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Abstract—Distributed machine learning (ML) has triggered
tremendous research interest in recent years. Stochastic gradi-
ent descent (SGD) is one of the most popular algorithms for
training ML models, and has been implemented in almost all
distributed ML systems, such as Spark MLlib, Petuum, MXNet,
and TensorFlow. However, current implementations often incur
huge communication and memory overheads when it comes to
large models. One important reason for this inefficiency is the row-
oriented scheme (RowSGD) that existing systems use to partition
the training data, which forces them to adopt a centralized model
management strategy that leads to vast amount of data exchange
over the network.

We propose a novel, column-oriented scheme (ColumnSGD)
that partitions training data by columns rather than by rows. As
a result, ML model can be partitioned by columns as well, leading
to a distributed configuration where individual data and model
partitions can be collocated on the same machine. Following this
locality property, we develop a simple yet powerful computation
framework that significantly reduces communication overheads
and memory footprints compared to RowSGD, for large-scale
ML models such as generalized linear models (GLMs) and
factorization machines (FMs). We implement ColumnSGD on
top of Apache Spark, and study its performance both analytically
and experimentally. Experimental results on both public and real-
world datasets show that ColumnSGD is up to 930× faster than
MLlib, 63× faster than Petuum, and 14× faster than MXNet.

I. INTRODUCTION

The increasing availability of large data [1], [2] has spawned
intensive research and engineering efforts on developing dis-
tributed machine learning (ML) systems, such as Spark ML-
lib [3], Petuum [4], Angel [5], TensorFlow [6], and MXNet [7].
While the architectures and implementations of these systems
vary, all of them employ stochastic gradient descent (SGD) [8]
and its variants for training ML models.

Existing implementations of SGD adopt a row-oriented data
partitioning scheme that induces a centralized model manage-
ment strategy. For example, MLlib employs one master and
multiple workers in its architecture. It partitions training data
by rows and each worker owns one data shard. Meanwhile, the
master is in charge of storing and maintaining the ML model.
In each iteration of SGD, workers first pull the latest model
from the master; they then compute gradients using the local
data shard and send the computed gradients to the master. The
master further aggregates the received gradients and updates
the model accordingly. Other architectures follow a similar

paradigm. For instance, systems that are based on parameter
servers, such as Petuum and MXNet, conceptually just replace
the single master by multiple servers to alleviate the apparent
communication bottleneck on the master.1

While RowSGD systems work well on small models, their
performance deteriorates when model size increases to tens of
millions or billions [9]. There are two well-recognized reasons
for this performance downgrade. First, memory consumption
becomes a big issue under the single-master setting as the
master has to store the entire model. Systems following the
parameter-server (PS) architecture attempt to address this issue
by further partitioning the model across the parameter servers.
Second, communication overhead becomes prohibitive when
gradients/models with billions of dimensions are transferred
via network. Using multiple parameter servers (in lieu of a
single master) can alleviate this, yet the total communication
cost does not change — it is still proportional to the size of
the model and is just redistributed over more machines.

In this paper, we propose ColumnSGD, a column-oriented
framework for distributed SGD computation, with a focus on
training large-scale ML models.2 Unlike RowSGD systems, it
partitions training data by columns (i.e., feature dimensions)
rather than by rows. Moreover, ColumnSGD further partitions
the model by columns, following the same column distribution
used for data partitioning. This collocation of data and model
enables a novel distributed model management strategy that
completely avoids exchanging gradients and models over net-
work. ColumnSGD also minimizes the memory consumption
one could think of, by having all workers together store and
maintain the model in parallel. Although column-oriented data
partitioning strategies have been extensively studied [10]–[12],
their applications in distributed SGD implementations have yet
been explored, to the best of our knowledge.

In more detail, one can compute gradients of many ML
models (e.g., GLMs) by performing element-wise operations
using the model and feature vectors of data points, together
with some “statistics” (e.g., inner product). In fact, we can
break down this computation into two steps: (1) compute

1For ease of exposition, we use “RowSGD systems” to refer to these row-
oriented solutions in the rest of this paper.

2The ML models in our study include, but not not limited to, generalized
linear models (GLMs) and factorization machines (FMs).
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Fig. 1. Comparison of RowSGD and ColumnSGD.

statistics with the model and feature vectors, and (2) use the
statistics to further compute gradient for each model/feature
dimension. For example, the gradient of logistic regression
can be expressed as a linear combination of the feature vectors
(see Section II-C), and the statistics can be computed from the
scalar dot products of the model vector and feature vectors.
In RowSGD, one needs to pull the full model to compute the
statistics. Our key insight that motivates the development of
ColumnSGD is that the computation of those statistics can be
decomposed and distributed in a column-oriented fashion. As
a result, to compute the gradients one only needs to collect
statistics rather than pull all dimensions of the model, which
can dramatically reduce communication overhead as sizes of
statistics are much smaller. (As an extreme example, for two
vectors x1 and x2 both with one billion dimensions, their dot
product x1 · x2 remains as a single scalar!)

Figure 1 outlines the architecture of ColumnSGD and com-
pares it with RowSGD, using a single-master setting. Similar
to RowSGD, ColumnSGD employs one master and multiple
workers. Column-partitioned training data and model are dis-
tributed across the workers. The master in ColumnSGD is
thus lightweight. During each iteration of SGD, workers first
compute aforementioned, partial statistics using their local
data and model partition. They then send the statistics to
the master. The master aggregates the partial statistics (e.g.,
when the statistics are in the form of dot products, the master
simply adds up the partial dot products) and broadcasts back
the complete statistics to the workers after aggregation. The
workers finally use the received statistics to compute the
gradients and update their corresponding model partitions.

The communication cost of ColumnSGD only depends on
the batch size in SGD, whereas the communication cost of
RowSGD depends on the model size. In practice, a batch size
of 1,000 is usually sufficient to yield reasonable convergence
of SGD (Section III). Therefore, for large models with millions
of dimensions, the communication overhead of ColumnSGD is
much lower than RowSGD. We have implemented a prototype
system on top of Apache Spark. Our experimental evaluation
on real-world ML workloads shows that ColumnSGD can be
up to 930× faster than MLlib, 63× faster than Petuum, and
14× faster than MXNet, for large scale GLMs and FMs.

In summary, this paper makes the following contributions:
• We propose the ColumnSGD framework, a column-oriented

implementation of distributed SGD for training large-scale

ML models. It partitions both training data and model by
columns, which enables a novel, distributed model manage-
ment paradigm that is not allowed in RowSGD systems.

• We perform a detailed analysis of ColumnSGD using an
analytic approach. ColumnSGD avoids sending gradients/-
models over network (as in RowSGD), which significantly
reduces communication overhead for large models.

• To lower the additional overhead of converting row-oriented
data to column-oriented one, we propose a protocol that
performs block-level, column-wise data partitioning, as well
as a two-phase indexing scheme that allows row-oriented
mini-batch sampling on column-partitioned training data.

• We implement ColumnSGD on top of Apache Spark, and an
extensive performance evaluation based on this implemen-
tation show that ColumnSGD can significantly outperform
existing RowSGD systems on real-world ML workloads.

(Discussion) Just like all existing systems for distributed ML,
ColumnSGD is clearly not a “one size fits all” type of solution.
In particular, it is designed for workloads that require training
large ML models using SGD, and we have found many use
cases, including training large-scale GLMs and FMs, where
ColumnSGD can significantly outperform other solutions. Our
integration of ColumnSGD into the Apache Spark ecosystem
further opens the door for Spark users to explore more use
cases where ColumnSGD can be a suitable solution.3

(Paper Organization) We start by presenting necessary back-
ground in Section II. We then present the system architecture
and programming framework of ColumnSGD, followed by an
analytic comparison between ColumnSGD and RowSGD in
Section III. In Section IV we further describe implementation
details of ColumnSGD, and in Section V we report experi-
mental evaluation results based on this implementation. We
summarize related work in Section VI and conclude the paper
in Section VII.

