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Abstract
Existing index tuners typically rely on the “what if” API provided

by the query optimizer to estimate the execution cost of a query on

top of an index configuration. Such cost estimates can be inaccurate

and may therefore lead to significant query performance regres-

sion (QPR) once the recommended indexes are materialized. This

becomes a serious problem for cloud database providers, such as

Microsoft’s Azure SQL Database, that offer index tuning as an auto-

mated service (a.k.a. “auto-indexing”). Previous work has explored

use of supervised machine learning (ML) to reduce the likelihood

of QPR. However, the trained ML models have limited generaliza-

tion capability when applied to new databases and workloads. We

propose an alternative approach where we analyze the query plan

pairs with significant QPRs and look for structural changes due to

the new index configuration that could explain the QPR. We per-

form such study for index tuning data across many benchmark and

real-world database workloads, for multiple realistic index tuning

scenarios. Our study reveals that most of the significant QPRs can

be attributed to a small number of common “regression patterns”

characterizing the structural plan changes, and we further propose

a pattern-based QPR detector accordingly. Our experimental evalu-

ation shows that the pattern-based QPR detector can significantly

outperform existing ML-based QPR detectors.

1 Introduction
Index tuning is critical to accelerating query execution in mod-

ern database systems. Existing index tuners typically rely on the

“what-if” API provided by the query optimizer [6, 7, 47], as illus-

trated in Figure 1, that allows for estimating the execution cost

of a query given a configuration (i.e., a set) of proposed hypotheti-
cal indexes, as well as their associated statistics, without actually

materializing the indexes. However, what-if cost estimation is still

based on query optimizer’s cost model, which can be inaccurate

for reasons such as cardinality estimation (CE) errors and may

therefore lead to significant query performance regression (QPR)

when the recommended indexes are eventually deployed [8, 59].

That is, the execution of a query becomes much slower by using

the recommended indexes. QPR has been a serious problem for

cloud database providers that offer index tuning as an automated
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Figure 1: The architecture of cost-based index tuning with
what-if query optimizer calls andQPR detection. [Notation:𝑞,
a SQL query;𝐶𝑏 , the existing index configuration (i.e., “before
configuration”); 𝐶𝑎 , the index configuration recommended
by the index tuner (i.e., “after configuration”); 𝑃𝑏 , the “before
plan” of 𝑞 on top of𝐶𝑏 ; 𝑃𝑎 , the “after plan” of 𝑞 on top of𝐶𝑎 .]
service (a.k.a. “auto-indexing”). As was reported by [8], around 11%

of the indexes that were automatically created by the auto-indexing

service offered by Microsoft’s Azure SQL Database [30] had to be

reverted due to QPR. Therefore, detecting QPR before materializ-

ing the recommended indexes can help significantly reduce the

operational cost of cloud auto-indexing service.

We aim to develop a low-overhead technique for QPR detection.

Specifically, consider a query 𝑞 and the existing configuration, i.e.,

“before configuration”,𝐶𝑏
, for which the index tuner proposes a new

configuration, i.e., “after configuration”, 𝐶𝑎
. Even before deploying

𝐶𝑎
, we can make a what-if call (𝑞,𝐶𝑎) to the query optimizer that

returns the query plan of 𝑞 for the “after configuration” 𝐶𝑎
, as

shown in Figure 1. We call this query plan the “after plan” and

denote it with 𝑃𝑎 , to distinguish it from the “before plan” 𝑃𝑏 of 𝑞

on top of the existing configuration 𝐶𝑏
that the index tuner aims

to improve over. The goal of QPR detection is to decide whether

the execution time of 𝑃𝑎 will be significantly higher than that of

𝑃𝑏 without executing 𝑃𝑎 , though the execution information of 𝑃𝑏

is presumed available. If no QPR is detected, the configuration 𝐶𝑎

can then be materialized for accelerating the execution of 𝑞. There

has been recent work on addressing QPR detection and reduction

in the context of index tuning [11, 41, 53, 60]. Most of this work

applies supervised machine learning (ML) to build classification

or regression models to predict/detect QPR. However, ML-based

QPR detectors often exhibit poor generalization capability when

evaluated on new databases and workloads that are not included in

the training data, notwithstanding their nontrivial overhead.

In this paper we propose an alternative approach where we

analyze the query plan pairs with significant QPRs and look for

structural changes due to the new index configuration that could

explain the QPR. We perform such study for index tuning data

collected offline across many benchmark and real-world database
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workloads. Our study reveals that most of the significant QPRs can

be attributed to a small number of common “regression patterns”

characterizing the structural plan changes, and we further propose

a pattern-based QPR detector accordingly. Our experimental evalu-

ation shows that the pattern-based QPR detector can significantly

outperform existing ML-based QPR detectors.

Collection of Index Tuning Data. In the classical sense, index tuner
tunes a given query/workload by recommending a configuration

including all indexes that can improve the execution performance

at once. We use the term one-shot tuning to represent this clas-

sic index tuning scenario that has been studied extensively in the

literature, e.g., [5, 6, 47, 52]. However, in modern cloud database

services, such as Microsoft’s Azure SQL Database [30], indexes need

to be optimized in a continuous manner [8] to adapt to evolving

workloads and manage storage constraints. We therefore also col-

lect data from two more scenarios that represent real-world index

tuning applications: (1) incremental tuning, which constrains the

index tuner in terms of the number of indexes it should return and

performs tuning in an incremental manner until no more indexes

can be recommended; and (2) evolutionary tuning, which simulates

index evolution (e.g., deletion of existing indexes or introduction

of new indexes) from a well-tuned database for reasons such as

storage constraints. These two scenarios aim at capturing more

QPRs that could emerge from such dynamic environments as in

cloud auto-indexing services. We collect 1.2 million data points

following these tuning setups, where each data point represents

a pair of “before plan” 𝑃𝑏 and “after plan” 𝑃𝑎 . As expected, index

recommendations are beneficial for a large number of plan pairs,

and we highlight representative examples of such benefits in the

full version of the paper [2]. However, this paper focuses primarily

on the regressed cases (QPRs).

Analysis of QPRs. We then analyze the QPRs that appear in the

collected index tuning data to understand their root causes. Sur-

prisingly, we find that most of the QPRs can be attributed to a small

set of regression patterns that are simple and easy to understand. A

regression pattern characterizes some “local” change or transfor-

mation in terms of query plan structure. For example, the regressed

“after plan" misses the pushdown of an aggregation (ref. Figure 4)

or a bitmap filter (ref. Figure 5) that is performance critical. We

further develop a taxonomy that categorizes regression patterns

into two general categories: (c1) QPRs due to problematic change of

access path between 𝑃𝑏 and 𝑃𝑎 , and (c2) QPRs due to critical opti-

mizations that were present in 𝑃𝑏 but missing in 𝑃𝑎 . The simplicity

of the identified QPR patterns is a strength that makes it easier to

design simple (and therefore computationally more efficient) but

effective pattern-based QPR detectors. The fact that there are only

a handful of major QPR patterns also makes the overall task of

pattern-based QPR detection addressable and manageable. More

importantly, we observe that most of the significant QPRs can be
accounted for by regression patterns from the category (c1) where
the regressed “after plan” 𝑃𝑎 contains an “expensive” nested-loop join
(NLJ) operator that does not appear in the “before plan” 𝑃𝑏 (ref. Fig-
ure 2). The emergence of such expensive NLJ is typically due to

cardinality underestimation errors made by the query optimizer [23]:

the availability of the new indexes inadvertently makes the NLJ

look attractive to the query optimizer in terms of estimated cost.

Although better cardinality estimation could improve query plan

quality and therefore reduce the chance of QPR, the problem of

accurate cardinality estimation has not yet been settled despite

decades of research efforts (see [49]). State-of-the-art ML-based

cardinality estimators [49] could improve cardinality estimation

but with no guarantee on the accuracy. Moreover, they also in-

cur nontrivial overhead of data collection and model training [49].

Therefore, while it may be an interesting direction for future work,

we deliberately avoid using these ML-based cardinality estimators

and make progress in QPR detection through an approach that can

work with existing erroneous cardinality estimates.

Pattern-based QPRDetector. Motivated by the above observations,

we develop a pattern-based QPR detector to identify the “expensive

NLJ” regression patterns before the “after plan” 𝑃𝑎 is executed. This
remains a challenging problem, as we need to precisely characterize
such regression patterns to distinguish harmful NLJs from those

that are indeed beneficial. In particular, we need to estimate (1) the

expensiveness of an NLJ without executing 𝑃𝑎 and (2) the degree

of cardinality underestimation errors rooted in the expensive NLJ,

which are the primary culprit for QPR. To address (1), we develop

two metrics, local expensiveness and global expensiveness. To address
(2), we leverage true cardinality information contained by the “be-

fore plan” 𝑃𝑏 , which is presumably available in the context of QPR

detection for index tuning. Specifically, we develop a metric, cost in-
flation factors, to quantify the degree of cardinality underestimation

errors of the left/outer and right/inner inputs of the NLJ. We then

use the cost inflation factors to recost the NLJ as well as the entire
plan [13, 55, 56]. We further try to match the logically equivalent

join in 𝑃𝑏 , and if we find such a join we recost it as well. Finally, we

recompute the plan costs based on the recosted joins and infer QPRs

based on the new costs. Albeit a relatively simple approach, our

experimental evaluation shows that it can significantly outperform

existing ML-based QPR detectors, which currently do not use the

true cardinality information of the “before plan” 𝑃𝑏 . It is non-trivial

to extend existing ML model designs to include this information,

which might be interesting future work. Our evaluation shows that,

even without the use of sophisticated ML-based cardinality esti-

mators, our low-overhead approach based on cost inflation factors

can already detect most QPRs successfully (Section 5). ML-based

cardinality estimators would further improve the results reported

in this paper if their overheads could be reduced.

Contributions, Limitations, and Future Work. To summarize, this

paper makes the following contributions:

(C1) We conduct an empirical QPR analysis using large amount of

data collected from practical index tuning scenarios (Sections 2). To

the best of our knowledge, we are not aware of any previous work

on systematically understanding QPRs based on large-scale data

generated by following real industrial index tuning applications.

(C2)Wefind that most of the QPRs can be attributed to a small set of

regression patterns characterizing the structural changes between

the “before plan” and the “after plan”, and we further present a

taxonomy of the regression patterns (Section 3).

(C3) We develop a pattern-based QPR detector based on the obser-

vation that the majority of the significant QPRs found in our data can
be attributed to the emergence of expensive NLJs in the “after plan”
(Section 4), and our experimental evaluation results demonstrate
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Name DB Size # Queries # Tables # Joins # Scans
TPC-H sf=10 22 8 2.8 3.7

DSB sf=10 67 24 7.7 8.8

JOB 9.2GB 108 21 7.9 2.5

STATS 223MB 91 8 3.3 4.3

Real-DY 587GB 29 7912 15.6 17

Real-LO 108GB 31 1151 8.1 8.9

Real-MS 26GB 39 474 20.2 21.7

Real-RE 100GB 21 20 6.5 7.2

Real-DW 13GB 107 20 6.3 6.9

Real-ED 210GB 36 23 8.8 8.2

Real-MP 2.9GB 127 8 1.6 2.9

Real-SE 256GB 19 3391 5.9 6.9

Real-RM 60GB 15 7 1.9 2.9

Real-SA 40GB 12 32 7.3 9.7

Table 1: Summary of database and workload properties.

that the pattern-based QPR detector can significantly outperform

state-of-the-art ML-based QPR detectors (Section 5).

