
MLlib*: Fast Training of GLMs using Spark MLlib

¶§Zhipeng Zhang §Jiawei Jiang †Wentao Wu ‡Ce Zhang §Lele Yu �¶Bin Cui
¶School of EECS & Key Laboratory of High Confidence Software Technologies (MOE), Peking University

�Center for Data Science, Peking University & National Engineering Laboratory for Big Data Analysis and Applications
†Microsoft Research, Redmond, USA ‡ETH Zurich, Switzerland §Tencent Inc.

¶{zhangzhipeng, bin.cui}@pku.edu.cn, †wentao.wu@microsoft.com
‡ce.zhang@inf.ethz.ch, §{leleyu, jeremyjiang}@tencent.com

Abstract—In Tencent Inc., more than 80% of the data are
extracted and transformed using Spark. However, the commonly
used machine learning systems are TensorFlow, XGBoost, and
Angel, whereas Spark MLlib, an official Spark package for
machine learning, is seldom used. One reason for this ignorance
is that it is generally believed that Spark is slow when it comes
to distributed machine learning. Users therefore have to undergo
the painful procedure of moving data in and out of Spark. The
question why Spark is slow, however, remains elusive.

In this paper, we study the performance of MLlib with a focus
on training generalized linear models using gradient descent.
Based on a detailed examination, we identify two bottlenecks in
MLlib, i.e., pattern of model update and pattern of communication.
To address these two bottlenecks, we tweak the implementation
of MLlib with two state-of-the-art and well-known techniques,
model averaging and AllReduce. We show that, the new system
that we call MLlib*, can significantly improve over MLlib and
achieve similar or even better performance than other specialized
distributed machine learning systems (such as Petuum and
Angel), on both public and Tencent’s workloads.

Index Terms—Distributed Machine Learning, Spark, General-
ized Linear Models, Gradient Descent

I. INTRODUCTION

The increasing popularity of Spark has attracted many

users, including top-tier industrial companies, to put their

data into its ecosystem. As an example, we inspected daily

workloads on the Tencent Machine Learning Platform and

found that more than 80% of the data were extracted and

transformed by using Spark [1]. However, if we look at the

machine learning workloads in more details, only 3% of them

actually use MLlib [2], an official Spark package for machine

learning. The rest of the workloads simply run on top of other

specialized machine learning systems, such as TensorFlow [3],

XGBoost [4] and Angel [5], as depicted in Figure 1. This

implies significant data movement overhead since users have to

migrate their datasets from Spark to these specialized systems.

So why not just use MLlib? One important reason is that Spark

is generally believed to be slow when it comes to distributed

machine learning [6].

Nonetheless, it remains unclear why Spark is slow for

distributed machine learning. Previous works mainly attribute

this inefficiency to the architecture Spark adopts. Spark is

architected based on the classic Bulk Synchronous Parallel

(BSP) model, where the driver node can be a bottleneck when

training large models, due to the overwhelming communica-

tion overhead between the workers and the driver. Nonetheless,

22%

3%

24%

51%

TensorFlow XGBoost MLlib Angel

Fig. 1. ML workloads in Tencent Machine Learning Platform

is it a fundamental limitation that is not addressable within the

Spark architecture? If so, what is the innovation in the archi-

tectures leveraged by the specialized systems that addresses or

bypasses this limitations? Meanwhile, is this really the major
reason for the inefficiency of Spark? Are there actually other

bottlenecks that have not been identified yet? If so, are those

bottlenecks again due to fundamental limitations of BSP or

just a matter of implementation issue? As far as we know,

none of these questions has been sufficiently studied.

In this paper, we aim to understand in more detail why Spark

MLlib is slow. We focus on training generalized linear models

(GLM) as a case study, which include popular instances such

as Logistic Regression (LR) and Support Vector Machine

(SVM). Our exploration reveals that it is actually implementa-

tion issues rather than fundamental barriers that prevent Spark

from achieving superb performance. Although the original

performance of MLlib is indeed worse than that of specialized

systems based on parameter servers, such as Petuum [7] and

Angel [5], by slightly tweaking its implementation we are able

to significantly speed up MLlib on both public and industrial-

scal workloads while staying in the ecosystem of Spark.

Specifically, our study identifies two major performance

bottlenecks in the current MLlib implementation of gradient

descent (GD), one of the most popular optimization algorithms

used for training GLMs that is based on taking first-order

derivatives of the objective function [8].

B1. Pattern of Model Update. First, the update pattern of

model in MLlib is not efficient. In MLlib there is a driver
node responsible for updating the (global) model, whereas

the worker nodes simply compute the derivatives and send

them to the driver. This is inefficient because the global

model shared by the workers can only be updated once

1778

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00194

per communication step between the workers and the driver.

We address this issue by leveraging a simple yet powerful

technique called model averaging [9] that has been widely

adopted in distributed machine learning systems. The basic

idea behind model averaging is to have each worker update

its local view of the model and the driver simply takes the

average of the local views received from individual workers

as the updated global model. In this way the global model

is actually updated many times per communication step and

therefore we can reduce the number of communication steps

towards convergence.

B2. Pattern of Communication. Second, the communication

pattern in MLlib can be improved. In MLlib while the driver is

updating the model, the workers have to wait until the update is

finished and the updated model is transferred back. Apparently

the driver becomes a bottleneck, especially for large models.

By using model averaging this bottleneck can be completely

removed — we do not need the driver per se. In essence, model

averaging can be performed in a distributed manner across the

workers [10]. Roughly speaking, we can partition the model

and have each worker maintain a partition. There are then two

rounds of shuffling during model averaging. In the first round

of shuffling, each worker sends all locally updated partitions to

their dedicated maintainers. Afterwards, each worker receives

all updates of the partition it is responsible for and therefore

can perform model averaging for this partition. The second

round of shuffling then follows, during which each worker

broadcasts its updated partition to every other worker. Each

worker then has a complete view of the updated (global) model

afterwards. Compared with the centralized implementation

MLlib currently leverages, this distributed implementation

does not increase the amount of data in communication — the

total amount of data remains as 2km if we have k workers

and the model size is m. However, it significantly reduces the

latency as we remove the driver.

Our experimental evaluation on both public workloads and

Tencent workloads shows that, MLlib*, the improved version

of MLlib by removing the aforementioned two bottlenecks

in MLlib, can achieve significant speedup over MLlib. Fur-

thermore, it can even achieve comparable and often better

performance than specialized machine learning systems like

Petuum and Angel.

In summary, this paper makes the following contributions:

• We provide a detailed analysis of implementations of

existing distributed machine learning systems, including

MLlib, Petuum, and Angel.

• We identify two major performance bottlenecks when

running MLlib (i.e., inefficient pattern of model update
and inefficient pattern of communication). By carefully

designing and consolidating two state-of-the-art tech-

niques in MLlib, we implement a new machine learning

library on Spark called MLlib*.

• We show that MLlib* can achieve significant speedup

over Spark MLlib. As an extreme example, on one of

our datasets we observed 1,000× speedup.

• We further compare MLlib* with specialized machine

learning systems such as Petuum and Angel. We show

that MLlib* can achieve close or even better performance

compared with systems powered by parameter servers.