II. PARALLELIZATION STRATEGIES IN DISTRIBUTED SGD
In this section, we first present the basics of SGD and

its classic distributed implementation. We then discuss two
parallelization strategies for computing gradients, namely,
horizontal-parallel and vertical-parallel.

A. Stochastic Gradient Descent

Given a classification task with X representing the input
data (a featurized vector representation), we look for a model
w that minimizes the objective function:

f(w,X) = l(w,X) + Ω(w). (1)

Here, l(w,X) is the loss function, which can be logistic loss,
square loss, hinge loss, etc. Ω(w) is the regularization term
that protects from overfitting (e.g., Ω(w) = λ|w|).

Gradient descent is an algorithm that has been widely used
to train ML models that optimizes Equation 1. In practice,
people usually use a variant called stochastic gradient descent
(SGD). We present the details of SGD in Algorithm 1.

3For ease of exposition, throughout this paper we will focus our presentation
using GLMs as examples, whenever possible.



Algorithm 1: SGD {T , η w0, X}
1 for Iteration t = 1 to T do
2 Sample a batch of data XB ;
3 Compute the gradient gt =

∑
xi∈XB

∇l(xi, wt−1);
4 Update model as wt = wt−1 − η · gt − η · ∇Ω(wt−1);

Here, T is the number of iterations, η is the learning rate,
and w0 is the initial model. As shown in Algorithm 1, SGD
is an iterative procedure. In each iteration t, It performs the
following steps: (1) Sample a batch of training data XB ; (2)
Compute the gradient gt of Equation 1 using XB and the
current model wt−1; (3) Use gt to update the model wt.

B. Distributed SGD

The sequential version of SGD described in Algorithm 1 is
not feasible when it comes to large models or distributed data
storage. On this note, people have proposed various distributed
versions of SGD. Next, we illustrate the idea of distributed
SGD using the implementation in Spark MLlib as an example.

Algorithm 2: Distributed SGD {T , η w0, X , K}
1 Master:
2 Initialize the model as w0;
3 Issue loadData() to all workers;
4 for Iteration t = 0 to T do
5 Issue computeGradients(t) to all workers;
6 Aggregate gradients from workers: gt ←

∑m
k=1 g

k
t ;

7 Update model: wt ← wt−1 − η · (gt)− η · ∇Ω(wt−1);

8 Worker k = 1, ..., K:
9 Function loadData():

10 Load a partition of data Xk;

11 Function computeGradients(t):
12 Get model wt−1 from the master node;
13 Sample a batch of training data Xbk;
14 Compute local gradient:

gkt ←
∑

xi∈Xbk
∇l(wt−1, xi);

15 Send gkt to the master node;

In Spark MLlib, there is a master and K workers. The
master is responsible for maintaining the model and scheduling
the workers, whereas the workers are responsible for holding
the data and computing the gradients. Algorithm 2 summarizes
the procedure under this setting: (1) The master first partitions
the data by row (i.e., each partition contains a set of data
points) and each worker loads one partition; (2) Each worker
gets the model from the master, and uses the local data and
the received model to compute the gradients; (3) The master
aggregates the gradients received from the workers, and uses
the gradients to update the model. The steps (2) and (3) are
repeated until convergence.

C. Parallel Computation of Gradients

As illustrated in Algorithm 2, parallel computation of gra-
dients is one of the key steps in distributed SGD. We now

(a)	 horizontal	parallel (b)	 vertical	parallel

Fig. 2. Parallelization strategies of computing Equation 2. We represent the
training dataset as a two-dimensional matrix, where each row represents a data
point, and each column represents a feature. The horizontal-parallel strategy
partitions the matrix by rows and distributes the computation of Sh, whereas
the vertical-parallel strategy partitions the matrix by columns and distributes
the computation of Sv .

look into it in more detail, using logistic regression (LR) as
an example. When training LR, the gradient g over a batch of
data XB is

g(w,XB) =
∑

xi∈XB

−yi
1 + exp(yi ·

∑m
j=1(wj · xij))

· xi. (2)

Here xi and yi are the feature vector and the label of the
ith data point, respectively. m is the dimension of the feature
vector, and xij represents the jth feature of xi. For ease of
exposition, we denote the first summation operator (

∑
xi∈XB

)
as Sh (for horizontal summation over the rows, i.e., data
points), and denote the second summation operator (

∑m
j=1) as

Sv (for vertical summation over the columns, i.e., features).
(Horizontal-Parallel) Horizontal parallelization (horizontal-
parallel) is the strategy illustrated in Algorithm 2) and has
been widely used by existing distributed ML systems like
Spark MLlib, Angel, Petuum, TensorFlow, and MXNet. When
computing Equation 2, each worker computes a partial sum of
Sh using data points (belonging to its local partition) with all
their features (see Figure 2(a)).
(Vertical-Parallel) Vertical parallelization (vertical-parallel)
instead distributes the computation of Sv: Each worker handles
the computation over a vertical partition of the training data
(see Figure 2(b)). Note that, under this scheme, the workers
initially cannot compute the gradients because each of them
only holds partial sums (corresponding to features in their
local partitions) of Sv’s. As we will discuss in Section III, the
master needs to collect these partial sums from the workers,
sum them up, and send the complete Sv’s (for all features)
back to the workers. Only until this point, the workers can
proceed to compute the gradients. Nonetheless, under vertical-
parallel each worker now has all data points in the training set.
After receiving the complete Sv’s from the master, they can
compute the partial gradients and update the models without
another trip to the master.
(Applicability) These two parallelization strategies can be
used to compute gradients for many ML models. Notable
examples include all GLMs, such as Least Squares, Logistic
Regression (LR), Multinomial Logistic Regression (MLR),
Support Vector Machine (SVM), as well as other nonlinear
models such as Factorization Machine (FM) [13].



Algorithm 3: SGD in ColumnSGD {T , η w0, X , m}
1 Master:
2 Issue initModel() to all workers;
3 Issue loadData() to all workers;
4 for Iteration t = 0 to T do
5 Issue computeStatistics() to all workers;
6 Issue reduceStatistics();
7 Broadcast the reduced statistics to all workers;
8 Issue updateModel() to all workers;

9 Function reduceStatistics():
10 Aggregate statistics from all workers;

11 Worker k = 1, ..., m:
12 Function loadData():
13 Load one vertical partition of the training data;

14 Function computeStatistics():
15 Sample a mini-batch of training data XB ;
16 Compute statistics using local partitions of training

data and model;
17 Function updateModel():
18 Get statistics from the master;
19 Compute the gradients using the statistics and XB ;
20 Update the local model using the gradients;

III. THE COLUMN-SGD FRAMEWORK

All existing systems for training GLMs use the horizontal-
parallel strategy — the vertical-parallel strategy has yet been
explored. In this section, we propose a novel programming
framework called ColumnSGD based on vertical-parallel. In
contrast, we refer to systems that are based on horizontal-
parallel as RowSGD systems.

We first present the details of ColumnSGD and describe its
SGD implementation. We then showcase how to train an LR
classifier as an example. We further analyze the memory and
communication overheads of ColumnSGD, and compare with
RowSGD. Both theoretical and empirical evidences show that
ColumnSGD is superior to RowSGD for large models.

A. SGD in ColumnSGD

In ColumnSGD, there is one master and multiple workers.
We partition both the training data and the model by columns
(using the same partitioning scheme), and each worker owns
one single partition. Since data and model partitions are now
“collocated” on each worker, we can then adopt the vertical-
parallel strategy for computing gradients. ColumnSGD can
thus avoid sending gradients through the network, which is
expensive for large models with high dimensions. (Recall that
vector representations of features, gradients, and models all
bear the same number of dimensions.)