While the list of regression patterns presented in this paper is

based on the large-scale index tuning data we collected, it is by

no means an exhaustive list—we do not rule out emergence of

new regression patterns given new databases and workloads. Also,

a case-by-case approach may be required to apply each specific

regression pattern to practical QPR detection. For instance, if aggre-

gation or bitmap filter pushdown appears to be the major regression

pattern on a particular database workload, then one may want to

design a QPR detector that focuses on finding such missed push-

downs. In this spirit, the pattern-based QPR detector developed

in this paper that focuses on detecting expensive NLJs serves as

such an example. Moreover, the regression patterns also provide

useful clues for correcting the corresponding QPRs. For example,

with the notation used in Figure 1, if an index 𝐼 ∈ 𝐶 is the culprit of

introducing a slow nested-loop join in 𝑃𝑎 that results in a QPR of

𝑃𝑎 over 𝑃𝑏 , then one may hint the query optimizer [34] to not use

the problematic index 𝐼 . Exploration of such more advanced “QPR

correction” mechanisms (beyond the naive mechanism of reverting

all recommended indexes upon QPR [8]) is beyond the scope of this

paper, which can be fertile ground for future research.

Availability. Some of the artifacts, e.g., QPR details of the public

benchmark workloads, are available at [2].

2 Index Tuning Data Generation
LetA be an index tuner, 𝐷 be a database, and𝑊 be a (multi-query)

workload. Let 𝐶0 be the initial configuration of the database 𝐷 . Un-

like most of the previous work that mainly concerns with indexes,

the term “configuration” in this paper refers to both indexes and sta-
tistics. This is motivated by the observation that some index tuners,

such as the Database Tuning Advisor (DTA) developed forMicrosoft

SQL Server [5], recommend both indexes and statistics with the

contract that the estimated benefits of the recommended indexes

are based on creating the recommended statistics simultaneously.

Moreover, some database systems, such as Microsoft SQL Server,

automatically update the corresponding statistics when an index

is created [31]. As a result, indexes and statistics are indispensable

counterparts in practical index tuning applications.

2.1 Index Tuning Scenarios
We focus on the following setups that emerge from practical index

tuning scenarios for collecting index tuning data. Each data point

collected represents a pair of “before plan” and “after plan” returned

Workload #Queries #OneShot #Inc. #Evol.
TPC-H 22 22 49 1,156

DSB 65 67 191 543,198

JOB 108 108 199 189,320

STATS 91 91 184 38,773

Real-DY 29 29 140 143,255

Real-LO 31 31 42 12,779

Real-MS 39 39 47 199,415

Real-RE 21 21 44 2,704

Real-DW 107 107 37 17,916

Real-ED 36 36 12 875

Real-MP 127 127 12 9,583

Real-SE 19 19 17 9,224

Real-RM 15 15 6 55

Real-SA 12 12 8 6

Total 724 724 988 1,168,259

Table 2: Summary of the index tuning data collected.

by the query optimizer on top of the existing configuration and the

recommended configuration, respectively.

2.1.1 One-shot Index Tuning. For each query 𝑞 ∈𝑊 , we run the

index tuner A to tune the query 𝑞 on top of the initial configu-

ration 𝐶0. Let 𝐶 be the configuration returned by A after tuning.

Moreover, let the two query plans of 𝑞 on top of 𝐶0 and 𝐶 be 𝑃0
and 𝑃 , respectively. We run 𝑞 on top of both𝐶0 and𝐶 to record the

execution time 𝑡0 and 𝑡 of the two plans 𝑃0 and 𝑃 . We generate one

pair of plans for the query 𝑞, which is denoted as (𝑞, 𝑃0, 𝑃, 𝑡0, 𝑡). A
formal algorithmic description of one-shot tuning is given in the

full version of this paper [2]. One-shot tuning represents the classic

offline index tuning setup that has been studied intensively in the

literature, e.g., [5, 6, 47, 52].

2.1.2 Incremental Index Tuning. For each query 𝑞 ∈ 𝑊 , we run

the index tuner A to tune the query 𝑞 in an iterative manner. In

each iteration, the index tuner A is constrained to return only one

index based on the current configuration. This new index, if any,

is then materialized and included into the “current configuration”

of the next iteration. The iterative tuning process ends when A
returns nothing. Let 𝐶𝑖 be the configuration returned in the 𝑖-th

iteration by the index tuner, and let 𝑃𝑖 be the plan of 𝑞 on top of 𝐶𝑖

and 𝑡𝑖 be the recorded execution time of 𝑃𝑖 . We generate one pair of

plans (𝑃𝑖−1, 𝑃𝑖 ) for the query 𝑞 in each iteration 𝑖 = 1, 2, ..., which is

denoted as (𝑞, 𝑃𝑖−1, 𝑃𝑖 , 𝑡𝑖−1, 𝑡𝑖 ). A formal algorithmic description of

incremental tuning can be found in the full version [2]. Incremental

tuning is useful when index tuning has to be done concurrently

while the database server is also processing queries, to reduce the

inference or interruption of normal query processing [8].

2.1.3 Evolutionary Index Tuning. For each query𝑞 ∈𝑊 , we run the

index tunerA to tune the query 𝑞 on top of the initial configuration

𝐶0. We then materialize the configuration 𝐶 returned by A. For

each subset 𝑆 of 𝐶 , we obtain the query plan of 𝑞 on top of 𝑆 and

record its execution time. We include a pair of plans (𝑞, 𝑃1, 𝑃2, 𝑡1, 𝑡2)
for two different subsets 𝑆1 and 𝑆2 of 𝐶 by ensuring that the query
optimizer’s estimated cost of 𝑃𝑏 is no less than that of 𝑃𝑎 , where 𝑡1
and 𝑡2 are the execution time of 𝑃𝑏 and 𝑃𝑎 , respectively. See [2] for

a formal algorithmic description of evolutionary tuning.

The evolutionary index tuning setup is motivated by a com-

mon scenario that we have seen in practice: index evolution from a
well-tuned database. Index evolution includes dropping indexes and

creating new indexes, due to reasons such as changes on storage

constraints. Index evolution, e.g., deletion of existing indexes, may

result in QPR, and evolutionary index tuning simulates all possi-

ble outcomes of index evolution. Note that we have intentionally
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Workload #All #QPR %QPR 𝑇 (𝑃𝑏 ) 𝑇 (𝑃𝑎 ) %Impr
TPC-H 22 1 4.55% 0.04h 0.01h 85.33%

DSB 67 2 2.99% 0.05h 0.02h 63.49%

JOB 108 14 12.96% 0.33h 0.22h 33.04%

STATS 91 3 3.30% 0.23h 0.24h -5.95%

Real-DY 29 4 13.79% 0.58h 0.62h -5.82%

Real-LO 31 3 9.68% 0.03h 0.02h 36.13%

Real-MS 39 1 2.56% 0.09h 0.05h 44.26%

Real-RE 21 4 19.05% 0.23h 0.27h -17.35%

Real-DW 107 4 3.74% 0.32h 0.31h 3.14%

Real-ED 36 0 0.00% 2.43h 0.29h 88.12%

Real-MP 127 10 7.87% 0.42h 0.41h 2.38%

Real-SE 19 0 0.00% 0.00h 0.00h 80.28%

Real-RM 15 0 0.00% 0.47h 0.23h 50.58%

Real-SA 12 0 0.00% 0.22h 0.19h 13.41%

Total 724 46 6.35% 5.44h 2.88h 47.16%

Table 3: QPRs emerging in one-shot index tuning. [#All, the
total number of plan pairs; #QPR, the number of plan pairs
with QPRs; %QPR, the percentage of QPR, defined as #QPR

#All ×
100%; 𝑇 (𝑃𝑏 ), the total execution time of all “before plan” 𝑃𝑏 ;
𝑇 (𝑃𝑎), the total execution time of all “after plan” 𝑃𝑎 ; %Impr,
the percentage improvement defined as

(
1 − 𝑇 (𝑃𝑎 )

𝑇 (𝑃𝑏 )

)
× 100%.]

enforced (optimizer estimated) cost(𝑃1) ≥ cost(𝑃2); otherwise, a
reasonable index tuner would not even recommend the configura-

tion corresponding to 𝑃𝑎 . A similar setup has been used in previous

work [11] to generate training data for ML-based QPR detectors,

though the constraint cost(𝑃1) ≥ cost(𝑃2) was not forced.
2.1.4 Discussion. We focused on single-query tuning in our em-

pirical study to avoid complexity that can emerge when tuning a

multi-query workload, which is a more common scenario in prac-

tice. However, it typically requires placing more constraints on the

recommended indexes, such as the maximum number of indexes

allowed or the maximum storage space that can be taken. These

extra constraints can significantly increase the exploration space

of a controlled empirical study. Our single-query tuning setups can

be thought of as tuning a multi-query workload without such con-

straints. As a result, it actually has higher coverage in terms of the

identified regression patterns (see Section 3), some of which may

not appear or appear less frequently when tuning a multi-query

workload with constraints. Index interaction has also been covered

by single-query tuning, since the index tuning algorithm (e.g., a

classic two-phase greedy search algorithm that is implemented

inside DTA [5]) used for enumerating index configurations works

in the same way of tuning a multi-query workload.

2.2 Results of Index Tuning Data Collected
We use standard benchmarks as well as real customer workloads in

our experiments. For benchmark workloads, we use (1) a skewed

version [33] of the TPC-H benchmark, (2) DSB [10], a variant of

the TPC-DS benchmark with more variety on the data distribution,

(3) the “Join Order Benchmark” (JOB) [24], and (4) the “Cardinality

Estimation Benchmark” (STATS) [15]. We also use 10 real work-

loads. Table 1 summarizes some basic properties of the workloads,

in terms of schema complexity (e.g., the number of tables), query

complexity (e.g., the average number of joins and table scans con-

tained by a query), and database/workload size. We use Microsoft

SQL Server 2022 as the DBMS and use DTA as the index tuner.

Table 2 presents the statistics of the index tuning data collected.

We have the same number of plan pairs as that of queries in one-shot

tuning, whereas the number of plan pairs in incremental tuning

Workload #All #QPR %QPR 𝑇 (𝑃𝑏 ) 𝑇 (𝑃𝑎 ) %Impr
TPC-H 49 5 10.20% 0.33h 0.30h 7.96%

DSB 191 18 9.42% 0.11h 0.07h 29.97%

JOB 199 28 14.07% 0.61h 0.47h 21.81%

STATS 184 9 4.89% 0.10h 0.11h -12.81%

Real-DY 140 20 14.29% 8.73h 13.32h -52.53%

Real-LO 42 3 7.14% 0.04h 0.02h 33.19%

Real-MS 47 5 10.64% 0.09h 0.06h 34.91%

Real-RE 44 7 15.91% 0.31h 0.27h 14.34%

Real-DW 37 3 8.11% 0.25h 0.21h 13.68%

Real-ED 12 0 0.00% 0.20h 0.02h 90.51%

Real-MP 12 2 16.67% 0.01h 0.01h -56.32%

Real-SE 17 0 0.00% 0.00h 0.00h 38.75%

Real-RM 6 1 16.67% 0.23h 0.13h 42.43%

Real-SA 8 0 0.00% 0.12h 0.08h 31.73%

Total 988 101 10.22% 11.12h 15.10h -35.77%

Table 4: QPRs emerging in incremental index tuning.

increases by 36.5%. On the other hand, the number of plan pairs

obtained from evolutionary tuning is significantly large, due to the

exponential explosion of subset enumeration.

2.3 Distributions of QPR
We use the notation (𝑞, 𝑃𝑏 , 𝑃𝑎, 𝑡𝑏 , 𝑡𝑎) to denote a general plan pair
in the index tuning data collected, regardless of the specific index

tuning scenarios, where 𝑃𝑏 and 𝑃𝑎 represent the “before plan” and

“after plan” as defined in Figure 1, and 𝑡𝑏 and 𝑡𝑎 represent the

execution time of 𝑃𝑏 and 𝑃𝑎 respectively.

A plan pair (𝑞, 𝑃𝑏 , 𝑃𝑎, 𝑡𝑏 , 𝑡𝑎) is classified as a QPR if
𝑡𝑎

𝑡𝑏
− 1 ≥ 𝜏 ,

where 𝜏 is a regression threshold that measures the degree of QPR.
We set 𝜏 = 0.5 in our analysis, i.e., the elapsed query execution time

of 𝑃𝑎 is at least 50% longer than that of 𝑃𝑏 .

