
An Overreaction to the Broken Machine Learning Abstraction:
The ease.ml Vision

Ce Zhang
†
, Wentao Wu,

‡
and Tian Li

∗

† ETH Zurich, Switzerland, ce.zhang@inf.ethz.ch

‡Microso� Research, USA, wentao.wu@microso�.com

∗ Peking University, China, litianeecs@pku.edu.cn

�eworld that I was programming in back then has passed,
and the goal now is for things to be easy, self-managing,
self-organizing, self-healing, and mindless. Performance
is not an issue. Simplicity is a big issue.

— Jim Gray, 2002

A�er hours of teaching astrophysicists TensorFlow and then see

them, nevertheless, continue to struggle in the most creative way

possible, we asked, What is the point of all of these e�orts? 1

It was a warm winter a�ernoon, Zurich was not gloomy at all;

while Sea�le was sunny as usual, and Beijing’s air was crystally

clear. One of the authors stormed out of a Marathon meeting with

biologists, and our journey of overreaction begins. We ask, Can we
build a system that gets domain experts completely out of the machine
learning loop? Can this system have exactly the same interface as
linear regression, the bare minimum requirement of a scientist?

We started trial-and-errors and discussions with domain experts,

all of whom not only have a great sense of humor but also gener-

ously o�ered to be our “guinea pigs.” A�er months of exploration,

the architecture of our system, ease.ml, starts to get into shape—

It is not as general as TensorFlow but not completely useless; in

fact, many applications we are supporting can be built completely

with ease.ml, and many others just need some syntax sugars. Dur-

ing development, we �nd that building ease.ml in the right way

raises a series of technical challenges. In this paper, we describe

our ease.ml vision, discuss each of these technical challenges, and

map out our research agenda for the months and years to come.

1 INTRODUCTION

�ere has been li�le doubt that most �elds of science is moving

towards a more data-driven paradigm. In our short experience

working with a diverse range of scientists at ETH for just six months,

we already see the abundance of potential opportunities. With six

on-going collaborative projects (e.g., [7]) with domain experts, it is

the time to ask the question: How can we raise the level of abstraction
to get ourselves out of the loop? Figure 1 is our answer.

1
We are grateful to the great sense of humor shared by all of our collaborators—

astrophysics, biology, and other domains—without whose generous support this vision

is not possible at all. �e only motivation of ease.ml is to make them happy, who

give us the privilege to witness and support their journey of advancing their �eld.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

HILDA’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5029-7/17/05. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3077257.3077265

c. Supervision

a. Define Model: myapp.py
I = [256, 256, 3]
O = [2]
execfile("ease.ml")

$ find "dogs/*jpg" | lam - -s " dog" | ./myapp
myapp: 250 images added
$ find "cats/*jpg" | lam - -s " cat" | ./myapp
myapp: 300 images added

b. Apply Model: x.py
import myapp
img = load_img("...")
label = myapp.f(img)

d. Update Model

$./myapp up
myapp: New model found
on ArXiv. Acc 75->77!
- - - - REPORT - - - -
Jan 13: AlexNet :60

Jan 14: GoogLeNet :64

Jan 16: ResNet :75

Jan 17: FancyResNet:77
- - - - - - - - - - -

e. Supervision Engineering

$./myapp refine
myapp: goto
 http://localhost:9000

 dog

 dog

 dog

 dog

 dog

 cat

 cat

 cat

 cat

Figure 1: �e design of the �rst version of ease.ml.

Users interact with ease.ml in �ve ways, and �ve ways only.

�e mental model is to think about machine learning models

as an approximator of arbitrary functions, and nothing else:

(1) Model De�nition: User de�nes a machine learning

model in Python with the size of the input and size of the

output of the function approximator s/he wants to build.

(2) Model Application: User can use the machine learning

model on new inputs like any other Python functions.

(3) Supervision: Like a linear regression model, users feed

an ease.ml application with pairs of inputs and outputs.

Every time a new pair is added, the model gets

automatically updated without any user intervention.

(4) Update Model: Whenever a new machine learning

model is available on ArXiv (such as a new neural

network model for image classi�cation), all applications

built with ease.ml automatically get updated.

(5) Supervision Engineering: Users manage the training

corpus with a Web interface. S/he can remove training

examples from the corpus. Whenever the training corpus

is changed, the model gets updated automatically.

