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ABSTRACT
Stochastic gradient descent (SGD) is the cornerstone of modern

ML systems. Despite its computational efficiency, SGD requires

random data access that is inherently inefficient when implemented

in systems that rely on block-addressable secondary storage such as

HDD and SSD, e.g., in-DB ML systems and TensorFlow/PyTorch

over large files. To address this impedance mismatch, various data

shuffling strategies have been proposed to balance the convergence

rate of SGD (which favors randomness) and its I/O performance

(which favors sequential access).

In this paper, we first conduct a systematic empirical study on

existing data shuffling strategies, which reveals that all existing

strategies have room for improvement—they suffer in terms of I/O

performance or convergence rate. With this in mind, we propose a

simple but novel hierarchical data shuffling strategy, CorgiPile.
Compared with existing strategies, CorgiPile avoids a full data
shuffle while maintaining comparable convergence rate of SGD as if

a full shuffle were performed. We provide a non-trivial theoretical

analysis of CorgiPile on its convergence behavior. We further

integrate CorgiPile into PostgreSQL by introducing three new

physical operators with optimizations. Our experimental results

show that CorgiPile can achieve comparable convergence rate to

the full shuffle based SGD, and 1.6×-12.8× faster than two state-of-

the-art in-DB ML systems, Apache MADlib and Bismarck, on both

HDD and SSD.

CCS CONCEPTS
• Information systems→ Database management system en-
gines; • Computing methodologies→Machine learning.
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1 INTRODUCTION
Stochastic gradient descent (SGD) is the cornerstone of modern

ML systems. With ever-growing data volume, inevitably, SGD algo-

rithms have to access data stored in the secondary storage instead
of accessing the DRAM directly. This can happen in two prominent

applications: (1) for many in-database machine learning (in-DB ML)

scenarios, one has to assume that the data is stored on the sec-

ondary storage, managed by the buffer manager [5]; and (2) in deep
learning systems such as TensorFlow [15], one needs to support

out-of-memory access via a specialized scanner over large files.

In-database Machine Learning. In-DB ML has been a popular re-

search area in the database community for years [22, 27, 34, 41, 43,

46, 53, 57, 59]. One major benefit of in-DB ML is that users do not

need to move the data out of the database to another specialized

ML platform, given that data movement is often time-consuming,

error-prone, or even impossible (e.g., due to privacy and security

compliance concerns). Instead, users can define their ML training

jobs using SQL, e.g., training an SVM model with MADlib [4, 34]

and Bismarck [27] can be done via a single SQL statement:

SELECT svm_train(table_name, parameters).

A Fundamental Discrepancy. As identified by previous work [27,
39, 69], one unique challenge of in-DB ML is that data can be clus-
tered while shuffling is not always feasible. For example, the data

is clustered by the label, where data with negative labels might

always come before data with positive labels [27]. Another example

is that the data is ordered by one of the features. These are common

cases when there is a clustered B-tree index, or the data is naturally

grouped/ordered by, e.g., timestamps. As SGD requires a random

data order (shuffle over all data) to converge [24, 27, 31, 32, 50,

56, 58, 68], directly running sequential scans over such a clustered

dataset can slowdown the convergence of SGD.

Meanwhile, when data are stored on block-addressable secondary

storage such as HDD and SSD, it can be incredibly expensive to

either shuffle the data on-the-fly when running SGD, or shuffle the

data once with copy and run SGD over the shuffled copy, due to the

amount of random I/O’s. Sometimes, data shuffling might not be

applicable in database systems—in-place shuffling might have an

https://doi.org/10.1145/3514221.3526150
https://doi.org/10.1145/3514221.3526150
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Figure 1: The convergence rate and performance of SVM on
clustered higgs dataset. (a) Today’s SGD systems over sec-
ondary storage, including in-DB ML solutions (MADlib/Bis-
marck) and TensorFlow file scanner, are sensitive to clustered
data order. (b) Forcing a full data shuffle before training ac-
commodates this clustered data issue, but introduces large
overhead that is often more expensive than training itself.
impact on other indices, whereas shuffling over a data copy intro-

duces a 2× storage overhead. How to design efficient SGD algorithms
without requiring even a single pass of full data shuffle? Understand-
ing this question can have a profound impact to the system design

of both in-DB ML systems and deep learning systems.

Existing Landscape and Challenges. Various solutions have been
proposed, in the context of both in-DB ML and deep learning sys-

tems. In Bismarck [27], the authors suggest a “multiplexed reser-

voir sampling” (MRS) shuffling strategy, in which two concurrent

threads update the same model—one reads data sequentially with

reservoir sampling and the other reads from a small, shuffled in-

memory buffer. Alternatively, TensorFlow provides a shuffling strat-

egy based on a sliding window over the data [12]. Both significantly

improve the SGD convergence rate and have been widely adopted

in practice. Despite these efforts, however, they suffer from some

shortcomings. As illustrated in Figure 1(a), both strategies proposed

by Bismarck and TensorFlow perform suboptimally given a clus-
tered data order. Meanwhile, the idea of shuffling data once before
training, i.e., the curve corresponding to “MADlib/Bismarck (Shuffle
Once),” can accommodate for such convergence problem but also

introduce a significant overhead as shown in Figure 1(b), which is

consistent with the observations from previous work [27].