We do not view our results in this paper as a sales pitch for

MLlib*, rather, we view this paper as a promising start and/or

baseline that can spawn a new line of research. First, given that

Spark can indeed be more effective in dealing with machine

learning workloads, it might be worth to revisit reported results

in the literature that were based on an inefficient MLlib.

Second, the techniques we used to improve MLlib may also be

used to improve other Spark-based machine learning libraries.

Third, while we have focused on training GLMs in this paper,

similar studies can be conducted for other models as well, as

gradient descent is not tied to training GLMs. We leave these

as interesting directions for future work.

Paper Organization. We start by presenting necessary back-

ground in Section II. In particular, we present a generic

architecture that illustrates common paradigms used by exist-

ing distributed machine learning systems. We then leverage

this generic architecture to analyze the implementations of

MLlib, Petuum, and Angel in Section III. By comparing

the implementations, we identify two major bottlenecks in

the execution of MLlib and propose MLlib* that addresses

both bottlenecks in Section IV. We compare performance of

different systems in Section V. We summarize related work in

Section VI, and conclude in Section VII.

II. PRELIMINARY

In this section, we provide a short review of GD and its

distributed implementations, which will be the major focus of

this paper. We present GD in the context of training GLMs,

though GD has much wider applications such as training deep

neural networks.

A. Gradient Descent

A common setting when training GLMs is the following.

Given a linear classification task with X representing the input

data, find a model w that minimizes the objective function

f(w,X) = l(w,X) + Ω(w). (1)

Here, l(w,X) is the loss function, which can be 0-1 loss,

square loss, hinge loss, etc. Ω(w) is the regularization term to

prevent overfitting, e.g., L1 norm, L2 norm, etc.

Gradient descent (GD) is an algorithm that has been widely

used to train machine learning models that optimize Equa-

tion 1. In practice, people usually use a variant called mini-

batch gradient descent (MGD). We present the details of MGD

in Algorithm 1.

Here, T is the number of iterations, η is the learning rate,

and w0 is the initial model. As illustrated in Algorithm 1,

MGD is an iterative procedure. It repeats the following steps

in each iteration until convergence: (1) Sample a batch of the

training data XB ; (2) Compute the gradient of Equation 1

using XB and the current model wt−1; (3) Use the gradient

to update the model.

1779

Algorithm 1: MGD {T , η w0, X}
for Iteration t = 1 to T do

Sample a batch of data XB ;

Compute gradient as gt =
∑

xi∈XB
∇l(xi, wt−1);

Update model as wt = wt−1 − η · gt − η · ∇Ω(wt−1);

The executions of GD and SGD (stochastic gradient de-

scent [11], another popular variant of GD) are similar. Es-

sentially, GD and SGD can be considered as special cases of

MGD. Specifically, when the batch size is the entire data (i.e.,

XB = X), it is GD; when the batch size is 1, it is SGD.

Without loss of generality, we focus our discussion on MGD.

B. Distributed MGD

Sequential execution of MGD is usually not feasible for

large datasets and models. People have been proposing various

ways of running MGD in a distributed manner. While the

details of these proposals differ, we can use a generic architec-

ture to capture the essence of these proposals, as presented in

Algorithm 2. In this generic architecture, there is a master to

partition data and schedule tasks. There are multiple workers,

each dealing with an individual partition. In addition, there

is a central node to aggregate the gradients/models received

from the workers.

As shown in Algorithm 2, the master first splits data into

multiple partitions. It then schedules each worker to load

a partition and launch a training task. Each worker can be

implemented in two alternative ways:

• (SendGradient) Each worker pulls the latest model

from the central node. It then samples a batch from its

local data, computes the gradient using the latest model,

and sends the gradient to the central node. The central

node aggregates the gradients received from the workers

and updates the model.

• (SendModel) Each worker performs MGD over its

local partition of the data and sends the updated (local

view of the) model to the central node. The central

node then updates the (global) model based on updates

received from the workers, using methods such as model
averaging [9].

The difference between the two paradigms lies in the

number of updates to the (global) model within one single
communication step between the workers and the central

node. If T ′ = 1, i.e., only one iteration is allowed in

MGD, the number of updates made by SendGradient and

SendModel will be exactly the same. However, if T ′ � 1,

which is the typical case, SendModel will result in much

more updates and thus much faster convergence.

III. ANALYSIS OF EXISTING SYSTEMS

In this section, we provide detailed analysis of existing

distributed machine learning systems based on the generic ar-

chitecture in Algorithm 2. We focus on anatomizing the imple-

mentation of MGD in Apache Spark (MLlib) and specialized

Algorithm 2: Distributed MGD {T , η w0, X , m}
Master:
Issue LoadData() to all workers;

Issue InitialModel(w0) to the central node;

for Iteration t = 0 to T do
Issue WorkerTask(t) to all workers;

Issue ServerTask(t) to the central node;

Worker r = 1, ..., m:
Function LoadData():

Load a partition of data Xr;

Function WorkerTask(t):
Get model wt−1 from the central node;

if SendGradient then
Sample a batch of data Xbr from Xr;

Compute gradient grt ←
∑

xi∈Xbr
∇l(wt−1, xi);

Send gradient grt to the central node;

else if SendModel then
Compute model wr

t via MGD(T ′, η, wt−1, Xr);

// T ′ is the number of iterations inside each

worker.

Send local model wr
t to the central node;

Central node:
Function InitialModel(w0):

Initialize model as w0;

Function ServerTask(t):
if SendGradient then

Aggregate gradient as gt ←
∑m

r=1 g
r
t ;

Update the model as

wt ← wt−1 − η · (gt)− η · ∇Ω(wt−1);

else if SendModel then
Aggregate the models as wt ← f(

∑m
r=1 w

r
t);

systems based on the parameter-server architecture (Petuum

and Angel) from two aspects, i.e., (i) system architecture and

(ii) algorithm implementation. We also briefly discuss other

relevant systems, such as TensorFlow.

A. Apache Spark and MLlib

Apache Spark [1] is a powerful framework for data analytics

that has been adopted by enterprises across a wide range of

industries, with attractive features such as fault tolerance and

interoperability with the Hadoop ecosystem. Spark can cache

the whole data in memory, so it fits well for iterative machine

learning workloads.

MLlib [2] is one of the most popular machine learning

libraries built on top of Spark, which uses MGD to train

generalized linear models. Conceptually, the execution of

MGD in MLlib can be outlined in Figure 2(a). There is a

driver and multiple executors. The driver plays the role of

both the master and the central node in Algorithm 2, which is

responsible for scheduling the executors and maintaining the

(global) model. The executors serve as the workers in Algo-

1780

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Driver

Broadcast model

(a) MLlib on Spark

Local Model

Local Model

Local Model

Local Model

Local Model

Local Model

Local Model

Local Model

(b) AllReduce implementation using shuffle on
Spark

(c) ML on Parameter Server

Fig. 2. Communication patterns of machine learning on Spark and Parameter Server.

rithm 2, which perform local computation over the partitioned

data. The execution of MGD leverages the SendGradient
alternative: (1) The driver first broadcasts the current model

to the executors; (2) Each executor computes the gradients

using its local data based on the received model, and sends the

gradients to the driver; and (3) The driver aggregates gradients

harvested from the executors and updates the model.

