0), γ(t) = γ′(0)t+ r(t), namely, γ1(t) = γ′1(0)t+ r1(t) and
γ2(t) = γ′2(0)t+ r2(t), where γ = (γ1, γ2). Then,

f(γ(t)) =
γ3

1(t)

γ2
1(t) + γ2

2(t)
=

(γ′1(0)t+ r1(t))3

(γ′1(0)t+ r1(t))2 + (γ′2(0)t+ r2(t))2

=
(γ′1(0))3t3 + 3(γ′1(0))2t2r1(t) + 3γ′1(0)t(r1(t))2 + (r1(t))3

|γ′(0)|2t2 + 2(γ′1(0)r1(t) + γ′2(0)r2(t))t+ ((r1(t))2 + (r2(t))2)
,

140



which gives

g′(0) = lim
t→0

g(t)− g(0)

t− 0
= lim
t→0

f(γ(t))− f(γ(0))

t
= lim
t→0

f(γ(t))

t

= lim
t→0

(γ′1(0))3t3 + 3(γ′1(0))2t2r1(t) + 3γ′1(0)t(r1(t))2 + (r1(t))3

t[|γ′(0)|2t2 + 2(γ′1(0)r1(t) + γ′2(0)r2(t))t+ ((r1(t))2 + (r2(t))2)]

= lim
t→0

(γ′1(0))3 + 3(γ′1(0))2 r1(t)
t + 3γ′1(0)( r1(t)

t )2 + ( r1(t)
t )3

|γ′(0)|2 + 2(γ′1(0) r1(t)
t + γ′2(0) r2(t)

t ) + (( r1(t)
t )2 + ( r2(t)

t )2)

=
(γ′1(0))3

|γ′(0)|2
, then the condition |γ′(0)| > 0 implies g′(0) exists .

Hence g is differentiable for t = 0, and therefore differentiable for
every t ∈ R1.
(ii) Since f ′ is continuous at every point other than (0, 0), by Theorem
9.21, it follows that g ∈ C ′ for every t 6= 0, since g′(t) = f ′(γ(t))γ′(t)
and f ′, γ, γ′ are all continuous for t 6= 0. Hence we only need to
prove that g′ is continuous at t = 0, namely, limt→0 g

′(t) = g′(0).

Since γ(t) = γ′(0)t+ r(t) = t(γ′(0) + r(t)
t ),

g′(t) = f ′(γ(t))γ′(t) = (D1f)(γ(t))γ′1(t) + (D2f)(γ(t))γ′2(t)

=
(γ1(t))2((γ1(t))2 + 3(γ2(t))2)

((γ1(t))2 + (γ2(t))2)2
γ′1(t) +

−2(γ1(t))3γ2(t)

((γ1(t))2 + (γ2(t))2)2
γ′2(t),

we have

lim
t→0

g′(t) = lim
t→0

[
(t(γ′1(0) + r1(t)

t ))2((t(γ′1(0) + r1(t)
t ))2 + 3(t(γ′2(0) + r2(t)

t ))2)

((t(γ′1(0) + r1(t)
t ))2 + (t(γ′2(0) + r2(t)

t ))2)2
γ′1(t)

+
−2(t(γ′1(0) + r1(t)

t ))3(t(γ′2(0) + r2(t)
t ))

(t(γ′1(0) + r1(t)
t ))2 + (t(γ′2(0) + r2(t)

t ))2)2
γ′2(t)]

= lim
t→0

[
(γ′1(0))2((γ′1(0))2 + 3(γ′2(0))2)

((γ′1(0))2 + (γ′2(0))2)2
γ′1(t)+

−2(γ′1(0))3γ′2(0)

((γ′1(0))2 + (γ′2(0))2)2
γ′2(t)]

=
(γ′1(0))3((γ′1(0))2 + 3(γ′2(0))2)− 2(γ′1(0))3(γ′2(0))2

((γ′1(0))2 + (γ′2(0))2)2
=

(γ′1(0))3

|γ′(0)|2
= g′(0).

Therefore g′ is continuous for t = 0, and thus g ∈ C ′.

(d) In spite of this, prove that f is not differentiable at (0, 0).
Proof : We have

lim
h→0,k→0

|f(h, k)− f(0, 0)− ((D1f)(0, 0)h+ (D2f)(0, 0)k)|
(h2 + k2)1/2

= lim
h→0,k→0

|h|k2

(h2 + k2)3/2
.
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If we put xn = ( 1
n ,

1
n ), then xn → (0, 0) as n → ∞. We thus get

limn→∞
1
n ( 1

n )2

(( 1
n )2+( 1

n )2)3/2
= 1

2
√

2
6= 0, which implies limh→0,k→0

|h|k2
(h2+k2)3/2

6=
0. Therefore, f is not differentiable at (0, 0).

15. Define f(0, 0) = 0, and put

f(x, y) = x2 + y2 − 2x2y − 4x6y2

(x4 + y2)2

if (x, y) 6= (0, 0).

(a) Prove, for all (x, y) ∈ R2, that

4x4y2 ≤ (x4 + y2)2.

Conclude that f is continuous.
Proof : Since (x4 + y2)2 − 4x4y2 = (x4 − y2)2 ≥ 0, it follows that
4x4y2 ≤ (x4 + y2)2. Then

|f(x, y)| = |x2+y2−2x2y− 4x6y2

(x4 + y2)2
| ≤ x2+y2+2x2|y|+ 4x6y2

(x4 + y2)2

= x2 + y2 + 2x2|y|+ x2 · 4x4y2

(x4 + y2)2
≤ x2 + y2 + 2x2|y|+ x2.

Since

x2 + y2 + 2x2|y|+ x2 → 0, as (x, y)→ (0, 0),

we hence have |f(x, y)| → 0, as (x, y)→ (0, 0). Therefore, f(x, y)→
0, as (x, y) → (0, 0), which means f(x, y) is continuous at (0, 0).
Since f(x, y) is obviously continuous at every point other than (0, 0),
we conclude that f is continuous.

(b) For 0 ≤ θ ≤ 2π, −∞ < t <∞, define

gθ(t) = f(t cos θ, t sin θ).

Show that gθ(0) = 0, g′θ(0) = 0, g′′θ (0) = 2. Each gθ has therefore a
strict local minimum at t = 0.
In other words, the restriction of f to each line through (0, 0) has a
strict local minimum at (0, 0).
Proof :

gθ(t) = f(t cos θ, t sin θ) = t2 − 2t3 cos2 θ sin θ − 4t4 cos6 θ sin2 θ

(t2 cos4 θ + sin2 θ)2
,

hence gθ(0) = 0.

g′θ(t) = 2t−6t2 cos2 θ sin θ−16t3 cos6 θ sin θ(t2 cos4 θ(1 + sin θ) + sin2 θ)

(t2 cos4 θ + sin2 θ)3
,
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hence g′θ(0) = 0, and

g′′θ (0) = lim
t→0

g′θ(t)− g′θ(0)

t− 0
= lim
t→0

g′θ(t)

t
= lim
t→0

[2− 6t cos2 θ sin θ

−16t2 cos6 θ sin θ(t2 cos4 θ(1 + sin θ) + sin2 θ)

(t2 cos4 θ + sin2 θ)3
] = 2.

Therefore, each gθ has therefore a strict local minimum at t = 0.

(c) Show that (0, 0) is nevertheless not a local minimum for f , since
f(x, x2) = −x4.
Proof : Since f(x, x2) = −x4, given any ε > 0, pick the point
(x0, y0) = (1, 1) if ε >

√
2, and (x0, y0) = (ε/2, ε2/4) if ε ≤

√
2. Then√

x2
0 + y2

0 =
√

2 < ε if ε >
√

2, and
√
x2

0 + y2
0 =

√
ε2/4 + ε4/16 <

(ε/2)(
√

1 + ε2/4) ≤ (ε/2)(
√

1 + 1/2) < (ε/2) ·2 = ε if ε ≤
√

2. It fol-
lows that no matter which ε > 0 chosen, we can pick a point (x0, y0)
in Nε(0, 0) such that f(x0, y0) < 0 = f(0, 0). Therefore, (0, 0) is not
a local minimum for f .

16. Show that the continuity of f ′ at the point a is needed in the inverse
function theorem, even in the case n = 1: If

f(t) = t+ 2t2 sin
1

t

for t 6= 0, and f(0) = 0, then f ′(0) = 1, f ′ is bounded in (−1, 1), but f is
not one-to-one in any neighborhood of 0.
Proof : we have

f ′(0) = lim
t→0

f(t)− f(0)

t− 0
= lim
t→0

f(t)

t
= lim
t→0

[1 + 2t sin
1

t
] = 1.

On the other hand, when t 6= 0,

f ′(t) = 1 + 2[2t sin
1

t
+ t2 cos

1

t
(− 1

t2
)] = 1 + 4t sin

1

t
− 2 cos

1

t
,

and hence

lim
t→0

f ′(t) = lim
t→0

[1 + 4t sin
1

t
− 2 cos

1

t
] = lim

t→0
[1− 2 cos

1

t
] 6= 1.

It follows that f ′(t) is not continuous at 0.
Since |f ′(t)| = |1 + 4t sin 1

t − 2 cos 1
t | ≤ 1 + 4|t|+ 2 = 3 + 4|t| ≤ 3 + 4 = 7,

when 0 < |t| < 1. Thus f ′ is bounded in (−1, 1).
Now we will show that f is not one-to-one in any neighborhood of 0.
Suppose that, on the contrary, f is one-to-one in some neighborhood, say
Nε(0), of 0, where ε > 0. Pick some r such that 0 < r < ε, then f is
one-to-one on [−r, r]. Let X = [−r, r], f(X) = Y , then f is a continuous
1-1 mapping from X onto Y . By Theorem 4.17, the inverse mapping f−1
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defined on Y by f−1(f(x)) = x, x ∈ X is a continuous mapping of Y
onto X. Let V be any open subset of X, since f−1 is continuous, f(V ) is
also an open subset of Y , by Theorem 4.8. Then f is a continuous open
mapping from X onto Y , by Exercise 15 of Chap.4, f is monotonic on X.
Therefore, f ′(t) ≥ 0 for every t ∈ [−r, r]. But if we pick a sufficiently large
n so that 0 < t0 = 1

2nπ < r, then t0 ∈ [−r, r] and

f ′(t0) = 1+4t0 sin
1

t0
−2 cos

1

t0
= 1+4

1

2nπ
sin(2nπ)−2 cos(2nπ) = −1 < 0,

a contradiction. Therefore, f cannot be one-to-one in any neighborhood
of 0.
Remark: In the above proof process, we use the fact that every con-
tinuous open mapping is monotonic. In fact, we can use the result that
every continuous injective mapping is monotonic, which could achieve our
conclusion more quickly.