Algorithm 3 illustrates the execution of SGD. The master
first asks the workers to load their columnar partitions of the
training data and initialize their own partitions of the model
(lines 2 and 3). The main loop of SGD starts afterwards. Each
iteration includes the following steps:

• Step 1 (lines 5, 14-16): Each worker computes “statistics”
using its local partitions of the data and model. Different
models may have different forms of statistics. For instance,
statistics when training LR are in the form of dot products;
they are in more complicated forms when training FMs.

• Step 2 (lines 6 and 7): The master aggregates the statistics
from all the workers and broadcasts the aggregated statistics
back. The aggregation function is usually sum of the two
inputs, though there is no restriction.

• Step 3 (lines 8, 17-20): Each worker uses its local data
and the statistics received from the master to compute the
gradient and update its (local) model. The specific model
update procedure depends on the variant of SGD in use
(e.g., standard SGD, Adam, etc.).

(Remark) In Algorithm 3, by “statistics” we refer to the partial
sums of Sv as in the LR example exhibited in Section II-C.
As we have mentioned, this computation pattern is not tied to
LR and can be used for other models such as MLR, SVM,
and FM. Moreover, ColumnSGD can also work for variants
of SGD such as Adam [14] and AdaGrad [15], by tweaking
the implementation of model update in line 20.

1) Example – Logistic Regression (LR) in ColumnSGD and
RowSGD: As a concrete example, we next showcase the
implementation of LR in ColumnSGD, and compare with
its implementation in RowSGD. Figure 3 presents detailed
execution flows of both RowSGD and ColumnSGD. For
simplicity, we assume that there is one master and two workers
in both systems. The batch size is set to be four (i.e., in each
iteration, each worker in RowSGD processes two data points).
We now describe in detail what data is transported over the
network and how the (partitioned) model is updated in both
RowSGD and ColumnSGD.
(RowSGD) In RowSGD as shown in Figure 3(a), the master
stores the model (~w) and each worker owns a horizontal
partition of the training data ( ~x1, ~x2 on worker1 and ~x3, ~x4
on worker2). The execution flow is as follows:
• Step 1. Each worker pulls the model (~w) from the master.
• Step 2. Each worker computes the gradient using the pulled

model and the mini-batch data ( ~x1, ~x2 for worker1, ~x3, ~x4
for worker2).

• Step 3. Each worker pushes the gradient (~g1 for worker1
and ~g2 for worker2) to the master.

• Step 4. The master aggregates the gradients and updates the
model (~w).

(ColumnSGD) In ColumnSGD as shown in Figure 3(b), each
worker stores a vertical partition of the training data ( ~x11,
~x21, ~x31, ~x41 for worker1 and ~x12, ~x22, ~x32, ~x42 for worker2)

as well as the corresponding partition of the model ( ~w1 for
worker1 and ~w2 for worker2). The master does not need to
store the model anymore. The execution flow is as follows:
• Step 1. Each worker computes the statistics using their local

model partition and data partition. Here the statistics on each
worker is a four-dimensional vector (~s1 for worker1 and ~s2
for worker2).

• Step 2. Each worker pushes the statistics to the master.
• Step 3. The master sums up the statistics.
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Fig. 3. Execution flows of Logistic Regression (LR) in RowSGD and ColumnSGD, using 1 master and 2 workers (with batch size 4 and learning rate η).

• Step 4. Each worker pulls the aggregated statistics (~s) from
the master.

• Step 5. Each worker updates the model using the received
statistics and their local data.

B. Analysis of ColumnSGD

We develop an analytic model to study the performance
of ColumnSGD and further compare ColumnSGD with
RowSGD to understand the pros and cons of both paradigms.

1) Memory and Communication Overheads: The computa-
tion costs of RowSGD and ColumnSGD are similar, because
the computation is evenly distributed to the workers despite
they adopt different parallelization strategies. Therefore, we
focus on analyzing the memory and communication overheads.
Again, we take training LR as an example. Analysis for other
models and settings is similar.

We assume there is one master and K workers. The batch
size of SGD is B. The dimension of the model is m and the
sparsity (i.e., percentage of zeros) of the training data is ρ.
The training data (including the labels) contains N points and
the size of training data is S = N +Nm(1− ρ).

(RowSGD) As depicted in Figure 1(a), in RowSGD the
training data is partitioned by rows and each worker owns one
partition. The master maintains the global model and schedules
the workers. When running SGD, each worker needs to deal
with B

K data points. In expectation, there are mφ1 non-zero
dimensions in a batch of B

K data points, where φ1 = 1− ρB
K .

The master needs to aggregate the gradients from workers. In
expectation, there are mφ2 non-zero dimensions in a batch of
B data points, where φ2 = 1− ρB .

Memory: The master needs to maintain the entire model
and hold temporary memory for aggregating the gradients
from workers. Therefore, the memory overhead for the master
is m + mφ2. Each worker needs to store one horizontal
partition of the training data as well as the temporary memory
for the model parameters pulled from the master and the
computed gradients. Thus the memory overhead is S

K +2mφ1.

RowSGD ColumnSGD
master worker master worker

Mem. m+mφ2
S
K

+ 2mφ1 B S
K

+ 2B + m
K

Comm. 2Kmφ1 2mφ1 2KB 2B
TABLE I

MEMORY AND COMMUNICATION OVERHEADS.

Communication: Each worker needs to send the gradients
computed using its local data batch and also pull back the
model required by the local batch. Hence, the communication
cost of each worker is 2mφ1. On the other hand, the master
sends messages to and receives messages from all workers.
Hence, the communication cost of the master is 2Kmφ1.
(ColumnSGD) ColumnSGD partitions both the training data
and the model by columns, as depicted in Figure 1(b). The
master is responsible for aggregating and broadcasting only
the statistics.

Memory: The master needs to hold the temporary mem-
ory for aggregating statistics, thus its memory overhead is B.
On the other hand, each worker needs to store a partition
of the training data as well as the model. Also it holds
temporary memory for computing the statistics and pulling
the aggregating statistics from the master. Thus the memory
overhead is S

K + 2B + m
K .

Communication: The master aggregates statistics from
workers and broadcasts the result back. The communication
cost is 2B for each worker and 2KB for the master.
(Summary) As summarized in Table I, we conclude that:
• The memory overheads of the workers in RowSGD and

ColumnSGD are similar, but the master in ColumnSGD is
more lightweight as the model is offloaded to workers.

• The communication cost of ColumnSGD only depends on
batch size whereas that of RowSGD depends on both model
size, data sparsity and batch size.
2) Understanding Batch Size: While we find that the per-

formance of ColumnSGD is more related to the batch size,
it is unclear how the batch size would affect the convergence
as well as the performance. It does not mean that we should
always choose B = 1, as a larger batch size may result in
faster convergence [16]. A natural question is then which batch
size should be used.
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(Theoretical Understanding) As was pointed out by Yin et
al. [17], the estimation of the gradient using a batch of training
data can be modeled as the sum of the real gradient plus the
“noise variance” brought by each data point. Then by applying
central limit theorem [18], Yin et al. further proved that the
noise variance is correlated with the inverse of the batch size.
Therefore, to reduce the noise variance (and therefore speed
up convergence of SGD), one may want to increase the batch
size. Hence, there is indeed a sweet spot on the batch size
that makes a tradeoff between communication overhead and
convergence speed. We next study this tradeoff empirically.
(Empirical Study) We conduct an empirical study on the
impact of batch size to understand the following two questions:
• How would batch size affect the convergence?
• How would batch size affect per-iteration overhead?