The driver can be overloaded when there are many executors

and the model is large. To alleviate the workload of the driver,

MLlib implements the aggregation of gradients following a

hierarchical, distributed style. As depicted in Figure 2(a), the

driver first employs some of the executors to perform local

aggregation. It then pulls the aggregated (i.e., sum of) gradients

from these intermediate executors. This hierarchical dispatch

of aggregation is called treeAggregate in MLlib.

B. Parameter Servers

Figure 2(c) presents a typical parameter-server architec-

ture [12] based machine learning system. Unlike MLlib where

a single driver is responsible for maintaining the (global)

model, in parameter-server architecture the model is stored

across multiple machines called parameter servers. In other

words, there are multiple nodes that serve the role of the

central node in Algorithm 2. Moreover, unlike the Bulk

Synchronous Parallel (BSP) execution model that backs up

the implementation of Spark, workers can communicate with

parameter servers asynchronously. Parameter servers can lever-

age different consistency controllers to implement different

communication schemes such as BSP, SSP (acronym for “Stale

Synchronous Parallel”), and ASP (acronym for “Asynchronous

Parallel”), by enabling or disabling requests from workers.

It has been shown that asynchronous communication can be

beneficial for distributed machine learning [13].

In the following, we briefly review two instances of the

parameter-server architecture: Petuum [7] and Angel [5].

1) Petuum: Petuum is one of the state-of-the-art distributed

machine learning systems with the parameter-server archi-

tecture, implemented in C++. Unlike MLlib that follows

the SendGradient paradigm, Petuum instead adopts the

SendModel alternative in Algorithm 2 to train GLMs. That

is, the workers in Petuum will update local model immediately

after computing the gradients and send the updates to the

parameter servers. In more detail, the workflow for each

iteration is: (1) Workers pull the latest model from parameter

servers, and update the model using their local data; (2)

Afterwards, workers send their local updates of the model to

parameter servers; (3) Finally, the parameter servers sum up

all the updates from the workers.

The local computation that each worker of Petuum performs

depends on whether the regularization term in Equation 1 is

zero or not — L2 regularization will result in dense updates

to the model that can be expensive [14]. If the regularization

term is zero, Petuum workers instead conduct parallel SGD

inside each batch; each communication step between workers

and parameter servers therefore actually contains many local

updates to the model. If, on the other hand, there is a nonzero

regularization term, workers perform gradient descent over the

batch data in each iteration. Each communication step thus

contains only one update to the model. When updating the

model, the parameter servers sum up the model updates from

the workers. We refer to this model aggregation technique as

model summation in the rest of this paper.

2) Angel: Angel [5] is another representative instance of

distributed machine learning systems based on the parameter-

server architecture, implemented in Java. Angel can read data

directly from HDFS and run on Yarn clusters.

Angel also adopts the SendModel paradigm to train

GLMs. It uses parameter servers to maintain the global model

and uses multiple workers to compute local updates of the

model. The difference between Angel and Petuum on training

GLMs comes from two aspects. First, the frequency of com-

munication is different. Workers in Angel communicate with

the parameter servers per epoch, whereas workers in Petuum

communicate with the servers per batch. Second, the local

computation performed on one batch of data is different. Angel

always performs gradient descent on each batch whereas the

implementation of Petuum depends on the regularization term,

as we have described above.

C. Other Systems

Clearly, MGD has been implemented in many other dis-

tributed machine learning systems, in particular systems de-

veloped for deep learning, such as TensorFlow, as GD is

essential for the backpropagation algorithm that trains deep

neural networks. However, we decide to not include these

systems in this study because it has been pointed out in

the literature that TensorFlow is slower than Petuum and

Angel when training GLMs because of too many abstractions,

1781

which will significantly raise system complexity as well as

runtime overhead [5], [6]. Furthermore, TensorFlow does not

provide mechanism for partitioning models. This also leads to

inefficiency when handling large models in GLMs.

IV. MLLIB*: UNDERSTANDING AND IMPROVING

PERFORMANCE OF MLLIB

Based on our analysis in the previous sections, the imple-

mentation of MGD in MLlib is clearly not optimal. By using

the SendGradient paradigm instead of the SendModel
paradigm that has been widely implemented in, e.g., param-

eter servers, MLlib is likely to suffer from a much slower

convergence within the same number of communication steps.

This inferior performance has been noticeably documented in

the literature [6]. A natural follow-up question is whether this

apparently flawed implementation can be improved within the

BSP framework that Spark is based on.

In this section, we identify performance bottlenecks of ML-

lib and study state-of-the-art, well-known techniques that can

significantly improve the performance of MLlib when running

MGD. Our implementations of these techniques piggyback on

the existing Spark primitives and only require minor changes

to the current MLlib implementation.

A. Bottlenecks in MLlib

We start by giving a more detailed analysis to understand

bottlenecks in MLlib. We ran MGD to train a linear support

vector machine (SVM) using the kdd12 dataset described

in Table I. The experiment was conducted on a cluster of

nine nodes with one node serving as the driver and the

others serving as the executors in Spark (recall Figure 2(a)). 1

Figure 3(a) presents the gantt chart2 that tracks the execution

of the nodes. The x-axis represents the elapsed time (in

seconds) since the start of the execution. The y-axis represents

the activities of the driver and the eight executors as time

goes by. Each colored bar in the gantt chart represents a

type of activity during that time span that is executed in the

corresponding cluster node (i.e., driver or executor), whereas

different colors represent different types of activities.

We can identify two obvious performance issues by exam-

ining the gantt chart in Figure 3(a):

• (B1) Bottleneck at the driver — at every stage when the

driver is executing, the executors have to wait.

• (B2) Bottleneck at the intermediate aggregators, i.e.,

the executors performing intermediate aggregations of

gradients — at every stage when these executors are

running, the other nodes have to wait.

As discussed in Section III-A, MLlib uses the

SendGradient paradigm. The bottleneck at the driver

is therefore easy to understand: the executors simply

cannot proceed because they have to wait for the driver

to finish updating the model. Moreover, the bottleneck at

1We assign one task to each executor because when we increase the number
of tasks per executor, the time per iteration increases due to the heavy
communication overhead.

2https://en.wikipedia.org/wiki/Gantt chart

the intermediate aggregators is also understandable due

to the hierarchical aggregation mechanism employed by

MLlib, although it shifts some workload from the driver

— the latency at the driver can be even worse without this

hierarchical scheme.

B. Implementation of MLlib*

In MLlib*, we use two well known techniques to deal with

the two bottlenecks in MLlib’s implementation: (1) model

averaging and (2) distributed aggregation. We now discuss

them in detail.

1) Model Averaging: Model averaging is the essential

reason for the efficiency of the SendModel paradigm in

Algorithm 2. If we can implement model averaging in MLlib,

the driver will remain as a bottleneck but much less frequently,

due to the reduced number of communication steps between

the driver and the executors.

Most part of our implementation is quite straightforward.

