Understanding and Detecting Query Performance Regression in
Practical Index Tuning

Wentao Wu, Anshuman Dutt, Gaoxiang Xu, Vivek Narasayya, Surajit Chaudhuri
Microsoft Research, Redmond, USA
{wentao.wu, andut, gxu, viveknar, surajitc}@microsoft.com

Abstract

Existing index tuners typically rely on the “what if” API provided
by the query optimizer to estimate the execution cost of a query on
top of an index configuration. Such cost estimates can be inaccurate
and may therefore lead to significant query performance regres-
sion (QPR) once the recommended indexes are materialized. This
becomes a serious problem for cloud database providers, such as
Microsoft’s Azure SQL Database, that offer index tuning as an auto-
mated service (a.k.a. “auto-indexing”). Previous work has explored
use of supervised machine learning (ML) to reduce the likelihood
of QPR. However, the trained ML models have limited generaliza-
tion capability when applied to new databases and workloads. We
propose an alternative approach where we analyze the query plan
pairs with significant QPRs and look for structural changes due to
the new index configuration that could explain the QPR. We per-
form such study for index tuning data across many benchmark and
real-world database workloads, for multiple realistic index tuning
scenarios. Our study reveals that most of the significant QPRs can
be attributed to a small number of common “regression patterns”
characterizing the structural plan changes, and we further propose
a pattern-based QPR detector accordingly. Our experimental evalu-
ation shows that the pattern-based QPR detector can significantly
outperform existing ML-based QPR detectors.

1 Introduction

Index tuning is critical to accelerating query execution in mod-
ern database systems. Existing index tuners typically rely on the
“what-if” API provided by the query optimizer [6, 7, 47], as illus-
trated in Figure 1, that allows for estimating the execution cost
of a query given a configuration (i.e., a set) of proposed hypotheti-
cal indexes, as well as their associated statistics, without actually
materializing the indexes. However, what-if cost estimation is still
based on query optimizer’s cost model, which can be inaccurate
for reasons such as cardinality estimation (CE) errors and may
therefore lead to significant query performance regression (QPR)
when the recommended indexes are eventually deployed [8, 59].
That is, the execution of a query becomes much slower by using
the recommended indexes. QPR has been a serious problem for
cloud database providers that offer index tuning as an automated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym *XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

(q.C%)
Index What-If Query
Tuner Pa(q,c%), API Optimizer
cost(P%)
J v’ No QPR
Pb(‘?r Cb); QPR Database
cost(P?) Detection | Materialize C Server

Figure 1: The architecture of cost-based index tuning with
what-if query optimizer calls and QPR detection. [Notation: g,
a SQL query; C?, the existing index configuration (i.e., “before
configuration”); C?%, the index configuration recommended
by the index tuner (i.e., “after configuration”); P?, the “before
plan” of g on top of C’; P?, the “after plan” of ¢ on top of C.]
service (a.k.a. “auto-indexing”). As was reported by [8], around 11%
of the indexes that were automatically created by the auto-indexing
service offered by Microsoft’s Azure SQL Database [30] had to be
reverted due to QPR. Therefore, detecting QPR before materializ-
ing the recommended indexes can help significantly reduce the
operational cost of cloud auto-indexing service.

We aim to develop a low-overhead technique for QPR detection.
Specifically, consider a query q and the existing configuration, i.e.,
“before configuration”, C?, for which the index tuner proposes a new
configuration, i.e., “after configuration”, C?. Even before deploying
C?%, we can make a what-if call (g, C?) to the query optimizer that
returns the query plan of g for the “after configuration” C%, as
shown in Figure 1. We call this query plan the “after plan” and
denote it with P, to distinguish it from the “before plan” P? of ¢
on top of the existing configuration C? that the index tuner aims
to improve over. The goal of QPR detection is to decide whether
the execution time of P* will be significantly higher than that of
PP without executing P?, though the execution information of P
is presumed available. If no QPR is detected, the configuration C*
can then be materialized for accelerating the execution of q. There
has been recent work on addressing QPR detection and reduction
in the context of index tuning [11, 41, 53, 60]. Most of this work
applies supervised machine learning (ML) to build classification
or regression models to predict/detect QPR. However, ML-based
QPR detectors often exhibit poor generalization capability when
evaluated on new databases and workloads that are not included in
the training data, notwithstanding their nontrivial overhead.

In this paper we propose an alternative approach where we
analyze the query plan pairs with significant QPRs and look for
structural changes due to the new index configuration that could
explain the QPR. We perform such study for index tuning data
collected offline across many benchmark and real-world database

https://doi.org/XXXXXXX.XXXXXXX

workloads. Our study reveals that most of the significant QPRs can
be attributed to a small number of common “regression patterns”
characterizing the structural plan changes, and we further propose
a pattern-based QPR detector accordingly. Our experimental evalu-
ation shows that the pattern-based QPR detector can significantly
outperform existing ML-based QPR detectors.

Collection of Index Tuning Data. In the classical sense, index tuner
tunes a given query/workload by recommending a configuration
including all indexes that can improve the execution performance
at once. We use the term one-shot tuning to represent this clas-
sic index tuning scenario that has been studied extensively in the
literature, e.g., [5, 6, 47, 52]. However, in modern cloud database
services, such as Microsoft’s Azure SQL Database [30], indexes need
to be optimized in a continuous manner [8] to adapt to evolving
workloads and manage storage constraints. We therefore also col-
lect data from two more scenarios that represent real-world index
tuning applications: (1) incremental tuning, which constrains the
index tuner in terms of the number of indexes it should return and
performs tuning in an incremental manner until no more indexes
can be recommended; and (2) evolutionary tuning, which simulates
index evolution (e.g., deletion of existing indexes or introduction
of new indexes) from a well-tuned database for reasons such as
storage constraints. These two scenarios aim at capturing more
QPRs that could emerge from such dynamic environments as in
cloud auto-indexing services. We collect 1.2 million data points
following these tuning setups, where each data point represents
a pair of “before plan” P? and “after plan” P%. As expected, index
recommendations are beneficial for a large number of plan pairs,
and we highlight representative examples of such benefits in the
full version of the paper [2]. However, this paper focuses primarily
on the regressed cases (QPRs).

Analysis of QPRs. We then analyze the QPRs that appear in the
collected index tuning data to understand their root causes. Sur-
prisingly, we find that most of the QPRs can be attributed to a small
set of regression patterns that are simple and easy to understand. A
regression pattern characterizes some “local” change or transfor-
mation in terms of query plan structure. For example, the regressed
“after plan" misses the pushdown of an aggregation (ref. Figure 4)
or a bitmap filter (ref. Figure 5) that is performance critical. We
further develop a taxonomy that categorizes regression patterns
into two general categories: (c1) QPRs due to problematic change of
access path between P? and P%, and (c2) QPRs due to critical opti-
mizations that were present in P? but missing in P%. The simplicity
of the identified QPR patterns is a strength that makes it easier to
design simple (and therefore computationally more efficient) but
effective pattern-based QPR detectors. The fact that there are only
a handful of major QPR patterns also makes the overall task of
pattern-based QPR detection addressable and manageable. More
importantly, we observe that most of the significant QPRs can be
accounted for by regression patterns from the category (c1) where
the regressed “after plan” P® contains an “expensive” nested-loop join
(NLJ) operator that does not appear in the “before plan” P (ref. Fig-
ure 2). The emergence of such expensive NLJ is typically due to
cardinality underestimation errors made by the query optimizer [23]:
the availability of the new indexes inadvertently makes the NLJ
look attractive to the query optimizer in terms of estimated cost.

Although better cardinality estimation could improve query plan
quality and therefore reduce the chance of QPR, the problem of
accurate cardinality estimation has not yet been settled despite
decades of research efforts (see [49]). State-of-the-art ML-based
cardinality estimators [49] could improve cardinality estimation
but with no guarantee on the accuracy. Moreover, they also in-
cur nontrivial overhead of data collection and model training [49].
Therefore, while it may be an interesting direction for future work,
we deliberately avoid using these ML-based cardinality estimators
and make progress in QPR detection through an approach that can
work with existing erroneous cardinality estimates.

Pattern-based QPR Detector. Motivated by the above observations,
we develop a pattern-based QPR detector to identify the “expensive
NLJ” regression patterns before the “after plan” P? is executed. This
remains a challenging problem, as we need to precisely characterize
such regression patterns to distinguish harmful NLJs from those
that are indeed beneficial. In particular, we need to estimate (1) the
expensiveness of an NLJ without executing P® and (2) the degree
of cardinality underestimation errors rooted in the expensive NLJ,
which are the primary culprit for QPR. To address (1), we develop
two metrics, local expensiveness and global expensiveness. To address
(2), we leverage true cardinality information contained by the “be-
fore plan” P?, which is presumably available in the context of QPR
detection for index tuning. Specifically, we develop a metric, cost in-
flation factors, to quantify the degree of cardinality underestimation
errors of the left/outer and right/inner inputs of the NLJ. We then
use the cost inflation factors to recost the NLJ as well as the entire
plan [13, 55, 56]. We further try to match the logically equivalent
join in P?, and if we find such a join we recost it as well. Finally, we
recompute the plan costs based on the recosted joins and infer QPRs
based on the new costs. Albeit a relatively simple approach, our
experimental evaluation shows that it can significantly outperform
existing ML-based QPR detectors, which currently do not use the
true cardinality information of the “before plan” P?. It is non-trivial
to extend existing ML model designs to include this information,
which might be interesting future work. Our evaluation shows that,
even without the use of sophisticated ML-based cardinality esti-
mators, our low-overhead approach based on cost inflation factors
can already detect most QPRs successfully (Section 5). ML-based
cardinality estimators would further improve the results reported
in this paper if their overheads could be reduced.

Contributions, Limitations, and Future Work. To summarize, this
paper makes the following contributions:

(C1) We conduct an empirical QPR analysis using large amount of
data collected from practical index tuning scenarios (Sections 2). To
the best of our knowledge, we are not aware of any previous work
on systematically understanding QPRs based on large-scale data
generated by following real industrial index tuning applications.
(C2) We find that most of the QPRs can be attributed to a small set of
regression patterns characterizing the structural changes between
the “before plan” and the “after plan”, and we further present a
taxonomy of the regression patterns (Section 3).

(C3) We develop a pattern-based QPR detector based on the obser-
vation that the majority of the significant QPRs found in our data can
be attributed to the emergence of expensive NLTs in the “after plan”
(Section 4), and our experimental evaluation results demonstrate

[Name [DB Size [# Queries [# Tables [# Joins [# Scans]
TPC-H sf=10 22 8 2.8 3.7
DSB sf=10 67 24 7.7 8.8
JOoB 9.2GB 108 21 7.9 2.5
STATS 223MB 91 8 33 4.3
Real-DY 587GB 29 7912 15.6 17
Real-LO 108GB 31 1151 8.1 8.9
Real-MS 26GB 39 474 20.2 21.7
Real-RE 100GB 21 20 6.5 7.2
Real-DW 13GB 107 20 6.3 6.9
Real-ED 210GB 36 23 8.8 8.2
Real-MP 2.9GB 127 8 1.6 2.9
Real-SE 256GB 19 3391 5.9 6.9
Real-RM 60GB 15 7 1.9 2.9
Real-SA 40GB 12 32 7.3 9.7

Table 1: Summary of database and workload properties.

that the pattern-based QPR detector can significantly outperform
state-of-the-art ML-based QPR detectors (Section 5).

While the list of regression patterns presented in this paper is
based on the large-scale index tuning data we collected, it is by
no means an exhaustive list—we do not rule out emergence of
new regression patterns given new databases and workloads. Also,
a case-by-case approach may be required to apply each specific
regression pattern to practical QPR detection. For instance, if aggre-
gation or bitmap filter pushdown appears to be the major regression
pattern on a particular database workload, then one may want to
design a QPR detector that focuses on finding such missed push-
downs. In this spirit, the pattern-based QPR detector developed
in this paper that focuses on detecting expensive NL]Js serves as
such an example. Moreover, the regression patterns also provide
useful clues for correcting the corresponding QPRs. For example,
with the notation used in Figure 1, if an index I € C is the culprit of
introducing a slow nested-loop join in P? that results in a QPR of
P? over P, then one may hint the query optimizer [34] to not use
the problematic index I. Exploration of such more advanced “QPR
correction” mechanisms (beyond the naive mechanism of reverting
all recommended indexes upon QPR [8]) is beyond the scope of this
paper, which can be fertile ground for future research.

Availability. Some of the artifacts, e.g., QPR details of the public
benchmark workloads, are available at [2].

2 Index Tuning Data Generation

Let A be an index tuner, D be a database, and W be a (multi-query)
workload. Let Cy be the initial configuration of the database D. Un-
like most of the previous work that mainly concerns with indexes,
the term “configuration” in this paper refers to both indexes and sta-
tistics. This is motivated by the observation that some index tuners,
such as the Database Tuning Advisor (DTA) developed for Microsoft
SQL Server [5], recommend both indexes and statistics with the
contract that the estimated benefits of the recommended indexes
are based on creating the recommended statistics simultaneously.
Moreover, some database systems, such as Microsoft SQL Server,
automatically update the corresponding statistics when an index
is created [31]. As a result, indexes and statistics are indispensable
counterparts in practical index tuning applications.

2.1 Index Tuning Scenarios

We focus on the following setups that emerge from practical index
tuning scenarios for collecting index tuning data. Each data point
collected represents a pair of “before plan” and “after plan” returned

Workload | #Queries | #OneShot | #Inc. #Evol.
TPC-H 22 22 49 1,156
DSB 65 67 191 543,198
JOB 108 108 199 189,320
STATS 91 91 184 38,773
Real-DY 29 29 140 143,255
Real-LO 31 31 42 12,779
Real-MS 39 39 47 199,415
Real-RE 21 21 44 2,704
Real-DW 107 107 37 17,916
Real-ED 36 36 12 875
Real-MP 127 127 12 9,583
Real-SE 19 19 17 9,224
Real-RM 15 15 6 55
Real-SA 12 12 8 6
Total 724 724 988 1,168,259

Table 2: Summary of the index tuning data collected.

by the query optimizer on top of the existing configuration and the
recommended configuration, respectively.