17. Let f = (f1, f2) be the mapping of R2 into R2 given by

f1(x, y) = ex cos y, f2(x, y) = ex sin y.

(a) What is the range of f?
Solution: The range of f is R2 except the point (0, 0).

(b) Show that the Jacobian of f is not zero at any point of R2. Thus
every point of R2 has a neighborhood in which f is one-to-one. Nev-
ertheless, f is not one-to-one in R2.
Proof : The Jacobian of f is

det

[
ex cos y −ex sin y
ex sin y ex cos y

]
= ex > 0,

for every (x, y) ∈ R2. Since f ∈ C ′, by Theorem 9.21, every point
of R2 has a neighborhood in which f is one-to-one, by the inverse
function theorem (Theorem 9.24). On the other hand, since f(x, y+
2nπ) = f(x, y), f is not one-to-one on R2.

(c) Put a = (0, π/3), b = f(a), let g be the continuous inverse of f ,
defined in a neighborhood of b, such that g(b) = a. Find an explicit
formula for g, compute f ′(a) and g′(b), and verify the formula (52).
Solution: Let u = ex cos y, v = ex sin y, then u2 + v2 = e2x, which
gives x = 1

2 log(u2 + v2). Since ex = (u2 + v2)1/2, we have cos y =
u/ex = u

(u2+v2)1/2
, and sin y = v/ex = v

(u2+v2)1/2
, which gives tan y =

v/u. Since b = f(a) = f(0, π/3) = (1/2,
√

3/2), and therefore, y =
arctan(v/u). Let g = (g1, g2) be the continuous inverse of f , defined
in a neighborhood of b. Then

g1(u, v) =
1

2
log(u2 + v2), g2(u, v) = arctan(v/u).
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Clearly, g(b) = g(1/2,
√

3/2) = (0, π/3) = a.
What’s more, since

g′(u, v) =

[ u
u2+v2

v
u2+v2

− v
u2+v2

u
u2+v2

]
,

we have

f ′(a) =

[
1
2 −

√
3

2√
3

2
1
2

]
, g′(b) =

[
1
2

√
3

2

−
√

3
2

1
2

]
,

and hence f ′(a) · g′(b) = I, which gives

g′(b) = {f ′(a)}−1 = {f ′(g(b))}−1.

Therefore (52) holds.

(d) What are the images under f of lines parallel to the coordinate axes?
Solution:
(i) If the lines are parallel to the x-axis, namely, y = c, where c is
some constant, then u = ex cos c, v = ex sin c.
(a) If c = nπ + π

2 , then u = 0, v = kex, where k = 1 or k = −1.
(b) If c = nπ + π, then u = kex, where k = 1 or k = −1, v = 0.
(c) Otherwise, v/u = tan c, namely, v = u tan c, u > 0 or u < 0.
For all the three cases the image under f is a radial with the unique
end point (0, 0) (but not including (0, 0)).
(ii) If the lines are parallel to the y-axis, namely, x = c, where c is
some constant, then u = ec cos y, v = ec sin y. Let k = ec > 0, then
u2 + v2 = k2. Therefore, the image under f is a circle of R2 which
centers at (0, 0) and with radius k.

18. Answer analogous questions for the mapping defined by

u = x2 − y2, v = 2xy.

(a) The range of f is R2.

(b) The Jacobian of f is

det

[
2x −2y
2y 2x

]
= 4(x2 + y2).

Thus every point of R2 except (0, 0) has a neighborhood in which f
is one-to-one. Since f(x, x) = f(−x,−x), f is not one-to-one on R2.

(c) Let a = (a1, a2) 6= (0, 0), b = f(a), and let g be the continuous
inverse of f , defined in a neighborhood of b, such that g(b) = a. Since
u2 + v2 = (x2 − y2)2 + (2xy)2 = (x2 + y2)2, we have x2 + y2 = (u2 +
v2)1/2. Thus x2 = 1

2 ((u2 + v2)1/2 + u), and y2 = 1
2 ((u2 + v2)1/2−u).

We then can obtain g according to the signs of a1 and a2.
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19. Show that the system of equations

3x+ y − z + u2 = 0

x− y + 2z + u = 0

2x+ 2y − 3z + 2u = 0

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u
in terms of x; but not for x, y, z in terms of u.
Proof : We have

f ′(x, y, z, u) =

[ 3 1 −1 2u
1 −1 2 1
2 2 −3 2

]
,

and thus get

Ax,y,u =

[ 3 1 2u
1 −1 1
2 2 2

]
, Ax,z,u =

[ 3 −1 2u
1 2 1
2 −3 2

]
,

Ay,z,u =

[ 1 −1 2u
−1 2 1
2 −3 2

]
, Ax,y,z =

[ 3 1 −1
1 −1 2
2 2 −3

]
.

It follows that

det(Ax,y,u) = 8u− 12, det(Ax,z,u) = 21− 14u,

det(Ay,z,u) = 3− 2u, det(Ax,y,z) = 0.

Since f(0, 0, 0, 0) = 0, and det(Ax,y,u), det(Ax,z,u), det(Ay,z,u) all 6= 0
at (0, 0, 0, 0), the desired result then follows from the implicit function
theorem (Theorem 9.28).

20. Take n = m = 1 in the implicit function theorem, and interpret the
theorem (as well as its proof) graphically.
Solution: In the special case n = m = 1, the implicit function theorem
can be stated as:
Let f be a C ′-mapping of an open set E ⊆ R2 into R1 (i.e., f is a
continuously differentiable real function defined on a subset E of R2), such
that f(a, b) = 0 for some point (a, b) ∈ E. Assume that (D1f)(a, b) 6= 0,
then there exist open sets U ⊆ R2 and W ⊆ R1, with (a, b) ∈ U and
b ∈W , having the following property:
To every y ∈W corresponds a unique x such that (x, y) ∈ U and f(x, y) =
0.
If this x is defined to be g(y), then g is a C ′-mapping of W into R1,

g(b) = a, f(g(y), y) = 0, (y ∈ W ), and g′(b) = − (D2f)(a,b)
(D1f)(a,b) . The graphical

interpretation is then easy to obtain.
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21. Define f in R2 by

f(x, y) = 2x3 − 3x2 + 2y3 + 3y2.

(a) Find the four points in R2 at which the gradient of f is zero. Show
that f has exactly one local maximum and one local minimum in R2.
Solution: The gradient of f is ∇f = (6x2 − 6x, 6y2 + 6y). Let
∇f = 0, then 6x2 − 6x = 0, which gives x = 0 or x = 1, and
6y2 + 6y = 0, which gives y = 0 or y = −1. So we get the four points
at which the gradient of f is zero: (0, 0), (0,−1), (1, 0) and (1,−1).
Since f(0, 0) = 0, f(0,−1) = 1, f(1, 0) = −1 and f(1,−1) = 0, we
claim that (0,−1) is the unique local maximum of f in R2 and (1, 0)
is the unique local minimum of f in R2. (The uniqueness is clear
since if any point (x0, y0) ∈ R2 is a local maximum/minimum of f ,
then ∇f(x0, y0) = 0.) To see this, let’s analyze each point one by
one:
(i)The point (0,0): Let (h, k) be any point in a neighborhood of
(0, 0), then f(h, k) = 2h3 − 3h2 + 2k3 + 3k2. Let k = h, then
f(h, k) = f(h, h) = 4h3, which shows that f(h, k) < 0 if h < 0
and f(h, k) > 0 if h > 0. Therefore, (0, 0) cannot be a local maxi-
mum/minimum of f .
(ii) The point (0,-1): Similarly, let (h,−1 + k) be any point in a
neighborhood of (0,−1), then f(h,−1 + k)− 1 = 2h3− 3h2 + 2(−1 +
k)3 +3(−1+k)2−1 = 2h3−3h2 +2k3−3k2 = 2(h3 +k3)−3(h2 +k2).
Since h3 +k3 ≤ |h3 +k3| ≤ |h3|+ |k3| = |h|h2 + |k|k2 ≤ h2 +k2, if |h|,
|k| is sufficiently small (i.e.,(h2 +k2)1/2 is sufficiently small), we then
have f(h,−1 + k) − 1 < 2(h2 + k2) − 3(h2 + k2) = −(h2 + k2) < 0,
which gives f(h,−1 + k) < 1 when (h2 + k2)1/2 is sufficiently small.
This is the same to say that (0,−1) is a local maximum of f .
(iii) The point (1,0): Similarly, let (1 +h, k) be any point in a neigh-
borhood of (1, 0), then f(1 + h, k)− (−1) = 2(1 + h)3 − 3(1 + h)2 +
2k3 + 3k2 + 1 = 2h3 + 3h2 + 2k3 + 3k2 = 2(h3 + k3) + 3(h2 + k2) >
2(−(h2 + k2)) + 3(h2 + k2) = h2 + k2 > 0, when (h2 + k2)1/2 is
sufficiently small. This gives f(1 + h, k) > −1 when (h2 + k2)1/2 is
sufficiently small and therefore, (1, 0) is a local minimum of f .
(iv) The point (1,-1): Similarly, let (1 + h,−1 + k) be any point in a
neighborhood of (1,−1), then f(1 + h,−1 + k) = 2(1 + h)3 − 3(1 +
h)2 + 2(−1 + k)3 + 3(−1 + k)2 = 2h3 + 3h2 + 2k3 − 3k2. Let k = h,
then f(1 + h,−1 + k) = f(1 + h,−1 + h) = 4h3. Therefore, (1,−1)
cannot be a local maximum/minimum of f , due to the same reason
as (i).

(b) Let S be the set of all (x, y) ∈ R2 at which f(x, y) = 0. Find
those points of S that have no neighborhoods in which the equation
f(x, y) = 0 can be solved for y in terms of x (or for x in terms of y).
Describe S as precisely as you can.
Solution: To satisfy the requirement in the hypothesis, we must
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have 6y2 + 6y = 0, which gives y = 0 or y = −1 and f(x, y) = 0. If
y = 0, then 2x3 − 3x2 = 0, which gives x = 0, or x = 3/2; If y = −1,
then 2x3 − 3x2 + 1 = 0, which gives (x − 1)2(2x + 1) = 0, namely,
x = 1 or x = −1/2. Thus the points of S that have no neighborhoods
in which the equation f(x, y) = 0 can be solved for y in terms of x
are (0, 0), (3/2, 0), (1,−1) and (−1/2,−1).

22. Give a similar discussion for

f(x, y) = 2x3 + 6xy2 − 3x2 + 3y2.