Tables 3 and 4 present the distributions of QPRs emerging in

one-shot and incremental index tuning, where we see around 6.3%

and 10.2% QPRs repectively. While this may seem to suggest that

the chance of QPR is relatively low in practice, it does not mean
that such QPRs are insignificant. To the contrary, some QPRs can be

considerable. To demonstrate this, Tables 3 and 4 further present the

total execution time𝑇 (𝑃𝑏 ) and𝑇 (𝑃𝑎) of 𝑃𝑏 and 𝑃𝑎 for all plan pairs

(𝑃𝑏 , 𝑃𝑎) in each workload as well as the percentage improvement

at workload level. A negative improvement means a workload-

level regression. We observe significant slowdown of the execution

on certain workloads albeit a small QPR rate. For example, for

incremental tuning on Real-DY, although the percentage of QPR

is only around 15%, the total workload execution time is increased

from 8 hours to 13.3 hours, i.e., a 52% regression.

Table 5 further presents the distribution of QPRs emerging in evo-

lutionary index tuning. We observe around 7.4% QPR overall, which

is in line with the QPR rates observed from one-shot and incremen-

tal tuning. We also observe flip of improvement/regression on some

workloads. For example, while Real-DY regresses in one-shot and

incremental tuning, it improves significantly in evolutionary tun-

ing. On the other hand, JOB improves in one-shot and incremental

tuning, but it regresses dramatically in evolutionary tuning.

Summary. While the chance of QPR is around 10% to 15% based

on our evaluation, the impact on query execution time can be much

higher. As shown in Tables 4 and 5, QPR can result in around 50%

to 80% regression in terms of query execution time for certain

databases and workloads. Therefore, detecting and correcting QPR

is important for practical index tuning. A more complete overview

of found QPRs can be found in the full version [2].
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Workload #All #QPR %QPR 𝑇 (𝑃𝑏 ) 𝑇 (𝑃𝑎 ) %Impr
TPC-H 1,156 36 3.11% 3.32h 1.06h 68.22%

DSB 543,198 13,784 2.54% 406h 289h 28.98%

JOB 189,320 55,155 29.13% 188h 344h -83.12%

STATS 38,773 2,743 7.07% 85.73h 87.12h -1.62%

Real-DY 143,255 649 0.45% 5562h 3230h 41.93%

Real-LO 12,779 1,429 11.18% 71.15h 18.57h 73.91%

Real-MS 199,415 9,592 4.81% 594h 273h 53.92%

Real-RE 2,704 0 0.00% 176h 171h 2.60%

Real-DW 17,916 2,348 13.11% 113h 107h 5.14%

Real-ED 875 20 2.29% 40.61h 18.31h 54.90%

Real-MP 9,583 945 9.86% 12.29h 7.20h 41.38%

Real-SE 9,224 261 2.83% 17.65h 6.14h 65.19%

Real-RM 55 0 0.00% 4.81h 4.01h 16.79%

Real-SA 6 4 66.67% 0.04h 0.06h -38.91%

Total 1.17m 86,966 7.44% 7277h 4559h 37.35%

Table 5: QPRs emerging in evolutionary index tuning.

Category ID Description

(c1) RP-1a Expensive NLJ due to new inner index seek

RP-1b Expensive NLJ due to reduced estimated cost

(c2) RP-2 Missing critical aggregation pushdown

RP-3 Missing critical bitmap filter pushdown

Table 6: Taxonomy of regression patterns found.
3 Regression Pattern Analysis
We analyze QPRs using the data generated by one-shot tuning and

incremental tuning. The goal of this investigation is to understand

the root causes of QPRs and whether there are recurring, ubiqui-
tous patterns across the databases and workloads. Table 6 presents a
taxonomy of the regression patterns that we found for the QPRs.

3.1 Taxonomy of Regression Patterns
We categorize the QPRs into two categories: (c1) QPRs due to prob-

lematic change of access path between 𝑃𝑏 and 𝑃𝑎 , and (c2) QPRs

due to missing critical optimizations that were present in 𝑃𝑏 .

3.1.1 Problematic Change of Access Path (c1). By “change of access
path”, we mean one of the following situations: (1) a table access

operator (e.g., a table scan, an index scan, or an index seek) in 𝑃𝑏

has been changed in 𝑃𝑎 ; (2) the same table access operator is used

but its usage pattern is changed between 𝑃𝑏 and 𝑃𝑎 , e.g., it serves

as the inner child of a nested-loop join in 𝑃𝑎 instead of a hash join

in 𝑃𝑏 ; or (3) both a table access operator and its usage pattern are

changed. There is a significant number of QPRs whose root causes

can be attributed to some problematic change of access path. We

see two primary patterns for QPRs that fall into this category:

• (RP-1a) 𝑃𝑎 introduces a new expensive nested-loop join (NLJ)

due to a new index seek that serves as its right/inner child;

• (RP-1b) 𝑃𝑎 introduces a new expensive NLJ due to its reduced

estimated cost by the query optimizer.

We next present examples of these regression patterns.

Example 1 (RP-1a). Figure 2 presents an example of RP-1a. The
QPR comes from the query Q-3 of Real-LO with one-shot index tuning.
The “before plan” 𝑃𝑏 does not contain any NLJ. The “after plan” 𝑃𝑎

introduces the node 19, which is an index-based NLJ that becomes the
bottleneck of query execution. Its right/inner input has huge CE error
(estimated 52.9K vs. actual 4.4M rows). The NLJ is introduced due to
the availability of a new inner index seek (i.e., the node 28) in 𝑃𝑎 .

From Example 1, QPRs come with not only change of access

path but also CE errors. Intuitively, the introduction of new indexes

11: HashJoin

ET: 1.9s OptE:80.0

21: T_Scan(8.6K)

ET: 0.17s OptE:0.5

[W_PRODUCT_DH] [T32153]

Est:8.6K,
Act:8.6K

22: HashAgg

ET: 1.6s OptE:79.3

Est:52.9K,
Act:68.7K

Est:14.8K,
Act:68.2K

23: Filter

ET: 1.5s OptE:79.3

Est:52.9K,
Act:70.1K

24: I_Scan(10M)

ET: 1.4s OptE:78.4

[W_ORDERITEM_F]

Est:52.9K,
Act:4.4M

(a) Before plan 𝑃𝑏

8: HashJoin

ET: 5.4s OptE:73.4

16: T_Scan(8.6K)

ET: 0.15s OptE:0.6

[W_PRODUCT_DH] [T32153]

Est:8.6K,
Act:8.6K

17: StreamAgg

ET: 5.2s OptE:72.4

Est:52.9K,
Act:68.7K

Est:14.8K,
Act:68.2K

19: INLJ

ET: 4.4s OptE:53.7

Est:52.9K,
Act:4.4M

20: Merge Interval

ET: 0ms OptE:0.0

Est:2,
Act:2

28: I_Seek(10M)

ET: 4.1s OptE:0.0

[W_ORDERITEM_F]

Est:52.9K,
Act:4.4M

25: Constant Scan

ET: 0ms OptE:0.0

Est:1,
Act:1

27: Constant Scan

ET: 0ms OptE:0.0

Est:1,
Act:1

(b) After plan 𝑃𝑎

Figure 2: Illustration of regression pattern RP-1a. [Anno-
tation of each operator node in a query plan tree: (1) Est,
estimated cardinality; (2)Act, actual cardinality; (3) ET, exe-
cution time; (4) OptE, query optimizer’s estimated cost.]
should not affect cardinality estimation. However, since our config-

uration may contain new statistics as well, they may have impact

on cardinality estimation. It then raises an interesting question: Is
the QPR caused by only the new statistics, only the new indexes, or
both the new statistics and new indexes? To better understand this,

we propose the following ablation study:

Procedure 1 (Ablation Study). Let 𝐶 = (I,S) be the config-
uration that results in the regressed plan 𝑃𝑎 of a query 𝑞, where I
represents the new indexes and S represents the new statistics. We
only create the new statistics S without the new indexes I and let the
query optimizer re-optimize the query 𝑞. We call the plan returned
by the query optimizer the intermediate plan and denote it by 𝑃𝑏 .

For Example 1, we observed 𝑃𝑏 returned by the ablation study

is very different from either the “before plan” 𝑃𝑏 or the “after plan”

𝑃𝑎 . Indeed, 𝑃𝑏 is even slower than 𝑃𝑎 with a different nested-loop

join as the bottleneck of query execution. 𝑃𝑎 improves over 𝑃𝑏 by

removing that more problematic nested-loop join and utilizing a

recommended index, though it remains much slower than 𝑃𝑏 . Since

𝑃𝑏 is indeed the internal view of 𝑃𝑏 seen by some index tuners

(e.g., DTA), such index tuners would think of 𝑃𝑎 as an improvement

over 𝑃𝑏 and therefore, incorrectly, recommend the corresponding

indexes (and statistics). This example demonstrates that the in-

troduction of new statistics can have significant impact on query

optimizer’s cardinality estimation and therefore plan choice as well.

Example 2 (RP-1b). Figure 3 presents an example of RP-1b. The
QPR comes from the query Q-3 of Real-DY with incremental index
tuning. One bottleneck of the “after plan” 𝑃𝑎 is the node 10 that
represents an NLJ, which is much slower than the corresponding
(logically equivalent) merge join (i.e., the node 24) in the “before plan”
𝑃𝑏 . The execution time of the two operators is 53.8s and 11.8s.

Unlike Example 1, the bottleneck NLJs in 𝑃𝑎 (nodes 10 and 11)

are not introduced due to the availability of any new inner index

seek—the inner side of the join remains the same table scan in both

𝑃𝑏 and 𝑃𝑎 . However, the outer side of node 12 in 𝑃𝑎 contains a new

index seek (node 19) for a table that was accessed using table scan

in 𝑃𝑏 (node 62). This new index seek indirectly leads the query

optimizer to introduce NLJ for node 10 in 𝑃𝑎 since the optimizer
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24: MergeJoin

ET: 11.8s OptE:50.7

26: INLJ

ET: 11.8s OptE:48.8

Est:2,
Act:81.5K

71: T_Scan(101.6K)

ET: 1ms OptE:1.8

[INVENTITE... [T4]

Est:721,
Act:676

Est:2,
Act:81.5K

32: MergeJoin

ET: 10.1s OptE:35.9

Est:1,
Act:81.5K

68: T_Scan(1.2K)

ET: 1.0s OptE:0.0

[LOGISTICS... [T3]

Est:1.2K,
Act:99.8M

34: INLJ

ET: 8.0s OptE:26.4

Est:2,
Act:81.5K

62: T_Scan(101.5K)

ET: 97ms OptE:9.4

[INVENTTAB... [T1]

Est:541,
Act:579

(a) Before plan 𝑃𝑏

10: INLJ

ET: 53.8s OptE:43.1

11: INLJ

ET: 38.7s OptE:41.1

Est:2,
Act:81.5K

36: TSpool

ET: 11.3s OptE:2.0

Est:721,
Act:55.1M

Est:2,
Act:81.5K

12: INLJ

ET: 3.3s OptE:41.1

Est:1,
Act:81.5K

35: T_Scan(1.2K)

ET: 29.5s OptE:0.0

[LOGISTICS...] [T3]

Est:1.2K,
Act:99.8M

19: I_Seek(101.5K)

ET: 15ms OptE:0.0

[INVENTTAB...] [T1]

Est:579,
Act:579

34: T_Scan(26)

ET: 0.76s OptE:0.0

[DATAAREA]...] [T1]

Est:1,
Act:81.5K

37: T_Scan(101.6K)

ET: 18ms OptE:1.9

[INVENTITE...] [T4]

Est:721,
Act:676

(b) After plan 𝑃𝑎

Figure 3: Illustration of regression pattern RP-1b.
estimated cost (i.e., 43.1) is lower than that of corresponding plan

subtree rooted at node 24 in 𝑃𝑏 (i.e., 50.7). 𝑃𝑎 is significantly slower

due to introduction of spool operator in the inner side of node 10,

that creates bottleneck for pipelined execution of both NLJs (nodes

10 and 11) due to huge underestimation in the number of rebinds.