2.1.1 One-shot Index Tuning. For each query q € W, we run the
index tuner A to tune the query g on top of the initial configu-
ration Cy. Let C be the configuration returned by A after tuning.
Moreover, let the two query plans of g on top of Cy and C be P,
and P, respectively. We run g on top of both Cy and C to record the
execution time #y and t of the two plans Py and P. We generate one
pair of plans for the query ¢, which is denoted as (g, Py, P, to, t). A
formal algorithmic description of one-shot tuning is given in the
full version of this paper [2]. One-shot tuning represents the classic
offline index tuning setup that has been studied intensively in the
literature, e.g., [5, 6, 47, 52].

2.1.2 Incremental Index Tuning. For each query q € W, we run
the index tuner A to tune the query g in an iterative manner. In
each iteration, the index tuner A is constrained to return only one
index based on the current configuration. This new index, if any,
is then materialized and included into the “current configuration”
of the next iteration. The iterative tuning process ends when A
returns nothing. Let C; be the configuration returned in the i-th
iteration by the index tuner, and let P; be the plan of q on top of C;
and ¢; be the recorded execution time of P;. We generate one pair of
plans (P;_1, P;) for the query q in each iteration i = 1, 2, ..., which is
denoted as (g, Pi—1, P;, ti—1, t;). A formal algorithmic description of
incremental tuning can be found in the full version [2]. Incremental
tuning is useful when index tuning has to be done concurrently
while the database server is also processing queries, to reduce the
inference or interruption of normal query processing [8].

2.1.3 Evolutionary Index Tuning. For each query ¢ € W, we run the
index tuner A to tune the query g on top of the initial configuration
Co. We then materialize the configuration C returned by A. For
each subset S of C, we obtain the query plan of g on top of S and
record its execution time. We include a pair of plans (g, Py, Ps, t1, t2)
for two different subsets S; and S, of C by ensuring that the query
optimizer’s estimated cost of PY is no less than that of P%, where t;
and t, are the execution time of P® and P, respectively. See [2] for
a formal algorithmic description of evolutionary tuning.

The evolutionary index tuning setup is motivated by a com-
mon scenario that we have seen in practice: index evolution from a
well-tuned database. Index evolution includes dropping indexes and
creating new indexes, due to reasons such as changes on storage
constraints. Index evolution, e.g., deletion of existing indexes, may
result in QPR, and evolutionary index tuning simulates all possi-
ble outcomes of index evolution. Note that we have intentionally

Workload | #All | #QPR | %QPR | T(P?) | T(P%) | %Impr
TPC-H 22 1 4.55% 0.04h 0.01h 85.33%
DSB 67 2 2.99% 0.05h 0.02h 63.49%
JOB 108 14 12.96% 0.33h 0.22h 33.04%
STATS 91 3 3.30% 0.23h 0.24h -5.95%
Real-DY 29 4 13.79% 0.58h 0.62h -5.82%
Real-LO 31 3 9.68% 0.03h 0.02h 36.13%
Real-MS 39 1 2.56% 0.09h 0.05h 44.26%
Real-RE 21 4 19.05% 0.23h 0.27h -17.35%
Real-DW 107 4 3.74% 0.32h 0.31h 3.14%
Real-ED 36 0 0.00% 2.43h 0.29h 88.12%
Real-MP 127 10 7.87% 0.42h 0.41h 2.38%
Real-SE 19 0 0.00% 0.00h 0.00h 80.28%
Real-RM 15 0 0.00% 0.47h 0.23h 50.58%
Real-SA 12 0 0.00% 0.22h 0.15h 13.41%
Total 724 46 6.35% 5.44h 2.88h 47.16%

Table 3: QPRs emerging in one-shot index tuning. [#All, the
total number of plan pairs; #QPR, the number of plan pairs
with QPRs; %QPR, the percentage of QPR, defined as #&Pﬁ{ X
100%; T(P?), the total execution time of all “before plan” pb;

T(P?), the total execution time of all “after plan” P%; %Impr,

T(P%)
T(Pb)) X 100%.]

the percentage improvement defined as (1 -

enforced (optimizer estimated) cost(P;) > cost(P,); otherwise, a
reasonable index tuner would not even recommend the configura-
tion corresponding to P. A similar setup has been used in previous
work [11] to generate training data for ML-based QPR detectors,
though the constraint cost(P;) > cost(P,) was not forced.

2.1.4 Discussion. We focused on single-query tuning in our em-
pirical study to avoid complexity that can emerge when tuning a
multi-query workload, which is a more common scenario in prac-
tice. However, it typically requires placing more constraints on the
recommended indexes, such as the maximum number of indexes
allowed or the maximum storage space that can be taken. These
extra constraints can significantly increase the exploration space
of a controlled empirical study. Our single-query tuning setups can
be thought of as tuning a multi-query workload without such con-
straints. As a result, it actually has higher coverage in terms of the
identified regression patterns (see Section 3), some of which may
not appear or appear less frequently when tuning a multi-query
workload with constraints. Index interaction has also been covered
by single-query tuning, since the index tuning algorithm (e.g., a
classic two-phase greedy search algorithm that is implemented
inside DTA [5]) used for enumerating index configurations works
in the same way of tuning a multi-query workload.

2.2 Results of Index Tuning Data Collected

We use standard benchmarks as well as real customer workloads in
our experiments. For benchmark workloads, we use (1) a skewed
version [33] of the TPC-H benchmark, (2) DSB [10], a variant of
the TPC-DS benchmark with more variety on the data distribution,
(3) the “Join Order Benchmark” (JOB) [24], and (4) the “Cardinality
Estimation Benchmark” (STATS) [15]. We also use 10 real work-
loads. Table 1 summarizes some basic properties of the workloads,
in terms of schema complexity (e.g., the number of tables), query
complexity (e.g., the average number of joins and table scans con-
tained by a query), and database/workload size. We use Microsoft
SQL Server 2022 as the DBMS and use DTA as the index tuner.
Table 2 presents the statistics of the index tuning data collected.
We have the same number of plan pairs as that of queries in one-shot
tuning, whereas the number of plan pairs in incremental tuning

Workload | #All | #QPR | %QPR | T(P?) [T(P%) | «%Impr

TPC-H 49 5 10.20% 0.33h 0.30h 7.96%
DSB 191 18 9.42% 0.11h 0.07h 29.97%
JOB 199 28 14.07% 0.61h 0.47h 21.81%
STATS 184 9 4.89% 0.10h 0.11h -12.81%
Real-DY 140 20 14.29% 8.73h 13.32h -52.53%
Real-LO 42 3 7.14% 0.04h 0.02h 33.19%
Real-MS$ 47 5 10.64% 0.09h 0.06h 34.91%
Real-RE 44 7 15.91% 0.31h 0.27h 14.34%
Real-DW 37 3 8.11% 0.25h 0.21h 13.68%
Real-ED 12 0 0.00% 0.20h 0.02h 90.51%
Real-MP 12 2 16.67% 0.01h 0.01h -56.32%
Real-SE 17 0 0.00% 0.00h 0.00h 38.75%
Real-RM 6 1 16.67% 0.23h 0.13h 42.43%
Real-SA 8 0 0.00% 0.12h 0.08h 31.73%

Total 988 101 | 10.22% | 11.12h | 15.10h | -35.77%
Table 4: QPRs emerging in incremental index tuning,.

increases by 36.5%. On the other hand, the number of plan pairs
obtained from evolutionary tuning is significantly large, due to the
exponential explosion of subset enumeration.

2.3 Distributions of QPR

We use the notation (g, P?, P4, t*, t9) to denote a general plan pair
in the index tuning data collected, regardless of the specific index
tuning scenarios, where P? and P? represent the “before plan” and
“after plan” as defined in Figure 1, and t* and t® represent the
execution time of P? and P? respectively.

A plan pair (g, PP, pa tb 14 is classified as a QPR if ;—Z -1>r7,
where 7 is a regression threshold that measures the degree of QPR.
We set 7 = 0.5 in our analysis, i.e., the elapsed query execution time
of P% is at least 50% longer than that of P.

Tables 3 and 4 present the distributions of QPRs emerging in
one-shot and incremental index tuning, where we see around 6.3%
and 10.2% QPRs repectively. While this may seem to suggest that
the chance of QPR is relatively low in practice, it does not mean
that such QPRs are insignificant. To the contrary, some QPRs can be
considerable. To demonstrate this, Tables 3 and 4 further present the
total execution time T(P?) and T(P?) of P? and P* for all plan pairs
(PP, P?) in each workload as well as the percentage improvement
at workload level. A negative improvement means a workload-
level regression. We observe significant slowdown of the execution
on certain workloads albeit a small QPR rate. For example, for
incremental tuning on Real-DY, although the percentage of QPR
is only around 15%, the total workload execution time is increased
from 8 hours to 13.3 hours, i.e., a 52% regression.

Table 5 further presents the distribution of QPRs emerging in evo-
lutionary index tuning. We observe around 7.4% QPR overall, which
is in line with the QPR rates observed from one-shot and incremen-
tal tuning. We also observe flip of improvement/regression on some
workloads. For example, while Real-DY regresses in one-shot and
incremental tuning, it improves significantly in evolutionary tun-
ing. On the other hand, JOB improves in one-shot and incremental
tuning, but it regresses dramatically in evolutionary tuning.

Summary. While the chance of QPR is around 10% to 15% based
on our evaluation, the impact on query execution time can be much
higher. As shown in Tables 4 and 5, QPR can result in around 50%
to 80% regression in terms of query execution time for certain
databases and workloads. Therefore, detecting and correcting QPR
is important for practical index tuning. A more complete overview
of found QPRs can be found in the full version [2].

Workload #All | #QPR | %QPR | T(P?) [T(P%) | %Impr
TPC-H 1,156 36 3.11% 3.32h 1.06h 68.22%
DSB 543,198 13,784 2.54% 406h 28%h 28.98%
JOB 189,320 55,155 29.13% 188h 344h -83.12%
STATS 38,773 2,743 7.07% 85.73h 87.12h -1.62%
Real-DY 143,255 649 0.45% 5562h 3230h 41.93%
Real-LO 12,779 1,429 11.18% 71.15h 18.57h 73.91%
Real-MS 199,415 9,592 4.81% 594h 273h 53.92%
Real-RE 2,704 0 0.00% 176h 171h 2.60%
Real-DW 17,916 2,348 13.11% 113h 107h 5.14%
Real-ED 875 20 2.29% 40.61h 18.31h 54.90%
Real-MP 9,583 945 9.86% 12.2%h 7.20h 41.38%
Real-SE 9,224 261 2.83% 17.65h 6.14h 65.19%
Real-RM 55 0 0.00% 4.81h 4.01h 16.79%
Real-SA 6 4 66.67% 0.04h 0.06h -38.91%
Total 1.17m 86,966 7.44% 7277h 4559h 37.35%

Table 5: QPRs emerging in evolutionary index tuning.

Category | ID Description
(c1) RP-1a Expensive NLJ due to new inner index seek
RP-1b | Expensive NLJ due to reduced estimated cost
) RP-2 Missing critical aggregation pushdown
RP-3 Missing critical bitmap filter pushdown

Table 6: Taxonomy of regression patterns found.
3 Regression Pattern Analysis

We analyze QPRs using the data generated by one-shot tuning and
incremental tuning. The goal of this investigation is to understand
the root causes of QPRs and whether there are recurring, ubiqui-
tous patterns across the databases and workloads. Table 6 presents a
taxonomy of the regression patterns that we found for the QPRs.

3.1 Taxonomy of Regression Patterns

We categorize the QPRs into two categories: (c1) QPRs due to prob-
lematic change of access path between P’ and P?, and (c2) QPRs
due to missing critical optimizations that were present in P?.

3.1.1 Problematic Change of Access Path (c1). By “change of access
path”, we mean one of the following situations: (1) a table access
operator (e.g., a table scan, an index scan, or an index seek) in pb
has been changed in P¢%; (2) the same table access operator is used
but its usage pattern is changed between P? and P?, e.g., it serves
as the inner child of a nested-loop join in P* instead of a hash join
in P?; or (3) both a table access operator and its usage pattern are
changed. There is a significant number of QPRs whose root causes
can be attributed to some problematic change of access path. We
see two primary patterns for QPRs that fall into this category:

o (RP-1a) P* introduces a new expensive nested-loop join (NLJ)
due to a new index seek that serves as its right/inner child;

e (RP-1b) P? introduces a new expensive NLJ due to its reduced
estimated cost by the query optimizer.

We next present examples of these regression patterns.

ExamPLE 1 (RP-1A). Figure 2 presents an example of RP-1a. The
QPR comes from the query Q-3 of Real-LO with one-shot index tuning.
The “before plan” P® does not contain any NL. The “after plan” P
introduces the node 19, which is an index-based NLJ that becomes the
bottleneck of query execution. Its right/inner input has huge CE error
(estimated 52.9K vs. actual 4.4M rows). The NL7 is introduced due to
the availability of a new inner index seek (i.e., the node 28) in P?.