HILDA’17, May 14, 2017, Chicago, IL, USA Ce Zhang†, Wentao Wu,‡ and Tian Li∗

Design Rationale. �e revival of deep neural network has changed

the way that people view and understand the world. Machine learn-

ing systems powered by deep neural networks are o�en way more

capable than prior state-of-the-art techniques, especially on so-

phisticated tasks that even perplex human beings, such as speech

recognition, image classi�cation, natural language processing, drug

discovery, and so on. �e emergence of the deep learning era there-

fore inspires not only computer scientists but also folks in various

areas wherever big data is available, including astronomy, geogra-

phy, oceanology, meteorology, toxicology, biomedical informatics,

etc. Unfortunately, deep neural networks are such complex objects

that their behavior is elusive even for top experts in this �eld. Build-

ing, training, and tuning performance of deep neural networks is

o�en more of an art than science. It is thus easy to see an obvious

gap here between the ever-growing demand of using deep neural

networks and the pain of manually managing these networks.

In this paper, we present our vision on building a system ease.ml
that automatically manages the process of building, training, and

tuning deep neural networks. Such a system can signi�cantly ease

application development on top of deep neural networks, especially

for users and developers with li�le expertise. �e experience we

gain from the past half-century database system research tells us

that such a system must be both declarative and at scale. However,

as the target system manages the data accessed by the deep neural

networks as well as the networks themselves, our context is similar

but di�erent from the classic view adopted by modern database

management systems. Current database systems are good at scaling
up (i.e., as the volume of the data increases) but not so good at scaling
out (i.e., as the number of applications increases). By design, it is

the user’s responsibility to take care of the programs (e.g., queries,

stored procedures, etc.) that run on top of the database system. �e

requirement of involving into this level of detail o�en becomes a

huge burden for application developers. Unfortunately, in general

this is an intractable problem given the diversity of applications.

Fortunately, in the context of applications based on deep neural

networks, it is possible to build a system that manages both the

data and the programs, which are neural networks. Our goal is to

entirely shield the complexity of deploying deep neural networks

from application developers. �at is, they only need to de�ne

the input and output of the learning problem without specifying

details such as the number of hidden layers, the linkage structure,

the training algorithm, etc. (Technically, there is no barrier that

prevents us from including other machine learning models into

ease.ml. However, we want to focus on deep neural networks for

ease of exposition so that our application scope is clear enough.)

“Every Machine Learning Company under the Sun”. As pointed

out by an anonymous reviewer, it seems that “every machine learn-

ing company under the sun” is trying to “easy the ML process.” �is

is true — machine learning systems such as TensorFlow, �eano,

and Ca�e are made much more expressive and �exible by exposing

the mathematical structure of machine learning models to the users.

Higher-level machine learning libraries such as Keras have also

become increasingly popular. Our vision built upon these success,

however, aims at providing an even higher-level of abstraction for

the user — even a system like Keras does not provide much data

management functionality and it is still the user’s responsibility to

take care of low-level physical decisions.

2 THE PAIN: A WAR STORY

In this section, we document our experience in supporting one of

our collaborators to make the argument that that the abstraction

of existing machine learning systems is broken.

Kevin’s Log. Our astrophysics collaborator maintains a daily log

of their research, in the form of messages on their group Slack

channel. �e #machine learning channel contains all online com-

munications, in daily basis, about their e�ort in using TensorFlow.

�eir communication started on Jan. 13th, 2016. Before Sept. 1st,

2016 (when we started to collaborate with them), they accumulated

more than 300 pages of communications about the problems they

were facing when using TensorFlow all by themselves.
Protocol. We read all of their online communications before Sept.

1st, 2016 and summarize a taxonomy of problems they were facing.

We only summarize here a small part of this taxonomy (i.e., com-

munications they had from starting the install TensorFlow to get

their �rst end-to-end run, which has almost unusable quality).

Results. On Jan. 27th, 2016, they �nished preparing all the train-

ing data and started to train their deep learning model. �ey got

their �rst end-to-end run (a test accuracy number) on March 2nd,

2016. �e performance of the system was not the bo�leneck. In-

stead, they were mainly blocked by the usability of the system.

More interestingly, many of the usability issues they were facing

are major concerns when our community builds a relational data-

base system. We list a few in the following.