Our Contributions. Inspired by previous efforts, we study the

following questions and make four contributions in this paper:

Canwe design an SGD-style algorithmwith DB-friendly
shuffling strategy that can converge without requiring a
full data shuffle? Can we provide a rigorous theoretical
analysis on its convergence behavior? Can we integrate
such an algorithm into DBMS to support in-DB ML?

C1. An Anatomy and Empirical Study of Existing Algo-
rithms. We start with a systematic evaluation of existing data

shuffling strategies for SGD, including (1) Epoch Shuffle, which per-

forms a full shuffle before each epoch, (2) Shuffle Once, (3)No Shuffle,
(4) Sliding-Window Shuffle, and (5) MRS Shuffle. We evaluate them

in the context of using SGD to train generalized linear models and

deep learning models, over a variety of datasets. Our evaluation

reveals that existing strategies cannot simultaneously achieve good

hardware efficiency (I/O performance) and statistical efficiency (con-

vergence rate and converged accuracy). Specifically, Epoch Shuffle
and Shuffle Once achieve the best statistical efficiency, since the

data has been fully shuffled; however, their hardware efficiency is

suboptimal given the additional shuffle overhead and storage over-

head. In contrast, No Shuffle achieves the best hardware efficiency

as no data shuffle is required; however, its statistical efficiency suf-

fers as it might converge slowly or even diverge. The other two

strategies, Sliding-Window Shuffle and MRS Shuffle, can be viewed

as a compromise between Shuffle Once and No Shuffle, which trade

statistical efficiency for hardware efficiency. Nevertheless, both

strategies suffer in terms of statistical efficiency (Section 3).

C2. A Simple, but Novel, Algorithmwith Rigorous Theoret-
ical Analysis. Motivated by the limitations of existing strategies,

we propose CorgiPile, a novel SGD-style algorithm based on a

two-level hierarchical data shuffle strategy.
1
The main idea is to first

sample and shuffle the data at a block level, and then shuffle data

at a tuple level within the sampled data blocks, i.e., first sampling

data blocks (a batch of table pages per block), then merging the

sampled blocks in a buffer, and finally shuffling the tuples in the

buffer for SGD. While this two-level strategy seems quite simple, it

can achieve both good hardware efficiency and statistical efficiency.

Although the hardware efficiency is easy to understand—accessing

random data blocks is much more efficient than accessing random

tuples, especially when the block size is large, the statistical effi-

ciency requires some non-trivial analysis. To this end, we further

provide a rigorous theoretical study on the convergence behavior.

C3. Implementation, Optimization, and Deep Integration
with PostgreSQL. While the benefit of CorgiPile for hardware

efficiency is intuitive, its realization requires careful design, imple-

mentation, and optimization. Unlike previous in-DB ML systems

such as MADlib and Bismarck that integrate ML algorithms using

User-Defined Aggregates (UDAs), our technique requires a deeper

system integration since it needs to directly interact with the buffer

manager. Therefore, we operate at the “physical level” and enable

in-DB ML inside PostgreSQL [10] via three new physical operators:
BlockShuffle, TupleShuffle, as well as SGD operator for our

customized SGD implementation
2
. We can then construct an exe-

cution plan for the SGD computation by chaining these operators

together to form a pipeline, naturally following the built-in Volcano

paradigm [29] of PostgreSQL. We also design a double-buffering
mechanism to optimize the TupleShuffle operator.

C4. Extensive Empirical Evaluations. We conduct exten-

sive evaluations to demonstrate the effectiveness of CorgiPile.
Specifically, we compare the end-to-end performance of our Post-

greSQL implementation with two state-of-the-art in-DB ML sys-

tems, MADlib and Bismarck. We show that CorgiPile achieves

comparable training/testing accuracy to the best Shuffle Once base-
line, but is significantly faster since it does not require full data

shuffle. Other data shuffling strategies suffer from lower SGD con-

vergence rate on clustered datasets. Overall, CorgiPile can achieve
1.6×-12.8× speedup compared to MADlib and Bismarck over clus-

tered data. Furthermore, for the datasets ordered by features instead

of the label, our CorgiPile still achieves comparable accuracy to

the Shuffle Once, whereas No Shuffle suffers from lower accuracy.

1
Although we give unquestionable love to dogs, the name comes from the shuffling

strategy that is a combination of pile shuffle and corgi shuffle, two commonly used

strategies to shuffle a deck of cards.