From Example 1, QPRs come with not only change of access
path but also CE errors. Intuitively, the introduction of new indexes

| '
Est:14.8K, !
Act:68.2K

11: HashJoin
ET: 1.9s OptE:80.0,

’

Escl48K, !
Act:68.2K|
§: HashJoin
ET: 545 OptE:73.4

EsC86K,
Act8.6K

Est:52.9K,

,Efc‘,.g)gs[,',(g 4 Est:52.9K, 16: T_Scan(8.6K) AT
/—% Act:68.7K ET- 0.155 OpiE0.6 17: StreamAgg
21: T_Scan(8.6K) 23 Optd. (ET: 525 OpiE:72.4)
ET: 0.175 OtE0.5 22: HashAgg W_PRODUCT _DH] [T32153
10.17s :0.5 !
P lET: 1.6s OplEI79.3) Est:529K, |
W_PRODUCT_DH][T32153 Actdam

19: INLJ
ET: 4.45 OpIE:53.,

Est:52.9K,
Act4.4M

Est:52.9K,
Act:70.1K

23: Filter o

Act2
ET: 1.5s OptE:79.3 28:1_Seek(10M)
20: Merge Interval) [S
Est:52.9K, | ET:4.15OptE:00_|
ET: Oms OptE:0.0
Act:4.4M Le W_ORDERITEM_F
, \

24:1_Scan(10M) Bstl, 0 Est:l,
Actl Actl
ET: 1.4s OptE:78.4 . N

(o oRvERiTEN ¢
(a) Before plan pb

(b) After plan P¢

Figure 2: Illustration of regression pattern RP-1a. [Anno-
tation of each operator node in a query plan tree: (1) Est,
estimated cardinality; (2)Act, actual cardinality; (3) ET, exe-
cution time; (4) OptE, query optimizer’s estimated cost.]
should not affect cardinality estimation. However, since our config-
uration may contain new statistics as well, they may have impact
on cardinality estimation. It then raises an interesting question: Is
the QPR caused by only the new statistics, only the new indexes, or
both the new statistics and new indexes? To better understand this,
we propose the following ablation study:

PROCEDURE 1 (ABLATION STUDY). Let C = (I, S) be the config-
uration that results in the regressed plan P* of a query q, where T
represents the new indexes and S represents the new statistics. We
only create the new statistics S without the new indexes I and let the
query optimizer re-optimize the query q. We call the plan returned
by the query optimizer the intermediate plan and denote it by P?.

For Example 1, we observed P? returned by the ablation study
is very different from either the “before plan” P? or the “after plan”
P4 Indeed, PY is even slower than P? with a different nested-loop
join as the bottleneck of query execution. P¢ improves over P? by
removing that more problematic nested-loop join and utilizing a
recommended index, though it remains much slower than P?. Since
PP is indeed the internal view of P? seen by some index tuners
(e.g., DTA), such index tuners would think of P* as an improvement
over P? and therefore, incorrectly, recommend the corresponding
indexes (and statistics). This example demonstrates that the in-
troduction of new statistics can have significant impact on query
optimizer’s cardinality estimation and therefore plan choice as well.

ExAMPLE 2 (RP-1B). Figure 3 presents an example of RP-1b. The
QPR comes from the query Q-3 of Real-DY with incremental index
tuning. One bottleneck of the “after plan” P? is the node 10 that
represents an NLJ, which is much slower than the corresponding
(logically equivalent) merge join (i.e., the node 24) in the “before plan”
PP. The execution time of the two operators is 53.85 and 11.8s.

Unlike Example 1, the bottleneck NL]Js in P¢ (nodes 10 and 11)
are not introduced due to the availability of any new inner index
seek—the inner side of the join remains the same table scan in both
P? and P?. However, the outer side of node 12 in P* contains a new
index seek (node 19) for a table that was accessed using table scan
in P? (node 62). This new index seek indirectly leads the query
optimizer to introduce NLJ for node 10 in P? since the optimizer

Est2, |
Act81 3K
10: INLJ
ET: 53.85 OptE:43.1
Est2, Est721,
ActSLSK ActSSIM

11: INLJ 36: TSpool
ET: 38.75 OptE:41.1

35:T Sean(12K)) (37:T_Scan(101 6K)
[ET:29550ptE:00 | [ET: 18ms OpiE:19 |

LOGISTICS...] [T3)) \(INVENTITE...] [T4]

'
ET: 1.0s OptE:0.0
LOGISTICS... [T3]

n Ests79,

12: INLJ
ET: 335 OptE:4 1.1

Esl,
Est2, 4 79, Acts79 Act81.5K
= T_Scan(101 5K) 19:1_Seek(101.5K) 34:T_Scan(26)
34 INLI . . -
ET: 97ms OptE9.4 [ET1smsopiE:00 | | ET:0.76s OpiE:00 |
ET:8.05 OpiE:26.4

(a) Before plan pb

INVENTTAB..] [T1]) ([DATAAREA]..][T1
(b) After plan P

Figure 3: Illustration of regression pattern RP-1b.

estimated cost (i.e., 43.1) is lower than that of corresponding plan
subtree rooted at node 24 in P? (i.e., 50.7). P* is significantly slower
due to introduction of spool operator in the inner side of node 10,
that creates bottleneck for pipelined execution of both NLJs (nodes
10 and 11) due to huge underestimation in the number of rebinds.
Observe that node 35 in P“ is significantly slower compared to
corresponding node 68 in P? despite the same access path because
P4 uses a single thread compared to 40 threads used by P? in Fig-
ure 3(a). This change from parallel to serial execution is a side effect
of change in cost estimates in the two cases.

To separate the impact of the new statistics and the new indexes,
we repeated the ablation study in Procedure 1. Interestingly, in
this case P? remains the same as P”. This means that, even though
the new statistics can affect cardinality estimation, the impact is
not significant enough to change the decision made by the query
optimizer. As a result, QPR would not have occurred if we only
brought in the new statistics but not the new indexes.

3.1.2 Missing Critical Optimizations (c2). Unlike the previous cate-
gory, QPRs that fall into this category do not suffer from change
in access path selection. That is, the access paths of P* may have
changed compared to P?, but these changes are not the root causes
of the QPRs. Rather, some critical optimizations that were present
in P? appeared to be missing in P%. Again, we observe two major
patterns for such QPRs:

o (RP-2) P? misses a critical aggregation pushdown in P?;

e (RP-3) P® misses a critical bitmap filter pushdown in P?.

Below, we again present examples of these regression patterns.

EXAMPLE 3 (RP-2). Figure 4 presents an example of RP-2. The QPR
comes from the query Q-106 of STATS with one-shot index tuning.
The bottleneck of the “after plan” P? is the node 0 that represents an
aggregation operator. This aggregation is much faster in the “before
plan” P, thanks to the aggregation pushdown introduced by the node
5. The main cause of this bad decision made by the query optimizer
on eliminating the aggregation pushdown is the CE errors at the join
nodes 3 (6.4K estimated vs. 2.1M actual, i.e., 328X underestimation),
2 (6.4K estimated vs. 2.1M actual, i.e., 328X underestimation), and
1(19.8K estimated vs. 0.5B actual, i.e., 25,252X underestimation) in
P°. While cardinality underestimation does present in PY as well,
it is at a much smaller scale. As a result, the amplified cardinality
underestimation made the query optimizer think that the aggregation
operator is cheap enough and is not worth a pushdown.

One may ask why cardinality underestimation is amplified in the
“after plan” P? for the aggregation operator. We attribute this to the
new statistics brought in by the new indexes being recommended,

Est:102K, !
Act3.IM

1: HashJoin
ET: 0.255 OptE:4.2

ESt77.6K, 0: ScalarStreamAgg
Est33K. AGETISK,
Act19.2K ET: 42.7s OptE:1.9
9: CI_Scan(79.9K) e,

2: HashJoin

Est:24.8K,
Act:24.7K,

8: CI_Scan(174.3K)
3: Mergeloin

ET: 17ms OptE:0.7
ET: 52ms OptE:2.4,

’

Est:1.8K,
Act:5.3K

[comments] [c]

Est:40.3K,
Est:1.8K, Act:d0.3K

’

Act:53K

5: HashAgg
ET: 40ms OptE:2.0,

Est:33.4K,

6: CI_Scan(328.1K)

7: CI_Scan(40.3K)’
[users] [u]

[votes] [v]

(a) Before plan pb

e o) LT l4ms OpiE03 ActiS37.4M,
: 76ms OptE:3. N -
g [badges] [b] 1: HashJoin

ET: 2605 OpiE:1.9,

Est:77.6K,

Est:6.4K, Act77.5K

Act2.IM

ET: 1.1s OptE:1.2,

Est:40.3K,
Act403K

7:1_Seek(40.3K)
ET: 5ms OptE:0.1

[users] [u]

Est6.4K,
JAct2IM

ET:0.17s OptE:0.8

/
Es2agk, / Est33IK,

Act247K) Act33.7K|
5:1_Seek(1743K)) (6: 1_Seek(328.1K))

[ET: 3ms OptE:0.1 | [ET: 5ms Opte:0.1 |

[comments] [c]) [votes] [v])
(b) After plan P4

8: I_Seek(79.9K)
ET: 10ms OptE:0.3
[badges] [b]

Figure 4: Illustration of regression pattern RP-2.

Est:4.6K, |
Act:250.9K.

ET: 0.71s OptE:73.8

Est:100K, Est:IM,
Act:100K ACI:86K‘ .
(6: Sort w (10: Sort w e,
(ET:0.175 OptE:63) (ET: 0.445 OptE:66.5)
, | &5

Est:100K, | ActRead:1M ,
Act:100K. (—‘ﬁ ESt100K, Est:1M,
/—;\ 12: CI_Scan(1M) Act100K p Act:IM
9: CI_Scan(100K) =

ET: 0.34s OptE:35.4 7:1_Scan(100K) 9:1_Scan(1M)

ET: 25ms OptE:3.6
Bitmap1005 ET: 16ms OptE:2.3 ET: 0.13s OptE:24.4
[MainTableNonPartition] [b] - - — -
[MainTable] [a] \(MainTableNonPartition] [b}) \ _[MainTable] [a] ,

(b) After plan P¢

(a) Before plan pb
Figure 5: Illustration of regression pattern RP-3.

as the new indexes themselves should not impact cardinality esti-
mation. We also notice that the join order and join operator choice
of P2 are different from that of the “before plan” P?, though they are
not the performance bottleneck of P4. Again, we further performed
the ablation study in Procedure 1. Interestingly, it turns out that the
“before plan” PP again remains the choice of the query optimizer in
this case (i.e., P* = PP). This suggests that the amplified cardinal-
ity underestimation itself does not result in QPR—the aggregation
pushdown remains worthwhile. It is the new indexes that further
reduced the estimated cost of P4, which misled the query optimizer
to change its decision on aggregation pushdown.

ExampLE 4 (RP-3). Figure 5 presents an example of RP-3. The QPR
comes from the query Q-147 of Real-MP with one-shot index tuning.
Modern query optimizers use bitmap filter pushdowns [32] in hash
Jjoin or merge join to reduce the number of rows that need to be fetched
from the inner side (of the join) that match the outer side (of the join).
The decision of whether a bitmap filter should be pushed down is made
by the query optimizer based on its estimated selectivity. The “before
plan” P? contains a bitmap filter pushdown on the clustered index
scan over the table “MainTable,” and the actual output cardinality is
86K after bitmap filter pushdown. This bitmap filter is missing in the
“after plan” P%, and the actual output cardinality goes up to 1.0M.

Unlike the previous examples, we do not observe significant
cardinality underestimation in the “after plan” P% of Example 4.
To the contrary, there is significant cardinality overestimation in
P4, which suggests that the actual cost of P* should be even less.

Interestingly, there is cardinality underestimation on the merge join
(node 5) of the “before plan” P? (i.e., 4.6K estimated output rows
vs. 250.9K actual rows), and the introduction of the new statistics
helps “fix” it; however, this fix goes too far that ends up with signif-
icant cardinality overestimation on the same merge join (i.e., 1.8M
estimated output rows vs. 250.9K actual rows). As a result, creating
(and pushing down) a bitmap filter based on a much higher esti-
mated selectivity/cardinality is not attractive. To validate this, we
further preformed the ablation study in Procedure 1. The P? turned
out to be a “transitioning plan”—its only difference from P? is the
removal of that bitmap filter. This confirms that the missed bitmap
filter pushdown optimization is indeed caused by the cardinality
overestimation due to the introduction of the new statistics.

3.2 Summary and Discussion

We have the following observations based on our analysis.

OBSERVATION 1. Most of the significant QPRs can be attributed to
some regression pattern that is simple and easy to understand.

Although our list of regression patterns in Table 6 is by no means
exhaustive, it covers most of the significant QPRs observed in our
data. Tables 7 and 8 further present the breakdowns of QPRs covered
by individual regression patterns across the workloads, where we
use RP-1 to refer to the regression pattern RP-1a or RP-1b, as they
both characterize the existence of an expensive NLJ.

OBSERVATION 2. Regression patterns typically characterize some
“local change” or “local transformation” in the plan structure.

For example, RP-1 (including both RP-1a and RP-1b) asserts the
presence of a new expensive nested-loop join. RP-2 asserts the
decision of pushing down an aggregation or not; similarly, RP-3
asserts the decision of pushing down a bitmap filter or not. Once a
regression pattern has been detected, it is straightforward to reverse
the harmful change indicated by the pattern. For example, if RP-1
is detected, we may hint the query optimizer [34] to not use the
problematic index. On the other hand, if RP-2 or RP-3 is detected,
we can simply force pushing down the corresponding aggregation
or bitmap filter that is critical to the query performance, by using
mechanisms such as plan forcing [29]. Although in this paper we do
not explore potential ways of correcting QPR once some regression
pattern is detected, it is an interesting direction for future work.

OBSERVATION 3. The impact on cardinality estimation due to the
introduction of new statistics can be significant enough to change the
optimization decision made by the query optimizer.