(1) Memory management: �e �rst problem they were facing

(Feb. 9th to 15th) was caused by that their images have a dif-

ferent dimension than most standard neural networks. �ey

started with keeping the image of the same size and applied

the same network. Because the input size was much larger,

TensorFlow ate all the GPU memory. Worse, there were no

error diagnosis messages from the system, and they ended of

spending one week in understanding what happened.

(2) ETL: It took them two days (Feb. 7th and 8th) to translate their

data, a standard format that comfortably �ts into SciDB and

TensorFlow. Sounding like a trivial task, the lack of a uni�ed

model between the data processing ecosystem and machine

learning ecosystem does impose challenges on their side.

(3) Code reuse: �e second problem they were facing (Feb. 15th

to March 2nd, 2016) is that, although their training pipeline can

run smoothly, their testing pipeline has bugs. �is is logically

weird because testing runs a strictly subset of operations.

(4) Model selection: Model selection is tricky for astrophysicists,

and the discussion endures for their whole process. For reasons

we do not understand, instead of starting from standard net-

works, they chose to design it by themselves. As a consequence,

even they had a model successfully trained and evaluated on

March 2nd, 2016, the accuracy hardly beats random guess.

(5) Hyperparameter Tuning: Hyperparameter tuning is one of

the few things they handled well. �ey spent one day writing a

script to tune hyperparameters and scheduled the run overnight.

Although most of their hassles could be solved by just switching

to the Adam optimizer [4], tuning hyperparameters does not

cause much problem for them. (hyperparameter tuning is not

unfamiliar and they do that for their daily research.)

�e Closure. An anonymous reviewer was curious about whether

Kevin �nally gets help from us. Yes [7]. �e ease.ml vision is

motivated by our experience in helping users like Kevin.

The ease.ml Vision HILDA’17, May 14, 2017, Chicago, IL, USA

original degraded GAN recovered deconvolved

PSF=2.5”, 5σ

PSF=2.5”, 5σ

PSF=1.8”, 10σ

original degraded GAN recovered deconvolved

PSF=2.5”, 5σ

PSF=2.5”, 5σ

PSF=1.8”, 10σ

User’s
Goal

galaxy.py
I = [256, 256, 3]
O = [256, 256, 3]
execfile("ease.ml")

User Program

Applicability
Analysis

I could either use an
autoencoder or GAN

Quality
Estimation

I expect the GAN
DCGAN (Radford et
al.) to work the best

Human, you’d better
get me some more
examples like these

Supervision
Engineering Loop

pix2pix (Isola et al.)
was added to my
modelbase yesterday

original degraded GAN recovered deconvolved

PSF=2.5”, 5σ

PSF=2.5”, 5σ

PSF=1.8”, 10σ

original degraded GAN recovered deconvolved

PSF=2.5”, 5σ

PSF=2.5”, 5σ

PSF=1.8”, 10σ

User’s
Goal

Model Update

$./galaxy up

User Command

Modelbase
Sync-ization

Quality
Estimation

I expect the new GAN
pix2pix (Isola et al.)

to work better

Human, now I have a
better model for your
applications, happy?

Performance
Reporting

(a) First Encounter (b) Future Interactions

Figure 2: �e interaction model of ease.ml illustrated with one of our astrophysics applications [7].

3 THE EASE.ML VISION

ease.ml focuses on a simple question—What is the abstraction we
should provide for Kevin’s to make their endeavours before March
2nd, 2016 more e�cient and painless? �is goal results in ease.ml’s

simplicity, but also results in its limitation. However, as we will see,

even this simplied goal is challenging (and potentially rewarding).

Example 3.1. Figure 1 outlines the user interface of ease.ml.

Users interact with ease.ml at a pre�y high level: applications

are expressed as a series of model invocations where each model

is de�ned only in terms of its input and output sizes. �e models

are then trained with the speci�ed datasets and can be reused

for di�erent inference tasks. �e only operation that users need

to train a model is to pipe training data into ease.ml. ease.ml
automatically manages the models in the sense that it will refresh

the best model found upon (i) any dataset change and (ii) any new

available model (from external source).

Although the user-level code in the above example is wri�en

in Python, it highlights the general idea of having a high-level

language interacting with our system that declares the learning task.

More sophisticated applications may involve multiple, cascaded

learning tasks and such a declarative language enables application

developers to focus on the logical connection between these tasks

without worrying about how each task is implemented.