Specifically, we train LR and SVM using SGD on three
datasets avazu, kddb, and kdd12 (Table II) using the
Cluster 1 described in Section V. For each dataset, we first
use grid search to find the best learning rate by batch gradient
descent (i.e., we use the whole training data as one batch). We
then fix the learning rate and keep decreasing the batch size.
Figure 4(a) presents the convergence curve of training SVM
on kddb. Results on avazu and kdd12 are similar.

We have two observations. First, the convergence of SGD
becomes unstable when the batch size is too small. For
example, as shown in Figure 4(a), the convergence curve start
to thrash when the batch size decreases to ten. The reason
is that the variance brought by SGD increases as the batch
size decreases, which is consistent with our analysis that the
variance is inversely proportional to the batch size. Second,
using too large batch size for linear models is not necessary.
For example, the curves of SVM on kddb almost overlap
when the batch size exceeds 100.

To further understand the impact of batch size on per-
iteration overhead, we fix the learning rate and keep increasing
the batch size when training SVM. Figure 4(b) presents the
result on kddb. Results on the other datasets are similar.

We observe that the per-iteration time increases sharply
when the batch size exceeds 100k. However, it remains almost
unchanged for smaller batch sizes. When the batch size is
small, the communication cost per iteration is dominated by
the network latency. However, when the batch size is large, the
communication cost is more affected by network bandwidth. In
Figure 4(b), we observe near linear growth of communication
time with respect to batch size beyond 100k, which is in line
with the above analysis.

In summary, batch size can affect both convergence speed
(i.e., the number of iterations to converge) and per-iteration
time. Based on our empirical study, batch size of 1,000 can
yield a good tradeoff for practical applications. This also
indicates that small batch size is usually good enough, which
we will focus on in the rest of the paper.

C. Discussion: ColumnSGD for Other Models

(Form of Statistics) ColumnSGD can work for many models
besides LR (e.g., SVMs and FMs). Nevertheless, the types of
“statistics” required by different models are different, which
warrants customized implementations of statistics computa-
tions. As a result, the size of statistics may vary for different
models, which can lead to different communication overhead
and memory footprint. For example, implementation of FMs
in ColumnSGD is more complicated than LR. For a batch of B
data points, ColumnSGD needs to aggregate statistics of size
(F +1)B from each worker and broadcast (F +1)B statistics
to all workers. Here, F is number of latent factors. (We omit
the derivation details due to space limitation.) Fortunately, F
is typically a small number in practice. Therefore, the memory
footprint of the statistics that ColumnSGD needs to keep for
FMs remains small.
(Support for DNNs) ColumnSGD can support certain kinds of
Deep Neural Networks (DNNs) but not all. For fully connected
(FC) layers, ColumnSGD can support it by partitioning the
FC layer and the corresponding weight matrix across workers.
For conv2d or maxpool layers, however, it is difficult to
partition the model by columns. Nevertheless, since the size
of the model (i.e., the kernel size) is usually small in practice,
synchronization is usually not expensive. Thus, one can just
rely on RowSGD for conv2d and maxpool and we do not
recommend ColumnSGD for such cases.

During the training process of DNNs with FC layers,
ColumnSGD needs to synchronize every layer (both the for-
ward pass and the backward pass). It needs to aggregate the dot
products at each layer and broadcast the aggregated statistics
(e.g., the result of activation functions) back to workers.
However, given that the width of each individual layer in DNN
is usually not large in practice, an implementation based on
ColumnSGD may not be very beneficial.

IV. IMPLEMENTATION OF COLUMN-SGD

So far we have implicitly assumed that data and model
have been partitioned by columns before ColumnSGD starts
running SGD. However, in practice this assumption is often
invalid, as training data stored in a distributed storage system
such as HDFS [19] is often partitioned by rows. Moreover,
stragglers are common in real world distributed ML jobs and
we will present how to handle stragglers in ColumnSGD. We
have implemented a prototype system on top of Apache Spark.

A. Row-to-Column Data Transformation

1) Design Desiderata: We present design considerations
before implementation details.



(Row Identification) Although training data is partitioned by
columns in ColumnSGD, it is still accessed by data points (i.e.,
rows) when taking a mini-batch in SGD. This introduces a
constraint when designing the data transformation mechanism:
Each partition must maintain information about the data points
that the columns in this partition correspond to.

One idea could be to assign a global identifier to each row.
However, it requires an additional full scan of all partitions,
given that rows are scattered in multiple workers. To avoid this
full scan, we instead use a composite key for each row that
consists of the worker (and thus the row partition) identifier
and the ordinal offset of the row within the partition. (We will
further refine this row identification scheme using block-level
identification discussed next.)
(Column Dispatching) Based on the previous scheme for row
identification, a worker is now able to dispatch columns of
its local rows to their destination workers. A straightforward
dispatching scheme could be: (1) Each worker first loads its
row partition and then splits it into K partitions by columns;
(2) Each worker then dispatches its local column partitions to
their designated owners.

This “bulk loading” scheme doubles the amount of required
memory on each worker, which is not desirable. Instead, we
consider an alternative that avoids increasing memory usage by
partitioning each row “on the fly”. Specifically, after loading
a row, we partition it into K column groups and immediately
send each group to its destination owner (We name this
approach as “Naive-ColumnSGD”.). However, naively doing
this would significantly increase the communication overhead
because there would be too many (small) objects to be
transferred through network, in which the network bandwidth
is under utilized. Therefore, we design a block-based (rather
than row-based) dispatching scheme that essentially batches
small objects before sending them out.
(Data Access) When using SGD to train ML models, we need
to frequently sample a mini-batch of the training data. Some
systems, such as Spark MLlib, simply perform a sequential
scan over the data and decide one by one whether a data
point should be included in the samples or not. This approach
is clearly expensive for large training data. Other systems,
such as TensorFlow, Petuum, and MXNet, adopt a different
approach by partitioning the data into batches and reading
a batch sequentially in every iteration. However, to ensure
randomness, they have to shuffle the training data from time
to time, which is also expensive in a distributed setting.

To speed up data access in ColumnSGD, we further design
a two-phase indexing scheme based on the above block-level
data transformation idea.

2) Implementation Details: We present the implementation
details of row-to-column data transformation in ColumnSGD.
(Block-based Column Dispatching) Figure 5 illustrates the
workflow of block-based column dispatching:
• Step 1. The master organizes the row-based training data

into a queue of blocks, each with a predefined block size.
• Step 2. When a worker is idle, the master assigns one block

to it by sending it a block ID. The worker then reads in the
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Fig. 5. Block-based column dispatching.

Algorithm 4: BlockBasedColumnDispatching(BQ, K)

1 foreach block b ∈ BlockQueue BQ do
2 Initialize K worksets (b.id, workset1), ..., (b.id,

worksetK);
3 foreach row r ∈ block b do
4 Assign each column of r to the corresponding

workset using some predefined partitioning
scheme (e.g., round robin);

5 for k ∈ {1, ...,K} do
6 Send (b.id, worksetk) to worker k;

7 Organize all worksets in each worker as a hash map;

block, and splits it into K worksets. Each workset contains
a column-based partition of the rows in this block as well
as the block ID.

• Step 3. The worker then sends each workset to the destina-
tion worker together with the block ID. To further reduce the
network traffic, we use the Compressed Sparse Row (CSR)
format to represent each workset.

Algorithm 4 presents a formal description of this procedure.
(Two-Phase Indexing) In ColumnSGD, we use a two-phase
indexing scheme for accessing training data. The training data
in each worker is organized as a hash map of received worksets
(line 7 in Algorithm 4). The key to a workset is the ID of the
block from which this workset comes. Inside each workset, a
(partial) data point/row is further indexed by its offset.

When sampling a data point/row, each worker first draws
a workset key using the same random seed (e.g., the current
iteration number). This ensures that the workers can locate
worksets from the same block simultaneously. Within that
workset, each worker further draws an ordinal offset, again
using the same random seed. This enables simultaneous land-
ing on the same row in each worker.