This observation is affirmed by the ablation study in Procedure 1
that highlights the impact of the new statistics. It has two possible
outcomes: (1) the “intermediate plan” PP remains the same as the
“before plan” PP and (2) PY is different from P?. If P® = P? it implies
that the new statistics do not change the plan returned by the query
optimizer, even if the new statistics may have impacted cardinality
estimation. On the other hand, if P? # P?, the impact on cardinality
estimation is significant enough to change the query optimizer’s
plan choice. We have seen QPR examples of both cardinality under-
estimation and cardinality overestimation with the new statistics.
While it is intuitive that cardinality underestimation can result in
QPRs, the QPRs due to cardinality overestimation are subtle (e.g.,

Pattern | Workload | #QPR T(P?) T T(P?9)

RP-1 Real-LO 3 13.08s 31.47s
RP-1 Real-MP 1 1.55s 13.85s
RP-2 STATS 1 0.53s 49.40s
RP-2 Real-RM 1 83.21s | 124.33s
RP-3 Real-MP 1 1.24s 3.72s
RP-3 Real-DY 1 63.02s | 128.59s

Table 7: Regression patterns in one-shot index tuning,.
Example 4). Nevertheless, the implication here is that a regression
pattern needs to account for not only change of access paths (due
to availability of new indexes) but also cardinality estimation errors
(due to availability of new statistics).

OBSERVATION 4. The majority of the significant QPRs are attrib-
uted to the regression pattern RP-1 (including both RP-1a and RP-1b),
namely, the emergence of a new expensive nested-loop join in the
regressed query plan.

This observation is evident from Tables 7 and 8, where RP-1
accounts for 23 of the QPRs while the other patterns account for
5 QPRs in total. Moreover, we further looked into the degree of
QPRs in terms of their actual execution time, and we found that the
QPRs due to RP-1 are much more significant compared to the others.
Therefore, in the rest of this paper we focus on addressing QPRs
that can be accounted for by RP-1. The popularity of RP-1 QPRs in
the context of index tuning is not a coincidence, as it is attractive
for the query optimizer to choose a nested-loop join in the presence
of new indexes. Nested-loop join is powerful for accelerating query
execution when there is indeed only a small number of rows that
need to be fetched via index seeks. However, it becomes a risky
choice in the presence of significant cardinality underestimation.

4 Pattern-based QPR Detector

We present a pattern-based QPR detector, based on Observation 4,
namely, the majority of the significant QPRs in index tuning can
be attributed to the emergence of new expensive NLJs. Although
this detector is dedicated to detecting QPRs with new expensive
NLJs, its underlying design principles can be applied to develop
QPR detectors for other regression patterns as well (Section 4.4).
We start with a more formal characterization of such expensive
NLJs (Section 4.1). We then develop an algorithmic framework to
detect expensive NLJ in an automated manner (Sections 4.2 and 4.3).

4.1 Characterization of Expensive NL]J

Observation 4 itself is far from actionable for QPR detection in
practice. Indeed, a naive solution here could be to forbid the use
of nested-loop joins. However, this will forfeit most of the benefits
brought in by index tuning as well. Clearly, not all nested-loop
joins are harmful, and the challenge is to identify which ones are
problematic or risky without executing the “after plan” P?.

To estimate the expensiveness of a nested-loop join, we define
two metrics, local expensiveness and global expensiveness, as follows.

DEFINITION 1 (LocAL EXPENSIVENESS). Let] be a nested-loop
join contained by the “after plan” P* in QPR detection. The local

expensiveness of J is defined as I(J,P?%) = cf;;it(g“)) where cost(])

represents the estimated cost of the plan subtree under the join J.

A nested-loop join J is locally expensive if I(J, P%) > 1;, where
0 < 7; < 1 is some threshold. Local expensiveness characterizes
how significant the execution cost of a nested-loop join is inside

Pattern | Workload | #QPR | T (PP) T(P?)
RP-1 Real-DY 8 | 495.67s 11824.84s
RP-1 Real-ED 1 2.85s 5.77s
RP-1 JOB 2 4.23s 12.36s
RP-1 Real-LO 3 13.32s 33.67s
RP-1 Real-RE 3 1.32s 14.63s
RP-1 STATS 1 0.37s 3.34s
RP-1 Real-MP 1 4.00s 25.80s
[RP-2 [STATS [1] 053 [3957s |

Table 8: Regression patterns in incremental index tuning,.
the query plan. Ideally, one should use the actual execution time
instead of query optimizer’s estimated cost. Unfortunately, this is
impossible in practice because the execution time of the “after plan”
P? is unknown when QPR detection needs to be performed. Thus,
local expensiveness can be inaccurate. For example, we may miss a
locally expensive NLJ J if cost([) is underestimated and a relatively
expensive operation follows. However, in general, we would expect
a bottom-up propagation of cost estimation errors [17]. That is, if
cost(J) is underestimated, then the costs of higher-level operations
are likely underestimated too. If so, the ratio between cost(J) and
cost(P?), i.e., the local expensiveness of J, will be relatively stable.

DEFINITION 2 (GLOBAL EXPENSIVENESS). Let J be a locally ex-
pensive nested-loop join, and let q be the corresponding query in
the workload W where J comes from. Let t*(q) be the execution
time of the “before plan” P of q, which is presumably available be-
fore QPR detection starts. The global expensiveness of] is defined as

9(J.q) = percentile(t’(q), {t*(q') }qew)-

A nested-loop join J is globally expensive if the corresponding
query g satisfies g(J, q) > 74, where 0 < 74 < 1is some threshold. In-
tuitively, global expensiveness measures the relative execution cost
of a query at workload level. Specifically, t* (q’) means the execution
time of the “before plan” of ¢’, which is presumed available when
performing QPR detection. {t*(¢q’)} represents the distribution of
the “before plan” execution time w.r.t. all queries of a workload
W. Essentially, we use the percentile of t*(q) in this “before plan”
execution time distribution as our definition of the global expen-
siveness of g. On the other hand, it is possible that a query q is
globally expensive but actually not so under the new configuration,
i.e., when considering the distribution of the “after plan” execu-
tion time of all workload queries. Unfortunately, this latter “after
plan” execution time distribution is unknown when performing
QPR detection. This is indeed a limitation of our current definition
of global expensiveness, which we leave for future work.

4.2 Regression Pattern by Expensive NL]J

We define the regression pattern based on expensive NLJ as | =
P (Pb, P*) over a pair of “before plan” P? and “after plan” P, with
respect to a given local expensiveness threshold 7; and a given
global expensiveness threshold 7,:

(1) The nested-loop join J appears in P but not in P?;

(2) The nested-loop join J is both locally and globally expensive;

(3) The right/inner side of the nested-loop join is a table access
operator (with perhaps filters but no other operators, e.g., join,
on top of it), i.e., it is a “left deep” nested-loop join.

If there are multiple expensive nested-loop joins in P4, we will only
return the “deepest” one in the plan tree (where the root node of
the plan tree receives a depth of zero).

depth 0

depth 1 depth 1

Figure 6: Illustration of the expensive NL] pattern.

ExamPLE 5 (EXPENSIVE NLJ PATTERN). Figure 6 presents an exam-
ple query plan that contains three nested-loop joins NL},, NL},, and
NLF,. Suppose that all of them pass the local and global expensiveness
thresholds. NL}; does not match the expensive NLJ pattern because it
is not “left deep.” Both NLJ, and NLJ, are “left deep,” but only NL},
matches the pattern as it is the “deepest” one in the query plan.

We choose to focus on “left deep” nested-loop join following
the observations on the simplicity (i.e., Observation 1) and locality
(i.e., Observation 2) of regression patterns. Compared to more com-
plicated “bushy” nested-loop join (e.g., NLJ; in Example 5), “left
deep” nested-loop join is easier to define and detect. The impact of
an index is also more direct on “left deep” nested-loop join, which
makes it easier to understand and correct the corresponding QPR
with remediation actions. Moreover, we choose to focus on the
deepest expensive “left deep” nested-loop join if there are multiple
candidates, because the (local) expensiveness of higher-level joins
may be a consequence of expensive joins below.

Algorithm 1 presents the details of automating the process of
matching the expensive NIJ pattern in a given plan pair (P?, P%) of
a query q. We start by looking for all nested-loop joins that appear
in the plan P? (line 2). For each of the nested-loop joins J found,
we simply check whether (1) J is “left deep,” (2) J does not appear
in the plan P?, and (3) J is expensive; if so, we only keep the one
with the maximum depth (lines 3 to 9).

4.3 QPR Detection Algorithm

Our QPR detection algorithm based on the expensive NLJ pattern
can be broken down into three major steps: (1) match the expensive
NL]J pattern using Algorithm 1; (2) measure the degree of potential
QPR based on the notion of cost inflation factors; and (3) recost the
“before plan” and “after plan” using the cost inflation factors and
predict QPR based on the recomputed plan costs.

4.3.1 Cost Inflation Factors. Formally, let J be an expensive nested-
loop join operator found in the “after plan” P4, and let O; and O, be
its left/outer and right/inner input operators. Moreover, let O;” and
O be the corresponding match (i.e., logically equivalent operator)
of Oy and O, in the “before plan” P, respectively.

DEFINITION 3 (CosT INFLATION FACTORS). The cost inflation fac-
tors of the left and right inputs of] are defined as

ActCard(O7") ActCard(O)

S Gy and f, =
ax{ EstCard(O}")’ b and fr = max{ EstCard(O™)’

fi=m 1}.
Here, EstCard and ActCard represent the estimated and actual
cardinality, respectively. Intuitively, cost inflation factors measure,

in an approximate way, the impact of cardinality underestimation

Algorithm 1: MatchExpensiveNL](g, P?, P%).

Algorithm 2: ComputeCostInflationFactors(J, P?, P%).

Input: (P?, P?), a pair of plans to detect QPR; g, the corresponding
query in the workload W; 77, the threshold for local
expensiveness; 74, the threshold for global expensiveness.

Output: J, the expensive nested-loop join found.

1 J « null;

2 J < GetAlINL]s(P?);

3 foreach nested-loop join J' € J do

4 if J' is “left deep” and J’ ¢ P” then

s || P < S

6 9(J'.q) — percentile(¢*(q), {¢*(¢') }gew);
7 if I(J',P?) > 7y and g(J', q) > 74 then

8 if depth(J’) > depth(J) then

9 | J<J

10 return J;

on the execution cost of the join. Moreover, once again we assume
that we have obtained execution information (in particular, true
cardinality information) of the “before plan” PP.

4.3.2 Recosting of the Join and the Plan. The presence of cardinality
underestimation makes it necessary to recompute the costs of the
“before plan” and the “after plan” to reevaluate the likelihood of
QPR. We conduct this recosting process [13, 55, 56] based on the
cost inflation factors obtained by Algorithm 2.

Specifically, Algorithm 3 presents the details of plan recosting,
which employs Algorithm 4 as a subroutine to recost the join opera-
tors. We start by seeking a match (i.e., logically equivalent operator)
of the expensive NLJ operator J in P? (line 2). If such a match J’
is found, we call Algorithm 4 to recost J* based on its own cost
inflation factors f and f, and we recompute the cost of P’ by
replacing the old cost of J* with its new cost (lines 3 to 8). Similarly,
we recost J based on the given cost inflation factors f; and f; and
recompute the cost of P* accordingly (lines 9 to 11).

The recosting of the join operators J and J’, as illustrated in
Algorithm 4, works as follows. We recompute the cost of a join
based on its type. If it is a nested-loop join, we increase the cost
of the right/inner side and the residual cost (i.e., the cost of the
join operator itself excluding the costs of the left and right inputs)
by a factor of f; - f, while keeping the cost of the left/outer side
unchanged (line 3). This is easy to understand, as the cost inflation
factors quantify the degree of cardinality underestimation on the
left and right inputs of the join. Therefore, for each iteration of
the nested-loop join, the cost of the inner side is roughly increased
by a factor of f;. On the other hand, the number of iterations is
boosted by a factor of fj. This justifies the recosting formula of
the nested-loop join. Meanwhile, for other types of join, such as
hash join or merge join, that do not require multiple accesses of
the right/inner side, we increase only the residual cost of the join
by a factor of f; - f; but not the cost of the right/inner side.

4.3.3 Putting It Together. Algorithm 5 presents the details of the
pattern-based QPR detection algorithm. We start by matching the
expensive NLJ pattern using Algorithm 1 (line 1). We report no
QPR if we fail to find any expensive NLJ (lines 2 to 3). Otherwise,
we compute the cost inflation factors using Algorithm 2. We again
report no QPR if there is no cardinality underestimation, i.e., fj < 1
and f; < 1 (lines 4 to 6). Otherwise, we recost both plans P? and

Input: (P?, P9), the plan pair; J, the expensive NLJ found in P,
Output: f;, the cost inflation factor of the left/outer input of J; f;.,
the cost inflation factor of the right/inner input of J.
1 Op « LeftChild(J), O, < RightChild(J);
2 fie—1,fr 1
3 O — Match(Oy, P?), O™ « Match(O,, P?);
4 if O is not null then

ActCard(Olm)
EstCard(O;") > }’
6 if O" is not null then

ActCard(O]") 1};
EstCard(OJ) > ~ 1>

5 ‘ fi < max{

7 ‘ fr & max{

8 return fj, f;;

P¢ with the cost inflation factors, using Algorithm 3, and we report
QPR if recost(P?) > recost(P?) (lines 7 to 12).

Discussion. The QPR detection algorithm in Algorithm 5 is lim-
ited by the fact that it relies on finding matches in the “before plan”
PPt can result in both false positives and false negatives:

o (False Positives) Consider a case where we have either f; > 1 or
f > 1 but we cannot find a match for J in P?. As a result, the
cost of P? is increased after plan recosting, whereas P’ cannot
be recosted by Algorithm 3 and thus cost(P?) remains the same.
However, it is likely that cost(Pb) should have been increased,
too, as the existence of cardinality underestimation in P suggests
that there may be cardinality underestimation in P’ as well. This
possibility is currently ignored by Algorithm 5. Consequently, if
Algorithm 5 reports QPR in this case, it may be a false positive
due to the potential underestimation of cost(P?).

o (False Negatives) Consider another case where we cannot find
a match for either O; or O,. As a result, we may miss potential
cardinality underestimation and therefore the recomputed cost
of J may be less than it should have been. When this happens,
if we can find a match J’ in P? for J, then it creates an unfair
situation as we can use actual cardinality for recosting J’ but not
J. Therefore, we may make the cost of J’ (and thus the plan P?)
higher but not the cost of J (and thus the plan P¢). Consequently,
if Algorithm 5 reports no QPR in this case, it may be a false
negative due to the potential underestimation of cost(P%).