One may now wonder if this vision is even achievable. A�er all,

at a �rst glance it seems incredible, if not insane, that the user even

has no idea about which models are running inside the system! To

not oversimplify the problem and to convince ourselves, Figure 2

reveals more details under the hood. As shown in Figure 2(a),

there are essentially two decision procedures going on. �e �rst

procedure decides which model should be used for the learning task,

whereas the second procedure decides how to train the model with

the given dataset. For example, suppose that ease.ml is currently

equipped with the four neural networks presented in Table 1. �e

system needs to pick one from these candidates based on some

“quality estimator.” A�er a neural network is chosen, ease.ml
then automatically trains the model with the speci�ed input and

output sizes on the given dataset. Nonetheless, for all of these to

be automated, we need innovation at the system architecture level.

Speci�cally, unlike existing database systems with one declar-

ative layer, ease.ml consists of two declarative layers. �e �rst

declarative layer (i.e., the top right “robot” in Figure 2(a)) maps the

user-de�ned learning task to a neural network program speci�ed

in a declarative language that combines features of neural network

computation and data manipulation. �e second declarative layer

(i.e., the bo�om right “robot” in Figure 2(a)) takes the (declarative)

neural network program returned by the �rst layer and generates

a physical execution plan. �e physical plan is �nally executed by

the execution engine (i.e., the bo�om le� “robot” in Figure 2(a)).

On a �rst thought the second layer seems redundant. Why not just

directly translate the learning problem into a physically executable

program? A�er all, users do not need to see the intermediate declar-

ative representation. �e reason is for, as we will see later, be�er

extensibility/scalability and query/program optimization oppor-

tunities. In a broader sense, our system is a natural extension of

existing database systems: advance from data-independent compu-

tation to computation-independent application. We view our system

as a �rst step towards this ambitious goal. Although we have

mentioned that the problem is in general intractable, the inherent

di�culty comes more from characterizing ubiquitous properties

of applications. Within a narrower, well-de�ned scope, such as

applications powered by deep neural networks, we do believe that

computational independence is achievable.

�is two-layer declarative architecture also raises a number of

new challenges. First, it is now the system’s, instead of the user’s,

responsibility to choose a neural network for a speci�ed learning

task. Akin to the classic query optimization problem in database

systems, now we have a “model optimization” problem (i.e., the

“quality estimator” in Figure 2(a)). Second, given that the system

automatically manages both the neural networks and the data, we

need a uni�ed logical view of specifying neural network computa-

tion and data manipulation. �ird, given the impedance mismatch

between tensors, which are favored by neural network computation,

and tables, which are favored by data manipulation, we further need

a uni�ed physical model. Should we physically treat everything in

ease.ml as tensors, tables, something in between, or something

else? �is is not a trivial problem.

HILDA’17, May 14, 2017, Chicago, IL, USA Ce Zhang†, Wentao Wu,‡ and Tian Li∗

Input Size Output Size Applicable Family

[A,A,B] [C] Convolutional Neural Networks

[A,A,B] [A,A,C] Generative Adversial Networks

[A,A,B] [A,A,B] Autoencoder

[A, any] [B, any] Recurrent Neural Networks

Table 1: ease.ml automatically decides the family of neural

networks that is applicable to users’ application based solely

on the size of inputs and the size of outputs.

4 MODEL OPTIMIZATION

A new declarative level introduces new optimization opportunities.

Given the user-de�ned input/output speci�cation, our system needs

to come up with a neural network construction that optimizes the

performance. �ere are two major problems here.

• Model selection: How to choose appropriate neural net-

works from available candidates?

• �ality estimation: How to estimate/evaluate the perfor-

mance of a neural network?

A brute-force approach could easily solve the two problems

altogether: train all the available neural networks on the whole

training set and pick the one with the highest accuracy on the

testing set. �is approach has an obvious scalability issue thus only

works for a handful of neural networks and small training data.

If we compare our model optimization problem with the classic

query optimization problem we can see an analogy. In query op-

timization our task is to �nd the best query execution plan from

a number of candidates. �ere we face two similar problems: (i)

plan selection and (ii) plan quality estimation. To address the plan

selection problem, exhaustive search is usually out of consideration

except for very simple queries. Heuristics are applied to reduce the

scope from which candidates are picked. (e.g., Only choose plans

that are le�-deep trees.) To address the plan quality estimation

problem, an (o�en hand-cra�ed) cost model is built to estimate the

execution overhead of the query.