B. Harnessing Stragglers

Stragglers have been recognized as one major performance
issue in distributed computations, especially for systems based
on the Bulk Synchronous Parallel (BSP) protocol [20]. Strag-
glers remain an important issue in ColumnSGD, as it naturally
follows the BSP protocol as well.
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Fig. 6. Example of ColumnSGD w/o 1-backup computation. “M” stands for
model partition and “D” for data partition.

Existing RowSGD systems, such as Petuum and MXNet,
address stragglers by breaking synchronization barriers among
workers when collecting gradients in distributed SGD [21],
[22]. Can we leverage the same idea to handle stragglers in
ColumnSGD? It turns out to be challenging, as the master has
to collect the statistics from all workers. It is unclear whether
ColumnSGD can use staled statistics (due to stragglers) to
update the model without affecting the convergence of SGD.

To deal with stragglers in ColumnSGD, we turn to the recent
development of gradient coding theory [23], [24]. The basic
idea is to use backup (i.e., redundant) computation. In more
detail, assume that we have K workers and the training data
is partitioned into K parts. To ensure S-backup computation
(S << K), we first divide the workers into K

S+1 groups and
assign (S + 1) data partitions to each group disjointly. Each
worker group handles the computation of statistics on the
assigned (S + 1) data partitions. In each group, all workers
are replicas of each other — each worker stores the S + 1
data partitions as well as the corresponding model partitions.
When running SGD in ColumnSGD with backup computation,
each worker uses its local (S + 1) data partitions and model
partitions to compute the statistics. The master then collects
the statistics from non-straggler workers together with the
corresponding worker ID. The master inspects the collected
results until it can recover the correct statistics. It then kills
those stragglers that have not finished the computation and
broadcasts the aggregated statistics back to workers.

Figure 6 demonstrates a simple case where ColumnSGD is
equipped with 1-backup computation. Figure 6(a) presents
pure ColumnSGD, without backup computation. In this nor-
mal case, each worker takes care of its own data partition
and the corresponding model partition. Figure 6(b) further
demonstrates ColumnSGD with 1-backup computation. As we
can see, the K workers are partitioned into K

2 groups and
each group takes care of two partitions. For example, in the
first group worker1 and worker2 serve as replicas of each
other — each of them stores two data partitions (D1 and
D2) and corresponding model partitions (M1 and M2). During
training, each worker computes the aggregated statistics of all
its partitions. If worker1 becomes a straggler while worker2
finishes in time, the master can recover the statistics for
updating the model without the results from worker1.

Dataset #Instances #Features Dataset Size
avazu 40,428,967 1,000,000 7.4GB
kddb 19,264,097 29,890,095 4.8GB
kdd12 149,639,105 54,686,452 21GB
criteo 45,840,617 39 11GB
WX 69,581,214 51,121,518 130GB

TABLE II
DATASET STATISTICS.

To tolerate S stragglers, in theory we need S-backup
computations, in which case both memory and computation
costs increase by S times. However, the communication cost
remains the same because it is only related to the batch size
and the number of workers (Section III-B).

V. EXPERIMENTAL EVALUATION

We report experimental results in this section based on our
implementation of ColumnSGD on top of Spark.

A. Experimental Setting

(Clusters) We use two clusters in our experiments:
• Cluster 1. This cluster consists of eight machines, each

configured with 2 CPUs and 32 GB memory. The machines
are connected via a 1Gbps network.

• Cluster 2. This cluster consists of 40 machines, each con-
figured with 8 CPUs and 50 GB memory. The machines are
connected via a 10 Gbps network.

We use Cluster 1 for most of the experiments and use Cluster
2 for scalability test.
(Datasets) All datasets used are publicly accessible4 except
that WX is from our industrial partner. We use (1) avazu,
kddb and kdd12 mostly for evaluting baseline systems, and
(2) criteo and WX for scalabilty test. Table II presents the
statistics of the datasets.
(Workloads and Evaluation Metrics) First, we compare the
time of data loading in ColumnSGD and MLlib since they are
both implemented on top of Spark. Second, we compare the
performance of training ML models on all baseline systems.
Specifically, we train two GLMs (LR and SVM) using SGD on
different datasets. We also train FMs [13], [25] to demonstrate
the power of ColumnSGD because the model size of FM is
considerably larger than GLMs. We report the training loss
(i.e., the value of f(w,X) in Equation 1) as time elapses. To
further compare the performance of different systems, we also
report the per-iteration time on these workloads.
(Baseline Systems) We compare ColumnSGD with four in-
stances of RowSGD: (1) Spark MLlib 2.3.0 [3], an official
ML library on top of Spark; (2) MLlib* [26], an optimized
version of MLlib that combines model averaging with an
AllReduce [27] implementation; and two PS implementations,
i.e., (3) Petuum v1.1 [4] and (4) MXNet 1.3.0 [7]. Since
TensorFlow does not have a mechanism for partitioning a
single “variable”, such as the weight matrix for LR, it is not
suitable for training high dimensional models like GLMs and
FMs [5], [28].5 Therefore, we do not include TensorFlow.

4https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/,http:
//labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

5https://www.tensorflow.org/guide/distribute strategy

 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/, http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/, http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
https://www.tensorflow.org/guide/distribute_strategy
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Fig. 7. Time cost of data loading.

(Parameter Settings) For each workload, we use grid search
to tune the batch size and learning rate. For Spark MLlib, we
further tune its configuration parameters such as the number
of cores per executor, the number of partitions per core,
etc. For PS-based systems, we set the number of servers
same as that of workers. The batch size for all workloads in
ColumnSGD, Petuum, MXNet and MLlib is 1,000 if not noted.
We use the same hyper-parameter values for RowSGD and
ColumnSGD (Table III), because they use the same optimiza-
tion method (e.g., mini-batch gradient descent).

Dataset LR FM SVM
avazu 10 10 1
kddb 10 10 1
kdd12 100 100 1
WX 0.1 0.1 0.01

TABLE III
LEARNING RATES OF BASELINE SYSTEMS ON DIFFERENT WORKLOADS.

B. Evaluation of RowSGD and ColumnSGD

We compare RowSGD and ColumnSGD in this section. We
first evaluate the performance of data loading (i.e., the row-
to-column data transformation), then compare the convergence
of all baseline systems.

1) Data loading: We first report the efficiency of data
loading in ColumnSGD and MLlib. For ColumnSGD, we also
include comparison with the “Naive-ColumnSGD” approach
described in Section IV-A, which transforms the row-stored
data into a column-partitioned one in a row-by-row fashion.
Also, considering that we often incur a global data shuffling
for load balance as well as statistical efficiency, we include
MLlib for both with and without global data repartitioning.
We assume that the training data is stored in HDFS by rows,
which is the usual case. Figure 7 presents the time cost of data
loading in different systems on three public datasets using
Cluster 1. The result of MLlib* is not presented because
MLlib* employs the same data loading mechanism as MLlib.

First, data loading in Naive-ColumnSGD is the slowest,
for example it is 1.6×∼3.2× slower than MLlib-Repartition
and 2.1×∼4.7× slower than MLlib. MLlib, MLlib-Repartition
and Naive-ColumnSGD all process data points in a row-by-
row, pipelined fashion. However, Naive-ColumnSGD needs to
transfer K× more objects over network compared to MLlib,
because it further partitions each data point into K pieces,
where K is the number of workers. This leads to significant
increase in serialization overhead before transferring data.