4.4 Other Regression Patterns

While it is not our goal in this paper to provide a comprehensive list
of regression patterns and their corresponding pattern-based QPR
detectors, the principles and techniques developed can be applied
to the development of QPR detectors based on regression patterns
other than RP-1. For example, a QPR detector based on RP-2 or RP-3
would be to monitor any aggregation or bitmap filter pushdowns
that were present in P® but missing in P%, while also considering
the degree of cardinality estimation (CE) errors.

Although this case-by-case approach is effective for the QPR
patterns covered in the present study, a more general approach
remains interesting. There are two basic elements in such a general
approach: (1) specification of the structural change between the “be-
fore plan” and the “after plan” and (2) quantification of the CE error.
From this point of view, we can retain the skeleton of Algorithm 5
and only replace the three function calls MatchExpensiveNLJ (),

Algorithm 3: RecostPlan(]J, Pb, P9,

Input: (P?, P?), the plan pair; J, the expensive NLJ operator.

Output: recost(P?), the recomputed cost of plan P?; recost(P?%),
the recomputed cost of plan P¢.

recost(P?) « cost(P?), recost(P?) « cost(P%);

2 J' « Match(J, P?);

if J’ is not null then

4 O; « LeftChild(J), O, « RightChild(J");

ActCard(O;) 1, f! ActCard(O}.) 1};
EstCard(O;) > Jr EstCard(O’r) > 2

6 recost(J’) < RecostJoin(J", f/, f,');

7 residual (P?) « cost(P?) — cost(J’);

8 recost(P?) « residual (P?) + recost(J’);
recost(J) « RecostJoin(J, f1, f+);

10 residual(P?) <« cost(P%) — cost(J);
recost(P?) « residual(P?%) + recost(J);

12 return recost(P?), recost(P?);

-

()

5 f{ < max{ «— max{

©

1

oy

ComputeCostInflationFactors(),andRecostPlan() withim-
plementations customized for detecting different QPR patterns.

5 Experimental Evaluation

We evaluate the pattern-based QPR detector proposed in Section 4
and report the experimental evaluation results in this section.

5.1 Experiment Settings

We focus on detection of significant QPRs emerging in one-shot,
incremental, and evolutionary tuning by setting the regression
threshold 7 = 0.5 (i.e., 50% QPR).

5.1.1 Evaluation Metrics. We use the following metrics to evaluate
the performance of a QPR detector.

The first set of metrics are standard based on the viewpoint
of treating QPR detection as a binary classification problem: (1)
precision, (2) recall, (3) accuracy, and (4) F1 score.

The second set of metrics are to address the limitation of the

binary classification view of QPR detection, as some QPRs can be
much worse than the others: (1) time of the “before plan” PP, (2) time
of the “after plan” P*, (3) time of Pprq, and (4) time of Pys. Here,
Ppred is the plan chosen based on the output of the QPR detector
h. That is, Pyred = PPifh predicts a QPR, and Pyreq = P otherwise.
Ppest is the plan chosen based on the output of an oracle (i.e., a
perfect QPR detector) that always makes the right prediction. That
is, Ppest = PP if t¥ < 2, where #? and 2 are the execution time of
P and P4 respectively, and Phest = P otherwise.
5.1.2 QPR Detectors. We evaluate the pattern-based QPR detec-
tor proposed in Section 4, as well as three state-of-the-art ML-
based QPR detectors: (1) AI meets AI (AMA) [11], (2) TreeCNN
(TCNN) [27], and (3) QueryFormer (QF) [60].

5.2 ML-based QPR Detection

The main difference between the three ML-based QPR detectors
AMA, TCNN, and QF lies in the feature representation of a query
plan. Specifically, AMA carefully selects features that are important
for characterizing the execution profiles of individual operators in
the query plan (e.g., estimated number of input and output rows,
estimated number of input and output bytes, estimated execution
cost, etc.). Such operator-level features are further aggregated w.r.t.
the plan tree structure to form a vector representation of the query

10

Algorithm 4: RecostJoin(J, f}, f;).
Input: J, the join operator; fj, the cost inflation factor of the
left/outer child of J; f;, the cost inflation factor of the
right/inner child of J.
Output: recost(J), the new cost of J.
1 residual(J) « cost(J) — outerChildCost(J) — innerChildCost(J);
2 if J is nested-loop join then
3 recost(J) « outerChildCost(J) + f; - f> -

‘ innerChildCost(J) + f; - f - residual(J);

4 else
recost(J) «

outerChildCost(J) + innerChildCost(J) + f; - f;- - residual (J);
6 return recost(J);

plan. On the other hand, both TCNN and QF adopt more advanced
technologies to encode a query plan into its vector representation.
In more detail, TCNN leverages tree convolution [35] that adapts
the well-known convolutional neural network (CNN) [26] to work
for tree-structured data, whereas QF leverages tree transformer that
adapts the well-known transformer architecture [48] to encode
query plan tree. Therefore, we can use a uniform framework to
evaluate all these three ML-based QPR detectors.

Given a pair of plans (Pb , P%), we first convert PY and P? into
their feature vectors P? and P4 using the plan encoder provided
by the corresponding ML-based QPR detector. Following [11], we
then take the difference X = P9 — P? as the input to train a binary
classifier h as the QPR detector. For fair comparison, we use the
same classifier h for AMA, TCNN, and QF plan representations.
Specifically, h is a 4-layer fully-connected deep neural network,
where each hidden layer contains 64 neurons and uses ReLU as the
activation function. A similar architecture has been used in [60].

5.2.1 Implementation and Evaluation Setups. We implement AMA,
TCNN, and QF using PyTorch, and we use an Nvidia RTX A6000
GPU for model training and inference. For model training, we use
the Adam optimizer [19] with 100 epochs and batch size of 32.

We use a “leave one out” setup for evaluating the ML-based
technologies [11]. Specifically, let ‘W be the set of all workloads.
For each workload W € W, we use all index tuning data collected
for the other workloads W_yy = W — {W} to train an ML model
M and test it using the index tuning data collected for W.

5.2.2 Results. Figure 7(a) and 7(b) present results on the one-shot
and incremental index tuning data in terms of prediction accu-
racy of the ML-based QPR detectors. We were not able to finish
training TCNN and QF within reasonable time (i.e., 48 hours) on
the evolutionary index tuning dataset. We observe that TCNN and
QF perform better than AMA in terms of the “accuracy” metric.
However, it does not suggest that TCNN and QF are more effective
binary classifiers, because their F1 scores are much lower than that
of AMA. In fact, in almost all cases the F1 scores of TCNN and QF
are zero, which means that they are not able to capture any QPR.
In other words, they behave the same as a degenerated QPR predic-
tor that simply says there is no QPR. Overall, all three ML-based
QPR detectors show unsatisfactory performance. There are several
potential reasons for this observation. First, the one-shot and in-
cremental index tuning datasets are relatively small and therefore
sophisticated plan encodings such as TCNN and QF are perhaps not
worthwhile and more likely to overfit. Second, the fact that QPR

Algorithm 5: Pattern-based QPR detection.

Input: (P?, P%), the pair of plans; g, the corresponding query.
Output: true, if (Pb ,P%) is a QPR; false, otherwise.
J < MatchExpensiveNLJ(q, P?, P%);
if J is null then

‘ return false;
11, f+ < ComputeCostInflationFactors(J, pb, P%);
if fi < 1andf; <1then

‘ return false;
// We have either f; > 1or f; > 1;
8 recost(P?), recost(P?) « RecostPlan(J, P?, P4);
9 if recost(P?) > recost(P?) then

-

w N

'S

o @

~

10 ‘ return true;
11 else
12 ‘ return false;

is a relatively infrequent event makes the classification problem
more challenging (e.g., a naive classifier such as the degenerated
one can achieve high accuracy but fail miserably in terms of F1
score). This is related to the well-known “learning from imbalanced
data” challenge in the literature [21]. Indeed, we have tried to “re-
balance” the data by giving the regressed cases higher weights in
the loss function when training the ML-based classifiers but we
still see underwhelming results as shown in Figures 7(a) and 7(b).
Third, the “leave one out” setup is arguably the worst-case scenario
for ML-based classifiers, as the training and test datasets may not
follow the same distribution. Indeed, our results here resonate with
the observations in [11], where the AMA classifier shows similar
results to the degenerated classifier under the “leave one out” setup.

5.3 Pattern-based QPR Detection

We now evaluate the pattern-based QPR detector proposed in Sec-
tion 4. We set the local expensiveness threshold 7; = 0.1 and the
global expensiveness threshold 7, = 0.1 in our evaluation, which
are the default settings of the pattern-based QPR detector. We use
AMA as the baseline of ML-based detectors to compare with.

5.3.1 One-shot Index Tuning. Figure 8(a) presents the (percentage)
improvement of the total execution time by using the plan suggested
by the QPR detector, i.e., Pyred, W.r.t. to the plan over the existing
configuration, i.e., P?, for one-shot index tuning. We observe that
the pattern-based QPR detector significantly outperforms AMA on
the workloads JOB, Real-RE, Real-ED, and Real-RM, while having
similar performance on the other workloads (except Real-LO, where
AMA outperforms the pattern-based QPR detector). In fact, the
pattern-based QPR detector achieves similar performance to the
best possible, i.e., Ppest, on the workloads TPC-H, JOB, DSB, Real-
MS, Real-ED, Real-MP, Real-SE, Real-RM, and Real-SA. For example,
the improvements on JOB by the pattern-based QPR detector and
AMA are 53% and 40%, where the best possible improvement is
59%. Meanwhile, the performance of using the plan suggested by
AMA is often inferior to the default approach of always trusting
the index tuner by using P%, for example, on Real-ED and Real-RM.

Figure 9(a) further compares the pattern-based QPR detector with
AMA in terms of the prediction/classification accuracy. We observe
that the pattern-based QPR detector significantly outperforms AMA
in terms of both accuracy and F1 score on the workloads JOB, STATS,
DSB, Real-LO, Real-RE, Real-DW, Real-ED, and Real-RM. AMA has

11

TCNN—f1 m—
QF—f1

QF-acc 0——=3
AMA-f1 =3

AMA-acc —
TCNN-acc ===y

9] 1
3
» 08Ff T s
L 06} .
>
g 04 s
=
8 02} s
= 0
%@@%Ao%@&OQ@@
R AN N % ¥ 3 N %
QLR e Qg, < Q@ Qg, e Qg;
Workload
(a) One-shot Index Tuning
AMA-acc 3 QF-acc === TCNN-{1 m—
TCNN-acc o=~y AMA-f1 == QF-f1 —
(9] 1
3
@ 08}
L 06}
>
S 04Ff
=
8 02}
= 0
] Q: A O » & ¢\ SR & @ 'S
R ,0,»,&, Rt
Qg, Qg; % Qg, ¢ Q@ Qg, e Qg;
Workload

(b) Incremental Index Tuning

Figure 7: Comparison of ML-based regression detectors in
terms of prediction accuracy and F1 score.

an advantage only on Real-SA in terms of accuracy. Some F1 scores
are zero (i.e., either precision or recall is zero) and thus not visible.

5.3.2 Incremental Index Tuning. Figures 8(b) and 9(b) compare the
pattern-based QPR detector against AMA for incremental index
tuning. Again, the pattern-based QPR detector significantly outper-
forms AMA on workloads such as TPC-H, JOB, Real-DY, Real-LO,
Real-MS, Real-RE, and Real-MP. We also observe that AMA is some-
times even significantly worse than the default approach of using
P? (e.g., on TPC-H, Real-DY, Real-LO, and Real-MS). Meanwhile,
the pattern-based QPR detector achieves the best possible on work-
loads such as TPC-H, Real-RE, and Real-ED. For example, the time
improvements on Real-RE by the pattern-based QPR detector and
AMA are 41.5% and 15.3%, where the best possible is 41.8%.

5.3.3 Evolutionary Index Tuning. Figures 8(c) and 9(c) further com-
pare the two QPR detectors in the context of evolutionary index
tuning. As shown in Figure 8(c), the pattern-based QPR detector
significantly outperforms AMA on TPC-H, JOB, Real-LO, Real-ED,
and Real-SE in terms of improved plan execution time, while their
performances on the other workloads are similar. The improvement
achieved by the pattern-based QPR detector is similar to the best
possible on most workloads (except JOB). On the other hand, AMA
remains inferior to the default approach of using P* on workloads
such as TPC-H, Real-LO, Real-ED, and Real-SE.

5.4 Analysis of Pattern-based QPR Detector

We further perform more detailed analysis of the pattern-based
QPR detector to understand the impact of (1) the local and global
expensiveness thresholds and (2) the cost inflation factors.