Following this thought, a similar framework can be developed

for the model optimization problem. However, the speci�cs di�er

and require further exploration.

4.1 Model Selection

First, the heuristics used to prune the search space are not handy.

Essentially, it is not clear what kind of neural network structure

is appropriate for a given learning problem, and we need some

(perhaps empirical) guiding principles. So far, we are not aware of

any existing work in this respect.

4.2 �ality Estimation

Second, the quality estimation respect becomes more challenging.

In the context of query optimization, query plans are based on well-

de�ned algebraic systems and thus execution cost approximation is

achievable by simply following the semantics of physical operators.

Unfortunately, this is not the case for neural networks, where there

is no such algebraic system and performance is measured in terms

of accuracy rather than execution time.
2

We therefore cannot rely

on analytic approach without actually running the networks. Again,

2
Of course, training time is also a concern. Nonetheless, it is not our goal to estimate

training time. Rather, our goal is to estimate the “result” by training the neural network.

Put it another way, we want to estimate the “query result” if we use our aforementioned

analogy between query optimization and model optimization.

we do not consider the option of running the network on top of

the whole training set, the overhead of which might be prohibitive.

So the question boils down to how to predict the performance of

the neural network without using all training data (or using as few

data as possible). In fact, there has been a great deal of work in

the literature on performance prediction for a variety of machine

learning models. However, as far as we know there is li�le work on

neural networks in this respect. Moreover, the focus of prior work

has been deriving performance upper bounds rather than directly

estimating performance itself. �e upper bounds are usually too

loose to be useful as a criterion in practice. For deep neural net-

works, the situation is even worse: there is no known performance

upper bound. �erefore, developing practical performance predic-

tion techniques for deep neural networks remains an untouched

area and calls for more research e�ort.

Related Work. �ality estimation is closely related to that of

the “learning curve” [2, 3], which tries to estimate the accuracy

of a classi�er with a subsample of the training data. Obviously,

previous works can be used to build a baseline quality estimator.

However, our quality estimator could be much more sophisticated

than a learning curve estimator. Instead of just using a subsample of

the data, we can use information across similar datasets or similar

machine learning models. We expect that this information will

signi�cantly improve the accuracy of our estimator and �nally

make such an estimator much more robust in real-world systems.

5 UNIFIED LOGICAL VIEW

Having a uni�ed logical view of neural network computation and

data manipulation is not mandatory. One could simply have a sys-

tem running neural networks on top of databases: just implement

neural networks in Python and pull data from databases using SQL

queries whenever necessary. Nonetheless, this approach has a num-

ber of drawbacks. First, relation is good for data manipulation but

perhaps not good for neural network computation. As was demon-

strated by TensorFlow and SciDB, array-based representations are

much more e�cient for such computational tasks. Not only are

they natural choice with respect to the �rst-class citizens there (e.g.,

vectors, matrices, etc.), but they also render vector-oriented, GPU-

based processing possible. Second, the well-understood impedance

mismatch remains between Python and SQL. �ird, query/program

optimization is limited to the data fetching layer. As was pointed

out by recent work [5], pushing down computation when fetching

data can o�en signi�cantly improve performance. Fourth, extensi-

bility is poor. Whenever a new model is added into the system, a

new end-to-end program has to be implemented in spite of the fact

that most of the functionality can be copy-and-pasted from existing

programs. Moreover, if there is an updated implementation (e.g., a

be�er matrix multiplication algorithm), all a�ected programs have

to be manually rewri�en.

To overcome these shortcomings, in the following, we present a

logical view that uni�es relations and tensors (i.e., multi-dimensional

arrays). Based on this uni�ed logical view, we then brie�y describe

a language that combines relational algebra and linear algebra. �is

allows users to express neural network computation (which is es-

sentially linear algebra) and data manipulation (which is essentially

relational algebra) within one single system in a declarative manner.

We further outline query/program optimization opportunities in-

duced by taking this uni�ed logical view. (See [6] for more details.)