Second, data loading in ColumnSGD (i.e., block-based col-
umn dispatching) is the fastest. For example, it is 3.2×∼7.1×
faster than Naive-ColumnSGD on these three datasets. Further-
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Fig. 8. ColumnSGD vs. RowSGD on LR and SVM.

more, the performance of data loading in ColumnSGD is even
faster than MLlib (without repartitioning) by 1.5×∼1.7×.
Recall that, in ColumnSGD, we organize the training data
in blocks and the network bandwidth is thus well utilized.
Moreover, we further use CSR to compress the data blocks,
which leads to much fewer objects to be serialized.

2) Convergence of SGD: We present results for training
GLMs and FMs separately.
(Results for LR and SVM) Figure 8 compares the conver-
gence of training LR and SVM of all participating systems on
the datasets avazu, kddb and kdd12.

We first compare the performance of ColumnSGD with
MLlib, Petuum, and MXNet. Table IV reports the average per-
iteration time of these systems when training LR. The results
on training SVM are similar.

MLlib Petuum MXNet ColumnSGD Speedup
avazu 1.43 0.24 0.02 0.06 24/4/0.3
kddb 16.33 1.96 0.3 0.06 233/28/5
kdd12 55.81 3.81 0.37 0.06 930/63/6

TABLE IV
PER-ITERATION TIME (SECONDS) OF TRAINING LR.

We observe that ColumnSGD gains significant speedup over
MLlib and Petuum. The higher dimension the model has,
the larger speedup ColumnSGD can achieve. For example,
as shown in Figure 8(a), ColumnSGD is 24× and 4× faster
than MLlib and Petuum on avazu. For a larger model on
kdd12, ColumnSGD can achieve 930× and 63× speedup,
respectively (Figure 8(e)). The reason for this trend is that the



communication cost of ColumnSGD only depends on the batch
size. In contrast, the communication cost of MLlib and Petuum
grows linearly with respect to the size of the model. We also
observe that Petuum is an order of magnitude faster than
MLlib. This is not surprising, though. Conceptually, Petuum
uses multiple servers to replace the single node master in
MLlib. The communication cost of the master is therefore
evenly distributed across the servers.

On the other hand, ColumnSGD does not always out-
perform MXNet. For example, ColumnSGD is 5× and 6×
faster than MXNet over kddb and kdd12 when training
LR (Figures 8(c) and 8(e)). However, it is 3× slower on
avazu (Figure 8(a)). Inspecting Table IV, we find that the per-
iteration time of MXNet increases as the model size increases,
while that of ColumnSGD remains unchanged. This is again
in line with our analysis that the communication time of
ColumnSGD is only related to the batch size whereas that
of MXNet depends on the model size. The observation that
MXNet is faster than ColumnSGD on avazu is perhaps due to
the scheduling latency in Spark. Meanwhile, MXNet is faster
than MLlib and Petuum because it not only uses multiple
servers to replace the master node, but also supports “sparse
pull” of the model. That is, in each iteration MXNet only pulls
the dimensions that are needed, whereas MLlib and Petuum
have to pull all dimensions, which is apparently inefficient.

We then compare the performance of ColumnSGD against
MLlib*. MLlib* [26] uses model averaging (MA) to im-
prove both statistical and hardware efficiency. We observe the
following: First, MLlib* can converge to a smaller training
loss in some cases (e.g., on kddb) because MA can reduce
variance [29]. Second, to achieve a certain loss (the horizontal
line in each plot of Figure 8), ColumnSGD performs better
on big models. For example, MLlib* converges faster than
ColumnSGD on avazu but more slowly on kdd12.
(Results for FM) We now report the results on training FMs.
FM models all interactions between features using factorized
parameters and thus the model size is considerably larger than
LR and SVM. A hyperparameter of FM is the number of
factors used for each feature (we denote it as F here). We
find that, with some mathematical derivation, the computation
pattern of gradients in FMs can also be expressed as vertical-
parallel and horizontal-parallel, except that the statistics are
not as simple as “dot products” anymore.

We train FM on avazu, kddb, and kdd12 by setting the
factor F equal to ten. That is, the size of the model in FM
is 10× larger than that of LR. To run an even larger model,
we also set the factor to 50 on kdd12, which results in a
model with more than 2.8 billion parameters (which is 21GB
in FP64). Table V summarizes the results under these settings.
Here, we do not compare ColumnSGD with MLlib, MLlib*,
and Petuum because they do not implement FM.

Compared to MXNet, the speedup of ColumnSGD increases
with the model size. For instance, ColumnSGD exhibits 14×
speedup on kdd12 when the factor F is set to ten. Since
ColumnSGD sends statistics, rather than gradients and models
as in MXNet, over the network, its communication overhead

MXNet ColumnSGD Speedup
avazu (F=10) 0.03 0.06 0.5
kddb (F=10) 0.56 0.06 9
kdd12 (F=10) 0.84 0.06 14
kdd12 (F=50) OOM 0.15 -

TABLE V
PER-ITERATION TIME (SECONDS) OF TRAINING FM.

is much lower. Notably, ColumnSGD is able to handle model
with more than 2.8 billion parameters while MXNet fails.

C. Dealing with Stragglers

We train LR using SGD on Cluster 1 to demonstrate the
efficacy of ColumnSGD using backup computation to deal
with stragglers. For ease of illustration, we assume that there
is only one straggler. To simulate the straggler, we randomly
pick one worker in each iteration and let it sleep for some
time according to StragglerLevel, which is defined as the ratio
between the extra time a straggler needs to finish a task and the
time that a non-straggler worker needs. For ColumnSGD with
backup computation, each worker maintains two partitions of
the training data as well as the corresponding model parti-
tions. We compare the performance of (1) ColumnSGD with
backup computation enabled (namely ColumnSGD-backup),
(2) ColumnSGD with StragglerLevel set as 1 and 5 (namely
ColumnSGD-SL1 and ColumnSGD-SL5, respectively). We
also include the result of ColumnSGD without stragglers
(namely ColumnSGD-pure) as a reference point. 6

Figure 9 presents the per-iteration time for different set-
tings. We observe that ColumnSGD without backup com-
putation does suffer from stragglers. ColumnSGD-SL1 and
ColumnSGD-SL5 are 2× and 6× slower than ColumnSGD-
pure, respectively. In contrast, ColumnSGD with backup com-
putation can avoid the effect of stragglers: The per-iteration
time cost of ColumnSGD-backup is almost the same as that
of ColumnSGD-pure.

D. Scalability Test

We test the scalability of ColumnSGD in terms of measuring
its performance with respect to model size and cluster size.
(Scalability w.r.t. Model Size) We follow Christoph et al. [9],
where they use the criteo dataset to generate synthetic
datasets with different number of features. The synthetic
datasets generated have model sizes varying from ten to one
billion. However, the number of nonzero features remains
stable regardless of the model size. We use SGD to train
LR on these synthetic datasets on Cluster 1 and Figure 10
presents the results. We observe that the per-iteration time of
ColumnSGD remains stable when increasing the model size
from ten to even one billion.
(Scalability w.r.t. Cluster Size) We train LR with SGD on
WX dataset using {10, 20, 30, 40} machines in Cluster 2.
Figure 11 presents the results. Specifically, Figure 11(a) char-
acterizes the scalability of the data transformation procedure in

6To simulate the straggler in ColumnSGD-backup, we randomly pick one
worker as the straggler. The straggler basically does nothing but returns null
to the master. The rationale is the following. We can imagine that we first run
an ML job for ten iterations and find that this worker is always slower. Then
we just kill this worker and continue the training without data re-distribution.



Ti
m

e 
(s

ec
on

ds
)

0

0.1

0.2

0.3

0.4

0.5

avazu kddb kdd12

ColumnSGD-pure
ColumnSGD-backup
ColumnSGD-SL1
ColumnSGD-SL5

xx xx

## 
## 
## 
## 
## 
## 
## 
## 
## 
##

## 
## 
## 
## 
## 
## 
## 
## 
## 
## xx

x

#
/

/ / / 
/ / / 
/ / /

/ / / 
/ / / 
/ / /

/ / / 
/ / / 
/ / /

## 
## 
## 
## 
## 
## 
## 
## 
## 
##

Fig. 9. Time with stragglers.