5.4.1 Local and Global Expensiveness Thresholds. We are inter-
ested in the potential of the pattern-based QPR detector by vary-
ing the local and global expensiveness thresholds. For this sake

p? = Pattern 0=—"3

PR ===

Pattern =—= P2 =3 Pattern =3

AMA = Best —— AMA Best C—— AMA = Best C——
& 100 & 100 —= — & 80 —— —
g o 80 o 60 il
¢ ¢ 60 ¢ w { m ‘ {
= 60 Z 40 Z 20
g . g g l | | o
2 40 1 £ 28 o m ﬂﬂ H HHH il ﬂ g 28 1 ‘
g 2 T I g
3 20 . 3 -20 [Ik 3 -40 I
g o 1= mp o E % 1y g
® 2 RO PO O®E DO L $780¢@%%40%@\&0Q«,®v "\07100%@@%-ko%<<,$0<2@@v
& F OO SN LD PN P LS & FERE I NL PN & FIR O I NL LN LD
< Do e e e o < DT @ e 2 ¢ < DRI @ ¢ 2 ¢
Workload Workload Workload
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning
Figure 8: Comparison of AMA vs. pattern-based QPR detectors in terms of improvement on plan execution time.
Accuracy (AMA) —— F1 Score (AMA) === Accuracy (AMA) —— F1 Score (AMA) === Accuracy (AMA) —— F1 Score (AMA) ===
Accuracy (Pattern) — F1 Score (Pattern) === Accuracy (Pattern) —3 F1 Score (Pattern) === Accuracy (Pattern) — F1 Score (Pattern) ===
o 1 ok = - [1 o o 1
3] 3
@ 08 » 08 B 08
L os L oe L os
N > >
g 04 = g o4 & 04
5 =1 5
g 02 g 02 g 02
< 0 < o < —‘
RO O @KLY OR & v RLPOL O @K QR & ¥ RO RO OO LN QR K S
G EEI NN O 8 S DS GG LN 8 S FEEES LN F S 2
< Do e e e ¥ o < DT @ ¢ 2 ¢ < DGR @ ¢ @ <€
Workload Workload Workload

(a) One-shot Index Tuning

(b) Incremental Index Tuning

(c) Evolutionary Index Tuning

Figure 9: Comparison of AMA vs. pattern-based QPR detectors in terms of prediction accuracy and F1 score.

we study the optimal settings of the thresholds. Specifically, we
perform a “grid search” in the space of (7;,7;) € £ x G, where
L =G = {0.1,0.2,0.5,0.8,0.9}. Figures 10(a), 10(b), and 10(c)
present the results of the optimal thresholds for one-shot, incre-
mental, and evolutionary index tuning, respectively. For one-shot
tuning and incremental tuning, optimal thresholds only make a sig-
nificant difference on Real-DY. On the other hand, for evolutionary
tuning optimal thresholds only make a significant difference on
JOB. It remains future work to explore ways of finding the optimal
thresholds without an exhaustive search.

5.4.2 Cost Inflation Factors. Our way of computing cost inflation
factors is best-effort: the cost inflation factor of the left/right input
of the expensive nested-loop join remains 1 if we cannot find the
corresponding match in the “before plan” P?. To understand the
impact of this limitation, we study a hypothetical case where we use
the true left/right input cardinality to compute the cost inflation
factor if we cannot find a match. The results of using the cost
inflation factors based on true cardinality, in combination with
using the optimal local and global thresholds, are presented as ‘Opt-
TC’ in Figures 10(a), 10(b), and 10(c). We observe that leveraging
true cardinality can further improve the pattern-based QPR detector
in certain cases, e.g., on Real-DY for incremental tuning and JOB
for evolutionary tuning. This suggests that one direction for further
improvement of the pattern-based QPR detector is to improve the
cardinality estimation for those operators with no match in P?.
5.5 Other Evaluation Results

5.5.1 Generality of Regression Pattern. Some of the observations
and results (in particular, the QPR pattern due to emergence of
expensive NLJs) are not restricted to Microsoft SQL Server. First,
NLJs are supported by almost all database systems. Second, the QPR
pattern related to expensive NLJs also characterizes the roles of
cardinality estimation (CE) errors, which are well-known general
issues beyond a specific database system (e.g., see [24, 56] for studies
of CE errors on top of PostgreSQL). To validate this, we create
the same indexes recommended by DTA on top of PostgreSQL
databases. We then check if the QPR pattern based on the emergence
of new expensive NLJs occurs as well. We use PostgreSQL 17.4
running on a standard Azure D16s-v3 VM.

12

Figure 11 presents the validation results on the four benchmark
workloads TPC-H, DSB, JOB, and STATS. Here, we compare the
percentage of QPRs with new emerging expensive NLJs. We have
two main observations. First, for most of the cases tested, around
60% to 100% of the QPRs contain new expensive NL]Js. Second, this
percentage coverage is consistent across PostgreSQL and Microsoft
SQL Server, demonstrating the generality of the QPR pattern.
5.5.2 Decoupling Indexes from Statistics. Following our ablation
study (Procedure 1) in Section 3.1, a “statistics only” scenario is
itself interesting, as having extra data statistics available could, in
theory, greatly improve the plans (without extra indexes). To shed
some light on the sheer impact of new statistics, we extend our abla-
tion study to all plan pairs collected from one-shot and incremental
index tuning scenarios. Figures 12(a) and 12(b) present the time im-
provement by the “intermediate plan” P” over the “before plan” P?.
We also include the “after plan” P? for comparison. Interestingly, it
is not guaranteed that the availability of new statistics will result in
better plans. Although P indeed leads to significant improvements
for some workloads (e.g., JOB), it also causes significant regressions
for some other workloads (e.g., Real-LO). This raises the question of
recommending statistics that can improve query execution without
causing regression, which we leave for future work.

6 Related Work

Index Tuning. Much work has been devoted to index tuning in
the past decades (see [44] for a recent survey). A classic setup is
offline index tuning (e.g., [3-6, 9, 18, 20, 39, 43, 45, 47, 50-52, 57]),
where the index tuner is given a static workload of queries and
the goal is to come up with an index configuration that minimizes
the workload execution cost (subject to certain constraints such
as storage bound). Offline index tuners rely on the what-if query
optimizer call to estimate the execution cost of a query given an
index configuration, which can be inaccurate and result in QPR
after the index configuration is materialized. On the other hand,
there is also a prominent line of recent work towards online index
tuning (e.g. [22, 37, 38, 40]), where the index tuner needs to deal
with dynamic workloads with new queries coming from time to
time. Online index tuning is a more challenging problem and ex-
isting work has been focusing on solutions using reinforcement

Pattern (Default) —— Pattern (Opt-TC) ==
Best

Pattern (Default) —=

Pattern (Opt- TC) —— Pattern (Default) —— Pattern (Opt-TC) ==
Be:

Pattern (Opt) =2 Pattern (Opt) === Best Pattern (Opt) =—2 st
&~ 90 — o 100 —= £ 80 —
[1] o ol o -
¢ 70 g X ¢ 60
= &0 2 60 g
B : sl | 1L |
£ g m mﬂ g HH_‘
-8 } W e i] ¢ [-all 1l
s 5 -20 s
£ 4 m mﬂ o i E 4 u i E-20 |
® 10 ® _60 ® 40
Qo}z\oo}b Boié%\/o 4\/\’ O\/\@ \/Qg/\/o$\’(¢0 \,@Q \/‘b ((/\/Q\ Q\’GJ > Qog\oéb 50?\{}6\/6\ \’\/O \96 \Q{‘:S@\/é) \/\§ \’o" ((/\/Q\ Q\’Q’ > Qo\éoéb 0% V/“\%\Q*\/\’ O\/Q 6\ ({//Q$ /((9 \/\§ \’0'7 ‘O\g\ Q\’% 3
< O e (P oo o’ o e o < O of e e o PP e e S e oo P e e e
Workload Workload Workload

(a) One-shot Index Tuning

(b) Incremental Index Tuning

(c) Evolutionary Index Tuning

Figure 10: Comparison of variants of the pattern-based QPR detector in terms of improvement on plan execution time.

PostgreSQL ==—=1

PostgreSQL ==
Microsoft SQL Server ——

PostgreSQL ==
Microsoft SQL Server —=

Benchmark workload
(b) Incremental Index Tuning

TPC-H DsB JOoB STATS
Benchmark workload

(c) Evolutionary Index Tuning

JOB STATS

% of QPRs with Pattern

Figure 11: Validation of the generality of the regression pattern based on new emerging expensive NLJs.

c Microsoft SQL Server ——— c
o o
§ 100 § 100
£ 8 £ 80 et
T 60 m s = 60
¢ 40 & 40
& 2 & 20
5 0 k] 0
® TPC-H DSB JoB STATS ® TPC-H DSB
Benchmark workload
(a) One-shot Index Tuning
Statistics Only (P) S
Statistics + Indexes (P?) =3
s~ 100 T —T T T T
£ AL Lo L
1]
< -100 @
é -200
% -300
5 -400
E -500
2 600 < S =
S EL SO PN O R L oF
&Q é\%?}q’%%@ez&q} ‘b
PRI ‘2*
Workload
(a) One-shot Index Tuning
Statistics Only (P™?) ====v
Statistics + Indexes (P?¥) ===
& 200 — ———————
o 0 b= 1 =
- = INEN =
S o Sy
= —400
o -600 =
5 -800
3 -1000
E -1200
E 1400
* -e00 > O L O L K
RRCESAS ST P 0 QQ\,% D&
N % P P Fo Pl o o
QE e ‘2* ‘2* ¢ Q8 P&
Workload

(b) Incremental Index Tuning

Figure 12: Comparison of the improvement in execution time
by using the “intermediate plan” P’ and the “after plan” P°.

learning (RL) technologies with actual query execution time as feed-
back to build reward functions that guide the RL search process.
Using actual query execution time reduces the chance of QPR but
is significantly more expensive compared with using what-if calls.

Query Performance Regression. QPR is an averse problem in prac-
tice. One prominent cause of QPR is plan change due to bad plan
choice made by the query optimizer. QPR emerging in index tuning,
in particular, falls into this category and is more costly given the
nontrivial overhead of running the index tuner and creating the
recommended indexes in addition to the query execution time itself.
QPR after index tuning means all tuning efforts are wasted and the
recommended indexes have to be dropped to bring the query execu-
tion time back to normal [8]. Existing approaches to QPR detection
in the context of index tuning mainly adopt machine learning (ML)
technologies [11, 41, 53, 60]. These approaches often suffer from
limited generalization capability when facing new databases and

13

workloads. The pattern-based QPR detector studied in this paper
provides an alternative to these ML-based approaches with better
generalizability. On the other hand, there has also been work on
QPR correction in the context of index tuning [12], which is an
interesting but orthogonal direction.

Cardinality Estimation. The pattern-based QPR detector pro-
posed in this paper relies on accurate cardinality information avail-
able from execution feedback in the “before plan.” Moreover, the
evaluation results in Section 5.4.2 further demonstrate the potential
improvement of the pattern-based QPR detector by fixing cardi-
nality estimation errors. There has been extensive work in the
literature on improving cardinality/selectivity estimation accuracy,
and we refer the readers to recent benchmark studies [15, 49] for
an overview of progresses in this area. As we mentioned in Sec-
tion 5.4.2, it remains interesting future work to integrate these more
advanced cardinality estimation technologies into the pattern-based
QPR detector to improve the calculation of the cost inflation factors
when exact matching fails in the “before plan”

Cost Modeling. We have used query plan recosting [13, 55, 56]
in the pattern-based QPR detector, based on simple cost formulas
crafted by following the execution logic of the NL]J and other join
operators. It is well-known that query optimizer’s cost modeling
can be inaccurate, and there has been considerable amount of work
on improving cost modeling (e.g., [1, 14, 16, 25, 27, 28, 36, 42, 46,
54, 55, 58]). While the simple cost modeling techniques used for
the pattern-based QPR detector show reasonable results in our
evaluation, it remains interesting future work to leverage more
advanced cost modeling techniques for further improvement.

7 Conclusion

We have proposed a pattern-based QPR detector based on learnings
from an in-depth study of QPRs emerging from real-world index
tuning scenarios. The design of the pattern-based QPR detector is
motivated by the observation that most of the significant QPRs can
be attributed to expensive nested-loop joins with underestimated in-
put cardinalities. We have evaluated the pattern-based QPR detector
on top of both industrial benchmarks and real customer workloads.
Our evaluation results show that the pattern-based QPR detector
exhibits better generalizability than state-of-the-art ML-based QPR
detectors when applied to new databases and workloads.

References [30

[1] Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.
2012. Learning-based Query Performance Modeling and Prediction. In ICDE.

[2] Anonymous authors. 2025. Understanding and Detecting Query Perfor-
mance Regression in Practical Index Tuning (Extended Version). https:
//1drv.ms/f/c/825796278ed48a9e/EuqYl4iRmt1KjFB6goqUSDMBC_xm6Hh-
VIKOUD7jFEKKNA?e=VQCXbe.

[3] Matteo Brucato, Tarique Siddiqui, Wentao Wu, Vivek Narasayya, and Surajit
Chaudhuri. 2024. Wred: Workload Reduction for Scalable Index Tuning. Proc.

Microsoft. 2025. Azure SQL Database. https://azure.microsoft.com/en-us/
products/azure-sql/database.

Microsoft. 2025. CREATE INDEX (Transact-SQL). https://learn.microsoft.com/en-
us/sql/t-sql/statements/create-index- transact-sql?view=sql-server-ver16.
Microsoft. 2025. Intro to Query Execution Bitmap Filters. https:
//techcommunity.microsoft.com/t5/sql- server-blog/intro-to-query-execution-
bitmap-filters/ba-p/383175.

Microsoft. 2025. Program for TPC-H Data Generation with Skew. https://www.
microsoft.com/en-us/download/details.aspx?id=52430.

w
—

™
S

@
&

ACM Manag. Data 2, 1, Article 50 (2024), 26 pages. [34] Microsoft. 2025. Table hints (Transact-SQL). https://learn.microsoft.com/en-
[4] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning: us/ sql/t-sql/queries/ hlnts—trans'act— sql-table?view=sql-server-ver16.
A Relaxation-based Approach. In SIGMOD. 227-238. [35] Lili Mou et al. 2016. Convolutional Neural Networks over Tree Structures for

Programming Language Processing. In AAAIL 1287-1293.

Debjyoti Paul, Jie Cao, Feifei Li, and Vivek Srikumar. 2021. Database Workload

Characterization with Query Plan Encoders. PVLDB 15, 4 (2021), 923-935.

[37] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2021. DBA bandits: Self-driving index tuning under ad-hoc,
analytical workloads with safety guarantees. In ICDE. 600-611.

[38] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata

Borovica-Gajic. 2022. HMAB: Self-Driving Hierarchy of Bandits for Integrated

Physical Database Design Tuning. Proc. VLDB Endow. 16, 2 (2022), 216-229.

Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable

Multi-attribute Index Selection Using Recursive Strategies. In ICDE. 1238-1249.