We basically replace the computation of gradients in each

executor by model updates, and change the data being sent

from gradients to model updates, too. However, SendModel
can be inefficient when the regularization term (typically L2

norm) is not zero. In this case, frequent updates to the local

view of the model can be quite expensive when the model

size is large. To address this, we use a threshold-based,

lazy method to update the models following Bottou [14].

Our implementation does not require any change to the core

of Spark. Instead, we implement our techniques leveraging

primitives provided by Spark.

Figure 3(b) presents the gantt chart of MLlib after incor-

porating our implementation of SendModel, by rerunning

the experiment described in Section IV-A. One can observe

that it is very similar to Figure 3(a). It implies that our

implementation does not impact per-node computation time

much. This is not surprising, as the computational tasks of

SendModel are similar to those of SendGradient — it

is just computing weights of the model versus computing

gradients! Nonetheless, the number of stages in Figure 3(b)

should be much smaller comparing with Figure 3(a) if we

extend the x-axes of both charts to the time of convergence,

which suggests a much faster convergence of SendModel.

Remark: Note that model averaging is just one of

the model aggregation schemes that can be adopted in the

SendModel paradigm. For example, Petuum instead lever-

ages the model summation scheme, which simply sums up

but does not take the average of the received model updates.

As was pointed out by Zhang and Jordan [15], there are pros

and cons between model averaging and model summation.

Roughly speaking, model summation can lead to potential

divergence; however, when it converges, it can converge faster

than model averaging. They actually proposed a technique that

further improves the convergence rate of model averaging by

“reweighting” the samples taken when combining the model

updates. Implementing their techniques may therefore further

improve the performance of MLlib*. However, as we will

see, even with the current implementation, the performance of

1782

Executor 1
Executor 2
Executor 3
Executor 4
Executor 5
Executor 6
Executor 7
Executor 8

Driver

Executor 1
Executor 2
Executor 3
Executor 4
Executor 5
Executor 6
Executor 7
Executor 8

Driver

Executor 1
Executor 2
Executor 3
Executor 4
Executor 5
Executor 6
Executor 7
Executor 8

Driver

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

(a) MLlib (b) MLlib + model averaging (c) MLlib*

Time (s) Time (s) Time (s)

Fig. 3. Gantt charts for MGD executions in MLlib, MLlib with model averaging and MLlib*. A red vertical line represents the start of a stage in Spark,
whereas the subsequent green vertical line represents its end.

MLlib* is already comparable with state-of-the-art distributed

machine learning systems when training GLMs.

2) Distributed Aggregation using AllReduce: The commu-

nication pattern exhibited in Figure 3(b) remains the same as

that in Figure 3(a): Even if we now aggregates the (weights

of) the models instead of the gradients, we still follow the hi-

erarchical aggregation in MLlib using the treeAggregate
function. This, however, turns out to be unnecessary. Recall the

communication pattern in SendGradient: executors send

the gradients to the driver; the driver sends the updated model

back to the executors. However in MLlib*, the communication

pattern remains the same but the gradients are replaced by

the models. Because each executor is in charge of its local

model, it seems redundant to have the driver to first collect

the (aggregated) model updates from the executors and then

broadcast the model updates back to the executors.

The basic idea is to partition the global model and let each

executor own one partition.3 The owner of a model partition

is responsible for its maintenance (using model averaging).

Note that the ownership is logical rather than physical: Each

executor still stores a physical copy of the current version of

the model (which includes all partitions), but it only performs

model averaging over the logical partition it owns. In this

way, the executors no longer need to wait for the driver

to broadcast the averaged model. In other words, the driver

no longer needs to play the role of the central node in

Algorithm 2. In fact, there will be no notion of a specific

central node in the distributed model-averaging architecture we

shall propose. Moreover, given that we do not need the driver

to take charge of model averaging, the hierarchical aggregation

scheme presented in Figure 2(a) is also not necessary. As

a result, we can have all the executors participate in the

distributed maintenance of the global model simultaneously

and homogeneously. There are two main technical challenges

in our design. First, updates to a partition of the global

model can be scattered across the executors. For example,

in Figure 2(b), we have eight executors E1 to E8, each

owning one partition, that is 1/8 of the global model M .

Let us number those partitions from M1 to M8. Consider

3It is also possible to have one executor own multiple partitions. However,
for ease of exposition, we assume that each executor just owns one partition.

the partition M1. Although it is owned by E1, updates to

M1 can come from all E1 to E8, because data and model

are partitioned independently. Data points that can contribute

to the weights of M1 (i.e., data points with nonzero feature

dimensions corresponding to those weights) can be located

on all the executors. To perform model averaging over a local

partition, the owner has to collect updates to this partition from

all the other executors. Second, to compute the model updates

(for local views of all model partitions) as in the SendModel
paradigm, an executor has to compute the gradients, which

depend on not only the local data points but also the latest

version of the entire global model (not just the local partition

of the model), again due to the “inconsistency” between data

partitioning and model partitioning.4 We use a two-phase

procedure to address these two challenges (see Figure 2(b)

and Algorithm 3 for illustration):

• (Reduce-Scatter) In the first stage, after each ex-

ecutor has done with updating its model locally, it sends

partitions other than the one it owns to their owners,

respectively. Continuing with our previous example, E1

updates its local copies of M1 to M8, and sends the up-

dated versions of M2, ..., M8 to E2, ..., E8, respectively.

Afterwards, each executor has received all updates to the

partition it owns — it can then perform model averaging

for the partition.

• (AllGather) In the second stage, after each executor

finishes model averaging over the partition it owns, it

broadcasts that partition to everyone else. Again, using

the previous example, E1 sends M1 (after finishing model

averaging) to E2, ..., E8. Afterwards, each executor now

has refreshed versions of all partitions of the global

model. This stage is motivated by the work of Thakur

et al. [16].

Again, our implementation does not require changes to the

core of Spark. Specifically, we use the shuffle operator

4One could in theory avoid this inconsistency issue by carefully partitioning
data points based on their nonzero feature dimensions and then partitioning
the model with respect to the data partitions. However this is data dependent
and is difficult to achieve in practice due to issues such as data skew — one
may end up with too many partitions with a highly skewed distribution of
partition sizes. Moreover, data need to be randomly shuffled and distributed
across the workers.

1783

Algorithm 3: Distributed MGD {T , η w0, X , m} in

MLlib*
Master:
Issue LoadData() to all workers;

Issue InitialModel(w0) to all workers;

for Iteration t = 0 to T do
Issue UpdateModel() to all workers;

Issue Reduce-Scatter() to all workers;

Issue AllGather() to all workers;

Worker r = 1, ..., m:
Function LoadData():

Load a partition of data Xr;

Function InitialModel(w0):
Initial local model as w0;

Function UpdateModel():
// We assume local model is wr;

for each data point x in Xr do
Compute gradient: gr ← ∇l(wr, x);
Update model: wr ← wr − η · gr − η · ∇Ω(wr);

Function Reduce-Scatter():
// Break the model into pieces and shuffle them.

Partition local model wr into m pieces, namely

wr
1, w

r
2, ..., w

r
m;

for i = 1 to m do
Send partition wr

i to worker i;

// Perform model averaging for partition r
// (after receiving updates from all other workers).

pr ← 1
m

∑m
j=1 w

j
r;

// The size of pr is 1/m of the size of whole model

wr.