Ti
m

e 
(s

ec
on

ds
)

0

0.02

0.04

0.06

0.08

0.1

Dimension of Model

ColumnSGD

10           1k                  1m                  1b

Fig. 10. Scalability w.r.t model size.

Lo
ad

in
g 

D
at

a 
(s

ec
on

ds
)

0

200

400

600

800

1000

Number of Machine
10 20 30 40 50

813

569

440
397

ColumnSGD

(a) Data Transformation Time

Ti
m

e 
(s

ec
on

ds
)

0

0.1

0.2

0.3

0.4

0.5

Number of Machine
10 20 30 40 50

0.14

0.2 0.2
0.16

ColumnSGD

(b) Per-Iteration Time

Fig. 11. Scalability w.r.t. cluster size.

ColumnSGD. As expected, the time on data loading decreases
when the number of machines increases. For example, when
we increase the number of machines from 10 to 20, we get
1.4× speedup. The speedup is somehow poor because we have
to split each block and shuffle it among all workers. Overall,
we observe a 2.05× speedup for transforming row-partitioned
format to column-partitioned one when using 40 machines,
compared to when ten machines are used.

On another note, per-iteration time remains almost un-
changed when the number of machines increases, as shown
in Figure 11(b). The per-iteration time cost is composed of
computation cost and communication cost. As we know, when
increasing the number of machines, the computation cost on
each machine decreases, however, the communication cost
increases. This indicates some potential scalability issues for
ColumnSGD. It implies that, if we can fit the training data
and model in memory, increasing the number of workers may
not improve the latency of job training. This is a limitation of
ColumnSGD that deserves future work.

VI. RELATED WORK

(Column Partitioning in distributed ML) There exist many
researches for column-oriented training data layout in dis-
tributed ML. DimmWitted [11] studies the tradeoff between
different ML algorithms on the row- and column-oriented
training data storage with a focus on NUMA-based sys-
tem. DMac [30] explores both row-partitioning and column-
partitioning for distributed matrix computation. Prasad et
al. [31] integrates HP Vertica with distributed R, which allows
both row- and column-oriented data access for different ML
algorithms. Sibyl [12] explores column-oriented data layout
for fast data access and data compression. There is also
work that partitions the training data as well as the model
into blocks by exploiting model-specific properties such as
distributed matrix factorization [32] and topic modeling [33],
[34]. Deep learning systems like SINGA [35] leverages model
parallelism in training neural networks, which partitions the

model vertically. However, each worker needs to store the
whole dataset. Ordentlich et al. [36] also explored the idea
of column partitioning for reducing the communication cost
in word2vec model [37]–[39]. ColumnSGD is different in
the following two aspects: (1) the data and model are co-
partitioned by columns in ColumnSGD while this is not the
case in [36]; (2) although both ColumnSGD and [36] reduce
the communication cost by transferring some “statistics,” the
benefit is marginal for word2vec as the vector representation
of each word contains several hundred dimensions at most,
while for ColumnSGD the model size can be up to billions.

(Coordinate Descent) Unlike SGD, Coordinate Descent [40]
(CD) is an optimization technique that naturally accesses train-
ing data in a column-oriented manner. Hydra [41] proposes a
distributed CD algorithm where each worker updates different
coordinates of the model. In contrast, in ColumnSGD we still
access the train data in a row-oriented fashion. SDCA is a
coordinate ascent algorithm that optimizes the dual problem.
CoCoA [42] treats SDCA as a local solver, accelerates local
computation in a primal-dual setting, and then combines
partial results. However, CoCoA partitions the training data
by row and needs to synchronize model updates among work-
ers. mSDCA [43] further brings improvement to distributed
SDCA with a mini-batch strategy. ColumnML [44] is a recent
proposal that performs CD-based methods on columnar, in-
database training data, targeting a CPU+FPGA platform.

(SGD in Existing ML Systems) State-of-the-art ML systems
all partition the training data by rows when implementing
SGD. In addition, data parallelism is widely adopted when
training models like GLMs and FMs. Spark MLlib [3] follows
a data-parallel paradigm. In MLlib, the master stores the
model and each worker stores a row-based partition of the
training data. When running SGD, each worker pulls the
whole model from the master and computes the gradients.
Another popular class of distributed ML systems leverage an
architecture based on parameter servers, which conceptually
simply uses multiple servers to replace the single-node master
in Spark MLlib. The difference between these systems lies in
how they maintain the model and how they pull the model.
For example, TensorFlow [6] lacks mechanisms for model
partitioning. In contrast, Petuum [4] and MXNet [7] can split a
model into multiple pieces and store them on different servers.
The major difference between Petuum and MXNet is that
MXNet further supports “sparse pull,” which allows for pulling
a subset of model dimensions without retrieving the entire
model.

(Stragglers in Distributed ML) There are two lines of work
that aim for alleviating the impacts of stragglers in distributed
ML training. One approach is to break the synchronization
barrier in iterative ML training (e.g., [22]), where a worker
may proceed without waiting for the slowest worker. However,
this asynchronous approach breaks the serial consistency of
distributed SGD and does not guarantee convergence. The
other line is using backup computation (e.g., [23]), where
coding theory is leveraged to create data block replica to avoid



the effect of stragglers. In ColumnSGD, we have followed
the practice of the latter line of work. We replicate both data
partition and model partition on each worker, such that the
master node can recover the statistics following our predefined
coding method when stragglers are detected.

VII. CONCLUSION

We have proposed ColumnSGD, a column-oriented frame-
work for distributed SGD that targets training large-scale ML
models. ColumnSGD partitions both training data and model
by columns and enables a novel, distributed model manage-
ment paradigm. Due to this collocation of data and model,
ColumnSGD is able to significantly lower the communication
overhead suffered by RowSGD systems when training large
models, by avoiding sending gradients and models (with high
dimensions) over the network. We presented the programming
framework of ColumnSGD in detail, using logistic regression
as a concrete example. We then performed an analytic compar-
ison between RowSGD and ColumnSGD. We further provided
an efficient row-to-column data transformation algorithm and
solutions to handle stragglers in the context of ColumnSGD.
We have also implemented ColumnSGD on top of Apache
Spark and conducted an extensive experimental evaluation to
demonstrate its effectiveness.
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VIII. SUPPORTED MODELS

In this section, we present the implementation of various
ML models using ColumnSGD. For each model, we first
present the loss function it leverages and how to compute
the gradients given the loss function. We then illustrate how
to compute the partial statistics on each worker, how to
aggregate the statistics on the master, and how to use the
aggregated statistics to recover the gradients. We use the
following notations in our following presentation:
• X = {(xi, yi), i ∈ [N ]}, the training data that contains N

data points;
• w, the model parameter;
• m, the number of the features;
• l(·), the loss function;
• g(·), the gradient;
• 〈xi, xj〉, the dot product of two vectors xi and xj .

A. SVM

The loss function and gradient of Support Vector Machine
(SVM) over one data point are:

l(w, x) = max(0, 1− y · 〈w, x〉), (3)

g(w, x) =

{
−y · x, if 1− y · 〈w, x〉 > 0,
0, otherwise. (4)

The statistics to compute is the dot product 〈w, x〉 of the
model w and the feature vector x. The partial statistics is then
simply the dot product between the model and data partitions
on each worker. The master sums over the dot product and
broadcasts the sum back to the workers. Each worker then
follows Equation 4 to compute the gradient.