Observe that node 35 in 𝑃𝑎 is significantly slower compared to

corresponding node 68 in 𝑃𝑏 despite the same access path because

𝑃𝑎 uses a single thread compared to 40 threads used by 𝑃𝑏 in Fig-

ure 3(a). This change from parallel to serial execution is a side effect

of change in cost estimates in the two cases.

To separate the impact of the new statistics and the new indexes,

we repeated the ablation study in Procedure 1. Interestingly, in

this case 𝑃𝑏 remains the same as 𝑃𝑏 . This means that, even though

the new statistics can affect cardinality estimation, the impact is

not significant enough to change the decision made by the query

optimizer. As a result, QPR would not have occurred if we only

brought in the new statistics but not the new indexes.

3.1.2 Missing Critical Optimizations (c2). Unlike the previous cate-
gory, QPRs that fall into this category do not suffer from change

in access path selection. That is, the access paths of 𝑃𝑎 may have

changed compared to 𝑃𝑏 , but these changes are not the root causes

of the QPRs. Rather, some critical optimizations that were present

in 𝑃𝑏 appeared to be missing in 𝑃𝑎 . Again, we observe two major

patterns for such QPRs:

• (RP-2) 𝑃𝑎 misses a critical aggregation pushdown in 𝑃𝑏 ;

• (RP-3) 𝑃𝑎 misses a critical bitmap filter pushdown in 𝑃𝑏 .

Below, we again present examples of these regression patterns.

Example 3 (RP-2). Figure 4 presents an example of RP-2. The QPR
comes from the query Q-106 of STATS with one-shot index tuning.
The bottleneck of the “after plan” 𝑃𝑎 is the node 0 that represents an
aggregation operator. This aggregation is much faster in the “before
plan” 𝑃𝑏 , thanks to the aggregation pushdown introduced by the node
5. The main cause of this bad decision made by the query optimizer
on eliminating the aggregation pushdown is the CE errors at the join
nodes 3 (6.4K estimated vs. 2.1M actual, i.e., 328× underestimation),
2 (6.4K estimated vs. 2.1M actual, i.e., 328× underestimation), and
1 (19.8K estimated vs. 0.5B actual, i.e., 25,252× underestimation) in
𝑃𝑎 . While cardinality underestimation does present in 𝑃𝑏 as well,
it is at a much smaller scale. As a result, the amplified cardinality
underestimation made the query optimizer think that the aggregation
operator is cheap enough and is not worth a pushdown.

One may ask why cardinality underestimation is amplified in the

“after plan” 𝑃𝑎 for the aggregation operator. We attribute this to the

new statistics brought in by the new indexes being recommended,

1: HashJoin

ET: 0.25s OptE:4.2

2: HashJoin

ET: 76ms OptE:3.4

Est:3.3K,
Act:19.2K

9: CI_Scan(79.9K)

ET: 14ms OptE:0.3

[badges] [b]

Est:77.6K,
Act:77.5K

Est:10.2K,
Act:3.1M

3: MergeJoin

ET: 52ms OptE:2.4

Est:1.8K,
Act:5.3K

8: CI_Scan(174.3K)

ET: 17ms OptE:0.7

[comments] [c]

Est:24.8K,
Act:24.7K

5: HashAgg

ET: 40ms OptE:2.0

Est:1.8K,
Act:5.3K

7: CI_Scan(40.3K)

ET: 7ms OptE:0.2

[users] [u]

Est:40.3K,
Act:40.3K

6: CI_Scan(328.1K)

ET: 31ms OptE:1.4

[votes] [v]

Est:33.4K,
Act:33.7K

(a) Before plan 𝑃𝑏

0: ScalarStreamAgg

ET: 42.7s OptE:1.9

1: HashJoin

ET: 26.0s OptE:1.9

Est:19.8K,
Act:537.4M

2: HashJoin

ET: 1.1s OptE:1.2

Est:6.4K,
Act:2.1M

8: I_Seek(79.9K)

ET: 10ms OptE:0.3

[badges] [b]

Est:77.6K,
Act:77.5K

3: HashJoin

ET: 0.17s OptE:0.8

Est:6.4K,
Act:2.1M

7: I_Seek(40.3K)

ET: 5ms OptE:0.1

[users] [u]

Est:40.3K,
Act:40.3K

5: I_Seek(174.3K)

ET: 3ms OptE:0.1

[comments] [c]

Est:24.8K,
Act:24.7K

6: I_Seek(328.1K)

ET: 5ms OptE:0.1

[votes] [v]

Est:33.7K,
Act:33.7K

(b) After plan 𝑃𝑎

Figure 4: Illustration of regression pattern RP-2.

5: MergeJoin

ET: 0.71s OptE:73.8

6: Sort

ET: 0.17s OptE:6.3

Est:100K,
Act:100K

10: Sort

ET: 0.44s OptE:66.5

Est:1M,
Act:86K

Est:4.6K,
Act:250.9K

9: CI_Scan(100K)

ET: 25ms OptE:3.6

[MainTableNonPartition] [b]

Est:100K,
Act:100K

12: CI_Scan(1M)

ET: 0.34s OptE:35.4

Bitmap1005

[MainTable] [a]

Est:1M,
Act:86K,

ActRead:1M

(a) Before plan 𝑃𝑏

5: MergeJoin

ET: 2.1s OptE:42.7

7: I_Scan(100K)

ET: 16ms OptE:2.3

[MainTableNonPartition] [b]

Est:100K,
Act:100K

9: I_Scan(1M)

ET: 0.13s OptE:24.4

[MainTable] [a]

Est:1M,
Act:1M

Est:1.8M,
Act:250.9K

(b) After plan 𝑃𝑎

Figure 5: Illustration of regression pattern RP-3.
as the new indexes themselves should not impact cardinality esti-

mation. We also notice that the join order and join operator choice

of 𝑃𝑎 are different from that of the “before plan” 𝑃𝑏 , though they are

not the performance bottleneck of 𝑃𝑎 . Again, we further performed

the ablation study in Procedure 1. Interestingly, it turns out that the

“before plan” 𝑃𝑏 again remains the choice of the query optimizer in

this case (i.e., 𝑃𝑏 = 𝑃𝑏 ). This suggests that the amplified cardinal-

ity underestimation itself does not result in QPR—the aggregation

pushdown remains worthwhile. It is the new indexes that further

reduced the estimated cost of 𝑃𝑎 , which misled the query optimizer

to change its decision on aggregation pushdown.

Example 4 (RP-3). Figure 5 presents an example of RP-3. The QPR
comes from the query Q-147 of Real-MP with one-shot index tuning.
Modern query optimizers use bitmap filter pushdowns [32] in hash
join or merge join to reduce the number of rows that need to be fetched
from the inner side (of the join) that match the outer side (of the join).
The decision of whether a bitmap filter should be pushed down is made
by the query optimizer based on its estimated selectivity. The “before
plan” 𝑃𝑏 contains a bitmap filter pushdown on the clustered index
scan over the table “MainTable,” and the actual output cardinality is
86K after bitmap filter pushdown. This bitmap filter is missing in the
“after plan” 𝑃𝑎 , and the actual output cardinality goes up to 1.0M.

Unlike the previous examples, we do not observe significant

cardinality underestimation in the “after plan” 𝑃𝑎 of Example 4.

To the contrary, there is significant cardinality overestimation in

𝑃𝑎 , which suggests that the actual cost of 𝑃𝑎 should be even less.
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Interestingly, there is cardinality underestimation on the merge join

(node 5) of the “before plan” 𝑃𝑏 (i.e., 4.6K estimated output rows

vs. 250.9K actual rows), and the introduction of the new statistics

helps “fix” it; however, this fix goes too far that ends up with signif-

icant cardinality overestimation on the same merge join (i.e., 1.8M

estimated output rows vs. 250.9K actual rows). As a result, creating

(and pushing down) a bitmap filter based on a much higher esti-

mated selectivity/cardinality is not attractive. To validate this, we

further preformed the ablation study in Procedure 1. The 𝑃𝑏 turned

out to be a “transitioning plan”—its only difference from 𝑃𝑏 is the

removal of that bitmap filter. This confirms that the missed bitmap

filter pushdown optimization is indeed caused by the cardinality

overestimation due to the introduction of the new statistics.

3.2 Summary and Discussion
We have the following observations based on our analysis.

Observation 1. Most of the significant QPRs can be attributed to
some regression pattern that is simple and easy to understand.

Although our list of regression patterns in Table 6 is by no means

exhaustive, it covers most of the significant QPRs observed in our

data. Tables 7 and 8 further present the breakdowns of QPRs covered

by individual regression patterns across the workloads, where we

use RP-1 to refer to the regression pattern RP-1a or RP-1b, as they

both characterize the existence of an expensive NLJ.

Observation 2. Regression patterns typically characterize some
“local change” or “local transformation” in the plan structure.

For example, RP-1 (including both RP-1a and RP-1b) asserts the

presence of a new expensive nested-loop join. RP-2 asserts the

decision of pushing down an aggregation or not; similarly, RP-3

asserts the decision of pushing down a bitmap filter or not. Once a

regression pattern has been detected, it is straightforward to reverse

the harmful change indicated by the pattern. For example, if RP-1

is detected, we may hint the query optimizer [34] to not use the

problematic index. On the other hand, if RP-2 or RP-3 is detected,

we can simply force pushing down the corresponding aggregation

or bitmap filter that is critical to the query performance, by using

mechanisms such as plan forcing [29]. Although in this paper we do

not explore potential ways of correcting QPR once some regression

pattern is detected, it is an interesting direction for future work.

Observation 3. The impact on cardinality estimation due to the
introduction of new statistics can be significant enough to change the
optimization decision made by the query optimizer.

This observation is affirmed by the ablation study in Procedure 1

that highlights the impact of the new statistics. It has two possible

outcomes: (1) the “intermediate plan” 𝑃𝑏 remains the same as the

“before plan” 𝑃𝑏 ; and (2) 𝑃𝑏 is different from 𝑃𝑏 . If 𝑃𝑏 = 𝑃𝑏 , it implies

that the new statistics do not change the plan returned by the query

optimizer, even if the new statistics may have impacted cardinality

estimation. On the other hand, if 𝑃𝑏 ≠ 𝑃𝑏 , the impact on cardinality

estimation is significant enough to change the query optimizer’s

plan choice. We have seen QPR examples of both cardinality under-

estimation and cardinality overestimation with the new statistics.

While it is intuitive that cardinality underestimation can result in

QPRs, the QPRs due to cardinality overestimation are subtle (e.g.,

Pattern Workload #QPR 𝑇 (𝑃𝑏 ) 𝑇 (𝑃𝑎 )
RP-1 Real-LO 3 13.08s 31.47s

RP-1 Real-MP 1 1.55s 13.85s

RP-2 STATS 1 0.53s 49.40s

RP-2 Real-RM 1 83.21s 124.33s

RP-3 Real-MP 1 1.24s 3.72s

RP-3 Real-DY 1 63.02s 128.59s

Table 7: Regression patterns in one-shot index tuning.
Example 4). Nevertheless, the implication here is that a regression

pattern needs to account for not only change of access paths (due
to availability of new indexes) but also cardinality estimation errors
(due to availability of new statistics).

Observation 4. The majority of the significant QPRs are attrib-
uted to the regression pattern RP-1 (including both RP-1a and RP-1b),
namely, the emergence of a new expensive nested-loop join in the
regressed query plan.

This observation is evident from Tables 7 and 8, where RP-1

accounts for 23 of the QPRs while the other patterns account for

5 QPRs in total. Moreover, we further looked into the degree of

QPRs in terms of their actual execution time, and we found that the

QPRs due to RP-1 aremuch more significant compared to the others.