Function AllGather():
// Send pr to all workers.

for i = 1 to m do
Send pr to worker i;

// Concatenate partitions from all the workers in

order.

wr ← (p1, ..., pm);

in Spark to implement both stages: One can write different

shuffling strategies by specifying the source(s) and destina-

tion(s) of each partition.5 Figure 3(c) presents the gantt chart of

MLlib* when repeating the previous experiment. As expected,

all executors are now busy almost all the time without the

need of waiting for the driver. By just looking at Figure 3(c),

one may wonder if this is a correct BSP implementation.

For example, in the first communication step, it seems that

E1 started its AllGather phase before E8 finished its

Reduce-Scatter phase, which should not happen in a BSP

implementation. We note here that this is just an illusion: E8

was the slowest worker in the first communication step, and

therefore its AllGather phase immediately started after its

Reduce-Scatter phase — there is no visible gap shown

5https://0x0fff.com/spark-architecture-shuffle/

on the gantt chart. In other words, all workers started their

AllGather phases at the same timestamp, i.e., the first

vertical line in Figure 3(c).

It is worth to point out that, while the gantt chart in

Figure 3(c) looks much more cluttered compared with Fig-

ure 3(b), the actual amount of data exchanged within each

communication step actually remains the same: If we have k
executors and the model size is m, then the total amount of

data communicated is 2km for both cases.6 This may seem

puzzling as one may expect that the two rounds of shuffling

we employed in MLlib* would significantly increase the data

exchanged. This is, however, just an illusion. In both scenarios,

the global model is exactly sent and received by each executor

twice. The net effect is that a communication step (with two

rounds of shuffling) in MLlib* can finish the same number of

model updates as a step in the “MLlib + model averaging”

mechanism can but the latency is much shorter.

As a side note, the names of the two phases,

Reduce-Scatter and AllGather, are borrowed from

MPI (acronym for “Message Passing Interface”) terminol-

ogy, which represent MPI operators/primitives with the same

communication patterns plotted in Figure 2(b). Moreover, the

entire communication pattern combining the two stages is akin

to AllReduce, another MPI primitive. We refer readers to

the work by Thakur et al. [16] for more details about these

MPI primitives.

V. EXPERIMENTAL COMPARISON

In this section, we compare MLlib* and other systems by

conducting an extensive experimental evaluation using both

public datasets and Tencent datasets. Our goal is not only

to just understand the performance improvement of MLlib*

over MLlib, but we also want to understand where MLlib

and MLlib* stand in the context of state-of-the-art distributed

machine learning systems. Although these specialized systems

have claimed to be much better than MLlib, the reported

results were based on different experimental settings or even

different machine learning tasks. We are not aware of any

previous study with similar level of completeness, and we hope

our results can offer new insights to developing, deploying,

and using distributed machine learning systems.

Before we present the details, we summarize our results and

observations as follows:

• We find that machine learning systems based on param-

eter servers, Petuum and Angel, do significantly outper-

form MLlib, as was documented in the literature.

• By breaking down the improvements from the two tech-

niques we used, i.e., model averaging and distributed
aggregation, we observe a significant speedup of ML-

lib* over MLlib.

• We futher show that MLlib* can achieve comparable and

sometimes better performance than Petuum and Angel

that are based on parameter servers.

6We ignore the intermediate aggregators in Figure 3(b).

1784

A. Experimental Settings

Clusters. We used two different clusters in our experiments:

• Cluster 1 consists of 9 nodes (connected with a 1-Gbps

network), where each node is configured with 2 CPUs

and 24 GB of memory. Each CPU has 8 cores.

• Cluster 2 consists of 953 nodes, with 345 TB of memory

in total. Each node contains 2 CPUs with 10 cores each.

The nodes are connected with a 10-Gbps network.

Workloads. We evaluate different machine learning systems

on training generalized linear models. Specifically, we train

support vector machine (SVM) on five datasets, with and

without L2 regularization.7 We use four public datasets from

MLBench [17]8, whereas the dataset WX is obtained from

Tencent. Table I presents the statistics of these datasets.

The diversity of these datasets lies in the following two

aspects. First, the dimensions of the features differ: the datasets

avazu and url have relatively lower dimensions, whereas

the datasets kddb, kdd12, and WX have higher dimensions.

Second, the datasets avazu, kdd12, and WX are determined,

whereas the datasets url and kddb are underdetermined

(i.e., there are more features than data points). For the case

of training GLMs, the diversity presented in these datasets

offers good chance to probe and understand the strength and

weakness of different systems.

Participating Systems and Configurations. We compare

four distributed machine learning systems in our evaluation:

(1) Petuum 1.1, (2) Angel 1.2.0, (3) Spark MLlib 2.3.0, (4)

MLlib*. TensorFlow is not included because it is reported

to be slower in existing studies [5], [6]. To ensure fairness

when comparing different systems, we tune the configuration

of each system in our best effort. For example, we tuned

all parameters specified in the official guidelines for tuning

Spark, such as the number of tasks per core, serialization

method, garbage collection, etc.9

Metrics. We measure the value of f(w,X) in Equation 1 as

time elapses, since model training aims for minimizing the

objective function. Note that the comparison is fair in the

context of training GLMs: All participating systems should

eventually converge to the same (global) minimum as the

objective function is convex. This is another reason for us to

focus on training GLMs in this paper. In addition to the elapsed

time taken by each system towards convergence, we also

measure the number of communication steps when comparing

MLlib and MLlib*. Speedup is calculated when the accuracy

loss (compared to the optimum) is 0.01.

Hyperparameter Tuning. For each system, we also tune the

hyper-parameters by grid search for fair comparison. Specifi-

cally, we tuned batch size, learning rate for Spark MLlib. For

Angel and Petuum, we tuned batch size, learning rate, as well

as staleness.

7SVM is a representative for GLMs. In fact, linear models share similar
training process from a system perspective.

8https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
9http://spark.apache.org/docs/latest/tuning.html

Dataset #Instances #Features Size
avazu 40,428,967 1,000,000 7.4GB
url 2,396,130 3,231,961 2.1GB
kddb 19,264,097 29,890,095 4.8GB
kdd12 149,639,105 54,686,452 21GB
WX 231,937,380 51,121,518 434GB

TABLE I
DATASET STATISTICS.

B. Evaluation on Public Datasets

We conduct extensive experimental evaluation of MLlib*

using the four public datasets in Table I with the following

goals in mind:

• Revisit results in previous work regarding the perfor-

mance gap between MLlib and parameter servers.

• Study improvement of MLlib* over MLlib brought by

model averaging and distributed aggregation.

• Compare MLlib* and parameter servers.

1) MLlib* vs. MLlib: Figure 4 compares MLlib* and MLlib

using the four public datasets. We trained SVMs with and

without L2 regularization. In each subfigure, the left plot

shows the change on the value of the objective function as

the number of communication steps increases, and the right

plot shows that change corresponding to the elapsed time.