Solution: Since ∇f = (6x2 + 6y2 − 6x, 12xy + 6y), ∇f = 0 gives 6x2 +
6y2 − 6x = 0 and 12xy + 6y = 0. 12xy + 6y = 0 implies y = 0 or
x = −1/2, and if y = 0, 6x2 + 6y2 − 6x = 0 implies x = 0 or x = 1; if
x = −1/2, 6x2 + 6y2 − 6x = 0 implies 6y2 + 9/2 = 0, which is impossible.
Therefore, we get the two points at which ∇f = 0, namely, (0, 0), (1, 0),
and f(0, 0) = 0, f(1, 0) = −1.
(i) Since f(h, h) = 8h3, (0, 0) is not a local maximum/minimum of f .
(ii) f(1 + h, k) − (−1) = 2(1 + h)3 + 6(1 + h)k2 − 3(1 + h)2 + 3k2 + 1 =
2h3+3h2+(9+6h)k2 = (2h+3)(h2+3k2) > 0, if (h2+k2)1/2 is sufficiently
small. Therefore, (1, 0) is a local minimum of f .
Suppose f(x, y) = 0, and 12xy + 6y = 0. Then y = 0 or x = −1/2. If
y = 0, f(x, y) = 0 implies 2x3 − 3x2 = 0, which gives x = 0 or x = 3/2; If
x = −1/2, f(x, y) = 0 implies −1 = 0, which is absurd. So the points of
S that have no neighborhoods in which the equation f(x, y) = 0 can be
solved for y in terms of x are (0, 0) and (3/2, 0).

23. Define f in R3 by

f(x, y1, y2) = x2y1 + ex + y2.

Show that f(0, 1,−1) = 0, (D1f)(0, 1,−1) 6= 0, and that there exists
therefore a differentiable function g in some neighborhood of (1,−1) in
R2, such that g(1,−1) = 0 and

f(g(y1, y2), y1, y2) = 0.

Find (D1g)(1,−1) and (D2g)(1,−1).
Solution: Clearly, f(0, 1,−1) = 0. Since (D1f)(x, y1, y2) = 2xy1 + ex,
(D2f)(x, y1, y2) = x2, and (D3f)(x, y1, y2) = 1, (D1f)(0, 1,−1) = 1 6=
0. Therefore, by the implicit function theorem, there exists a differ-
entiable function g in some neighborhood of (1,−1) in R2, such that
g(1,−1) = 0 and f(g(y1, y2), y1, y2) = 0. g′(1,−1) = −(Ax)−1Ay, where
Ax = (D1f)(0, 1,−1) = 1, and Ay = ((D2f)(0, 1,−1), (D3f)(0, 1,−1)) =
(1, 1). Hence, g′(1,−1) = (−1,−1), which gives (D1g)(1,−1) = −1 and
(D2g)(1,−1) = −1.

24. For (x, y) 6= (0, 0), define f = (f1, f2) by

f1(x, y) =
x2 − y2

x2 + y2
,

xy

x2 + y2
.
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Compute the rank of f ′(x, y), and find the range of f .
Solution: Since

f ′(x, y) =

[ 4xy2

(x2+y2)2
−4x2y

(x2+y2)2

y(y2−x2)
(x2+y2)2

x(x2−y2)
(x2+y2)2

]
=

1

(x2 + y2)2

[
4xy2 −4x2y

y(y2 − x2) x(x2 − y2)

]
,

then given any (x, y) ∈ R2, we have f ′(x, y)(x, y)T = (0, 0)T , which means
R(f ′(x, y)) = {(0, 0)T }. Therefore, the rank of f ′(x, y) is 0.

Let u = x2−y2
x2+y2 , v = xy

x2+y2 , then u2 + 4v2 = 1, which means the range of f

is an ellipse on R2.

25. Suppose A ∈ L(Rn, Rm), let r be the rank of A.

(a) Define S as in the proof of Theorem 9.32. Show that SA is a projec-
tion in Rn whose null space is N (A) and whose range is R(S).
Proof : Let Y = R(A), then dimY = r, which means Y has a base
{y1, ...,yr}. Choose zi ∈ Rn so that Azi = yi(1 ≤ i ≤ r), and define
a linear mapping S of Y into Rn by setting S(ciyi + · · · + cryr) =
c1z1 + · · ·+ crzr for all scalars c1, ..., cr.
Let x ∈ Rn, and y = Ax ∈ Y . Then (SA)2x = SASAx = SAS(y) =
Sy = SAx, by (68). which means SA ∈ L(Rn) is a projection in Rn.
(i)Suppose x ∈ N (A), then Ax = 0, which gives SAx = 0, and
hence x ∈ N (SA).
On the other hand, suppose x ∈ N (SA), then SAx = 0, which gives
A(SAx) = 0. By (68), we have A(SAx) = AS(Ax) = Ax, which
shows that Ax = 0. Therefore, x ∈ N (A).
Thus, N (SA) = N (A).
(ii)Suppose z ∈ R(S), then z = Sy, for some y ∈ Y . There is some
x ∈ X such that y = Ax, which shows z = SAx and therefore,
z ∈ R(SA).
On the other hand, suppose z ∈ R(SA), then z = SAx. Since
Ax ∈ Y , we have z ∈ R(S).
Hence, R(SA) = R(S).

(b) Use (a) to show that

dimN (A) + dimR(A) = n.

Proof :
(i) Since for any y ∈ Y , we can write y =

∑r
i=1 ciyi, for some

ci, 1 ≤ i ≤ r. Then Sy =
∑r
i=1 cizi, that is, R(S) is spanned

by zi, 1 ≤ i ≤ r. Then dimR(S) ≤ r, by Theorem 9.2. Since
R(SA) = R(SA), by (a), dimR(SA) = dimR(S) ≤ r. Suppose k =
dimR(SA), k ≤ r, let {u1, ...,uk} be a basis of R(SA), then Rn has
a basis containing u1, ...,uk, by Theorem 9.3(c). Denote this basis by
{u1, ...,un}, then for any x ∈ Rn, x can be written as x =

∑n
i=1 xiui.

Since
∑k
i=1 xiui ∈ R(SA), we have

∑n
i=k+1 xiui ∈ N (SA), due to

149



the fact that SA is a projection in Rn. In particular, ui ∈ N (SA),
k+ 1 ≤ i ≤ n, and since ui ∈ N (SA)(k+ 1 ≤ i ≤ n) is independent,
we must have dimN (SA) ≥ n− k ≥ n− r. Since N (SA) = N (A),
by (a), we hence have dimN (A) ≥ n− r.
(ii) On the other hand, suppose dimN (A) = s, and let {v1, ...,vs} be
a basis of N (A), then by Theorem 9.3(c), Rn has a basis containing
v1, ...,vs. Denote this basis by {v1, ...,vn}, then for any x ∈ Rn,
x can be written as x =

∑n
i=1 xivi. Since

∑s
i=1 xivi ∈ N (A), we

then have Ax = A(
∑n
i=1 xivi) = A(

∑s
i=1 xivi) + A(

∑n
i=s+1 xivi) =

A(
∑n
i=s+1 xivi) =

∑n
i=s+1 xiAvi ∈ R(A). Hence {Avi}(s+ 1 ≤ i ≤

n spans R(A), which gives dimR(A) ≤ n − s, namely, r ≤ n − s.
Therefore dimN (A) = s ≤ n− r.
Combine (i) and (ii), we conclude that dimN (A) = n − r = n −
dimR(A). It follows that dimN (A) + dimR(A) = n.

26. Show that the existence (and even the continuity) of D12f does not imply
the existence of D1f . For example, let f(x, y) = g(x), where g is nowhere
differentiable.
Proof : By Theorem 7.18, there exists a real continuous function on the
real line which is nowhere differentiable. This gives the existence of g.
Note that D2f = 0, which gives D12f = 0, for any (x, y) ∈ R2. Clearly,
D12f is continuous. But D1f does not exist at any x since g is nowhere
differentiable.

27. Put f(0, 0) = 0, and

f(x, y) =
xy(x2 − y2)

x2 + y2

if (x, y) 6= (0, 0). Prove that

(a) f , D1f , D2f are continuous in R2;
Proof :
(i) Since |xy| ≤ (x2 + y2)/2,

|f(x, y)| = |xy(x2 − y2)

x2 + y2
| = |xy| · |x

2 − y2|
x2 + y2

≤ 1

2
|x2 − y2|,

and therefore,

lim
(x,y)→(0,0)

|f(x, y)| ≤ lim
(x,y)→(0,0)

1

2
|x2 − y2| = 0,

which gives that

lim
(x,y)→(0,0)

f(x, y) = 0 = f(0, 0),

namely, f is continuous at (0, 0). Hence f is continuous in R2.
(ii) For (x, y) 6= (0, 0), we have

(D1f)(x, y) =
y(x2 − y2)

x2 + y2
, (D2f)(x, y) =

x(x4 − 4x2y2 − y4)

(x2 + y2)2
,
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and

(D1f)(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x− 0
= lim
x→0

f(x, 0)

x
= 0,

(D2f)(0, 0) = lim
y→0

f(0, y)− f(0, 0)

y − 0
= lim
y→0

f(0, y)

y
= 0.

Since

|(D1f)(x, y)| = |y(x2 − y2)

x2 + y2
| = |y| · |x

2 − y2|
x2 + y2

≤ |y|,

|(D2f)(x, y)| = |x(x4 − 4x2y2 − y4)

(x2 + y2)2
| = |x| · |x

4 − 4x2y2 − y4|
(x2 + y2)2

≤ |x|
(
|x4 − y4|

(x2 + y2)2
+

4x2y2

(x2 + y2)2

)
= |x|

(
|x2 − y2|
x2 + y2

+
4x2y2

(x2 + y2)2

)
≤ |x|(1 + 1) = 2|x|,

we have
lim

(x,y)→(0,0)
|(D1f)(x, y)| ≤ lim

(x,y)→(0,0)
|y| = 0,

lim
(x,y)→(0,0)

|(D2f)(x, y)| ≤ lim
(x,y)→(0,0)

2|x| = 0,

which gives

lim
(x,y)→(0,0)

(D1f)(x, y) = 0 = (D1f)(0, 0),

lim
(x,y)→(0,0)

(D2f)(x, y) = 0 = (D2f)(0, 0).

Therefore, D1f and D2f are continuous at (0, 0) and thus are con-
tinuous in R2.

(b) D12f and D21f exists at every point of R2, and are continuous except
at (0, 0);
Proof : We have

(D12f)(0, 0) = lim
(x,y)→(0,0)

(D2f)(x, 0)− (D2f)(0, 0)

x− 0

= lim
(x,y)→(0,0)

(D2f)(x, 0)

x
= lim

(x,y)→(0,0)

x4

x4
= 1,

and

(D21f)(0, 0) = lim
(x,y)→(0,0)

(D1f)(0, y)− (D1f)(0, 0)

y − 0

= lim
(x,y)→(0,0)

(D1f)(0, y)

y
= lim

(x,y)→(0,0)

−y2

y2
= −1.
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For (x, y) 6= (0, 0), we have

(D12f)(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
,

and

(D21f)(x, y) =
x4 − 4x2y2 − y4

(x2 + y2)3
.