Therefore, in the rest of this paper we focus on addressing QPRs

that can be accounted for by RP-1. The popularity of RP-1 QPRs in

the context of index tuning is not a coincidence, as it is attractive

for the query optimizer to choose a nested-loop join in the presence

of new indexes. Nested-loop join is powerful for accelerating query

execution when there is indeed only a small number of rows that

need to be fetched via index seeks. However, it becomes a risky

choice in the presence of significant cardinality underestimation.

4 Pattern-based QPR Detector
We present a pattern-based QPR detector, based on Observation 4,

namely, the majority of the significant QPRs in index tuning can

be attributed to the emergence of new expensive NLJs. Although

this detector is dedicated to detecting QPRs with new expensive

NLJs, its underlying design principles can be applied to develop

QPR detectors for other regression patterns as well (Section 4.4).

We start with a more formal characterization of such expensive

NLJs (Section 4.1). We then develop an algorithmic framework to

detect expensive NLJ in an automated manner (Sections 4.2 and 4.3).

4.1 Characterization of Expensive NLJ
Observation 4 itself is far from actionable for QPR detection in

practice. Indeed, a naive solution here could be to forbid the use

of nested-loop joins. However, this will forfeit most of the benefits

brought in by index tuning as well. Clearly, not all nested-loop

joins are harmful, and the challenge is to identify which ones are

problematic or risky without executing the “after plan” 𝑃𝑎 .
To estimate the expensiveness of a nested-loop join, we define

two metrics, local expensiveness and global expensiveness, as follows.

Definition 1 (Local Expensiveness). Let 𝐽 be a nested-loop
join contained by the “after plan” 𝑃𝑎 in QPR detection. The local
expensiveness of 𝐽 is defined as 𝑙 (𝐽 , 𝑃𝑎) = cost( 𝐽 )

cost(𝑃𝑎 ) , where cost(𝐽 )
represents the estimated cost of the plan subtree under the join 𝐽 .

A nested-loop join 𝐽 is locally expensive if 𝑙 (𝐽 , 𝑃𝑎) > 𝜏𝑙 , where

0 ≤ 𝜏𝑙 ≤ 1 is some threshold. Local expensiveness characterizes

how significant the execution cost of a nested-loop join is inside
7



Pattern Workload #QPR 𝑇 (𝑃𝑏 ) 𝑇 (𝑃𝑎 )
RP-1 Real-DY 8 495.67s 11824.84s

RP-1 Real-ED 1 2.85s 5.77s

RP-1 JOB 2 4.23s 12.36s

RP-1 Real-LO 3 13.32s 33.67s

RP-1 Real-RE 3 1.32s 14.63s

RP-1 STATS 1 0.37s 3.34s

RP-1 Real-MP 1 4.00s 25.80s

RP-2 STATS 1 0.53s 39.57s

Table 8: Regression patterns in incremental index tuning.
the query plan. Ideally, one should use the actual execution time

instead of query optimizer’s estimated cost. Unfortunately, this is

impossible in practice because the execution time of the “after plan”

𝑃𝑎 is unknown when QPR detection needs to be performed. Thus,

local expensiveness can be inaccurate. For example, we may miss a

locally expensive NLJ 𝐽 if cost(𝐽 ) is underestimated and a relatively

expensive operation follows. However, in general, we would expect

a bottom-up propagation of cost estimation errors [17]. That is, if

cost(𝐽 ) is underestimated, then the costs of higher-level operations

are likely underestimated too. If so, the ratio between cost(𝐽 ) and
cost(𝑃𝑎), i.e., the local expensiveness of 𝐽 , will be relatively stable.

Definition 2 (Global Expensiveness). Let 𝐽 be a locally ex-
pensive nested-loop join, and let 𝑞 be the corresponding query in
the workload 𝑊 where 𝐽 comes from. Let 𝑡𝑏 (𝑞) be the execution
time of the “before plan” 𝑃𝑏 of 𝑞, which is presumably available be-
fore QPR detection starts. The global expensiveness of 𝐽 is defined as
𝑔(𝐽 , 𝑞) = percentile(𝑡𝑏 (𝑞), {𝑡𝑏 (𝑞′)}𝑞′∈𝑊 ).

A nested-loop join 𝐽 is globally expensive if the corresponding
query𝑞 satisfies𝑔(𝐽 , 𝑞) > 𝜏𝑔 , where 0 ≤ 𝜏𝑔 ≤ 1 is some threshold. In-

tuitively, global expensiveness measures the relative execution cost

of a query at workload level. Specifically, 𝑡𝑏 (𝑞′) means the execution

time of the “before plan” of 𝑞′, which is presumed available when

performing QPR detection. {𝑡𝑏 (𝑞′)} represents the distribution of

the “before plan” execution time w.r.t. all queries of a workload

𝑊 . Essentially, we use the percentile of 𝑡𝑏 (𝑞) in this “before plan”

execution time distribution as our definition of the global expen-

siveness of 𝑞. On the other hand, it is possible that a query 𝑞 is

globally expensive but actually not so under the new configuration,

i.e., when considering the distribution of the “after plan” execu-

tion time of all workload queries. Unfortunately, this latter “after

plan” execution time distribution is unknown when performing

QPR detection. This is indeed a limitation of our current definition

of global expensiveness, which we leave for future work.

4.2 Regression Pattern by Expensive NLJ
We define the regression pattern based on expensive NLJ as 𝐽 =

P(𝑃𝑏 , 𝑃𝑎) over a pair of “before plan” 𝑃𝑏 and “after plan” 𝑃𝑎 , with

respect to a given local expensiveness threshold 𝜏𝑙 and a given

global expensiveness threshold 𝜏𝑔:

(1) The nested-loop join 𝐽 appears in 𝑃𝑎 but not in 𝑃𝑏 ;

(2) The nested-loop join 𝐽 is both locally and globally expensive;

(3) The right/inner side of the nested-loop join is a table access

operator (with perhaps filters but no other operators, e.g., join,

on top of it), i.e., it is a “left deep” nested-loop join.

If there are multiple expensive nested-loop joins in 𝑃𝑎 , we will only

return the “deepest” one in the plan tree (where the root node of

the plan tree receives a depth of zero).
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Figure 6: Illustration of the expensive NLJ pattern.
Example 5 (Expensive NLJ Pattern). Figure 6 presents an exam-

ple query plan that contains three nested-loop joins NLJ
1
, NLJ

2
, and

NLJ
3
. Suppose that all of them pass the local and global expensiveness

thresholds. NLJ
3
does not match the expensive NLJ pattern because it

is not “left deep.” Both NLJ
1
and NLJ

2
are “left deep,” but only NLJ

1

matches the pattern as it is the “deepest” one in the query plan.

We choose to focus on “left deep” nested-loop join following

the observations on the simplicity (i.e., Observation 1) and locality

(i.e., Observation 2) of regression patterns. Compared to more com-

plicated “bushy” nested-loop join (e.g., NLJ
3
in Example 5), “left

deep” nested-loop join is easier to define and detect. The impact of

an index is also more direct on “left deep” nested-loop join, which

makes it easier to understand and correct the corresponding QPR

with remediation actions. Moreover, we choose to focus on the

deepest expensive “left deep” nested-loop join if there are multiple

candidates, because the (local) expensiveness of higher-level joins

may be a consequence of expensive joins below.

Algorithm 1 presents the details of automating the process of

matching the expensive NLJ pattern in a given plan pair (𝑃𝑏 , 𝑃𝑎) of
a query 𝑞. We start by looking for all nested-loop joins that appear

in the plan 𝑃𝑎 (line 2). For each of the nested-loop joins 𝐽 found,

we simply check whether (1) 𝐽 is “left deep,” (2) 𝐽 does not appear

in the plan 𝑃𝑏 , and (3) 𝐽 is expensive; if so, we only keep the one

with the maximum depth (lines 3 to 9).

4.3 QPR Detection Algorithm
Our QPR detection algorithm based on the expensive NLJ pattern

can be broken down into three major steps: (1)match the expensive

NLJ pattern using Algorithm 1; (2) measure the degree of potential
QPR based on the notion of cost inflation factors; and (3) recost the
“before plan” and “after plan” using the cost inflation factors and

predict QPR based on the recomputed plan costs.

4.3.1 Cost Inflation Factors. Formally, let 𝐽 be an expensive nested-

loop join operator found in the “after plan” 𝑃𝑎 , and let𝑂𝑙 and𝑂𝑟 be

its left/outer and right/inner input operators. Moreover, let𝑂𝑚
𝑙
and

𝑂𝑚
𝑟 be the corresponding match (i.e., logically equivalent operator)

of 𝑂𝑙 and 𝑂𝑟 in the “before plan” 𝑃𝑏 , respectively.

Definition 3 (Cost Inflation Factors). The cost inflation fac-
tors of the left and right inputs of 𝐽 are defined as

𝑓𝑙 =max{
ActCard(𝑂𝑚

𝑙
)

EstCard(𝑂𝑚
𝑙
) , 1} and 𝑓𝑟 =max{ActCard(𝑂

𝑚
𝑟 )

EstCard(𝑂𝑚
𝑟 )

, 1}.

Here, EstCard and ActCard represent the estimated and actual
cardinality, respectively. Intuitively, cost inflation factors measure,

in an approximate way, the impact of cardinality underestimation
8



Algorithm 1:MatchExpensiveNLJ(𝑞, 𝑃𝑏 , 𝑃𝑎).
Input: (𝑃𝑏 , 𝑃𝑎 ) , a pair of plans to detect QPR; 𝑞, the corresponding

query in the workload𝑊 ; 𝜏𝑙 , the threshold for local

expensiveness; 𝜏𝑔 , the threshold for global expensiveness.

Output: 𝐽 , the expensive nested-loop join found.

1 𝐽 ← null;

2 J ← GetAllNLJs(𝑃𝑎 ) ;
3 foreach nested-loop join 𝐽 ′ ∈ J do
4 if 𝐽 ′ is “left deep” and 𝐽 ′ ∉ 𝑃𝑏 then
5 𝑙 ( 𝐽 ′, 𝑃𝑎 ) ← cost( 𝐽 ′ )

cost(𝑃𝑎 ) ;

6 𝑔 ( 𝐽 ′, 𝑞) ← percentile(𝑡𝑏 (𝑞), {𝑡𝑏 (𝑞′ ) }𝑞′∈𝑊 ) ;
7 if 𝑙 ( 𝐽 ′, 𝑃𝑎 ) > 𝜏𝑙 and 𝑔 ( 𝐽 ′, 𝑞) > 𝜏𝑔 then
8 if depth( 𝐽 ′ ) > depth( 𝐽 ) then
9 𝐽 ← 𝐽 ′;

10 return 𝐽 ;

on the execution cost of the join. Moreover, once again we assume

that we have obtained execution information (in particular, true

cardinality information) of the “before plan” 𝑃𝑏 .

4.3.2 Recosting of the Join and the Plan. The presence of cardinality
underestimation makes it necessary to recompute the costs of the

“before plan” and the “after plan” to reevaluate the likelihood of

QPR. We conduct this recosting process [13, 55, 56] based on the

cost inflation factors obtained by Algorithm 2.

Specifically, Algorithm 3 presents the details of plan recosting,

which employs Algorithm 4 as a subroutine to recost the join opera-

tors. We start by seeking a match (i.e., logically equivalent operator)

of the expensive NLJ operator 𝐽 in 𝑃𝑏 (line 2). If such a match 𝐽 ′

is found, we call Algorithm 4 to recost 𝐽 ′ based on its own cost

inflation factors 𝑓 ′
𝑙
and 𝑓 ′𝑟 , and we recompute the cost of 𝑃𝑏 by

replacing the old cost of 𝐽 ′ with its new cost (lines 3 to 8). Similarly,

we recost 𝐽 based on the given cost inflation factors 𝑓𝑙 and 𝑓𝑟 and

recompute the cost of 𝑃𝑎 accordingly (lines 9 to 11).