The ease.ml Vision HILDA’17, May 14, 2017, Chicago, IL, USA

5.1 TViews: Union of Tensors and Relations

Logically, a tensor (i.e., a multi-dimensional array) can be de�ned

as a special type of relation. Let T be a tensor of dimension dim(T)
and let the index of each dimension j range from {1, ...,dom(T , j)}.
T then corresponds to a relation R~T � with dim(T) + 1 a�ributes

(a1, ...,adim (T) ,v), where the domain of aj is {1, ...,dom(T , j)} and

the domain of v is the real number R. Given a tensor T ,

R~T � = {(a1, ...,adim (T) ,v) |T [a1, ...,adim (T)] = v},

where T [a1, ...,adim (T)] is the tensor indexing operation that gets

the value at location (a1, ...,adim (T)).
�is logical, relational view of tensors allows us to de�ne seman-

tics of linear algebraic operators in terms of relations. Speci�cally,

a linear algebraic operator op such as matrix multiplication or con-

volution has the uniform form op(T1,T2). Its semantic can then be

de�ned as R~op(T1,T2)� =

{(a1, ...,adim (T) ,v) |op(T1,T2)[a1, ...,adim (T)] = v}.

Moreover, the R~−� operator also provides a natural way of ma-

nipulating tensors in relational systems — whenever a tensor T
is used by a relational operator, the operator logically works over

R~T �! �erefore, it is not di�cult to conceive a system mixed with

linear algebraic and relational operators, at least logically, that can

manipulate tensors and relations simultaneously. We next outline

such a (logical) system by presenting MLog, a Datalog-alike query

language that combines relational algebra and linear algebra based

on manipulating TViews.

5.2 MLog: DataLog Strikes Back

An MLog program consists of a set of TRules (i.e., tensoral rules).
In the following, we �rst de�ne TRule, and then present a simple

example MLog program.

TRule. Each TRule is of the form

T (x̄) : −op (T1 (x̄1), ...,Tn (x̄n)) ,

where n ≥ 0. Similar to Datalog, we call T (x̄) the head of the rule,

and T1 (x̄1), ...,Tn (x̄n) the body of the rule. We call op the operator
of the rule. Each x̄i , as well as x̄ , speci�es a subselection that can

be used by the slicing operator σ de�ned below:

• Slicing σ . �e operator σx̄ (T) subselects part of the input

tensor and produces a new “subtensor.” �e j-th element

of x̄ , i.e., x̄ j ∈ 2
{1, ...,dom (T , j) }

, de�nes the subselection on

dimension j. �e semantic of this operator is de�ned as

R~σx̄ (T)� =

{(a1, ...,adim (T) ,v) |aj ∈ x̄ j ∧ (a1, ...,adim (T) ,v) ∈ R~T �}.

For example, if x̄ = (5,−), σx̄ (T) returns a subtensor that contains

the entire ��h row of T .
3

We de�ne the forward evaluation of a

TRule as the process that takes as input the current instances of

the body tensors, and outputs an assignment for the head tensor by

evaluating op. Similarly, we can de�ne �xed-point semantics for

MLog programs.

3
We use “−” to donate the whole domain of each dimension.

Example 5.1. �e following is an MLog program with three

TRules that encodes a standard recurrent neural network model:

Hs,0 = 0, (1)

Hs,t = σ (Wh ∗ Xs,t +Uh ∗ Hs,t−1), (2)

Ys,t = σ (Wy ∗ Hs,t). (3)

Each TView (i.e., the head of each TRule) corresponds to one math-

ematical formula. In this example, there is a recursive relationship

between the tensor H and itself — the value of one slice of the

tensor Hs,t depends on the value of the “previous slice” Hs,t−1. �e

�xed-point semantics are well de�ned in this scenario.

5.3 �ery/Program Optimization

�ery optimization is undertaken by �rst translating an MLog

program into a Datalog program, a process that we call “Datalogify.”

Given the Datalog program, we then use a standard static analysis

technique to reason about the property of the program, and even-

tually generate a TensorFlow program as the physical plan. We

illustrate this process by using the following query in a recurrent

neural network as a running example where (X is the input layer,

H is the hidden layer, and s is one index of the input series):

Hs,t,− = σ (Wh ∗ Xs,t,− +Uh ∗ Hs,t−1,−),

where H and X are 3D tensors, andWh and Uh are 2D matrices.