Then D12f and D21f exist at every point of R2. Note that we have

(D12f)(
1

n
,

1

n
) = 0 6= 1, (D21f)(

1

n
,

1

n2
) = 1 6= −1,

and therefore, D12f and D21f are not continuous at (0, 0). It’s clear
that D12f and D21f are continuous at every point other than (0, 0).

(c) (D12f)(0, 0) = 1, and (D21f)(0, 0) = −1.
Proof : This has been showed in (b).

28. For t ≥ 0, put

ϕ(x, t) =

 x (0 ≤ x ≤
√
t)

−x+ 2
√
t (
√
t ≤ x ≤ 2

√
t)

0 (otherwise),

and put ϕ(x, t) = −ϕ(x, |t|) if t < 0.
Show that ϕ is continuous on R2, and

(D2φ)(x, 0) = 0

for all x. Define

f(t) =

∫ 1

−1

ϕ(x, t)dx.

Show that f(t) = t if |t| < 1
4 . Hence

f ′(0) 6=
∫ 1

−1

(D2ϕ)(x, 0)dx.

Proof :
(i) First we show that ϕ is continuous on R2. Note that we only need
to prove for the case t ≥ 0. If t = 0, we then have ϕ(x, t) = 0, for any
x, and clearly it is continuous. Now we assume that t > 0. Fix some
(x0, t0) ∈ R2.
(a) If 0 < x0 <

√
t0, then ϕ(x0, t0) = x0. If we put g(x, t) =

√
t−x, then g

is continuous on R2 and g(x0, t0) > 0. Hence there is a neighborhood Vr1
of (x0, t0) such that (x, t) ∈ Vr1 implies g(x, t) > 0. Similarly, if we put
f(x, t) = x, then f is continuous on R2 and f(x0, t0) > 0. Hence there is a
neighborhood Vr2 of (x0, t0) such that (x, t) ∈ Vr2 implies f(x, t) > 0. Let
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r = min(r1, r2), then for any (x, t) in Vr of (x0, t0), we have f(x, t) > 0
and g(x, t) > 0, namely, 0 < x <

√
t. Therefore ϕ(x, t) = x and given any

ε > 0, we can pick δ = min(ε, r), then for (x, t) ∈ Vδ of (x0, t0), we have
|ϕ(x, t)− ϕ(x0, t0)| = |x− x0| < δ ≤ ε.
(b) If

√
t0 < x0 < 2

√
t0, then similarly as (a), we can pick an r > 0,

such that (x, t) ∈ Vr of (x0, t0) implies
√
t < x < 2

√
t. Then given any

ε > 0, we can pick δ = min(ε/2, ε
√
t0/4, r), then for any (x, t) ∈ Vδ of

(x0, t0), we have |ϕ(x, t) − ϕ(x0, t0)| = |(−x + 2
√
t) − (−x0 + 2

√
t0)| =

|x0 − x + 2(
√
t −
√
t0)| = |x0 − x + 2 t−t0√

t+
√
t0
| ≤ |x0 − x| + 2 |t−t0|√

t+
√
t0
≤

|x0 − x|+ 2 |t−t0|√
t0

< δ + 2δ/
√
t0 ≤ ε/2 + ε/2 = ε.

(c) If x0 < 0 or x0 > 2
√
t0, then ϕ(x0, t0) = 0, and similarly as in (a) and

(b), we can pick neighborhood Vr of (x0, t0) such that (x, t) ∈ Vr implies
x < 0 or x > 2

√
t, and therefore ϕ(x, t) = 0.

(d) If x0 = 0, then ϕ(x0, t0) = 0 <
√
t0, we then have lim(x,t)→(0,t0) ϕ(x, t) =

0. To see this, note that if x < 0, then ϕ(x, t) = 0 and thus
limx<0,(x,t)→(0,t0) ϕ(x, t) = 0; if x > 0, then 0 < x <

√
t0 implies that for

any x we can pick a neighborhood of t0 in which 0 < x <
√
t and therefore

ϕ(x, t) = x, thus limx>0,(x,t)→(0,t0) ϕ(x, t) = 0. Similarly, if x0 =
√
t0, then

ϕ(x0, t0) =
√
t0, and we have lim(x,t)→(

√
t0,t0) ϕ(x, t) =

√
t0. If x0 = 2

√
t0,

then ϕ(x0, t0) = 0, and we have lim(x,t)→(2
√
t0,t0) ϕ(x, t) = 0.

Combine the above cases, we conclude that ϕ is continuous when t ≥ 0,
and therefore is continuous on R2.
(ii) We have

(D2ϕ)(x, 0) = lim
t→0

ϕ(x, t)− ϕ(x, 0)

t− 0
= lim
t→0

ϕ(x, t)

t
.

If x ≤ 0, then ϕ(x, t) = 0, for all t, and thus (D2ϕ)(x, 0) = 0. If x > 0,
then x > 2

√
|t| when |t| is sufficiently small, and therefore, ϕ(x, t) = 0,

which gives (D2ϕ)(x, 0) = 0. Hence (D2ϕ)(x, 0) = 0, for all x.
(iii) If |t| < 1/4, then

√
|t| < 1/2 and therefore 2

√
|t| < 1. Then

f(t) =

∫ 1

−1

ϕ(x, t)dx =

∫ 2
√
|t|

0

ϕ(x, t)dx

If t ≥ 0, we have

f(t) =

∫ 2
√
t

0

ϕ(x, t)dx =

∫ √t
0

xdx+

∫ 2
√
t

√
t

(−x+ 2
√
t)dx = t,

and if t < 0, we have

f(t) =

∫ 2
√
−t

0

ϕ(x, t)dx =

∫ √−t
0

(−x)dx+

∫ 2
√
−t

√
−t

(x− 2
√
−t)dx = t.

Thus, f(t) = t if |t| < 1/4. Then f ′(0) = 1. But
∫ 1

−1
(D2ϕ)(x, 0)dx = 0,

which shows f ′(0) 6=
∫ 1

−1
(D2ϕ)(x, 0)dx.
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29. Let E be an open set in Rn. The classes C ′(E) and C ′′(E) are defined in
the text. By induction, C (k)(E) can be defined as follows, for all positive
integers k: To say that f ∈ C (k)(E) means that the partial derivatives
D1f, ...,Dnf belong to C (k−1)(E).
Assume f ∈ C (k)(E), and show (by repeated application of Theorem 9.41)
that the kth-order derivative

Di1i2···ikf = Di1Di2 ...Dikf

is unchanged if the subscripts i1,...,ik are permuted.
For instance, if n ≥ 3, then

D1213f = D3112f

for every f ∈ C (4).
Proof : It’s sufficient to prove that for any permutation i1i2 · · · ik of
{1, 2, ..., k}, Di1i2···ik = D12···k. Therefore, it’s sufficient to prove that
for any p, q ∈ {1, 2, ..., k}, Di1···ip···iq···ik = Di1···iq···ip···ik . So it’s sufficient
to prove that Di1···ipiq···ik = Di1···iqip···ik for any consecutive ip, iq. But

this is implied by Theorem 9.41, since f ∈ C (k)(E).

30. Let f ∈ C (m)(E), where E is an open subset of Rn. Fix a ∈ E, and
suppose x ∈ Rn is so close to 0 that the points

p(t) = a + tx

lie in E whenever 0 ≤ t ≤ 1. Define

h(t) = f(p(t))

for all t ∈ R1 for which p(t) ∈ E.

(a) For 1 ≤ k ≤ m, show (by repeated application of the chain rule) that

h(k)(t) =
∑

(Di1···ikf)(p(t))xi1 · · ·xik .

The sum extends over all ordered k-tuples (i1, ..., ik) in which each
ij is one of the integers 1, ..., n.
Proof : We prove this by induction on k.
(i) k = 1, then

h′(t) = f ′(p(t))p′(t) = f ′(p(t))x =

n∑
i=1

(Dif)(p(t))xi,

which is the desired result.
(ii) Suppose the result holds when k = s, that is

h(s)(t) =
∑

(Di1···isf)(p(t))xi1 · · ·xis .
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The sum extends over all ordered s-tuples (i1, ..., is) in which each ij
is one of the integers 1, ..., n. When k = s+ 1, we have

h(s+1)(t) = (h(s)(t))′ = [
∑

(Di1···isf)(p(t))xi1 · · ·xis ]′

=
∑

(Di1···isf)′(p(t))xi1 · · ·xis =
∑

(

n∑
j=1

(Dji1···isf)(p(t))xj)xi1 · · ·xis

=
∑

(

n∑
j=1

(Dji1···isf)(p(t))xjxi1 · · ·xis) =
∑

(Di1···is+1
f)(p(t))xi1 · · ·xis+1

.

The sum extends over all ordered (s+ 1)-tuples (i1, ..., is+1) in which
each ij is one of the integers 1, ..., n, which is the desired result.

(b) By Taylor’s theorem (5.15),

h(1) =

m−1∑
k=0

h(k)(0)

k!
+
h(m)(t)

m!

for some t ∈ (0, 1). Use this to prove Taylor’s theorem in n variables
by showing that the formula

f(a + x) =

m−1∑
k=0

1

k!

∑
(Di1···ikf)(a)xi1 · · ·xik + r(x)

represents f(a + x) as the sum of its so-called “Taylor polynomial of
degree m− 1,” plus a remainder that satisfies

lim
x→0

r(x)

|x|m−1
= 0.

Each of the inner sums extends over all ordered k-tuples (i1, ..., ik),
as in part (a); as usual, the zero-order derivative of f is simply f , so
that the constant term of the Taylor polynomial of f at a is f(a).
Proof : By (a), h(1) = f(p(1)) = f(a + x), and h(k)(0) =∑

(Di1···ikf)(p(0))xi1 · · ·xik =
∑

(Di1···ikf)(a)xi1 · · ·xik , for 1 ≤ k ≤
m− 1, h(0)(0) = h(0) = f(p(0)) = f(a).
h(m)(t) =

∑
(Di1···imf)(p(t))xi1 · · ·xim , and let

r(x) =
h(m)(t)

m!
=

∑
(Di1···imf)(p(t))xi1 · · ·xim

m!
,

we then have

| r(x)

|x|m−1
| = |r(x)|
|x|m−1

=
|
∑

(Di1···imf)(p(t))xi1 · · ·xim |
m!|x|m−1

≤
∑
|(Di1···imf)(p(t))||xi1 | · · · |xim |

m!|x|m−1
≤ M |x|m

m!|x|m−1
=
M

m!
|x|.
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Hence

lim
x→0
| r(x)

|x|m−1
| ≤ lim

x→0

M

m!
|x| = 0,

and therefore,

lim
x→0
| r(x)

|x|m−1
| = 0, i.e., lim

x→0

r(x)

|x|m−1
= 0.