We can observe several facts. First, compared to MLlib,

MLlib* converges much faster. As Figure 4(h) indicates,

MLlib needs 80× more steps upon convergence on kdd12
dataset, when L2 regularization is omitted. (Note that the x-

axis is in logarithmic scale.) This demonstrates the signif-

icant improvement of the SendModel paradigm over the

SendGradient paradigm used by MLlib — notice that

the second technique employed by MLlib*, i.e., AllReduce

implementation, does not change the number of communica-

tion steps. Furthermore, we note that the overall speedup is

more than linear: the convergence of MLlib* is 240× instead

of 80× faster if the speedup were just linear. This extra

speedup is attributed to the AllReduce technique implemented

in MLlib*. It is a bit surprising at a first glance — one may

not expect that the improvement from AllReduce is actually

more significant than SendModel. This essentially implies

that the computation workload at the driver node is really a

big deal, regardless of it is aggregation of gradients or models.

Of course, the severity of the bottleneck depends on the sizes

of the data and the model — the larger they are the worse the

bottleneck is. For example, as shown in Figure 4(b), MLlib

needs 200× more iterations to converge while is only 123×
slower than MLlib*. This implies that time spent on each

iteration of MLlib* is actually longer than that of MLlib. There

are two reasons. First, the batch size of MLlib is significantly

smaller than the dataset size. Typically, the batch size is set as

1% or 0.1% of the dataset by grid search. On the other hand,

MLlib* needs to pass the entire dataset in each iteration. As

a result, the computation overhead per iteration of MLlib* is

larger. Second, the model size of avazu is smaller than that

of kdd12, by 54×. Therefore, the communication overhead

on the driver in MLlib is less severe and the benefit from using

AllReduce in MLlib* is smaller.

1785

O
b

je
ct

iv
e

va
lu

e

0.6

0.7

0.8

0.9

1

Communication
0 6 12 18 24 30

MLlib*

MLlib

10X

O
b

je
ct

iv
e

va
lu

e

0.6

0.7

0.8

0.9

1

Time (s)
0.1 1 10 100

MLlib*
MLlib

7X

(a) avazu, L2=0.1

O
b

je
ct

iv
e

va
lu

e

0.2

0.4

0.6

0.8

1

Communication
0 50 100 150 200

MLlib*

MLlib

200X

O
b

je
ct

iv
e

va
lu

e

0.2

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000

MLlib*
MLlib

123X

(b) avazu, L2=0

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Communication
0 150 300 450 600

MLlib* MLlib

500X

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000

MLlib*
MLlib

1150X

(c) url, L2=0.1

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Communication
0 250 500 750 1000

MLlib*

MLlib

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000 10000

MLlib*
MLlib

(d) url, L2=0

O
b

je
ct

iv
e

va
lu

e

0.6

0.7

0.8

0.9

1

Communication
0 20 40 60

MLlib* MLlib

13X

O
b

je
ct

iv
e

va
lu

e

0.6

0.7

0.8

0.9

1

Time (s)
0.1 1 10 100 1000

MLlib*
MLlib

37X

(e) kddb, L2=0.1

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Communication
0 250 500 750 1000

MLlib*

MLlib

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000 10000

MLlib*
MLlib

(f) kddb, L2=0

O
b

je
ct

iv
e

va
lu

e

0.4

0.6

0.8

1

Communicaton
0 5 10 15 20 25

MLlib*

MLlib

10X

O
b

je
ct

iv
e

va
lu

e

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000

MLlib*

MLlib

21X

(g) kdd12, L2=0.1

MLlib*
MLlib

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Communication
0 20 40 60 80

80X

MLlib*

MLlib

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000

240X

(h) kdd12, L2=0

Fig. 4. Comparison of MLlib and MLlib* on four datasets with and without L2 regularization. The dotted line in each figure represents 0.01 accuracy loss.

Second, MLlib performs worse when the problem becomes

more ill-conditioned. As shown in Figures 4(b), 4(d), 4(f), and

4(h), MLlib converges 123× and 200× slower than MLlib* on

the two determined datasets avazu and kdd12, while they

cannot get to the optimal loss even after 1,000 iterations on

the two underdetermined datasets url and kddb. To make

the problem less ill-conditioned, we also report the results

with L2 regularization equal to 0.1 on these four datasets in

Figures 4(a), 4(c), 4(e), and 4(g), respectively. We can observe

that the performance gap between MLlib and MLlib* becomes

smaller when the training objective becomes more determined.

For example, the speedups decrease to 7× and 21× on avazu
and kdd12, respectively. Meanwhile, on url and kddb,

MLlib can now converge to the same loss as MLlib*.

Third, distributed aggregation is more beneficial for large

models. As we can infer from comparing Figure 4(e) with

Figure 4(a), the speedup per iteration of MLlib* over MLlib

on high dimensional dataset like kddb is more significant

than that on low dimensional dataset like avazu.10 Distributed

aggregation can distribute the communication overhead on the

driver evenly to all the executors. Furthermore, the speedup

per iteration on kdd12 is slightly worse than that on url,

because the time spent on each iteration consists of two parts,

computation and communication. The computation overhead

on kdd12 is heavier as kdd12 contains more data points than

url (see Table I).

2) MLlib* vs. Parameter Servers: Figure 5 compares the

performance of MLlib* with Petuum* and Angel over the four

10The speedup per iteration is computed by dividing the elapsed time (the
right plot of each figure) by the number of iterations (the left plot).

1786

O
b

je
ct

iv
e

va
lu

e

0.2

0.4

0.6

0.8

1

Time (s)
1 10 100 1000

MLlibAngel

MLlib*

Petuum*

(a) avazu, L2 = 0

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
1 10 100 1000 10000

MLlib

Angel

MLlib*

Petuum*

(b) url, L2 = 0

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
1 10 100 1000 10000

MLlibAngel

MLlib*

Petuum*

(c) kddb, L2 = 0

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
1 10 100 1000

MLlibAngel

MLlib*
Petuum*

(d) kdd12, L2 = 0

O
b

je
ct

iv
e

va
lu

e

0.6

0.7

0.8

0.9

1

Time (s)
1 10 100 1000

MLlib

Angel

MLlib*

Petuum***

(e) avazu, L2 = 0.1

O
b

je
ct

iv
e

va
lu

e

0

0.2

0.4

0.6

0.8

1

Time (s)
1 10 100 1000 10000

MLlib

Angel

MLlib*

Petuum*

(f) url, L2 = 0.1

O
b

je
ct

iv
e

va
lu

e

0.6

0.7

0.8

0.9

1

Time (s)
1 10 100 1000 10000

MLlib

Angel
MLlib*

Petuum*

(g) kddb, L2 = 0.1

O
b

je
ct

iv
e

va
lu

e

0.4

0.6

0.8

1

Time (s)
1 10 100 1000

MLlibAngel

MLlib*

Petuum*

(h) kdd12, L2 = 0.1

Fig. 5. Comparison of MLlib* and parameter servers on different datasets with and without L2 regularization. The dotted line in each figure represents 0.01
accuracy loss.

datasets, with and without L2 regularization. Here, Petuum*

is a slightly tweaked implementation of Petuum. The original

implementation of Petuum uses model summation instead of

model averaging, which has been pointed out to be prob-

lematic [15], [18] — it suffers from potential divergence.