The recosting of the join operators 𝐽 and 𝐽 ′, as illustrated in

Algorithm 4, works as follows. We recompute the cost of a join

based on its type. If it is a nested-loop join, we increase the cost

of the right/inner side and the residual cost (i.e., the cost of the

join operator itself excluding the costs of the left and right inputs)

by a factor of 𝑓𝑙 · 𝑓𝑟 , while keeping the cost of the left/outer side

unchanged (line 3). This is easy to understand, as the cost inflation

factors quantify the degree of cardinality underestimation on the

left and right inputs of the join. Therefore, for each iteration of

the nested-loop join, the cost of the inner side is roughly increased

by a factor of 𝑓𝑟 . On the other hand, the number of iterations is

boosted by a factor of 𝑓𝑙 . This justifies the recosting formula of

the nested-loop join. Meanwhile, for other types of join, such as

hash join or merge join, that do not require multiple accesses of

the right/inner side, we increase only the residual cost of the join

by a factor of 𝑓𝑙 · 𝑓𝑟 but not the cost of the right/inner side.

4.3.3 Putting It Together. Algorithm 5 presents the details of the

pattern-based QPR detection algorithm. We start by matching the

expensive NLJ pattern using Algorithm 1 (line 1). We report no

QPR if we fail to find any expensive NLJ (lines 2 to 3). Otherwise,

we compute the cost inflation factors using Algorithm 2. We again

report no QPR if there is no cardinality underestimation, i.e., 𝑓𝑙 ≤ 1

and 𝑓𝑟 ≤ 1 (lines 4 to 6). Otherwise, we recost both plans 𝑃𝑏 and

Algorithm 2: ComputeCostInflationFactors(𝐽 , 𝑃𝑏 , 𝑃𝑎).
Input: (𝑃𝑏 , 𝑃𝑎 ) , the plan pair; 𝐽 , the expensive NLJ found in 𝑃𝑎

.

Output: 𝑓𝑙 , the cost inflation factor of the left/outer input of 𝐽 ; 𝑓𝑟 ,

the cost inflation factor of the right/inner input of 𝐽 .

1 𝑂𝑙 ← LeftChild( 𝐽 ) ,𝑂𝑟 ← RightChild( 𝐽 ) ;
2 𝑓𝑙 ← 1, 𝑓𝑟 ← 1;

3 𝑂𝑚
𝑙
← Match(𝑂𝑙 , 𝑃

𝑏 ) ,𝑂𝑚
𝑟 ← Match(𝑂𝑟 , 𝑃

𝑏 ) ;
4 if 𝑂𝑚

𝑙
is not null then

5 𝑓𝑙 ← max{
ActCard(𝑂𝑚

𝑙
)

EstCard(𝑂𝑚
𝑙
) , 1};

6 if 𝑂𝑚
𝑟 is not null then

7 𝑓𝑟 ← max{ ActCard(𝑂
𝑚
𝑟 )

EstCard(𝑂𝑚
𝑟 )

, 1};
8 return 𝑓𝑙 , 𝑓𝑟 ;

𝑃𝑎 with the cost inflation factors, using Algorithm 3, and we report

QPR if recost(𝑃𝑎) > recost(𝑃𝑏 ) (lines 7 to 12).

Discussion. The QPR detection algorithm in Algorithm 5 is lim-

ited by the fact that it relies on finding matches in the “before plan”

𝑃𝑏 . It can result in both false positives and false negatives:

• (False Positives) Consider a case where we have either 𝑓𝑙 > 1 or

𝑓𝑟 > 1 but we cannot find a match for 𝐽 in 𝑃𝑏 . As a result, the

cost of 𝑃𝑎 is increased after plan recosting, whereas 𝑃𝑏 cannot

be recosted by Algorithm 3 and thus cost(𝑃𝑏 ) remains the same.

However, it is likely that cost(𝑃𝑏 ) should have been increased,

too, as the existence of cardinality underestimation in 𝑃𝑎 suggests

that there may be cardinality underestimation in 𝑃𝑏 as well. This

possibility is currently ignored by Algorithm 5. Consequently, if

Algorithm 5 reports QPR in this case, it may be a false positive
due to the potential underestimation of cost(𝑃𝑏 ).
• (False Negatives) Consider another case where we cannot find
a match for either 𝑂𝑙 or 𝑂𝑟 . As a result, we may miss potential

cardinality underestimation and therefore the recomputed cost

of 𝐽 may be less than it should have been. When this happens,

if we can find a match 𝐽 ′ in 𝑃𝑏 for 𝐽 , then it creates an unfair

situation as we can use actual cardinality for recosting 𝐽 ′ but not
𝐽 . Therefore, we may make the cost of 𝐽 ′ (and thus the plan 𝑃𝑏 )

higher but not the cost of 𝐽 (and thus the plan 𝑃𝑎). Consequently,

if Algorithm 5 reports no QPR in this case, it may be a false
negative due to the potential underestimation of cost(𝑃𝑎).

4.4 Other Regression Patterns
While it is not our goal in this paper to provide a comprehensive list

of regression patterns and their corresponding pattern-based QPR

detectors, the principles and techniques developed can be applied

to the development of QPR detectors based on regression patterns

other than RP-1. For example, a QPR detector based on RP-2 or RP-3

would be to monitor any aggregation or bitmap filter pushdowns

that were present in 𝑃𝑏 but missing in 𝑃𝑎 , while also considering

the degree of cardinality estimation (CE) errors.

Although this case-by-case approach is effective for the QPR

patterns covered in the present study, a more general approach

remains interesting. There are two basic elements in such a general

approach: (1) specification of the structural change between the “be-

fore plan” and the “after plan” and (2) quantification of the CE error.

From this point of view, we can retain the skeleton of Algorithm 5

and only replace the three function calls MatchExpensiveNLJ(),
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Algorithm 3: RecostPlan(𝐽 , 𝑃𝑏 , 𝑃𝑎).
Input: (𝑃𝑏 , 𝑃𝑎 ) , the plan pair; 𝐽 , the expensive NLJ operator.

Output: recost(𝑃𝑏 ) , the recomputed cost of plan 𝑃𝑏
; recost(𝑃𝑎 ) ,

the recomputed cost of plan 𝑃𝑎
.

1 recost(𝑃𝑏 ) ← cost(𝑃𝑏 ) , recost(𝑃𝑎 ) ← cost(𝑃𝑎 ) ;
2 𝐽 ′ ← Match( 𝐽 , 𝑃𝑏 ) ;
3 if 𝐽 ′ is not null then
4 𝑂 ′

𝑙
← LeftChild( 𝐽 ′ ) ,𝑂 ′𝑟 ← RightChild( 𝐽 ′ ) ;

5 𝑓 ′
𝑙
← max{

ActCard(𝑂 ′
𝑙
)

EstCard(𝑂 ′
𝑙
) , 1}, 𝑓

′
𝑟 ← max{ ActCard(𝑂

′
𝑟 )

EstCard(𝑂 ′𝑟 )
, 1};

6 recost( 𝐽 ′ ) ← RecostJoin( 𝐽 ′, 𝑓 ′
𝑙
, 𝑓 ′𝑟 ) ;

7 residual(𝑃𝑏 ) ← cost(𝑃𝑏 ) − cost( 𝐽 ′ ) ;
8 recost(𝑃𝑏 ) ← residual(𝑃𝑏 ) + recost( 𝐽 ′ ) ;
9 recost( 𝐽 ) ← RecostJoin( 𝐽 , 𝑓𝑙 , 𝑓𝑟 ) ;

10 residual(𝑃𝑎 ) ← cost(𝑃𝑎 ) − cost( 𝐽 ) ;
11 recost(𝑃𝑎 ) ← residual(𝑃𝑎 ) + recost( 𝐽 ) ;
12 return recost(𝑃𝑏 ) , recost(𝑃𝑎 ) ;

ComputeCostInflationFactors(), and RecostPlan()with im-

plementations customized for detecting different QPR patterns.

5 Experimental Evaluation
We evaluate the pattern-based QPR detector proposed in Section 4

and report the experimental evaluation results in this section.

5.1 Experiment Settings
We focus on detection of significant QPRs emerging in one-shot,

incremental, and evolutionary tuning by setting the regression

threshold 𝜏 = 0.5 (i.e., 50% QPR).

5.1.1 Evaluation Metrics. We use the following metrics to evaluate

the performance of a QPR detector.

The first set of metrics are standard based on the viewpoint

of treating QPR detection as a binary classification problem: (1)

precision, (2) recall, (3) accuracy, and (4) F1 score.
The second set of metrics are to address the limitation of the

binary classification view of QPR detection, as some QPRs can be

much worse than the others: (1) time of the “before plan” 𝑃𝑏 , (2) time
of the “after plan” 𝑃𝑎 , (3) time of 𝑃pred, and (4) time of 𝑃best. Here,
𝑃pred is the plan chosen based on the output of the QPR detector

ℎ. That is, 𝑃pred = 𝑃𝑏 if ℎ predicts a QPR, and 𝑃pred = 𝑃𝑎 otherwise.

𝑃best is the plan chosen based on the output of an oracle (i.e., a

perfect QPR detector) that always makes the right prediction. That

is, 𝑃best = 𝑃𝑏 if 𝑡𝑏 < 𝑡𝑎 , where 𝑡𝑏 and 𝑡𝑎 are the execution time of

𝑃𝑏 and 𝑃𝑎 respectively, and 𝑃best = 𝑃𝑎 otherwise.

5.1.2 QPR Detectors. We evaluate the pattern-based QPR detec-

tor proposed in Section 4, as well as three state-of-the-art ML-

based QPR detectors: (1) AI meets AI (AMA) [11], (2) TreeCNN
(TCNN) [27], and (3) QueryFormer (QF) [60].

5.2 ML-based QPR Detection
The main difference between the three ML-based QPR detectors

AMA, TCNN, and QF lies in the feature representation of a query
plan. Specifically, AMA carefully selects features that are important

for characterizing the execution profiles of individual operators in

the query plan (e.g., estimated number of input and output rows,

estimated number of input and output bytes, estimated execution

cost, etc.). Such operator-level features are further aggregated w.r.t.

the plan tree structure to form a vector representation of the query

Algorithm 4: RecostJoin(𝐽 , 𝑓𝑙 , 𝑓𝑟 ).
Input: 𝐽 , the join operator; 𝑓𝑙 , the cost inflation factor of the

left/outer child of 𝐽 ; 𝑓𝑟 , the cost inflation factor of the

right/inner child of 𝐽 .

Output: recost( 𝐽 ) , the new cost of 𝐽 .

1 residual( 𝐽 ) ← cost( 𝐽 ) − outerChildCost( 𝐽 ) − innerChildCost( 𝐽 ) ;
2 if 𝐽 is nested-loop join then
3 recost( 𝐽 ) ← outerChildCost( 𝐽 ) + 𝑓𝑙 · 𝑓𝑟 ·

innerChildCost( 𝐽 ) + 𝑓𝑙 · 𝑓𝑟 · residual( 𝐽 ) ;
4 else
5 recost( 𝐽 ) ←

outerChildCost( 𝐽 ) + innerChildCost( 𝐽 ) + 𝑓𝑙 · 𝑓𝑟 · residual( 𝐽 ) ;
6 return recost( 𝐽 ) ;

plan. On the other hand, both TCNN and QF adopt more advanced

technologies to encode a query plan into its vector representation.

In more detail, TCNN leverages tree convolution [35] that adapts

the well-known convolutional neural network (CNN) [26] to work

for tree-structured data, whereas QF leverages tree transformer that
adapts the well-known transformer architecture [48] to encode

query plan tree. Therefore, we can use a uniform framework to

evaluate all these three ML-based QPR detectors.