The formula

h(1) =

m−1∑
k=0

h(k)(0)

k!
+
h(m)(t)

m!

then gives us that

f(a + x) =

m−1∑
k=0

1

k!

∑
(Di1···ikf)(a)xi1 · · ·xik + r(x).

(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as
written in part (b). For instance, D113 occurs three times, as D113,
D131, D311. The sum of the corresponding three terms can be written
in the form

3(D2
1D3f)(a)x2

1x3.

Prove (by calculating how often each derivative occurs) that the Tay-
lor polynomial in (b) can be written in the form∑ (Ds1

1 · · ·Dsn
n f)(a)

s1! · · · sn!
xs11 · · ·xsnn .

Here the summation extends over all ordered n-tuples (s1, ..., sn) such
that each si is a nonnegative integer, and s1 + · · ·+ sn ≤ m− 1.
Proof : Fix s1, ..., sn and let k = s1 + · · ·+ sn, then the coefficient of
xs1 · · ·xsn in the Taylor polynomial in (b) will be

1

k!
· (Ds1

1 · · ·Dsn
n f)(a) · k!

s1! · · · sn!
=

(Ds1
1 · · ·Dsn

n f)(a)

s1! · · · sn!
,

which shows that the Taylor polynomial in (b) can be written in the
form ∑ (Ds1

1 · · ·Dsn
n f)(a)

s1! · · · sn!
xs11 · · ·xsnn .

31. Suppose f ∈ C (3) in some neighborhood of a point a ∈ R2, the gradient of
f is 0 at a, but not all second-order derivatives of f are 0 at a. Show how
one can then determine from the Taylor polynomial of f at a (of degree
2) whether f has a local maximum, or a local minimum, or neither, at the
point a.
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Extend this to Rn in place of R2.
Proof : Since the gradient of f is 0 at a, we have

f(a + x) = f(a) +
1

2

∑
(Di1i2f)(a)xi1xi2 + r(x)

= f(a) +
1

2
(x1, x2)

[
D11 D12

D21 D22

](
x1

x2

)
+ r(x) = f(a) +

1

2
xTHx + r(x),

then f has a local maximum at the point a if H is negatively determinant,
and f has a local minimum at the point a if H is positively determinant.
If we can find x and y so that xTHx > 0, but yTHy < 0, then f has
neither a local maximum or local minimum at the point a.
The situation and conclusion in Rn is similar as in R2, only now

H =

[ D11f D12f · · · D1nf
D21f D22f · · · D2nf
· · · · · · · · · · · ·
Dn1f Dn2f · · · Dnnf

]
.

10 Integration of differential forms

1. Let H be a compact convex set in Rk, with nonempty interior. Let f ∈
C (H), put f(x) = 0 in the complement of H, and define

∫
H
f as in

Definition 10.3.
Prove that

∫
H
f is independent of the order in which the k integrations

are carried out.
Proof : Since H is a compact set in Rk, H is closed and bounded, by
Theorem 2.41. Therefore, H is contained by some Ik. Since f(x) = 0 in
the complement of H, we can define

∫
H
f =

∫
Ik
f . But note that f may

be discontinuous on Ik.
Now, suppose 0 < δ < 1, given any x ∈ H◦, we associate a set B(x) of
points which lie in H ′ = H−H◦ (namely, the limit points of H) to x such
that S(x) = {yi|1 ≤ i ≤ k,yi ∈ H ′, yij = xj , for j 6= i, and |yii − xi| < δ}.
In the case that there are two or more yi for fixed i, pick the one that gives
the minimal |yii − xi|(If again, two or more points satisfy this condition,
pick any one of them). Then it’s clear that given any x ∈ H◦, S(x) is
uniquely defined, since H is convex. Next, define d(x) = maxyi∈S(x) |yi−
x|, for x ∈ H◦, and define

g(x) =

 1 (x ∈ H◦ and d(x) ≥ δ)
d(x)/δ (x ∈ H◦ and d(x) < δ)
0 (x 6∈ H◦)

If we define F (x) = g(x)f(x), x ∈ Ik, then F ∈ C (Ik).
Put y = (x1, ..., xk), x = (y, xk). For each y ∈ Ik−1, the set of all xk such
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that F (y, xk) 6= f(y, xk) is either empty or two segments either of whose
length does not exceed δ. Since 0 ≤ g ≤ 1, it follows that

|Fk−1(y)−fk−1(y)| = |
∫ bk

ak

(F (y, xk)−f(y, xk))dxk| ≤ 2δ||f ||, (y ∈ Ik−1).

As δ → 0, we have that fk−1 is a uniform limit of a sequence of continuous
functions. Thus fk−1 ∈ C (Ik−1), and the further integrations present no
problems.
This proves the existence of the integral

∫
H
f . Moreover, we have that

|
∫
Ik
F (x)dx−

∫
Ik
f(x)dx| ≤ δ||f ||,

and this is true, regardless of the order in which the k single integrations
are carried out, by our definition of S(x). Since F ∈ C (Ik),

∫
F is unaf-

fected by any change in this order, by Theorem 10.2. Hence the same is
true of

∫
f .

This completes the proof.

2. For i = 1, 2, 3, ..., let ϕi ∈ C (R1) have support in (2−i, 21−i), such that∫
ϕi = 1. Put

f(x, y) =

∞∑
i=1

[ϕi(x)− ϕi+1(x)]ϕi(y)

Then f has compact support in R2, f is continuous except at (0, 0), and∫
dy

∫
f(x, y)dx = 0 but

∫
dx

∫
f(x, y)dy = 1.

Observe that f is unbounded in every neighborhood of (0, 0).
Proof : Since 21−i ≤ 1, then the support of f must be bounded. By the
definition of support, it is closed, and therefore, f has compact support
in R2, by Theorem 2.41.
Clearly, (0, 0) is not in the support of f and therefore, f(0, 0) = 0. On
the other hand, given any x ∈ R1, there is at most one i such that x ∈
(2−i, 21−i) and therefore, ϕi(x) 6= 0. Let y = x, then

f(x, x) =

∞∑
i=1

[ϕi(x)− ϕi+1(x)]ϕi(x) = ϕ2
i (x),

for some i if we keep x fixed. Since
∫
ϕi = 1, we have that there is some

xi ∈ (2−i, 21−i) such that ϕi(xi) > 1, if i is sufficiently large. Suppose, on
the contrary, this is not true, then

∫
ϕi ≤ 1 · (21−i − 2−i) = 2−i < 1, if

i is sufficiently large, which is a contradictory since
∫
ϕi = 1. Note that

xi → 0 if i→∞, and hence

lim
i→∞

f(xi, xi) = ϕ2
i (xi) ≥ 1 6= 0 = f(0, 0).
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Thus, f is not continuous at (0, 0). Fix any (x0, y0) ∈ R2, (x0, y0) 6= (0, 0).
Suppose x0 ∈ (2−j , 21−j) and y0 ∈ (2−k, 21−k), then f(x0, y0) = [ϕk(x0)−
ϕk+1(x0)]ϕk(y0) = cϕj(x0)ϕk(y0), where c = 1(if j = k), c = −1(if
j = k + 1) and c = 0(otherwise). Since ϕi ∈ C (R1), |ϕj | ≤ M , for some
M > 0, and given any ε > 0, we can get a δ > 0 such that |y − y0| < δ/2
implies y ∈ (2−k, 21−k) and |ϕk(y) − ϕk(y0)| < ε/M ; |x − x0| < δ/2
implies x ∈ (2−j , 21−j). Then ((x−x0)2 + (y−y0)2)1/2 < δ and |f(x, y)−
f(x0, y0)| = |cϕj(x)ϕk(y) − cϕj(x0)ϕk(y0)| ≤ |c|M |ϕk(y) − ϕk(y0)| < ε,
which means f(x, y) is continuous at (x0, y0).
We have∫

dy

∫
f(x, y)dx =

∫ 21−i

2−i
dy

∫
[ϕi(x)− ϕi+1(x)]ϕi(y)dx, y ∈ (2−i, 21−i)

=

∫ 21−i

2−i
ϕi(y)dy

∫
[ϕi(x)− ϕi+1(x)]dx

=

∫ 21−i

2−i
ϕi(y)dy(

∫
ϕi(x)dx−

∫
ϕi+1(x)dx) = 0,

and ∫
dx

∫
f(x, y)dy =

∫ 1

1/2

dx

∫
ϕ1(x)ϕ1(y)dy

+

∫ 21−i

2−i
dx

∫
ϕi(x)(ϕi(y)− ϕi−1(y))dy(x ∈ (2−i, 21−i), i ≥ 2)

=

∫ 1

1/2

ϕ1(x)dx

∫
ϕ1(y)dy +

∫ 21−i

2−i
ϕi(x)dx

∫
(ϕi(y)− ϕi−1(y))dy

=

∫ 1

1/2

ϕ1(x)dx+

∫ 21−i

2−i
ϕi(x)dx(

∫
ϕi(y)dy −

∫
ϕi−1(y)dy) = 1.

Note that in the previous statement, actually given any ε > 0, there is
some xi ∈ (2−i, 21−i) such that ϕi(xi) > ε, if i is sufficiently large. Suppose
that, on the contrary, this is not true, then

∫
ϕi ≤ ε(21−i−2−i) = ε2−i < 1

if i is sufficiently large, which is contradict to the fact
∫
ϕi = 1. Therefore,

we must have
lim
i→∞

f(xi, xi) = ϕ2
i (xi) ≥ ε.

Since xi → 0 as i → ∞, this means in every neighborhood of (0, 0), we
can pick some (xi, xi) such that f(xi, xi) > ε. Since ε is arbitrary, this is
equivalent to say that f is unbounded in every neighborhood of (0, 0).

3. (a) If F is as in Theorem 10.7, put A = F′(0), F1(x) = A−1F(x). Then
F′1(0) = I. Show that

F1(x) = Gn ◦Gn−1 ◦ · · · ◦G1(x)
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in some neighborhood of 0, for certain primitive mappings G1,...,Gn.
This gives another version of Theorem 10.7:

F(x) = F′(0)Gn ◦Gn−1 ◦ · · · ◦G1(x).