We therefore replaced model summation in Petuum by model

averaging and call this improved version Petuum* — we find

that model averaging is always faster than model summation

based on our empirical study. As a reference pointer, we also

present the performance of MLlib.

We have the following observations. First, Figure 5 con-

firms that MLlib can be significantly slower than Petuum*

and Angel, as evidenced by previous studies [5]–[7]. As

was analyzed in Section III, both Petuum* and An-

gel employ the SendModel paradigm in Algorithm 2

and therefore are understandably more efficient than the

SendGradient paradigm used by MLlib.

Second, as Figures 5(a), 5(b), 5(c), and 5(d) indicate,

MLlib* can achieve comparable or better performance as

those of Petuum* and Angel, when L2 regularization vanishes.

Specifically, MLlib* and Petuum* have similar performance

because both of them converge fast: They both perform parallel

SGD and model averaging. The performance may be slightly

different because of some implementation issues. For example,

Petuum* is implemented in C++ while MLlib* is implemented

using Scala. Also, Petuum* uses SSP to alleviate potential

latency from stragglers. On the other hand, MLlib* is faster

than Angel, because Angel cannot support small batch sizes

very efficiently due to flaws in its implementation. Roughly

speaking, Angel stores the accumulated gradients for each

batch in a separate vector. For each batch, we need to allocate

memory for the vector and collect it back. When the batch

size is small, the number of batches inside one epoch increases

because Angel workers communicate with parameter servers

every epoch, i.e., it needs more vectors to store the gradients

every epoch. Hence, there will be significant overhead on

memory allocation and garbage collection.

Third, MLlib* is faster than both Petuum* and Angel when

L2 regularization is nonzero on the four datasets, as shown in

Figures 5(e), 5(f), 5(g), and 5(h). Sometimes the performance

gap between MLlib* and parameter servers is quite significant,

for example, on the url and kddb datasets as shown in

Figures 5(f) and 5(g). Moreover, Angel outperforms Petuum*

(also significantly on the url and kddb datasets). We note

down a couple of implementation details that potentially ex-

plain the performance distinction. When the L2 regularization

is not zero, each communication step in Petuum* contains

only one update to the model, which is quite expensive. In

contrast, workers in Angel can communicate with servers once

per epoch (i.e., a pass of the entire dataset) — they only need

to update their local models at every batch without pinging

the servers. As a result, each communication step in Angel

contains many more updates to the global model, which, as we

have seen several times, can lead to much faster convergence.

Meanwhile, in MLlib* when L2 regularization is nonzero,

it actually performs parallel SGD (i.e., with batch size 1)

with a lazy, sparse update technique designed for SGD [14],

which can boost the number of updates to the model per

communication step even further.

C. Evaluation on Tencent Datasets

To report how MLlib* performs in an industrial environ-

ment, we compare MLlib* with other systems on Cluster
2 using the Tencent dataset (i.e., the WX dataset), which is

orders of magnitude larger than the other datasets. Apart from

the comparison of convergence, we also report the scalability

results of different systems using WX dataset. The dataset

cannot fit into a single machine’s memory, therefore we

performed scalability tests with 32, 64, and 128 machines.

We use grid search to find the best hyperparameters for each

participating system. We do not have results for Petuum*,

1787

O
b

je
ct

iv
e

V
al

u
e

0.5

0.6

0.7

0.8

0.9

1

Time (s)
0 5000 10000 15000 20000 25000

MLlib MLlib* Angel

(a) #machines = 32

O
b

je
ct

iv
e

V
al

u
e

0.5

0.6

0.7

0.8

0.9

1

Time (s)
0 5000 10000 15000 20000 25000

MLlib MLlib* Angel

(b) #machines = 64

O
b

je
ct

iv
e

V
al

u
e

0.5

0.6

0.7

0.8

0.9

1

Time (s)
0 5000 10000 15000 20000 25000

MLlib MLlib* Angel

(c) #machines = 128

S
p

ee
d

u
p

0

1

2

3

4

machines
32 64 96 128

MLlib MLlib* Angel

(d) #machines vs. speedup

Fig. 6. Comparison of MLlib*, MLlib and Angel on Tencent dataset. The dotted lines in Figures 6(a), 6(b) and 6(c) represent the best objective values
achieved among the systems under the corresponding experimental settings. Figure 6(d) shows the speedups of these systems with respect to the number of
machines, normalized by the time cost using 32 machines.

because the deployment requirement of Petuum is not satisfied

on Cluster 2. Figure 6 shows the results.

First, Figure 6(a) demonstrates that MLlib* converges much

faster than Angel and MLlib on the WX dataset when using 32

machines. The loss of Angel and MLlib is still decreasing, but

they need much longer time. The reason is similar to what we

have explained in Section V-B: Compared to MLlib and Angel,

MLlib* contains many more updates to the global model in

each communication step and the communication pattern is

more efficient.

Second, the scalability in terms of the time spent on each

epoch is poor for all these systems. Figures 6(a), 6(b), 6(c),

and 6(d) show the convergence using different number of

machines and the corresponding speedup. As we can see,

when we increase the number of machines from 32 to 128, the

speedups of all these systems are poor: Angel becomes 1.5×
faster and MLlib* becomes 1.7× faster, and MLlib evens gets

slower. This is far below the 4× speedup one would expect if

the scalability were linear.

There are two possible reasons for this poor scalability:

(1) When increasing the number of machines, the communi-

cation cost becomes more expensive and starts to dom-

inate, although the computation cost on each machine

decreases. We take MLlib as an example. MLlib adopts

the SendGradient paradigm and the batch size we set

is 1% of the full dataset via grid search. When increasing

the number of machines from 32 to 128, the time cost per

epoch even increases by 0.27×. Clearly, communication

overhead starts to dominate the time cost. This is actually

interesting — it indicates that using more machines may

not always be a good choice.

(2) Workers in these systems need to synchronize every

iteration and thus the elapsed time of each iteration is

determined by the slowest worker — when the number of

machines increases it is more likely to have a really slow

worker show up, especially in a large and heterogeneous

environment (e.g., Cluster 2) where the computational

power of individual machines exhibits a high variance.

One may argue that assigning multiple tasks to one

executor (i.e., multiple waves of tasks) can reduce the

overhead brought by BSP. However, this is not always true

when it comes to distributed machine learning. We tuned

the number of tasks per executor, and the result turns out

that one task per executor is the optimal solution, due to

heavy communication overhead.

VI. RELATED WORK

We discuss some other related works in addition to the ones

that have been covered in previous sections.

Tradeoff between computation and communication: To

balance the tradeoff between computation and communication,

there are serveral lines of work. The first is to determine

how many machines to use, given a distributed workload.

Using machines more than enough can increase the commu-

nication cost while using not enough machines can increase

the computation cost on each machine. Following this line,

McSherry [19] argues that distributed computing should at

least beat the single machine implementation. Huang [20]

uses as small number of machines as possible to ensure the

performance and efficiency.

Second, there are many proposals on reducing communica-

tion cost by performing local computation as much as possible.