[40] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The Case for
Automatic Database Administration using Deep Reinforcement Learning. CoRR
abs/1801.05643 (2018).

[41] Jiachen Shi, Gao Cong, and Xiaoli Li. 2022. Learned Index Benefits: Machine

[5] Surajit Chaudhuri and Vivek Narasayya. 2020. Anytime Algorithm of Database
Tuning Advisor for Microsoft SQL Server.

[6] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In VLDB. 146-155.

[7] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin "What-if* Index
Analysis Utility. In SIGMOD. 367-378.

[8] Sudipto Das et al. 2019. Automatically Indexing Millions of Databases in Microsoft
Azure SQL Database. In SIGMOD. 666—679.

[9] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A
Scalable, Portable, and Interactive Index Advisor for Large Workloads. Proc.
VLDB Endow. 4, 6 (2011), 362-372.

[10] Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek R. Narasayya. 2021.
DSB: A Decision Support Benchmark for Workload-Driven and Traditional Data-
base Systems. Proc. VLDB Endow. 14, 13 (2021), 3376-3388.

'S
o

@
20,

[11] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and - avec
Vivek R. Narasayya. 2019. Al Meets Al: Leveraging Query Executions to Improve Learning Basf’d I‘ndex Perff)rmance Estimation. PVLDB 15, 13 (2022), 3950-3962.
Index Recommendations. In SIGMOD. 1241-1258. [42] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
[12] Bailu Ding, Sudipto Das, Wentao Wu, Surajit Chaudhuri, and Vivek R. Narasayya. Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our

Findings. In SIGMOD. 99-113.

Tarique Siddiqui, Saehan Jo, Wentao Wu, Chi Wang, Vivek R. Narasayya, and

Surajit Chaudhuri. 2022. ISUM: Efficiently Compressing Large and Complex

Workloads for Scalable Index Tuning. In SIGMOD. 660-673.

Tarique Siddiqui and Wentao Wu. 2023. ML-Powered Index Tuning: An Overview

of Recent Progress and Open Challenges. SIGMOD Rec. 52, 4 (2023), 19-30.

[45] Tarique Siddiqui, Wentao Wu, Vivek R. Narasayya, and Surajit Chaudhuri. 2022.
DISTILL: Low-Overhead Data-Driven Techniques for Filtering and Costing In-
dexes for Scalable Index Tuning. Proc. VLDB Endow. 15, 10 (2022), 2019-2031.

2018. Plan Stitch: Harnessing the Best of Many Plans. Proc. VLDB Endow. 11, 10

(2018), 1123-1136.
[13] Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2017. Leveraging
Re-costing for Online Optimization of Parameterized Queries with Guarantees.
In SIGMOD. 1539-1554. [+
Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Ar-
mando Fox, Michael I. Jordan, and David A. Patterson. 2009. Predicting Multiple
Metrics for Queries: Better Decisions Enabled by Machine Learning. In ICDE.
[15] Yuxing Han et al. 2021. Cardinality Estimation in DBMS: A Comprehensive

=
&

[14

Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752-765.

[46] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.

Proc. VLDB Endow. 13, 3 (2019), 307-319.

[16] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of- . X o . .
the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361-2374. Gary Valentin, Mlchael Zul{an}, Daniel C. Zilio, Guy M. Lohman, and Alan Skelley.
[17] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of 2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.
Errors in the Size of Join Results. In SIGMOD. 268-277. In ICDE‘ 1017119‘ . . .
[18] Andrew Kane. 2017. Introducing Dexter, the Automatic Indexer for Post- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

gres. https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In NIPS. 5998-6008.

Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640-1654.

Xiaoying Wang, Wentao Wu, Vivek R. Narasayya, and Surajit Chaudhuri. 2025.
Esc: An Early-Stopping Checker for Budget-aware Index Tuning. Proc. VLDB
Endow. 18, 5 (2025), 1278-1290.

Xiaoying Wang, Wentao Wu, Chi Wang, Vivek R. Narasayya, and Surajit Chaud-
huri. 2024. Wii: Dynamic Budget Reallocation In Index Tuning. Proc. ACM Manag.

for-postgres-5f8fagb28f27.

[19] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti- (49
mization. In ICLR.

[20] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation of
Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382-2395.

[21] Bartosz Krawczyk. 2016. Learning from imbalanced data: open challenges and
future directions. Prog. Artif. Intell. 5, 4 (2016), 221-232. [51

[50

[22] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. In CIKM. 2105-2108. Data 2,3 (2024), 182. L i X
[23] Kukjin Lee, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2023, [52] Kyu-Young W}}ang. 1985. Index Selection in Relational Databases. In Foundations
Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft of Data Organization. 4877_500‘ . .
SOL Server. Proc. VLDB Endow. 16, 11 (2023), 2871-2883. [53] Wentao Wu. 2025. Hybrid Cost Modeling for Reducing Query Performance
[24] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, Regression in Index T}mmg IEEE Trarts. K"UWI‘ Data Eng. 37, 1 (2025), 379-391.
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB [54] Wentao Wu, Yun Chi, Hakan Hacigiimiis, and Jeffrey F. Naughton. 2013. To-

wards Predicting Query Execution Time for Concurrent and Dynamic Database
Workloads. Proc. VLDB Endow. 6, 10 (2013), 925-936.

Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigiimiis, and
Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer cost
models really unusable?. In ICDE. 1081-1092.

Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based
Query Re-Optimization. In SIGMOD. 1721-1736.

Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek R. Narasayya,
Surajit Chaudhuri, and Philip A. Bernstein. 2022. Budget-aware Index Tuning
with Reinforcement Learning. In SIGMOD. 1528-1541.

Wentao Wu, Xi Wu, Hakan Hacigiimiis, and Jeffrey F. Naughton. 2014. Uncer-
tainty Aware Query Execution Time Prediction. PVLDB 7, 14 (2014), 1857-1868.
Ritwik Yadav, Satyanarayana R. Valluri, and Mohamed Zait. 2023. AIM: A practical
approach to automated index management for SQL databases. In ICDE.

Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658-1670.

9,3 (2015), 204-215.

[25] Jiexing Li, Arnd Christian Konig, Vivek R. Narasayya, and Surajit Chaudhuri. 2012.

Robust Estimation of Resource Consumption for SQL Queries using Statistical

Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555-1566.

Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Al-

saadi. 2017. A survey of deep neural network architectures and their applications.

Neurocomputing 234 (2017), 11-26.

[27] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705-1718.

[28] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural

Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11

(2019), 1733-1746. [59

Microsoft. 2025. Apply a Fixed Query Plan to a Plan Guide. https:

//learn.microsoft.com/en-us/sql/relational- databases/performance/apply-

a-fixed- query-plan-to-a-plan-guide?view=sql-server-ver16.

[55

[26

[56

[57

[58

[29

[60

14

https://1drv.ms/f/c/825796278ed48a9e/EuqYl4iRmt1KjFB6goqUSDMBC_xm6Hh-V9K0UD7jFEKkNA?e=VQCXbe
https://1drv.ms/f/c/825796278ed48a9e/EuqYl4iRmt1KjFB6goqUSDMBC_xm6Hh-V9K0UD7jFEKkNA?e=VQCXbe
https://1drv.ms/f/c/825796278ed48a9e/EuqYl4iRmt1KjFB6goqUSDMBC_xm6Hh-V9K0UD7jFEKkNA?e=VQCXbe
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://learn.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/apply-a-fixed-query-plan-to-a-plan-guide?view=sql-server-ver16
https://azure.microsoft.com/en-us/products/azure-sql/database
https://azure.microsoft.com/en-us/products/azure-sql/database
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver16
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16

Est:7.1K, |
Act:31.3K|

ET: 11ms OptE:5.9,

Est:29.8K, |
Act:31.3K]

19: HashJoin
ET: 0.56s OptE:143.5

Etl8K, Est4,
Est68K, / N o Bst8M, Act:7.8K » Act:31.3K
Act:7.8K » 4 Act:31.3K Ve Ve

24:1 Scek(8M))
ET: 5ms OptE:0.0
__[partsupp]...])

23:1 Seck(2M))
ET: 3ms OptE:0.3
_ [part])

(" 22:T Scan(2M)
ET: 0.10s OptE:26.9
g [part]

25: T_Scan(8M)
ET: 0.40s OptE:116.2
[partsupp]...]

(a) Before plan pb (b) After plan P¢

Figure 13: Illustration of the “gain pattern” GP-1.

Est:16, |
Act2.3K|

40: C1_Seck(36.2M;
ET: 3.85 OptE:0.0

6: INLI :
feast_info...] [ci]

ET: 3.25 OptE:16.0),

27:1 Seek(36.2M)
ET: 4ms OptE:0.0
[cast_info...] [ci]

4: HashJoin
ET: 0.16s OptE:8.7,

7: HashJoin
ET: 3.25 OptE: 16.0,

38: 1_Seek(36.2M

ET: 34ms OptE:0.0
[east_info... [ei]

5:1_Scan(134.2K)

6: INLJ
ET: 20ms OptE:0.5
ET: 0.14s OptE:8.0,
[keyword] [k]

(b) After plan P¢
Figure 14: Illustration of the “gain pattern” GP-2.

8: CI_Scan(134.2K]

: I)
’
ET: 3.1 OpiE: 15,0
keyword]]

(a) Before plan pb

43: StreamAgg
ET: 13.75 OptE:8.1

44: INLJ
ET: 13.7s OptE:8.1

59: CI_Seek(250K)
ET: Oms OptE:0.0

Est:102K,
Act:50.2M

Est3SK,
Act4.3K

52: HashJoin

60: 1_Seek(250K)

ET: Oms OptE:0.0
(s2:Sweamagg) (_55:TSpool) ET: 21ms OptE:04 P
(er: 20ms OptE:sg (Er: 9.25 OptE:s.0) . [customer_..]
” Est:1.8K, N Bstl02K,
Est:1.8K, | Est:102K, g
Act 18Ky Act:102K AP QL ACtIOK

(54: C1_Scan(102K)) ((56: CI_ Sean(102K)) 53: 1 Seek(102K)
[ET: 17ms OptE:4.9 | | ET: 23ms OptE:4.9 | ET: Oms OptE:0.0

k [item] J k [item] J ___[item])
(a) Before plan pb (b) After plan P¢
Figure 15: Illustration of the “gain pattern” GP-3.

A Beneficial Indexes and Patterns

55: 1 Scan(102K)
ET: 14ms OptE:0.4
[item]

Index recommendations are often beneficial as they help the query
optimizer in finding more efficient ways to access the base tables.
Below, we present a few representative examples of such improve-
ments, and compare the plans before and after implementing the
index recommendation. We call these beneficial indexes and their
patterns the “gain patterns” (GPs).

A.1 Avoiding Expensive Scan (GP-1)

In Figure 13(a), we show the bottleneck operators for query 2 of TPC-
H. The most expensive operator of the “before plan” is the Table
Scan operator for the base table partsupp with total cardinality of
8 million (node 25, highlighted in pink color), although only 31K

15

rows satisfy the filter and join predicates. The “after plan,” as shown
in Figure 13(a), uses the recommended index to efficiently access
the corresponding table with an Index Seek operator (node 24,
highlighted in green color). We find many such examples where
index helps in avoiding expensive scan on a large table.

A.2 Avoiding Extra Lookup (GP-2)

As a second example for beneficial indexes, we show the “before
plan” and “after plan” for query 26b from JOB in Figure 14. Ob-
serve that the “before plan” first uses an index on a foreign key
column of the cast_info table to evaluate the join predicate (node
38) and then accesses the clustered index on cast_info to access
other columns that are required to join with the remaining tables.!
This access to the clustered index turns out to be expensive (see
node 40, highlighted in pink color). The “after plan” uses the rec-
ommended index with included columns to retrieve all required
columns from cast_info (node 24, highlighted in green color) and
helps avoid the extra expensive lookup from the clustered index.

A.3 Avoiding Spool Operator (GP-3)

In the third example shown in Figure 15, we find that the “before
plan” for DSB query 60 uses a Table Spool operator (node 55)
together with clustered index scan (node 56) to join with a relatively
small table item (with 100K rows). When executed, the nested-loop
join with the spool operator (nodes 51 and 55) turns out to be expen-
sive as the number of rebinds are higher at run-time (highlighted
in pink color). The recommended index leads to an “after plan”
that avoids the use of spool operator and executes the join faster
using Hash Join with non-clustered indexes (nodes 52 and 55,
highlighted in green color).

B An Overview of Found QPRs

Figures 16 to 29 present the distributions of the percentage im-
provement/regression regarding query plan execution time (by
comparing the “after plan” P? with the “before plan” P?) over all
workloads studied for the three index tuning scenarios, namely,
one-shot tuning, incremental tuning, and evolutionary tuning.

We observe that the chance of regression is relatively small com-
pared to that of improvement, which is expected as index tuning
in general accelerates query execution. However, when regression
happens, it can be significant—we observe a considerable fraction
of regressions with a slowdown of more than 2x in terms of query
execution time on certain workloads. Examples include one-shot
tuning of JOB (Figure 18(a)), incremental tuning of TPC-H (Fig-
ure 16(b)), evolutionary tuning of Real-LO (Figure 21(c)), and more.

C Algorithm Details for Index Tuning Scenarios

C.1 One-shot Index Tuning

Algorithm 6 presents the algorithmic details of the data generation
process of one-shot index tuning.

C.2 Incremental Index Tuning

Algorithm 7 presents the algorithmic details of the data generation
process of incremental index tuning.

!This is also called a Key Lookup in Microsoft SQL Server.