Proof : The proof process is similar as that of Theorem 10.7. Let
H = F1, and put H = H1. Assume 1 ≤ m ≤ n − 1, and make the
following induction hypothesis (which evidently holds for m = 1):
Vm is a neighborhood of 0, Hm ∈ C ′(Vm), Hm(0) = 0,
[H′m(0)](m;m) = 1 and Pm−1Hm(x) = Pm−1x, (x ∈ Vm).
We then have

Hm(x) = Pm−1x +

n∑
i=m

αi(x)ei,

where αm, ..., αn are real C ′-functions in Vm. Hence

H′m(0)em =

n∑
i=m

(Dmαi)(0)ei.

Since [H′m(0)](m;m) = 1, the previous equation gives that
(Dmαm)(0) = 1.
Define

Gm(x) = x + [αm(x)− xm]em (x ∈ Vm).

Then Gm ∈ C ′(Vm), Gm is primitive, and G′m(0) is invertible, since
(Dmαm)(0) = 1 6= 0.
The inverse function theorem shows therefore that there is an open
set Um, with 0 ∈ Um ⊆ Vm, such that Gm is a 1-1 mapping of
Um onto a neighborhood Vm+1 of 0, in which G−1

m is continuously
differentiable. Define Hm+1 by

Hm+1(y) = Hm ◦G−1
m (y) (y ∈ Vm+1).

Then Hm+1 ∈ C ′(Vm+1), Hm+1(0) = 0, and [H′m+1(0)](m+ 1;m+
1) = 1 (by the chain rule). Also, for x ∈ Um,

PmHm+1(Gm(x)) = PmHm(x) = Pm[Pm−1x + αm(x)em + · · · ]

= Pm−1x + αm(x)em = PmGm(x)

so that
PmHm+1(y) = Pmy (y ∈ Vm+1).

Our induction hypothesis holds therefore with m+ 1 in place of m.
If we apply this with m = 1, ..., n− 1, we successively obtain

F1 = H = H1 = H2 ◦G1 = · · · = Hn ◦Gn−1 ◦ · · · ◦G1

in some neighborhood of 0. Since Hn(x) = Pn−1x + αn(x)en, Hn is
primitive. This completes the proof.
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(b) Prove that the mapping (x, y) → (y, x) of R2 onto R2 is not the
composition of any two primitive mappings, in any neighborhood of
the origin. (This shows that the flips Bi cannot be omitted from the
statement of Theorem 10.7.)

Proof : We have A = F′(0) =

[
0 1
1 0

]
, and by (a), F(x) =

AG2 ◦ G1(x), for certain primitive mappings G1 and G2. There-
fore, F is not the composition of any two primitive mappings, in any
neighborhood of the origin.

4. For (x, y) ∈ R2, define

F(x, y) = (ex cos y − 1, ex sin y).

Prove that F = G2 ◦G1, where

G1(x, y) = (ex cos y − 1, y)

G2(u, v) = (u, (1 + u) tan v)

are primitive in some neighborhood of (0, 0).
Compute the Jacobians of G1, G2, F at (0,0). Define

H2(x, y) = (x, ex sin y)

and find
H1(u, v) = (h(u, v), v)

so that F = H1 ◦H2 in some neighborhood of (0, 0).
Solution: G2◦G1(x, y) = G2(G1(x, y)) = G2(ex cos y−1, y) = (ex cos y−
1, ex cos y tan y) = (ex cos y − 1, ex sin y) = F(x, y).
JG1

(0, 0) = 1, JG2
(0, 0) = 1, and JF(0, 0) = JG2

(G1(0, 0)) · JG1
(0, 0) =

JG2
(0, 0) · JG1

(0, 0) = 1.
Since F = H1 ◦H2, we have h(u, v) = ex cos y− 1, u = x and v = ex sin y.
Hence h(u, v) =

√
e2u − v2 − 1.

5. Formulate and prove an analogue of Theorem 10.8, in which K is a com-
pact subset of an arbitrary metric space. (Replace the functions ϕi that
occur in the proof of Theorem 10.8 by functions of the type constructed
in Exercise 22 of Chap.4)
Proof : We need to prove the following version of Theorem 10.8:
Suppose K is a compact subset of an arbitrary metric space X, and {Vα}
is an open cover of K. Then there exist functions ψ1,...,ψs ∈ C (X) such
that

(a) 0 ≤ ψi ≤ 1 for 1 ≤ i ≤ s;
(b) each ψi has its support in some Vα, and

(c) ψ1(x) + · · ·+ ψs(x) = 1 for every x ∈ K.
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Here is the proof:
Associate with each x ∈ K an index α(x) so that x ∈ Vα(x). Then there
are open balls B(x) and W (x), centered at x, with

B(x) ⊆W (x) ⊆W (x) ⊆ Vα(x).

Since K is compact, there are points x1, ..., xs in K such that

K ⊆ B(x1) ∪ · · · ∪B(xs).

Define

ϕi(x) =
ρW c(xi)(x)

ρW c(xi)(x) + ρ
B(xi)

(x)
, (x ∈ X, 1 ≤ i ≤ s),

where ρE(x) = inf
z∈E

d(x, z) and d is the metric of X. By Exercise 22 of

Chap.4, we know that ϕi is a continuous function on X whose range lies
in [0, 1], that ϕ(x) = 0 on W c(xi) and ϕ(x) = 1 on B(x). Define ψ1 = ϕ1

and
ψi+1 = (1− ϕ1) · · · (1− ϕi)ϕi+1

for i = 1, ..., s− 1.
Properties (a) and (b) then are clear. The relation

ψ1 + · · ·+ ψi = 1− (1− ϕ1) · · · (1− ϕi)

is trivial for i = 1. Suppose it holds for some i < s, addition of the above
two equations yields the previous equation with i + 1 in place of i. It
follows that

s∑
i=1

ψi(x) = 1−
s∏
i=1

[1− ϕi(x)] (x ∈ X).

If x ∈ K, then x ∈ B(xi) for some i, hence ϕi(x) = 1, and the product in
the last equation is 0. This proves (c).

6. Strengthen the conclusion of Theorem 10.8 by showing that the functions
ψi can be made differentiable, and even infinitely differentiable. (Use
Exercise 1 of Chap.8 in the construction of the auxiliary functions ϕi.)
Proof : Let the radius of B(xi) and W (xi) be ri and Ri, define ϕi to be

ϕi(x) =


1 (|x− xi| ≤ ri
exp(− |x−ri|

2

|x−Ri|2 ) (ri < |x− xi| < Ri)

0 (|x− xi| ≥ Ri)
,

then the proof process is the same as that of Theorem 10.8.

7. (a) Show that the simplex Qk is the smallest convex subset of Rk that
contains 0, e1, ..., ek.
Proof : First we will prove the following statement by induction:
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Suppose E is convex, pi ∈ E, λi > 0, and
∑
λi = 1, then

∑
λixi ∈ E.

(i) The case i = 1 is trivial;
(ii) Suppose the statement holds when i = n. Let i = n+ 1, then we

have
∑n+1
i=1 λi = 1, and

n+1∑
i=1

λixi =

n∑
i=1

λixi+λn+1xn+1 = (1−λn+1)

n∑
i=1

λi
1− λn+1

xi+λn+1xn+1.

Since

n∑
i=1

λi
1− λn+1

=
1

1− λn+1

n∑
i=1

λi =
1

1− λn+1
· (1− λn+1) = 1,

∑n
i=1

λi
1−λn+1

xi ∈ E, by induction hypothesis. Therefore,
∑n+1
i=1 λixi ∈

E due to the convexity of E.
Suppose now E ⊆ Rk, E is convex and E contains ei, 0 ≤ i ≤ k,
e0 = 0. For every x ∈ Qk, x =

∑k
i=0 λiei, 0 ≤ i ≤ k, where λi ≤ 0,

and
∑k
i=0 λi = 1. Therefore, we must have x ∈ E, which means

Qk ⊆ E.

(b) Show that affine mapping take convex sets to convex sets.
Proof : Suppose E is convex, f(x) = f(0) +Ax is an affine mapping
defined on E. For any y1, y2 ∈ f(E), there exists x1, x2 ∈ E
such that f(x1) = y1 and f(x2) = y2. Suppose 0 < λ < 1, then
λy1 + (1 − λ)y2 = λ(f(0) + Ax1) + (1 − λ)(f(0) + Ax2) = f(0) +
A(λx1 + (1 − λ)x2). Since E is convex, λx1 + (1 − λ)x2 ∈ E, and
hence λy1 + (1− λ)y2 ∈ f(E), which gives that f(E) is convex.

8. LetH be the parallelogram inR2 whose vertices are (1, 1), (3, 2), (4, 5), (2, 4).
Find the affine map T which sends (0, 0) to (1, 1), (1, 0) to (3, 2), (0, 1) to
(2, 4). Show that JT = 5. Use T to convert the integral

α =

∫
H

ex−ydxdy

to an integral over I2 and thus compute α.
Solution:

T (x, y) =

[
2 1
1 3

](
x
y

)
+

(
1
1

)
.

Clearly, JT = 5, and therefore

α = 5

∫
I2
et−2sdtds =

5

2
(e− 1)(1− e−2).

9. Define (x, y) = T (r, θ) on the rectangle

0 ≤ r ≤ a, 0 ≤ θ ≤ 2π
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by the equations
x = r cos θ, y = r sin θ.

Show that T maps this rectangle onto the closed disc D with center at
(0, 0) and radius a, that T is one-to-one in the interior of the rectangle,
and that JT (r, θ) = r. If f ∈ C (D), prove the formula for integration in
polar coordinates:∫

D

f(x, y)dxdy =

∫ a

0

∫ 2π

0

f(T (r, θ))rdrdθ.