B. LR

The loss function and gradient of Logistic Regression (LR)
over one data point are:

l(w, x) = log(1 + exp(−y · 〈w, x〉)), (5)

g(w, x) =
−y

1 + exp(y · 〈w, x〉)
· x. (6)

Same as SVM, the statistics is the dot product 〈w, x〉 of the
model w and the feature vector x. Each worker computes the
partial dot product using its local data and model partitions.
The master sums up the partial dot products from the workers.
Each worker follows Equation 6 to compute the gradient after
receiving the aggregated dot product from the master.

C. MLR

Multinomial Logistic Regression (MLR) is an approach
that generalizes logistic regression to work for multiclass
classification problems, i.e. with more than two possible
discrete outcomes. We assume there are K categories, i.e.,
y ∈ {1, 2, 3, ...,K}. The model parameter of MLR is an m×K
matrix. We use wk to represent the model parameter for each

category k ∈ [K]. The loss function and gradient over one
data point are the following:

l(w, x) = −
K∑

k=1

tklog

(
exp(〈wk, x〉)∑K
j=1 exp(〈wj , x〉)

)
, (7)

gwk
(w, x) =

(
exp(〈wk, x〉)∑K
j=1 exp(〈wj , x〉)

− tk

)
· x. (8)

Here tk = 1 if the label of x is k, otherwise tk = 0.
The statistics remain to be the dot products, and the dis-

tributed procedure of computing gradients is similar to that of
LR. The only difference is that in MLR, for each data point,
there are K (rather than one) statistics from each worker to
be sent through the network and aggregated by the master.

D. FM

Factorization Machine (FM) [13], [25] can further capture
interactions between features and is widely used in recommen-
dation systems. According to Rendle [13], an FM model of
degree d = 2 over one data point can be expressed as follows:

ŷ(x) = 〈w, x〉+

m∑
i=1

m∑
j=i+1

< vi, vj > ·xi · xj . (9)

Here w captures the importance of each feature and 〈vi, vj〉
captures the importance of the interaction between two fea-
tures. Training an FM model means to learn the parameters
w ∈ Rm and V ∈ Rm×F , where F is the number of factors
(a hyper parameter of FM).

To understand what “statistics” should be computed for
FMs, we further rewrite the above equation as

ŷ(x) =

m∑
i=1

wi · xi −
1

2
·

F∑
f=1

v2i,f · x2i

+
1

2
·

F∑
f=1

(
m∑
i=1

vi,f · xi

)2

.

(10)
Assume that we use logistic loss for FMs. The loss function

and gradient over one data point are then:

l(w, x) = log(1 + exp(−y · ŷ(x)), (11)

g(w, x) =
−y

1 + exp(y · ŷ(x))
· x, (12)

g(vi,f , x) =
−y

1 + exp(y · ŷ(x))
·

xi m∑
j=1

vj,fxj − vi,fx2i

 .

(13)
Implementation of FMs in ColumnSGD is a bit more

complicated compared with LR and SVM. As shown in
Equation 10, for each data point we need to aggregate two
statistics from the workers: (1) the dot product over w minus
half of the squared dot product over V ; and (2) the dot product
over V in each latent space. To recover the gradients following
Equations 12 and 13, we need to broadcast F +1 statistics for
each data point, i.e., the ŷ(x) and the dot product over V in
each latent space in Equation 10.



1 /* worker functions */
2 def initModel(val K: Int) = {
3 // initialize the model as an array
4 val local_model = Array.ofDim(K)
5 local_model.initialize()
6 }
7 def computeStat(val batch_data: Array[DataPoint]) = {
8 // compute the partial statistics using
9 // local data and local model

10 val local_stat = Array.ofDim(batch_size)
11 for (id <- 0 until batch_size)
12 local_stat(i) = local_model.dot(batch_data(id))
13 return local_stat
14 }
15 def updateModel(val stat: Array[Double],
16 val batch_data: Array[DataPoint]) = {
17 // compute the gradient and update the model
18 val local_model_dim = num_features / num_workers + 1
19 val grad = Array.ofDim(local_model_dim)
20 for (id <- 0 until batch_size){
21 val y_i = batch_data(id).label
22 grad += -y_i / (1 + exp(y_i) * stat(id))
23 * batch_data(id).features
24 }
25 local_model -= stepsize * grad / batch_size
26 }
27 ======================================================
28 /* master functions */
29 def reduceStat(val stat1: Array[Double],
30 val stat2: Array[Double]) = {
31 // aggregate statistics from workers
32 return (stat1 + stat2)
33 }

Fig. 12. Training LR using SGD in ColumnSGD.

IX. PROGRAMMING INTERFACE

We showcase how to implement LR in ColumnSGD, by
walking through the example Scala code in Figure 12.
• initModel (lines 2-6): We instantiate the model on each

worker as an array through this function. The dimension K
is the number of features owned by each worker.

• computeStat (lines 7-14): We compute the statistics on
each worker through this function. In LR the statistics are
in the form of dot products (see Equation 2). For each data
point in the mini-batch, we compute a partial dot product
for the dimensions corresponding to the local model.

• reduceStat (lines 28-33): The master aggregates the
statistics from each worker through this function. In LR,
the master simply sums up the partial dot products received
from the workers and broadcasts the sum to all workers.

• updateModel (lines 15-26): After each worker receives
the complete dot product from the master, this function first
computes the gradients using the data batch and the dot
product, and then uses the gradients to update the model.

X. FAULT TOLERANCE

There are three kinds of failures in ColumnSGD.

1) Task Failure. All ColumnSGD needs to do is to start a new
task when a (Spark) task fails on a worker. No additional
work on data loading and partitioning is required, as both
the training data and the model are stored on the same
worker when the new task starts.

2) Worker Failure. If a worker fails, both partitions of the
model and the training data on this worker are lost. In
ColumnSGD we do not checkpoint the model periodically
as other state-of-the-art [4]–[7]. Rather, we rely on the
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Fig. 13. Fault tolerance of ColumnSGD.

robustness of SGD [22] for fault tolerance. Even if a limited
number of updates are incorrectly computed, SGD is still
guaranteed to converge to the same optimum though it may
take more iterations. Therefore, upon a worker failure, one
can just reload the training data and randomly assign some
values (e.g., all zeros) to this model partition.

3) Master Failure. If the master fails, we have to restart the
whole job because we rely on the master for scheduling.

We examine fault tolerance in ColumnSGD by testing its
performance upon task failure and worker failure. To emulate
task failure, we simply throw an exception during the training
process. To emulate worker failure, we randomly pick one
worker and kill it. Figure 13 presents the results when training
LR on kdd12 in Cluster 1.
(Task Failure) As shown in Figure 13(a), ColumnSGD is not
affected by task failure at all. Since we cache the training data
and the model in memory, when a task fails we only need to
launch a new task to resume training.
(Worker Failure) ColumnSGD reloads training data upon
worker failure. Figure 13(b) shows that ColumnSGD needs
about 23 seconds to reload the data shard on that particular
failed worker. However, ColumnSGD can converge to the
optimal solution even if we do not perform checkpointing.


	Introduction
	Parallelization Strategies in Distributed SGD
	Stochastic Gradient Descent
	Distributed SGD
	Parallel Computation of Gradients

	The Column-SGD Framework
	SGD in ColumnSGD
	Example – Logistic Regression (LR) in ColumnSGD and RowSGD

	Analysis of ColumnSGD
	Memory and Communication Overheads
	Understanding Batch Size

	Discussion: ColumnSGD for Other Models

	Implementation of Column-SGD
	Row-to-Column Data Transformation
	Design Desiderata
	Implementation Details

	Harnessing Stragglers

	Experimental Evaluation
	Experimental Setting
	Evaluation of RowSGD and ColumnSGD
	Data loading
	Convergence of SGD

	Dealing with Stragglers
	Scalability Test

	Related work
	conclusion
	References
	Supported Models
	SVM
	LR
	MLR
	FM

	Programming Interface
	Fault Tolerance