Probability Density =—=

o

oo
SOSFHTRO
]

0,
0. =t =t 1
N N N N N N NN
/q/@ \QQ\ y?\ /q?\ /\Q\ ﬂ)}e\ ;19\ :?Q\ a§°\ sp\ \QQ\
AT L S L L L
SR IR O

% Improvement of P2 over PP in execution time

(a) One-shot Index Tuning

Probability Density —=
0.25

0.15

0.1

oos| g I H1
> > > o>

S 7S S ST ST S °\°\§°\°\0°\ S
P \J’ el g g RS N o
SISV FABEN I

\

% Improvement of P? over PP in execution time

(b) Incremental Index Tuning

Probability Density —=——=

035

0.3 e

0.25

0.2

0.i5 ‘

0.1

003 el e

N N NN

m@\ \@\ /%\ /,LQ\ /\Q\ }Q\ \ ,}Q\ : 9?0\ \@Q\ \gﬁ\ \@\
PR P P R P
L ST ST ST S eSS
K& X

% Improvement of P2 over PP in execution time

(c) Evolutionary Index Tuning

Figure 16: Distribution of performance improvement/regression for TPC-H plan pairs collected.

Probability Density ==—=1

|

PN
Q;Qu\

D o
S
o

s
N

% Improvement of P? over PP in execution time

(a) One-shot Index Tuning

Probability Density ==—=1
0.25

0.2

0.15

0.1

e B o W HH 0f
> N

% Improvement of P over PP in execution time

(b) Incremental Index Tuning

Probability Density ==—=1

0.4 =

0.35

0.3

0.25 =

0.2

0.15

0.1

0.05

° > D> > o>
B o> P \Q“.,\a
AP g N
S 8 g
@ &

% Improvement of P? over P in execution time

(c) Evolutionary Index Tuning

Figure 17: Distribution of performance improvement/regression for DSB plan pairs collected.

Probability Density —=

% Improvement of P? over PP in execution time

(a) One-shot Index Tuning

Probability Density —=

Eoﬂ | o mon H a1
SO oD oD I I O D D D D D
0 50 S S S S
IS
FE Y

% Improvement of P2 over PPin execution time

(b) Incremental Index Tuning

Probability Density ——=

| cnooll ol
D D D D D D D D D B
Sl \@\ \ &) s \@0\ S

S I LIRS U AN R LS
S E S

% Improvement of P2 over PPin execution time

(c) Evolutionary Index Tuning

Figure 18: Distribution of performance improvement/regression for JOB plan pairs collected.

Probability Density ——

0000000
ospwhneN

% Improvement of P? over PP in execution time

(a) One-shot Index Tuning

Probability Density ——=

Probability Density ———=

= o |

o000 00
oxhwrmo

% Improvement of P? over PP in execution time

(b) Incremental Index Tuning

oooo0oo
oLhwhrm®

% Improvement of P over PP in execution time

(c) Evolutionary Index Tuning

Figure 19: Distribution of performance improvement/regression for STATS plan pairs collected.

Probability Density =—=
0.25

0.15 1
0.1

0.08 ’_’ H

% Improvement of P? over PP in execution time

(a) One-shot Index Tuning

Probability Density =—=

0.4

0.35

0.3

0.35

%8 m

o |

008 [l |5 [l il

o D dD I I I I D I D

S S S S
R L L SR IRCL A A e
L@°\,@\;&~o@@

% Improvement of P? over P® in execution time

(b) Incremental Index Tuning

Probability Density ——=

P

N
&
AR

% Improvement of P2 over PPin execution time

(c) Evolutionary Index Tuning

Figure 20: Distribution of performance improvement/regression for Real-DY plan pairs collected.

Probability Density —=

% Improvement of P2 over PP in execution time

(a) One-shot Index Tuning

Probability Density =—=

o

Probability Density =—=

o
OO

oo o

S F S S S S S S
A S R L L L L
F S E S
[VAN

&Y

% Improvement of P? over PP in execution time

(b) Incremental Index Tuning

O00009
oLnvwrOD

oo’

N
\/‘o

% Improvement of P2 over PP in execution time

(c) Evolutionary Index Tuning

Figure 21: Distribution of performance improvement/regression for Real-LO plan pairs collected.

16

Probability Density =—= Probability Density =—= Probability Density =—=

0.3 0.25 0.3 —
I o2 Ml I
0.15 oe 0.15 [T
0.1 - H 1 005 — H H H 0.1 1
oos | aaa] I L] S o 008 ST e SIS
R R S e N e N R P NP N S S e e R I R e S I N O S S
S S SIS S S S S S S S S E S S S S S S
g $ g g ST S ST S e £ g § g g S ST ST S e oo & g S S S S
VY N K& X
% Improvement of P2 over PP in execution time % Improvement of P? over PP in execution time % Improvement of P2 over PP in execution time
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning
Figure 22: Distribution of performance improvement/regression for Real-MS plan pairs collected.
Probability Density ==—= Probability Density ==—=1 Probability Density ==—=1
0.6 0.7
0.5 0.6 il
0.4 0.5
0.3 0.4
- 0.3
8-? 02
B o1 i =
> q,o‘""\ @.,\a\ %B,,\o\ qd,\u\ \Q‘,\b\
S G0 d e N
SR
% Improvement of P? over PP in execution time % Improvement of P over PP in execution time % Improvement of P? over PP in execution time
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning
Figure 23: Distribution of performance improvement/regression for Real-RE plan pairs collected.
Probability Density —= Probability Density —= Probability Density —=
0.4 0.25
%53] 02 -
0.25 1 -
23 f] 0.15
ofs = 1 0.1 H
X 1 T 1 0.05 |
otk |] == o N I
L S S S D I O SO oD oD I I O D D D D D o I I A - Y
$° ;o“\ ;19\ /\Q\ \:\Q\ \{19\ \(?\ \%’Q\ WQ \QQ\ /Q\ ,’LQ\ /\0\ \’)Q\ \(}Q\ \‘Q\ \‘“\ \%0\ \@\ o 3 /Q\ /'19\ /\Q\ \:\Q\ \?Q\ \(?Q\ \@0\ \{}Q\ @0\
Q@\ S q9\ RS SR P @"\m \QQ\ @\ 'LQ\ S S @Q\ P §°\m @Q\ v,“\ q/%\ S S S @0\
N P ¥ PN Y
Y \
% Improvement of P2 over PP in execution time % Improvement of P2 over PPin execution time % Improvement of P2 over PPin execution time
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning
Figure 24: Distribution of performance improvement/regression for Real-DW plan pairs collected.
Probability Density == Probability Density == Probability Density =—=1
0.5 OOSg
04 - 1 0.35 .
0.3 1 iz I]
0.2 1)]
01 i 0.1 Il !_‘ ‘\]
e : al il 083 el E
O D I R e e I I S e do 0 D I D D I D B D
$P $ \@\ {LQQ\ \@\ S LR L LS P WQQ\ SIS '}Q\ S \@\
$° S @ Z ol § 0 9 ST ST S ST S g P U U USRI S A ST
e ¢ & " S S YT e ey %Qs\ S HH YT e &
X \
% Improvement of P? over PP in execution time % Improvement of P over PP in execution time % Improvement of P? over PP in execution time
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning
Figure 25: Distribution of performance improvement/regression for Real-ED plan pairs collected.
Probability Density == Probability Density == Probability Density ===1
0.35 0.4 — 0.35 —
0.3 il 0 0.3
0023 0.25
- 0
o I o B I
A M A+ .
t e obg fo e]] 063 f)]
o O A D D D D D D g S I S e I S T S R o 0D dd I D D D D EEES
5 @\ ;a\ ;L"\ /\Q\ \;‘\Q\ \‘,‘PQ\ \:?Q\ L \;?Q\ &Q\ & \Q\ /b\ /q/Q\ /\\ \;}Q\ \;29\ \;:\ \&Q\ \g°\ \@\ 5 \Q\ /@\ /Q\ /\Q\ \30\ g)¢ : c‘(’9\ \;39\ \:‘@\ \@\
EEPTEN L IR g § ST ST ST S S gl 8 g ST S S S S
o v s R N S N X
X N \
% Improvement of P? over Pin execution time % Improvement of P2 over P%in execution time % Improvement of P2 over PPin execution time
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning

Figure 26: Distribution of performance improvement/regression for Real-MP plan pairs collected.

Probability Density =—= Probability Density =—= Probability Density =—=
o 2 o3 o3 :
0.3 028 0.3 :
035 0.2 025 1
62 . 0.15 62 .
0.15] 0.1 | 0.15 1
0.1 | . ogs | 0.1 .
003 o1 0 : I 00 003 :
o 0D D D IS IS IS I I D B . S N NP NP NP
NG N \u>°\ \GP\ \:e\ \59\ \09"\ & $ s S \g"\ \39\ \OP\ \3?\ \;@°\ &
gl § 0 g ST ST T S S g $° 0 ST ST S S S
s S s N & & $ S & & e 8
K& ¥ &Y
% Improvement of P2 over PP in execution time % Improvement of P? over P? in execution time % Improvement of P2 over PP in execution time
(a) One-shot Index Tuning (b) Incremental Index Tuning (c) Evolutionary Index Tuning

Figure 27: Distribution of performance improvement/regression for Real-SE plan pairs collected.

17

Probability Density =—=

Probability Density =—=

o - 53
o? 025
| —— NSNS
0d Ll | [— 0.08 . | |
T I N N e R S N N A o
P P P PP P gD o P P P PP P P P
AR A G L L O AE AR S C AR LR L S L LY
S SFE S S ¢ SIS TS
A N

% Improvement of P2 over PP in execution time

(a) One-shot Index Tuning

% Improvement of P? over PP in execution time

(b) Incremental Index Tuning

Probability Density —=——=

% Improvement of P2 over PP in execution time

(c) Evolutionary Index Tuning

Figure 28: Distribution of performance improvement/regression for Real-RM plan pairs collected.

Probability Density —=

Probability Density ==

Probability Density ==

035 05 07
o 04 o8
0.2 03 04
%3 M 02 03 m
5 | 0.1 i X I
0.08 | =0 o | O o4 il
T L A R R e e SRR R e e I DR DS B S Dt
ST ST 70 S S S $TE S S S S PASHE T AP S
7 ol @ el gt \o\” @0\0 q§\° (ga\ﬂ q§\° < Va FRANFCEFEgT \Qw\° \Qn\ﬂ {790\0 o’a\v ‘ba\ﬂ o Va gl 9 @ ot \Qu\ﬂ \Qw\° (790\“ <§\° %o\v e
SRS AN S) PSRRI ASEE G) IR IS S VAN & ¢
RN AN S &
¢ \

% Improvement of P2 over PP in execution time

(a) One-shot Index Tuning

% Improvement of P? over PP in execution time

(b) Incremental Index Tuning

% Improvement of P2 over PP in execution time

(c) Evolutionary Index Tuning

Figure 29: Distribution of performance improvement/regression for Real-SA plan pairs collected.

Algorithm 8: Evolutionary index tuning.

Algorithm 7: Incremental index tuning.

Input: A, the index tuner; W, the workload; Cy, the initial
configuration of the database.

Output: DS, the data collected for evolutionary index tuning.

w
1 Da’,"l — 0
2 foreach queryq € W do
3 C « TuneQuery (A, q,Co);
4 Materialize C;
5 P — 0;
6 foreach subset S ¢ C do
Ps « GetPlan(q, S), ts < RunQuery(q, Ps);
P PU{(qPs,ts)};
9 foreach pair (q, Py, P2, t1,82) € P X P do

7

8

10 Sort the pair to make sure cost(P;) > cost(P;);
n Da//dHD;‘&MU{(Q,PbPz,th)};

evol .
12 return Dw ;

Input: A, the index tuner; W, the workload; Cy, the initial
configuration of the database.
Output: D", the data collected for incremental index tuning.

' w
1 DYy < 0;
2 foreach queryq € W do
3 fori=1,...do
4 P;_; « GetPlan(q, Ci_1), ti—1 < RunQuery(q, Pi_1);
5 I; « TuneQuery(A,q,Ci-1);
6 if I; is null then
7 ‘ Break;
8 Materialize I;;
9 Ci — Ci.qU{L};
10 P; « GetPlan(q, C;), t; < RunQuery(q, P;);
1 D¢ — DU {(q, Pi—1. Pi. ti-1. 1) }:

12 return D{/’l‘f ;

Algorithm 6: One-shot index tuning.

C.3 Evolutionary Index Tuning

Input: A, the index tuner; W, the workload; Cy, the initial
configuration of the database.
Output: DY, the data collected for one-shot index tuning.
1 DYy, < 05
2 foreach queryq € W do
3 Py « GetPlan(q, Cy), to < RunQuery(q, Py);
4 C « TuneQuery(A, q,Co);
5 Materialize C;
6 P « GetPlan(q, C), t < RunQuery(q, P);
7 D3y, « Dy, U {(q.Po, P, to, t) };
8 return Dﬁ, ;

Algorithm 8 presents the algorithmic details of the data generation
process of evolutionary index tuning.

18

	Abstract
	1 Introduction
	2 Index Tuning Data Generation
	2.1 Index Tuning Scenarios
	2.2 Results of Index Tuning Data Collected
	2.3 Distributions of QPR

	3 Regression Pattern Analysis
	3.1 Taxonomy of Regression Patterns
	3.2 Summary and Discussion

	4 Pattern-based QPR Detector
	4.1 Characterization of Expensive NLJ
	4.2 Regression Pattern by Expensive NLJ
	4.3 QPR Detection Algorithm
	4.4 Other Regression Patterns

	5 Experimental Evaluation
	5.1 Experiment Settings
	5.2 ML-based QPR Detection
	5.3 Pattern-based QPR Detection
	5.4 Analysis of Pattern-based QPR Detector
	5.5 Other Evaluation Results

	6 Related Work
	7 Conclusion
	References
	A Beneficial Indexes and Patterns
	A.1 Avoiding Expensive Scan (GP-1)
	A.2 Avoiding Extra Lookup (GP-2)
	A.3 Avoiding Spool Operator (GP-3)

	B An Overview of Found QPRs
	C Algorithm Details for Index Tuning Scenarios
	C.1 One-shot Index Tuning
	C.2 Incremental Index Tuning
	C.3 Evolutionary Index Tuning