Proof : Denote the rectangle 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π by E. Since
x2 + y2 = r2 ≤ a2, T (E) ⊆ D. Let (x0, y0) be any point of D, then
x2

0 + y2
0 ≤ a2. Pick r, 0 ≤ r ≤ a, and x2

0 + y2
0 = r2, and let θ be

x0 = r cos θ, y0 = r sin θ, 0 ≤ θ ≤ 2π. Then (x0, y0) = T (r, θ). Hence T
maps E onto D.
In the interior of E, we have 0 < r < a and 0 < θ < 2π. Suppose
T (r1, θ1) = (x, y) and T (r2, θ2) = (x, y), then x2 +y2 = r2

1 = r2
2 and hence

r1 = r2 > 0. Therefore cos θ1 = cos θ2 and sin θ1 = sin θ2, which gives
θ1 = θ2, since 0 < θ1, θ2 < 2π. Thus T is one-to-one in the interior of the
rectangle E, and clearly JT (r, θ) = r.
Now, let D0 be the interior of D, minus the interval from (0, 0) to (a, 0),
and let E0 be the interior of E. Then T maps E0 one-to-one onto D0,
and JT (r, θ) = r 6= 0, for all (r, θ) ∈ E0. Theorem 10.9 thus applies to
continuous functions whose support lies in D0. To remove this restriction,
let’s proceed as in Example 10.4.
Define ϕ(x, y) on R2 as follows:
(i) ϕ(x, y) = 0, if (x, y) 6∈ D0;
(ii) When (x, y) ∈ D0, since T is one-to-one and onto from E0 to D0, there
exist an unique (r, θ) ∈ E0 such that T (r, θ) = (x, y). Let 0 < δ < a/2.
(ii.a) ϕ(x, y) = 1, when δ ≤ r ≤ a− δ and δ ≤ θ ≤ 2π − δ;
(ii.b) ϕ(x, y) = r

δ , when 0 < r < δ and δ ≤ θ ≤ 2π − δ;
(ii.c) ϕ(x, y) = a−r

δ , when a− δ < r < a and δ ≤ θ ≤ 2π − δ;
(ii.d) ϕ(x, y) = θ

δ , when δ ≤ r ≤ a− δ and 0 < θ < δ;

(ii.e) ϕ(x, y) = 2π−θ
δ , when δ ≤ r ≤ a− δ and 2π − δ < θ < 2π;

(ii.f) ϕ(x, y) = rθ
δ2 , when 0 < r < δ and 0 < θ < δ;

(ii.g) ϕ(x, y) = r(2π−θ)
δ2 , when 0 < r < δ and 2π − δ < θ < 2π;

(ii.i) ϕ(x, y) = (a−r)θ
δ2 , when a− δ < r < a and 0 < θ < δ;

(ii.j) ϕ(x, y) = (a−r)(2π−θ)
δ2 , when a− δ < r < a and 2π − δ < θ < 2π.

Note that ϕ(x, y) is continuous on R2 since T is one-to-one and continuous
on E0. As in Example 10.4, define F (x, y) = f(x, y)ϕ(x, y), (x, y) ∈ D,
then F ∈ C (D). The area of R2 where F is different from f is 2(πδ2 +
πa2−π(a−δ)2+[πa2−πδ2−(πa2−π(a−δ)2)]· δ2π ) = 2(2πaδ+ δ

2 ·a(a−2δ)) =
δa(a− 2δ + 4π). Hence

|
∫
D

F (x, y)dxdy −
∫
D

f(x, y)dxdy| ≤ δa(a− 2δ + 4π)||f ||.
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As δ → 0, we get ∫
D

f(x, y)dxdy = lim
δ→0

∫
D

F (x, y)dxdy.

Since the support of F lies in D0 = T (E0), and T is a 1-1 C ′-mapping
from E0 to D0, JT (r, θ) = r 6= 0 for all (r, θ) ∈ E0, Theorem 10.9 gives
that ∫

D

F (x, y)dxdy =

∫
D0

F (x, y)dxdy =

∫
E0

F (T (r, θ))rdrdθ,

and thus∫
D

f(x, y)dxdy = lim
δ→0

∫
E0

F (T (r, θ))rdrdθ =

∫ a

0

∫ 2π

0

f(T (r, θ))rdrdθ.

10. Let a→∞ in Exercise 9 and prove that∫
R2

f(x, y)dxdy =

∫ ∞
0

∫ 2π

0

f(T (r, θ))rdrdθ,

for continuous functions f that decrease sufficiently rapidly as |x|+ |y| →
∞. (Find a more precise formulation.) Apply this to

f(x, y) = exp(−x2 − y2)

to derive formula (101) of Chap.8.
Proof : The above statement holds when

lim
r→∞

|f(T (r, θ))|r2+λ = 0, λ > 0

Let’s see how to prove this. Since∫
R2

f(x, y)dxdy = lim
a→∞

∫
D

f(x, y)dxdy

= lim
a→∞

∫ a

0

∫ 2π

0

f(T (r, θ))rdrdθ =

∫ ∞
0

∫ 2π

0

f(T (r, θ))rdrdθ,

if the last limit exists.
To prove the existence of the last limit, it is to say that given any ε > 0,
there exists an A > 0, such that a′ > a > A implies

|
∫ a′

a

∫ 2π

0

f(T (r, θ))rdrdθ| < ε.

Pick A1 > 0 such that a > A1 implies |f(T (r, θ))|r2+λ < 1, namely,
|f(T (r, θ))| < r−2−λ. Since

|
∫ a′

a

∫ 2π

0

f(T (r, θ))rdrdθ| ≤
∫ a′

a

∫ 2π

0

|f(T (r, θ))|rdrdθ
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<

∫ a′

a

∫ 2π

0

r−1−λdrdθ =
2π

λ
(a−λ − a′−λ),

for a′ > a > A1. Now, pick A2 > 0 such that a′ > a > A2 implies
a′−λ < a−λ < Aλ2 <

λε
4π . Let A = max(A1, A2), then when a′ > a > A,

|
∫ a′

a

∫ 2π

0

f(T (r, θ))rdrdθ| < 2π

λ
(a−λ − a′−λ)

<
2π

λ
(a−λ + a′−λ) <

2π

λ
· λε

2π
= ε.

Apply this result to f(x, y) = exp(−x2 − y2) gives that∫
R2

exp(−x2 − y2)dxdy =

∫ ∞
0

∫ 2π

0

exp(−r2)rdrdθ = π.

Therefore, ∫ ∞
−∞

e−s
2

ds =
√
π.

11. Define (u, v) = T (s, t) on the strip

0 < s <∞, 0 < t < 1

by setting u = s − st, v = st. Show that T is a 1-1 mapping of the strip
onto the positive quadrant Q in R2. Show that JT (s, t) = s.
For x > 0, y > 0, integrate

us−1e−uvy−1e−v

over Q, use Theorem 10.9 to convert the integral to one over the strip,
and derive formula (96) of Chap.8 in this way.
(For this application, Theorem 10.9 has to be extended so as to cover
certain improper integrals. Provide this extension.)
Proof : For any (u, v) ∈ Q, we can pick (s, t) from the strip such that
s = u+v and t = v

u+v . Thus T is onto. Suppose (s1, t1), (s2, t2) are in the
trip, and T (s1, t1) = T (s2, t2), then s1 − s1t1 = s2 − s2t2 and s1t1 = s2t2.
Summing up these two equations gives s1 = s2 > 0, and by the second
equation we have t1 = t2. Hence T is one-to-one. Clearly, JT (s, t) = s.
The extension of Theorem 10.9 here should be:
Suppose T is a 1-1 C ′-mapping of an open set E ⊆ Rk into Rk such that
JT (x) 6= 0 for all x ∈ E. If f is a continuous function on Rk whose support
lies in T (E), then ∫

Rk
f(y)dy =

∫
Rk
f(T (x))|JT (x)|dx.

Now, we have∫
Q

ux−1e−uvy−1e−vdudv =

∫ ∞
0

∫ 1

0

(s− st)x−1e−(s−st)(st)y−1e−stsdsdt
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=

∫ ∞
0

sx+y−1e−sds

∫ 1

0

ty−1(1− t)x−1dt = Γ(x+ y)

∫ 1

0

tx−1(1− t)y−1dt,

namely,∫ ∞
0

ux−1e−udu

∫ ∞
0

vy−1e−vdv = Γ(x+ y)

∫ 1

0

tx−1(1− t)y−1dt,

namely,

Γ(x)Γ(y) = Γ(x+ y)

∫ 1

0

tx−1(1− t)y−1dt,

and therefore, ∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γx+ y
.

12. Let I2 be the set of all u = (u1, ..., uk) ∈ Rk with 0 ≤ ui ≤ 1 for all i; let
Qk be the set of all x = (x1, ..., xk) ∈ Rk with xi ≥ 0,

∑
xi ≤ 1. (Ik is

the unit cube; Qk is the standard simplex in Rk.) Define x = T (u) by

x1 = u1, x2 = (1− u1)u2, ..., xk = (1− u1) · · · (1− uk−1)uk.

Show that
k∑
i=1

xi = 1−
k∏
i=1

(1− ui).

Show that T maps Ik onto Qk, that T is 1-1 in the interior of Ik, and that
its inverse S is defined in the interior of Qk by u1 = x1 and

ui =
xi

1− x1 − · · · − xi−1

for i = 2, ..., k. Show that

JT (u) = (1− u1)k−1(1− u2)k−2 · · · (1− uk−1),

and

JS(x) = [(1− x1)(1− x1 − x2) · · · (1− x1 − · · · − xk−1)]−1.

Proof : We prove the first equation by induction.
(i) The equation holds when k = 1 trivially;
(ii) Suppose the equation holds when k = n, that is,

n∑
i=1

xi = 1−
n∏
i=1

(1− ui).

Let k = n+ 1, then

n+1∑
i=1

xi =

n∑
i=1

xi + xn+1 = 1−
n∏
i=1

(1− ui)
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+(1− u1) · · · (1− un)un+1 = 1−
n+1∏
i=1

(1− ui).

The fact that T maps Ik onto Qk, that T is 1-1 in the interior of Ik, and
that its inverse S so defined can be checked easily.
Since T ′(u) is a lower-left triangular matrix,

JT (u) = (1− u1)k−1(1− u2)k−2 · · · (1− uk−1).

Note that JS(x) = [JT (u)]−1, and 1−u1 = 1−x1, 1−ui = 1−x1−···−xi
1−x1−···−xi−1

.

Substitute these into JT (u), we can get

JS(x) = [(1− x1)(1− x1 − x2) · · · (1− x1 − · · · − xk−1)]−1.

13. Let r1, ..., rk be nonnegative integers, and prove that∫
Qk
xr11 · · ·x

rk
k dx =

r1! · · · rk!

(k + r1 + · · ·+ rk)!
.

Proof : ∫
Qk
xr11 · · ·x

rk
k dx =

∫
Ik
ur11 · · · [(1− u1) · · · (1− uk−1)uk]rk

(1− u1)k−1(1− u2)k−2 · · · (1− uk−1)du

=

∫
Ik
ur11 · · ·u

rk
k (1− u1)r2+···+rk+(k−1) · · · (1− uk−1)rk+1du

= (

∫ 1

0

u
(r1+1)−1
1 (1− u1)r2+···+rk+(k−1)du1) · · · (

∫ 1

0

u
(rk−1+1)−1
k−1

(1− uk−1)(rk+2)−1duk−1) · (
∫ 1

0

urkk duk) =
Γ(r1 + 1)Γ(r2 + · · ·+ rk + k)

Γ(r1 + · · ·+ rk + (k + 1))

·Γ(r2 + 1)Γ(r3 + · · ·+ rk + (k − 1))

Γ(r2 + · · ·+ rk + k)
· · · Γ(rk−1 + 1)Γ(rk + 2)

Γ(rk−1 + rk + 3)
· 1

rk + 1

=
Γ(r1 + 1) · · ·Γ(rk−1 + 1)Γ(rk + 2)

Γ(r1 + · · ·+ rk + (k + 1))(rk + 1)
=

r1! · · · rk−1!(rk + 1)!