Given a pair of plans (𝑃𝑏 , 𝑃𝑎), we first convert 𝑃𝑏 and 𝑃𝑎 into

their feature vectors ®P𝑏 and ®P𝑎 using the plan encoder provided

by the corresponding ML-based QPR detector. Following [11], we

then take the difference ®x = ®P𝑎 − ®P𝑏 as the input to train a binary

classifier ℎ as the QPR detector. For fair comparison, we use the

same classifier ℎ for AMA, TCNN, and QF plan representations.

Specifically, ℎ is a 4-layer fully-connected deep neural network,

where each hidden layer contains 64 neurons and uses ReLU as the

activation function. A similar architecture has been used in [60].

5.2.1 Implementation and Evaluation Setups. We implement AMA,

TCNN, and QF using PyTorch, and we use an Nvidia RTX A6000

GPU for model training and inference. For model training, we use

the Adam optimizer [19] with 100 epochs and batch size of 32.

We use a “leave one out” setup for evaluating the ML-based

technologies [11]. Specifically, letW be the set of all workloads.

For each workload𝑊 ∈ W, we use all index tuning data collected

for the other workloadsW−𝑊 =W − {𝑊 } to train an ML model

M and test it using the index tuning data collected for𝑊 .

5.2.2 Results. Figure 7(a) and 7(b) present results on the one-shot

and incremental index tuning data in terms of prediction accu-

racy of the ML-based QPR detectors. We were not able to finish

training TCNN and QF within reasonable time (i.e., 48 hours) on

the evolutionary index tuning dataset. We observe that TCNN and

QF perform better than AMA in terms of the “accuracy” metric.

However, it does not suggest that TCNN and QF are more effective

binary classifiers, because their F1 scores are much lower than that

of AMA. In fact, in almost all cases the F1 scores of TCNN and QF

are zero, which means that they are not able to capture any QPR.

In other words, they behave the same as a degenerated QPR predic-

tor that simply says there is no QPR. Overall, all three ML-based

QPR detectors show unsatisfactory performance. There are several

potential reasons for this observation. First, the one-shot and in-

cremental index tuning datasets are relatively small and therefore

sophisticated plan encodings such as TCNN and QF are perhaps not

worthwhile and more likely to overfit. Second, the fact that QPR
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Algorithm 5: Pattern-based QPR detection.

Input: (𝑃𝑏 , 𝑃𝑎 ) , the pair of plans; 𝑞, the corresponding query.
Output: true, if (𝑃𝑏 , 𝑃𝑎 ) is a QPR; false, otherwise.

1 𝐽 ← MatchExpensiveNLJ(𝑞, 𝑃𝑏 , 𝑃𝑎 ) ;
2 if 𝐽 is null then
3 return false;
4 𝑓𝑙 , 𝑓𝑟 ← ComputeCostInflationFactors( 𝐽 , 𝑃𝑏 , 𝑃𝑎 ) ;
5 if 𝑓𝑙 ≤ 1 and 𝑓𝑟 ≤ 1 then
6 return false;
7 // We have either 𝑓𝑙 > 1 or 𝑓𝑟 > 1;

8 recost(𝑃𝑏 ) , recost(𝑃𝑎 ) ← RecostPlan( 𝐽 , 𝑃𝑏 , 𝑃𝑎 ) ;
9 if recost(𝑃𝑎 ) > recost(𝑃𝑏 ) then
10 return true;
11 else
12 return false;

is a relatively infrequent event makes the classification problem

more challenging (e.g., a naive classifier such as the degenerated

one can achieve high accuracy but fail miserably in terms of F1

score). This is related to the well-known “learning from imbalanced

data” challenge in the literature [21]. Indeed, we have tried to “re-

balance” the data by giving the regressed cases higher weights in

the loss function when training the ML-based classifiers but we

still see underwhelming results as shown in Figures 7(a) and 7(b).

Third, the “leave one out” setup is arguably the worst-case scenario

for ML-based classifiers, as the training and test datasets may not

follow the same distribution. Indeed, our results here resonate with

the observations in [11], where the AMA classifier shows similar

results to the degenerated classifier under the “leave one out” setup.

5.3 Pattern-based QPR Detection
We now evaluate the pattern-based QPR detector proposed in Sec-

tion 4. We set the local expensiveness threshold 𝜏𝑙 = 0.1 and the

global expensiveness threshold 𝜏𝑔 = 0.1 in our evaluation, which

are the default settings of the pattern-based QPR detector. We use

AMA as the baseline of ML-based detectors to compare with.

5.3.1 One-shot Index Tuning. Figure 8(a) presents the (percentage)
improvement of the total execution time by using the plan suggested

by the QPR detector, i.e., 𝑃pred, w.r.t. to the plan over the existing

configuration, i.e., 𝑃𝑏 , for one-shot index tuning. We observe that

the pattern-based QPR detector significantly outperforms AMA on

the workloads JOB, Real-RE, Real-ED, and Real-RM, while having

similar performance on the other workloads (except Real-LO, where

AMA outperforms the pattern-based QPR detector). In fact, the

pattern-based QPR detector achieves similar performance to the

best possible, i.e., 𝑃best, on the workloads TPC-H, JOB, DSB, Real-

MS, Real-ED, Real-MP, Real-SE, Real-RM, and Real-SA. For example,

the improvements on JOB by the pattern-based QPR detector and

AMA are 53% and 40%, where the best possible improvement is

59%. Meanwhile, the performance of using the plan suggested by

AMA is often inferior to the default approach of always trusting

the index tuner by using 𝑃𝑎 , for example, on Real-ED and Real-RM.

Figure 9(a) further compares the pattern-basedQPR detectorwith

AMA in terms of the prediction/classification accuracy. We observe

that the pattern-based QPR detector significantly outperforms AMA

in terms of both accuracy and F1 score on theworkloads JOB, STATS,

DSB, Real-LO, Real-RE, Real-DW, Real-ED, and Real-RM. AMA has
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Figure 7: Comparison of ML-based regression detectors in
terms of prediction accuracy and F1 score.
an advantage only on Real-SA in terms of accuracy. Some F1 scores

are zero (i.e., either precision or recall is zero) and thus not visible.

5.3.2 Incremental Index Tuning. Figures 8(b) and 9(b) compare the

pattern-based QPR detector against AMA for incremental index

tuning. Again, the pattern-based QPR detector significantly outper-

forms AMA on workloads such as TPC-H, JOB, Real-DY, Real-LO,

Real-MS, Real-RE, and Real-MP. We also observe that AMA is some-

times even significantly worse than the default approach of using

𝑃𝑎 (e.g., on TPC-H, Real-DY, Real-LO, and Real-MS). Meanwhile,

the pattern-based QPR detector achieves the best possible on work-

loads such as TPC-H, Real-RE, and Real-ED. For example, the time

improvements on Real-RE by the pattern-based QPR detector and

AMA are 41.5% and 15.3%, where the best possible is 41.8%.

5.3.3 Evolutionary Index Tuning. Figures 8(c) and 9(c) further com-

pare the two QPR detectors in the context of evolutionary index

tuning. As shown in Figure 8(c), the pattern-based QPR detector

significantly outperforms AMA on TPC-H, JOB, Real-LO, Real-ED,

and Real-SE in terms of improved plan execution time, while their

performances on the other workloads are similar. The improvement

achieved by the pattern-based QPR detector is similar to the best

possible on most workloads (except JOB). On the other hand, AMA

remains inferior to the default approach of using 𝑃𝑎 on workloads

such as TPC-H, Real-LO, Real-ED, and Real-SE.

5.4 Analysis of Pattern-based QPR Detector
We further perform more detailed analysis of the pattern-based

QPR detector to understand the impact of (1) the local and global

expensiveness thresholds and (2) the cost inflation factors.

5.4.1 Local and Global Expensiveness Thresholds. We are inter-

ested in the potential of the pattern-based QPR detector by vary-

ing the local and global expensiveness thresholds. For this sake
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Figure 8: Comparison of AMA vs. pattern-based QPR detectors in terms of improvement on plan execution time.
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Figure 9: Comparison of AMA vs. pattern-based QPR detectors in terms of prediction accuracy and F1 score.
we study the optimal settings of the thresholds. Specifically, we
perform a “grid search” in the space of (𝜏𝑙 , 𝜏𝑔) ∈ L × G, where
L = G = {0.1, 0.2, 0.5, 0.8, 0.9}. Figures 10(a), 10(b), and 10(c)

present the results of the optimal thresholds for one-shot, incre-

mental, and evolutionary index tuning, respectively. For one-shot

tuning and incremental tuning, optimal thresholds only make a sig-

nificant difference on Real-DY. On the other hand, for evolutionary

tuning optimal thresholds only make a significant difference on

JOB. It remains future work to explore ways of finding the optimal

thresholds without an exhaustive search.

5.4.2 Cost Inflation Factors. Our way of computing cost inflation

factors is best-effort: the cost inflation factor of the left/right input

of the expensive nested-loop join remains 1 if we cannot find the

corresponding match in the “before plan” 𝑃𝑏 . To understand the

impact of this limitation, we study a hypothetical case where we use

the true left/right input cardinality to compute the cost inflation

factor if we cannot find a match. The results of using the cost

inflation factors based on true cardinality, in combination with

using the optimal local and global thresholds, are presented as ‘Opt-

TC’ in Figures 10(a), 10(b), and 10(c). We observe that leveraging

true cardinality can further improve the pattern-based QPR detector

in certain cases, e.g., on Real-DY for incremental tuning and JOB

for evolutionary tuning. This suggests that one direction for further

improvement of the pattern-based QPR detector is to improve the

cardinality estimation for those operators with no match in 𝑃𝑏 .

5.5 Other Evaluation Results
5.5.1 Generality of Regression Pattern. Some of the observations

and results (in particular, the QPR pattern due to emergence of

expensive NLJs) are not restricted to Microsoft SQL Server. First,

NLJs are supported by almost all database systems. Second, the QPR

pattern related to expensive NLJs also characterizes the roles of

cardinality estimation (CE) errors, which are well-known general

issues beyond a specific database system (e.g., see [24, 56] for studies

of CE errors on top of PostgreSQL). To validate this, we create

the same indexes recommended by DTA on top of PostgreSQL

databases.We then check if the QPR pattern based on the emergence

of new expensive NLJs occurs as well. We use PostgreSQL 17.4

running on a standard Azure D16s-v3 VM.

Figure 11 presents the validation results on the four benchmark

workloads TPC-H, DSB, JOB, and STATS. Here, we compare the

percentage of QPRs with new emerging expensive NLJs. We have

two main observations. First, for most of the cases tested, around

60% to 100% of the QPRs contain new expensive NLJs. Second, this

percentage coverage is consistent across PostgreSQL and Microsoft

SQL Server, demonstrating the generality of the QPR pattern.

5.5.2 Decoupling Indexes from Statistics. Following our ablation
study (Procedure 1) in Section 3.1, a “statistics only” scenario is

itself interesting, as having extra data statistics available could, in

theory, greatly improve the plans (without extra indexes). To shed

some light on the sheer impact of new statistics, we extend our abla-

tion study to all plan pairs collected from one-shot and incremental

index tuning scenarios. Figures 12(a) and 12(b) present the time im-

provement by the “intermediate plan” 𝑃𝑏 over the “before plan” 𝑃𝑏 .

We also include the “after plan” 𝑃𝑎 for comparison. Interestingly, it

is not guaranteed that the availability of new statistics will result in

better plans. Although 𝑃𝑏 indeed leads to significant improvements

for some workloads (e.g., JOB), it also causes significant regressions

for some other workloads (e.g., Real-LO). This raises the question of

recommending statistics that can improve query execution without
causing regression, which we leave for future work.