�e goal of “Datalogify”-ing an MLog program is to analyze the

data dependency among tensors and provide a way to optimize the

execution statically without grounding out the whole dependency

graph. During this process, each TView is translated into a conjunc-

tive aggregate query [1]. �e process is simple: for each tensor T
in the rule, we replace it with its relational representation R~T �.4

�e “Datalogify”-ed RNN query is:

H (s, t ,v) : − Wh(w),X (s, t ,v1),Uh(u),H (s, t − 1,v2), (4)

v = σ (w,v1,u,v2). (5)

We can infer many properties of this query by analyzing it stati-
cally. For example, for each s , the forward process forms a chain

(because of t − 1 and t) and the length of the chain for a given

s is decided by |{(s, t ,v1) ∈ X }|, a quantity that one can obtain

with a standard database optimizer. Second, to calculate for each

(s, t), the whole relation ofWh and Uh will be used. One can use

this fact to estimate the communication overhead of broadcasting

Wh and Uh for di�erent execution strategies. �e MLog optimizer

takes advantage of these [6]. Our initial evaluation shows that the

automatically generated TensorFlow programs can achieve similar

performance compared with manually tuned ones [6].

6 UNIFIED PHYSICAL MODEL

Although we have demonstrated the power of having a uni�ed logi-

cal view, our examples presented in the previous section are perhaps

not so compelling given that they are pure neural network compu-

tation programs with no complicated data manipulation such as

joins or nested sub-queries. While we intentionally kept those pro-

grams simple, to demonstrate the full capacity of being uniformly

declarative we need a uni�ed physical model as well. Otherwise

we still do not address the (physical) impedance mismatch problem

4
We abuse the notation by still using the symbol T for R~T �.

HILDA’17, May 14, 2017, Chicago, IL, USA Ce Zhang†, Wentao Wu,‡ and Tian Li∗

by allowing the coexistence of relations and tensors, and perhaps

leave potential chance of utilizing GPU-based computation on the

table, though we do have more automated query/program optimiza-

tion opportunities. By a uni�ed physical model, here we meant a

single execution engine for the MLog programs. Opposite to this

is a system with one relational engine and one tensor computation

engine, and there is a data transformation layer whenever we need

to convert relations to tensors or vice versa. Given the fact that

both relational systems and tensor computation systems rely on

execution plans that are directed acyclic graphs (DAGs), it is con-

ceptually possible and tempting to have a DAG-based execution

system that interleaves physical relational operators with physical

tensor computation operators.

�e problem is, of course, the physical data format when data is

streaming through such a DAG. �is problem is not important if

computation is always decoupled with data retrieval: we can just

generate a relational execution plan to fetch the data, convert the

relational data to a tensor vector, and then generate an execution

plan for tensor computation. In real world, however, it is o�en

bene�cial to push computation down to the data retrieval pipeline,

as evidenced by [5], especially if data is sca�ered in di�erent, nor-

malized tables (which actually is the common case in practice). As

a result, we may o�en have cases where computation and data

manipulation are interleaved. A uni�ed physical model can provide

a consistent interface for the operators in such situations. Since

TViews unify relations and tensors, it is natural to consider using

one of them as the uni�ed physical model. �ere are pros and cons

for either of them, though, as we discuss below.

6.1 Tensors as Relations

�e �rst thought is treating all tensors in the system as relations.

�is leans towards the relational view of data, which is more natural

but more problematic when computation e�ciency is the ultimate

goal. Speci�cally, the linear algebraic operators now have to operate

on tables rather than tensors, physically. In more detail, we always

convert tensors to relations with the help of the R~T � operator,

even for linear algebraic operators! �is is apparently an overkill.

6.2 Relations as Tensors

�e other way is to do the reverse: treat all relations as tensors. �is

eases computation — everything is a tensor and thus not abrupt

for linear algebraic operators. However, relational operators may

be upset by this. One way to overcome this is to convert tensors

to tables whenever we need to perform selections, joins, group-

bys, etc. Nonetheless, there is a more fundamental problem here

about semantics. For example, what do we mean by joining two

tensors? What are the join-keys, and what is the output? Although

we can logically convert a tensor to a table via the R~T � operator,

it does not help understand the semantics. To de�ne the right

semantics, we must trace back from the de�nition of the current

TView to the original, relational format of the data to understand

the relational semantics of the tensors behind the scenes. �at is,

we need to convert the TView to another relation such that the

relational operation is well de�ned. �is is not always feasible.