For example, Grape [21] is a state-of-the-art distributed graph

processing system, which tries to do as much computation

as possible within a single machine and reduce the number of

iterations in distributed graph processing. As another example,

Gaia [22] is a geo-distributed machine learning system using

parameter servers. It tries to reduce communication cost by fa-

voring communications within local-area networks over wide-

area networks. The parallel SGD and model averaging tech-

niques in MLlib* falls into the same ballpark — it performs as

many local model updates as possible within each single node,

which significantly reduces the number of communication

steps required. There are also some works on reducing the

communication cost by partitioning the workloads for better

load balance [23]–[25].

Parameter Server vs. AllReduce: In general, Parameter

Server can be viewed as an architecture that manages a

distributed shared memory hosting the machine learning model

and supports flexible consistency controls for node communi-

cations. It provides primitives such as pull and push, which

allow us to update part of the model (a-)synchronously using

a user-defined consistency controller, such as BSP, SSP, and

ASP. Parameter Server has become quite popular since its

invention, due to its flexibility and superb performance.

Another popular architecture for distributed machine learn-

ing is AllReduce [16]. It is an MPI primitive, which first

1788

aggregates inputs from all workers and then distribute results

back (to all workers). We do not compare with systems

based on AllReduce, because there is few system using

AllReduce for training linear models.

Other Machine Learning Systems on Spark: Kaoudi [11]

built a cost-based optimizer to choose the best GD plan for

a given workload. In our work, we use grid search to find

the best parameters for each workload and thus do not need

the optimizer. Anderson [26] integrated MPI into Spark and

offloads the workload to an MPI environment. Basically, they

transfer the data from Spark to MPI environment, use high

performance MPI binaries for computation, and finally copy

the result back to HDFS for further usage. However, their

system is not optimized for training GLMs in Spark.

VII. CONCLUSION

In this paper, we have focused on the Spark ecosystem

and studied how to run machine learning workloads more

efficiently on top of Spark. With a careful study over imple-

mentations of existing distributed machine learning systems,

we identified two bottlenecks in Spark MLlib (i.e., inefficient
pattern of model update and inefficient pattern of communi-
cation). Utilizing two state-of-the-art, well-known techniques

(i.e, model averaging and AllReduce), we can significantly

improve MLlib without altering Spark’s architecture. In fact,

MLlib*, our improved version of MLlib, not only outperforms

MLlib, but also performs similarly to or better than state-of-

the-art distributed machine learning systems that are based on

parameter servers, such as Petuum and Angel, over both public

and Tencent workloads that we have tested.

As next steps, we plan to open-source MLlib* and con-

tribute it back to the Spark community if possible. Moreover,

Spark recently introduced spark.ml, its second-generation

machine learning library that implements L-BFGS [27], a pop-

ular second-order optimization algorithm. Unlike GD and its

variants that only utilize first-order derivatives of the objective

function, L-BFGS further uses second-order derivatives to help

revise the search direction. An interesting question is whether

the techniques we have developed for speeding up MLlib could

also be used for improving spark.ml, though this is beyond

the scope of the current paper.

VIII. ACKNOWLEDGEMENT

This work is supported by the National Key Research

and Development Program of China (No. 2018YFB1004403),

NSFC(No. 61832001, 61702015, 61702016, 61572039), and

PKU-Tencent joint research Lab. CZ and the DS3Lab grate-

fully acknowledge the support from Mercedes-Benz Research

Development North America, Oracle Labs, Swisscom, Zurich

Insurance, Chinese Scholarship Council, and the Department

of Computer Science at ETH Zurich.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud’10, 2010.

[2] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin,
M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: Machine
learning in apache spark,” JMLR, vol. 17, pp. 34:1–34:7, 2016.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” in ODSI, 2016, pp. 265–283.

[4] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in SIGKDD, 2016, pp. 785–794.

[5] J. Jiang, L. Yu, J. Jiang, Y. Liu, and B. Cui, “Angel: a new large-scale
machine learning system,” National Science Review, p. nwx018, 2017.

[6] K. Zhang, S. Alqahtani, and M. Demirbas, “A comparison of distributed
machine learning platforms,” in ICCCN, 2017, pp. 1–9.

[7] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed machine
learning on big data,” in SIGKDD, 2015, pp. 1335–1344.

[8] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016.

[9] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized
stochastic gradient descent,” in NIPS, 2010, pp. 2595–2603.

[10] J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C. Zhang,
Y. Wan, Z. Li, J. Wang, S. Huang, Z. Wu, Y. Wang, Y. Yang, B. She,
D. Shi, Q. Lu, K. Huang, and G. Song, “Bigdl: A distributed deep
learning framework for big data,” CoRR, vol. abs/1804.05839, 2018.

[11] Z. Kaoudi, J. Quiané-Ruiz, S. Thirumuruganathan, S. Chawla, and
D. Agrawal, “A cost-based optimizer for gradient descent optimization,”
in SIGMOD, 2017, pp. 977–992.

[12] M. Li, D. G. Anderson, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in OSDI, 2014, pp. 583–598.

[13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More effective distributed ML via a stale
synchronous parallel parameter server,” in NIPS, 2013, pp. 1223–1231.

[14] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade - Second Edition, 2012, pp. 421–436.

[15] Y. Zhang and M. I. Jordan, “Splash: User-friendly programming inter-
face for parallelizing stochastic algorithms,” CoRR, vol. abs/1506.07552,
2015.

[16] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” IJHPCA, vol. 19, no. 1, pp. 49–
66, 2005.

[17] H. Zhang, L. Zeng, W. Wu, and C. Zhang, “How good are machine
learning clouds for binary classification with good features?” CoRR,
vol. abs/1707.09562, 2017.

[18] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in SIGMOD, 2017, pp. 463–478.

[19] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at what cost?”
in 15th Workshop on Hot Topics in Operating Systems, HotOS’15, 2015.

[20] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo,
and J. Cheng, “Flexps: Flexible parallelism control in parameter server
architecture,” PVLDB, vol. 11, no. 5, pp. 566–579, 2018.

[21] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang, Y. Cao,
and C. Tian, “Parallelizing sequential graph computations,” in SIGMOD,
2017, pp. 495–510.

[22] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching LAN speeds,” in NSDI, 2017, pp. 629–647.

[23] M. Onizuka, T. Fujimori, and H. Shiokawa, “Graph partitioning for
distributed graph processing,” Data Science and Engineering, vol. 2,
no. 1, pp. 94–105, Mar 2017.

[24] N. Xu, L. Chen, and B. Cui, “Loggp: A log-based dynamic graph
partitioning method,” PVLDB, vol. 7, no. 14, pp. 1917–1928, 2014.

[25] K. Ueno, T. Suzumura, N. Maruyama, K. Fujisawa, and S. Matsuoka,
“Efficient breadth-first search on massively parallel and distributed-
memory machines,” Data Science and Engineering, vol. 2, no. 1, pp.
22–35, Mar 2017.

[26] M. J. Anderson, S. Smith, N. Sundaram, M. Capota, Z. Zhao, S. Dulloor,
N. Satish, and T. L. Willke, “Bridging the gap between HPC and big
data frameworks,” PVLDB, vol. 10, no. 8, pp. 901–912, 2017.

[27] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Math. Program., vol. 45, no. 1-3, pp. 503–528,
1989.

1789