(k + r1 + · · ·+ rk)!(rk + 1)

=
r1! · · · rk−1!rk!

(k + r1 + · · ·+ rk)!
.

Note that the special case r1 = · · · = rk = 0 shows that the volume of Qk

is 1/k!.

14. Prove formula (46).
Proof : s(j1, ..., jk) =

∏
p<q

sgn(jq − jp) = (−1)Nj1+···+Njk , where Njp is

the number of those jq such that q < p but jq > jp. Then it’s clear that
ε(j1, ..., jk) = s(j1, ..., jk) due to the meaning of ε(j1, ..., jk).
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15. If ω and λ are k- and m-forms, respectively, prove that

ω ∧ λ = (−1)kmλ ∧ ω.

Proof : Because of (57), the result follows if it is proved for the special
case

ω = fdxI , λ = gdxJ ,

where f, g ∈ C (E), dxI is a basic k-form, and dxJ is a basic m-form. Then

ω ∧ λ = fgdxI ∧ dxJ , λ ∧ ω = fgdxJ ∧ dxI .

Since
dxI ∧ dxJ = dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjm ,

and
dxJ ∧ dxI = dxj1 ∧ · · · ∧ dxjm ∧ dxi1 ∧ · · · ∧ dxik ,

it’s clear that
dxI ∧ dxJ = (−1)kmdxJ ∧ dxI

and therefore,
ω ∧ λ = (−1)kmλ ∧ ω.

16. If k ≤ 2 and σ = [p0,p1, ...,pk] is an oriented affine k-simplex, prove that
∂2σ = 0, directly from the definition of the boundary operator ∂. Deduce
from this that ∂2Ψ = 0 for every chain Ψ.
Proof : By 10.29,

∂σ =

k∑
j=0

(−1)j [p0, ...,pj−1,pj+1, ...,pk].

Now, if i < j, let σij be the (k − 2)-simplex obtained by deleting pi and
pj from σ. We will show that each σij occurs twice in ∂2σ, with opposite
sign.
The (k − 1)-simplex obtained by deleting pi is:

σi = (−1)i[p0, ...,pi−1,pi+1, ...,pk],

and the (k − 1)-simplex obtained by deleting pj is:

σj = (−1)j [p0, ...,pj−1,pj+1, ...,pk].

Then the (k − 2)-simplex obtained by deleting pj from σi is:

σij = (−1)i(−1)j−1[p0, ...,pi−1,pi+1, ...,pj−1,pj+1, ...,pk],

and the (k − 2)-simplex obtained by deleting pi from σj is:

σji = (−1)j(−1)i[p0, ...,pi−1,pi+1, ...,pj−1,pj+1, ...,pk].

Clearly, σij and σji have opposite signs. Thus ∂2σ = 0.
Suppose Ψ =

∑
Φi, and Φi = Tσi, then ∂Ψ =

∑
∂Φi =

∑
T (∂σi), and

therefore, ∂2Ψ =
∑
∂2Φi =

∑
T (∂2σi) = 0.
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17. Put J2 = τ1 + τ2, where

τ1 = [0, e1, e2], τ2 = −[0, e2, e2 + e1].

Explain why it is reasonable to call J2 the positively oriented unit square
in R2. Show that ∂J2 is the sum of 4 oriented affine 1-simplexes. Find
these. What is ∂(τ1 − τ2)?
Proof : Clearly, both τ1 and τ2 have Jacobian 1¿0. Since

∂τ1 = [e1, e1 + e2]− [0, e1 + e2] + [0, e1],

∂τ2 = −[e2, e2 + e1] + [0, e2 + e1]− [0, e2],

we have

∂J2 = ∂τ1 + ∂τ2 = [0, e1] + [e1, e1 + e2] + [e2 + e1, e2] + [e2,0],

which is the same as ∂I2. So it is reasonable to call J2 the positively
oriented unit square in R2.
Since

τ1 − τ2 = [0, e1, e1 + e2] + [0, e2, e2 + e1],

∂(τ1−τ2) = [e1, e1+e2]−[0, e1+e2]+[0, e1]+[e2, e2+e1]−[0, e2+e1]+[0, e2]

= [e1, e1 + e2] + [e1 + e2,0] + [0, e1] + [e2, e2 + e1] + [e2 + e1,0] + [0, e2].

18. Consider the oriented affine 3-simplex

σ1 = [0, e1, e1 + e2, e1 + e2 + e3]

in R3. Show that σ1 (regarded as a linear transformation) has determi-
nant 1. Thus σ1 is positively oriented.
Let σ2, ..., σ6 be five other oriented 3-simplexes, obtained as follows: There
are five permutations (i1, i2, i3) of (1, 2, 3), distinct from (1, 2, 3). Asso-
ciate with each (i1, i2, i3) the simplex

s(i1, i2, i3)[0, ei1 , ei1 + ei2 , ei1 + ei2 + ei3 ]

where s is the sign that occurs in the definition of the determinant. (This
is how τ2 was obtained from τ1 in Exercise 17.)
Show that σ2, ..., σ6 are positively oriented.
Put J3 = σ1 + · · · + σ6. Then J3 may be called the positively oriented
unit cube in R3.
Show that ∂J3 is the sum of 12 oriented affine 2-simplexes. (These 12
triangles cover the surface of the unit cube I3.)
Show that x = (x1, x2, x3) is in the range of σ1 if and only if 0 ≤ x3 ≤
x2 ≤ x1 ≤ 1.
Show that the range of σ1, ..., σ6 have disjoint interiors, and that their
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union covers I3. (Compared with Exercise 13; note that 3!=6.)
Proof : Since Aei = pi − p0 for 1 ≤ i ≤ k, we have

A =

[ 1 1 1
0 1 1
0 0 1

]
,

which gives det(A) = 1. Thus σ1 is positively oriented.
LetA(i1, i2, i3) be the corresponding linear transformation of σ(i1, i2, i3) =
[0, ei1 , ei1 + ei2 , ei1 + ei2 + ei3 ]. Define matrix P (i1, i2, i3) such that
P (k, ik) = 1 for k = 1, 2, 3 and P (k, j) = 0 otherwise. Then P (i1, i2, i3)A =
A(i1, i2, i3), and therefore, det[A(i1, i2, i3)] = det[A] det[P (i1, i2, i3)] =
det[P (i1, i2, i3)]. Note that

det[P (i1, i2, i3)] = s(i1, i2, i3)a(1, i1)a(2, i2)a(3, i3) = s(i1, i2, i3),

by Definition 9.33. Hence det[A(i1, i2, i3)] = s(i1, i2, i3). If we letB(i1, i2, i3)
denote the corresponding linear transformation of
s(i1, i2, i3)[0, ei1 , ei1 + ei2 , ei1 + ei2 + ei3 ], then
det[B(i1, i2, i3)] = s(i1, i2, i3) det[A(i1, i2, i3)] = (s(i1, i2, i3))2 = 1 > 0.
So σ2, ..., σ6 are positively oriented.
Note that ∂σ(i1, i2, i3) = s(i1, i2, i3){[ei1 , ei1 +ei2 , ei1 +ei2 +ei3 ]−[0, ei1 +
ei2 , ei1 + ei2 + ei3 ] + [0, ei1 , ei1 + ei2 + ei3 ]− [0, ei1 , ei1 + ei2 ]}.
Thus, ∂σ(1, 2, 3) = [e1, e1 + e2, e1 + e2 + e3]− [0, e1 + e2, e1 + e2 + e3] +
[0, e1, e1 + e2 + e3]− [0, e1, e1 + e2],
∂σ(1, 3, 2) = −[e1, e1 + e3, e1 + e3 + e2] + [0, e1 + e3, e1 + e3 + e2] −
[0, e1, e1 + e3 + e2] + [0, e1, e1 + e3],
∂σ(2, 1, 3) = −[e2, e2 + e1, e2 + e1 + e3] + [0, e2 + e1, e2 + e1 + e3] −
[0, e2, e2 + e1 + e3] + [0, e2, e2 + e1],
∂σ(2, 3, 1) = [e2, e2 +e3, e2 +e3 +e1]−[0, e2 +e3, e2 +e3 +e1]+[0, e2, e2 +
e3 + e1]− [0, e2, e2 + e3],
∂σ(3, 2, 1) = −[e3, e3 + e2, e3 + e2 + e1] + [0, e3 + e2, e3 + e2 + e1] −
[0, e3, e3 + e2 + e1] + [0, e3, e3 + e2],
∂σ(3, 1, 2) = [e3, e3 +e1, e3 +e1 +e2]−[0, e3 +e1, e3 +e1 +e2]+[0, e3, e3 +
e1 + e2]− [0, e3, e3 + e1], and thus

∂J3 =

6∑
i=1

∂σi = [e1, e1 + e2, e1 + e2 + e3]− [0, e1, e1 + e2]

−[e1, e1 + e3, e1 + e3 + e2] + [0, e1, e1 + e3]

−[e2, e2 + e1, e2 + e1 + e3] + [0, e2, e2 + e1]

[e2, e2 + e3, e2 + e3 + e1]− [0, e2, e2 + e3]

−[e3, e3 + e2, e3 + e2 + e1] + [0, e3, e3 + e2]

[e3, e3 + e1, e3 + e1 + e2]− [0, e3, e3 + e1].
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⇒: If 0 ≤ x3 ≤ x2 ≤ x1 ≤ 1, let u3 = x3, u2 = x2−x3, u1 = x1−x2, then
ui ≥ 0, i = 1, 2, 3, and

∑
ui = x1 ≤ 1. Therefore, u = (u1, u2, u3) ∈ Q3,

and σ1(u) = Au = (u1 + u2 + u3, u2 + u3, u3) = (x1, x2, x3) = x. Hence x
is in the range of σ1.
⇐: If x is in the range of σ1, then there exists u ∈ Q3, such that σ1(u) =
Au = x. That is x1 = u1 + u2 + u3, x2 = u2 + u3, and x3 = u3, ui ≤ 0,
i = 1, 2, 3,

∑
ui ≤ 1. Therefore, 0 ≤ x3 ≤ x2 ≤ x1 ≤ 1.

Similarly as the above statements, we can prove that x is in the range of
σ(i1, i2, i3) if and only if 0 ≤ xi3 ≤ xi2 ≤ xi1 ≤ 1. Then it’s clear that
the ranges of σ1, ..., σ6 have disjoint interiors. Since every σi has the same
volume as Q3 (since every σi has Jacobian 1), namely 1/3! = 1/6, and
thus 6 of them gives a total volume of 1, which is exactly the volume of
I3. Note that the range of every σi lies in I3, and since they have disjoint
interiors, we can conclude that their union covers I3.
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