An even simpler example is the following. Suppose that we

want to apply a �lter on a TView. �e �lter is actually applied

to the “value” column of the TView, not the addressing columns.

However, our intention may not be �ltering out all ineligible values.

Rather, we want to �lter out particular rows in the TView that

correspond to, say, the “color” a�ribute of the “dogs” table which has

been converted to a tensor for computational e�ciency. �erefore,

our selection condition has to be complemented by some address

selection conditions, which in turn require us to keep track of the

lineage of the values in the tensors so computed.

6.3 Beyond Relations and Tensors

Instead of using either relations or tensors to represent everything,

is it possible to use something in between or something else? �is

is a di�cult question which we have no good answer at this time.

For performance reasons, one can further partition tensors with

respect to dimensions. For example, if most of the slicing operators

(de�ned in Section 5.2) are performed on a certain dimension, then

maybe we can partition the corresponding TView into multiple

TViews along that dimension. One can even try to �nd the best

partitioning scheme for a given query/program workload. Nev-

ertheless, the basic question here remains the same: physically,

what is the commonplace and di�erence between a relation and a

tensor? Our current understanding is that tensor is more general

than relation in terms of structure — relation can be thought of as

two-dimensional tensor. However, relations carry more semantics

given the schematic information built in: each row is an entity and

each column is an a�ribute of that entity. We don’t see such seman-

tics in the current de�nition of tensors. Perhaps, it is possible to

enhance tensors with schematic information as well, which might

result in a physical model that generalizes relations and tensors.

We are not sure about this. As a research agenda we will start with

the “relations as tensors” view and see how far we can go.

7 CONCLUSION

Our ease.ml vision in this outrageous paper is perhaps less bold

than it actually is. Although we have built some components of

the system, such as the uni�ed logical view and its translation into

a tensor-based physical plan, we are less certain about other com-

ponents such as the quality estimator. Foreseeably, there are lots

of challenges and we are just at the beginning of this long jour-

ney. Nonetheless, given the recent rapid progress in deep learning

research and engineering, we are con�dent and excited as we are

approaching the ease.ml portrait depicted in the �rst two �gures of

this paper. We hope that our overreaction to the broken abstraction

of current machine learning systems that frustrated both us and the

users we have been talking to could turn out to be an appropriate

action towards this inarguable important direction.

REFERENCES

[1] Sara Cohen, Werner Nu�, and Yehoshua Sagiv. 2007. Deciding Equivalences

Among Conjunctive Aggregate �eries. J. ACM (2007).

[2] Corinna Cortes, L. D. Jackel, Sara A. Solla, Vladimir Vapnik, and John S. Denker.

1993. Learning curves: asymptotic values and rate of convergence. (1993).

h�p://dl.acm.org/citation.cfm?id=2987189.2987231

[3] David Haussler, Michael Kearns, H. Sebastian Seung, and Na�ali Tishby. 1996.

Rigorous Learning Curve Bounds from Statistical Mechanics. Machine Learning
25, 2/3 (1996), 195–236. DOI:h�p://dx.doi.org/10.1023/A:1026499208981

[4] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic

Optimization. CoRR abs/1412.6980 (2014).

[5] Arun Kumar, Je�rey Naughton, and Jignesh M. Patel. 2015. Learning Generalized

Linear Models Over Normalized Data. In SIGMOD.

[6] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. 2017. MLog: Towards

Declarative In-Database Machine Learning. ArXiv (2017).

[7] Kevin Schawinski, Ce Zhang, Hantian Zhang, Lucas Fowler, and Gokula Kr-

ishnan Santhanam. 2017. Generative adversarial networks recover features in

astrophysical images of galaxies beyond the deconvolution limit. Monthly Notices
of the Royal Astronomical Society: Le�ers (2017).

http://dl.acm.org/citation.cfm?id=2987189.2987231
http://dx.doi.org/10.1023/A:1026499208981

	1 Introduction
	2 The Pain: A War Story
	3 The ease.ml Vision
	4 Model Optimization
	4.1 Model Selection
	4.2 Quality Estimation

	5 Unified Logical View
	5.1 TViews: Union of Tensors and Relations
	5.2 MLog: DataLog Strikes Back
	5.3 Query/Program Optimization

	6 Unified Physical Model
	6.1 Tensors as Relations
	6.2 Relations as Tensors
	6.3 Beyond Relations and Tensors

	7 Conclusion
	References