6 Related Work
Index Tuning. Much work has been devoted to index tuning in

the past decades (see [44] for a recent survey). A classic setup is

offline index tuning (e.g., [3–6, 9, 18, 20, 39, 43, 45, 47, 50–52, 57]),
where the index tuner is given a static workload of queries and

the goal is to come up with an index configuration that minimizes

the workload execution cost (subject to certain constraints such

as storage bound). Offline index tuners rely on the what-if query

optimizer call to estimate the execution cost of a query given an

index configuration, which can be inaccurate and result in QPR

after the index configuration is materialized. On the other hand,

there is also a prominent line of recent work towards online index
tuning (e.g. [22, 37, 38, 40]), where the index tuner needs to deal

with dynamic workloads with new queries coming from time to

time. Online index tuning is a more challenging problem and ex-

isting work has been focusing on solutions using reinforcement

12
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Figure 10: Comparison of variants of the pattern-based QPR detector in terms of improvement on plan execution time.
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Figure 11: Validation of the generality of the regression pattern based on new emerging expensive NLJs.
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Figure 12: Comparison of the improvement in execution time
by using the “intermediate plan” 𝑃𝑏 and the “after plan” 𝑃𝑎 .
learning (RL) technologies with actual query execution time as feed-

back to build reward functions that guide the RL search process.

Using actual query execution time reduces the chance of QPR but

is significantly more expensive compared with using what-if calls.

Query Performance Regression. QPR is an averse problem in prac-

tice. One prominent cause of QPR is plan change due to bad plan

choice made by the query optimizer. QPR emerging in index tuning,

in particular, falls into this category and is more costly given the

nontrivial overhead of running the index tuner and creating the

recommended indexes in addition to the query execution time itself.

QPR after index tuning means all tuning efforts are wasted and the

recommended indexes have to be dropped to bring the query execu-

tion time back to normal [8]. Existing approaches to QPR detection

in the context of index tuning mainly adopt machine learning (ML)

technologies [11, 41, 53, 60]. These approaches often suffer from

limited generalization capability when facing new databases and

workloads. The pattern-based QPR detector studied in this paper

provides an alternative to these ML-based approaches with better

generalizability. On the other hand, there has also been work on

QPR correction in the context of index tuning [12], which is an

interesting but orthogonal direction.

Cardinality Estimation. The pattern-based QPR detector pro-

posed in this paper relies on accurate cardinality information avail-

able from execution feedback in the “before plan.” Moreover, the

evaluation results in Section 5.4.2 further demonstrate the potential

improvement of the pattern-based QPR detector by fixing cardi-

nality estimation errors. There has been extensive work in the

literature on improving cardinality/selectivity estimation accuracy,

and we refer the readers to recent benchmark studies [15, 49] for

an overview of progresses in this area. As we mentioned in Sec-

tion 5.4.2, it remains interesting future work to integrate these more

advanced cardinality estimation technologies into the pattern-based

QPR detector to improve the calculation of the cost inflation factors

when exact matching fails in the “before plan.”

Cost Modeling. We have used query plan recosting [13, 55, 56]

in the pattern-based QPR detector, based on simple cost formulas

crafted by following the execution logic of the NLJ and other join

operators. It is well-known that query optimizer’s cost modeling

can be inaccurate, and there has been considerable amount of work

on improving cost modeling (e.g., [1, 14, 16, 25, 27, 28, 36, 42, 46,

54, 55, 58]). While the simple cost modeling techniques used for

the pattern-based QPR detector show reasonable results in our

evaluation, it remains interesting future work to leverage more

advanced cost modeling techniques for further improvement.

7 Conclusion
We have proposed a pattern-based QPR detector based on learnings

from an in-depth study of QPRs emerging from real-world index

tuning scenarios. The design of the pattern-based QPR detector is

motivated by the observation that most of the significant QPRs can

be attributed to expensive nested-loop joins with underestimated in-

put cardinalities. We have evaluated the pattern-based QPR detector

on top of both industrial benchmarks and real customer workloads.

Our evaluation results show that the pattern-based QPR detector

exhibits better generalizability than state-of-the-art ML-based QPR

detectors when applied to new databases and workloads.
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Figure 13: Illustration of the “gain pattern” GP-1.
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Figure 14: Illustration of the “gain pattern” GP-2.
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Figure 15: Illustration of the “gain pattern” GP-3.
A Beneficial Indexes and Patterns
Index recommendations are often beneficial as they help the query

optimizer in finding more efficient ways to access the base tables.

Below, we present a few representative examples of such improve-

ments, and compare the plans before and after implementing the

index recommendation. We call these beneficial indexes and their

patterns the “gain patterns” (GPs).

A.1 Avoiding Expensive Scan (GP-1)
In Figure 13(a), we show the bottleneck operators for query 2 of TPC-

H. The most expensive operator of the “before plan” is the Table

Scan operator for the base table partsupp with total cardinality of

8 million (node 25, highlighted in pink color), although only 31K

rows satisfy the filter and join predicates. The “after plan,” as shown

in Figure 13(a), uses the recommended index to efficiently access

the corresponding table with an Index Seek operator (node 24,

highlighted in green color). We find many such examples where

index helps in avoiding expensive scan on a large table.

A.2 Avoiding Extra Lookup (GP-2)
As a second example for beneficial indexes, we show the “before

plan” and “after plan” for query 26b from JOB in Figure 14. Ob-

serve that the “before plan” first uses an index on a foreign key

column of the cast_info table to evaluate the join predicate (node

38) and then accesses the clustered index on cast_info to access

other columns that are required to join with the remaining tables.
1

This access to the clustered index turns out to be expensive (see

node 40, highlighted in pink color). The “after plan” uses the rec-

ommended index with included columns to retrieve all required

columns from cast_info (node 24, highlighted in green color) and

helps avoid the extra expensive lookup from the clustered index.

A.3 Avoiding Spool Operator (GP-3)
In the third example shown in Figure 15, we find that the “before

plan” for DSB query 60 uses a Table Spool operator (node 55)

together with clustered index scan (node 56) to join with a relatively

small table item (with 100K rows). When executed, the nested-loop

join with the spool operator (nodes 51 and 55) turns out to be expen-

sive as the number of rebinds are higher at run-time (highlighted

in pink color). The recommended index leads to an “after plan”

that avoids the use of spool operator and executes the join faster

using Hash Join with non-clustered indexes (nodes 52 and 55,

highlighted in green color).

B An Overview of Found QPRs
Figures 16 to 29 present the distributions of the percentage im-

provement/regression regarding query plan execution time (by

comparing the “after plan” 𝑃𝑎 with the “before plan” 𝑃𝑏 ) over all

workloads studied for the three index tuning scenarios, namely,

one-shot tuning, incremental tuning, and evolutionary tuning.

We observe that the chance of regression is relatively small com-

pared to that of improvement, which is expected as index tuning

in general accelerates query execution. However, when regression

happens, it can be significant—we observe a considerable fraction

of regressions with a slowdown of more than 2× in terms of query

execution time on certain workloads. Examples include one-shot

tuning of JOB (Figure 18(a)), incremental tuning of TPC-H (Fig-

ure 16(b)), evolutionary tuning of Real-LO (Figure 21(c)), and more.

C Algorithm Details for Index Tuning Scenarios
C.1 One-shot Index Tuning
Algorithm 6 presents the algorithmic details of the data generation

process of one-shot index tuning.

C.2 Incremental Index Tuning
Algorithm 7 presents the algorithmic details of the data generation

process of incremental index tuning.

1
This is also called a Key Lookup in Microsoft SQL Server.
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Figure 16: Distribution of performance improvement/regression for TPC-H plan pairs collected.
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Figure 17: Distribution of performance improvement/regression for DSB plan pairs collected.
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Figure 18: Distribution of performance improvement/regression for JOB plan pairs collected.
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Figure 19: Distribution of performance improvement/regression for STATS plan pairs collected.
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Figure 20: Distribution of performance improvement/regression for Real-DY plan pairs collected.
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Figure 21: Distribution of performance improvement/regression for Real-LO plan pairs collected.
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Figure 22: Distribution of performance improvement/regression for Real-MS plan pairs collected.
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Figure 23: Distribution of performance improvement/regression for Real-RE plan pairs collected.
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Figure 24: Distribution of performance improvement/regression for Real-DW plan pairs collected.
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Figure 25: Distribution of performance improvement/regression for Real-ED plan pairs collected.
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Figure 26: Distribution of performance improvement/regression for Real-MP plan pairs collected.
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Figure 27: Distribution of performance improvement/regression for Real-SE plan pairs collected.
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Figure 28: Distribution of performance improvement/regression for Real-RM plan pairs collected.
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Figure 29: Distribution of performance improvement/regression for Real-SA plan pairs collected.

Algorithm 8: Evolutionary index tuning.

Input: A, the index tuner;𝑊 , the workload;𝐶0, the initial

configuration of the database.

Output: 𝐷evol

𝑊
, the data collected for evolutionary index tuning.

1 𝐷evol

𝑊
← ∅;

2 foreach query 𝑞 ∈𝑊 do
3 𝐶 ← TuneQuery(A, 𝑞,𝐶0 ) ;
4 Materialize𝐶 ;

5 P ← ∅;
6 foreach subset 𝑆 ⊂ C do
7 𝑃𝑆 ← GetPlan(𝑞, 𝑆 ) , 𝑡𝑆 ← RunQuery(𝑞, 𝑃𝑆 ) ;
8 P ← P ∪ { (𝑞, 𝑃𝑆 , 𝑡𝑆 ) };
9 foreach pair (𝑞, 𝑃1, 𝑃2, 𝑡1, 𝑡2 ) ∈ P × P do
10 Sort the pair to make sure cost(𝑃1 ) ≥ cost(𝑃2 ) ;
11 𝐷evol

𝑊
← 𝐷evol

𝑊
∪ { (𝑞, 𝑃1, 𝑃2, 𝑡1, 𝑡2 ) };

12 return 𝐷evol
𝑊

;

Algorithm 6: One-shot index tuning.
Input: A, the index tuner;𝑊 , the workload;𝐶0, the initial

configuration of the database.

Output: 𝐷os

𝑊
, the data collected for one-shot index tuning.

1 𝐷os

𝑊
← ∅;

2 foreach query 𝑞 ∈𝑊 do
3 𝑃0 ← GetPlan(𝑞,𝐶0 ) , 𝑡0 ← RunQuery(𝑞, 𝑃0 ) ;
4 𝐶 ← TuneQuery(A, 𝑞,𝐶0 ) ;
5 Materialize𝐶 ;

6 𝑃 ← GetPlan(𝑞,𝐶 ) , 𝑡 ← RunQuery(𝑞, 𝑃 ) ;
7 𝐷os

𝑊
← 𝐷os

𝑊
∪ { (𝑞, 𝑃0, 𝑃, 𝑡0, 𝑡 ) };

8 return 𝐷os
𝑊

;

Algorithm 7: Incremental index tuning.

Input: A, the index tuner;𝑊 , the workload;𝐶0, the initial

configuration of the database.

Output: 𝐷 inc

𝑊
, the data collected for incremental index tuning.

1 𝐷 inc

𝑊
← ∅;

2 foreach query 𝑞 ∈𝑊 do
3 for 𝑖 = 1, ... do
4 𝑃𝑖−1 ← GetPlan(𝑞,𝐶𝑖−1 ) , 𝑡𝑖−1 ← RunQuery(𝑞, 𝑃𝑖−1 ) ;
5 𝐼𝑖 ← TuneQuery(A, 𝑞,𝐶𝑖−1 ) ;
6 if 𝐼𝑖 is null then
7 Break;

8 Materialize 𝐼𝑖 ;

9 𝐶𝑖 ← 𝐶𝑖−1 ∪ {𝐼𝑖 };
10 𝑃𝑖 ← GetPlan(𝑞,𝐶𝑖 ) , 𝑡𝑖 ← RunQuery(𝑞, 𝑃𝑖 ) ;
11 𝐷 inc

𝑊
← 𝐷 inc

𝑊
∪ { (𝑞, 𝑃𝑖−1, 𝑃𝑖 , 𝑡𝑖−1, 𝑡𝑖 ) };

12 return 𝐷 inc
𝑊

;

C.3 Evolutionary Index Tuning
Algorithm 8 presents the algorithmic details of the data generation

process of evolutionary index tuning.
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