2
The code is available at https://github.com/DS3Lab/CorgiPile-PostgreSQL.

https://github.com/DS3Lab/CorgiPile-PostgreSQL
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(a) LR on clustered dataset

20

40

60

80

T
ra

in
in

g
a

cc
u

ra
cy

(b) SVM on clustered dataset
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(c) VGG19 on clustered dataset (bs128)
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(d) ResNet18 on clustered dataset (bs128)
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(f) SVM on shuffled dataset
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(g) VGG19 on shuffled dataset (bs128)
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(h) ResNet18 on shuffled dataset (bs128)

Epoch Shuffle Shuffle Once No Shuffle MRS Shuffle Sliding-Window Shuffle

Figure 2: The convergence rates of SGD with different data shuffling strategies, for clustered and shuffled datasets, using the
same buffer size (10% of the dataset size) for MRS and Sliding-Window Shuffles.

2 PRELIMINARIES
In this section, we briefly review the standard SGD algorithm and

its implementation in the state-of-the-art in-DB ML systems.

2.1 Stochastic Gradient Descent (SGD)
Given a dataset with𝑚 training examples {t𝑖 }𝑖∈[𝑚] , e.g.,𝑚 tuples

if the training set is stored as a table in a database, the typical ML

task essentially solves an optimization problem that can be cast

into minimizing a finite sum over𝑚 data examples w.r.t. model x:

𝐹 (x) = 1

𝑚

∑︁𝑚

𝑖=1

𝑓𝑖 (x),

where each 𝑓𝑖 corresponds to the loss over each training tuple t𝑖 .
SGD is an iterative procedure that takes as input hyperparameters

such as the learning rate 𝜂 and the maximum number of epochs 𝑆 .

It then works as follows:

(1) Initialization – Initialize the model x, often randomly.

(2) Iterative computation – In each iteration it draws a (batch of)

tuple t𝑖 , randomly with replacement, computes the stochastic

gradient ∇𝑓𝑖 (x) and updates the parameters of model x. In
practice, most systems implement a variant, where the random

tuples are drawnwithout replacement [19, 24, 27, 68]. To achieve
this, one shuffles all tuples before each epoch and sequentially

scans these shuffled tuples. For each tuple, we compute the

stochastic gradient and update the model parameters.

(3) Termination – The procedure ends when it converges (i.e., the

parameters of model x no longer change) or has attained the

maximum number of epochs.

2.2 In-database Machine Learning
There has been a plethora of work in the past decade focusing

on in-DB ML [22, 27, 34, 36, 39, 41, 43, 46, 47, 53, 57, 59, 67, 69].

Most existing in-DB ML systems implement SGD as “User-Defined

Aggregates” (UDA) [27, 34]. Each epoch of SGD is done via an invo-

cation of the corresponding UDA function, where the parameters

of model x are treated as the state and updated for each tuple.

To implement the data shuffling step required by SGD, different

in-DB ML systems adopt distinct strategies. For example, some

systems such as MADlib [34] and DB4ML [37] assume that the

training data has already been shuffled, so they do not perform

any data shuffling. Other systems, such as Bismarck [27], do not

make this assumption. Instead, they either perform a pre-shuffle of

the data in an offline manner and then store the shuffled data as

a replica in the database, or perform partial data shuffling based

on sampling technologies such as reservoir sampling and sliding-
window sampling. As we will see in the next section, such partial

data shuffling strategies, despite alleviating the computation and

storage overhead of the preshuffle strategy, raise new issues regard-

ing the convergence of SGD, since the data is insufficiently shuffled

and does not follow the purely random order required.

3 DATA SHUFFLING STRATEGIES FOR SGD
In this section, we present a systematic analysis of data shuffling

strategies used by existing in-DBML systems.We consider five com-

mon data shuffling strategies: (1) Epoch Shuffle, (2) Shuffle Once, (3)
No Shuffle, (4) Sliding-Window Shuffle [12], and (5)MRS Shuffle [27].
We use diverse SGDworkloads, including generalized linear models

such as logistic regression (LR) and support vector machine (SVM),

as well as deep learning models such as VGG [61] and ResNet [33].

Experimental Setups.We use the criteo dataset [3] for gener-

alized linear models, and use the cifar-10 image dataset [2] for

deep learning. Each dataset has two versions: a shuffled version and

a clustered version. In the shuffled version, all tuples are randomly

shuffled, whereas in the clustered version all tuples are clustered

by their labels. The use of clustered datasets is inspired by similar

settings leveraged in [27], with the goal of testing the worst-case

scenarios of data shuffling strategies for SGD. For example, the

clustered version of criteo dataset has the negative tuples (with
“-1” labels) ordered before the positive tuples (with “+1” labels).

3.1 “Shuffle Once” and “Epoch Shuffle”
The Shuffle Once strategy performs an offline shuffle of all data

tuples, either in-place or by storing the shuffled tuples as a copy in

the database. SGD is then executed over this shuffled copy without

any further shuffle during the execution of SGD. Albeit a simple

(but costly) idea, it is arguably a strong baseline that many state-

of-the-art in-DB ML systems assume when they take as input an

already shuffled dataset. For Epoch Shuffle, it shuffles the training

set before each training epoch. Therefore, the data shuffling cost of

Epoch Shuffle grows linearly with respect to the number of epochs.

Convergence. As illustrated in Figure 2, Shuffle Once can achieve

a convergence rate comparable to Epoch Shuffle on both shuffled

and clustered datasets, confirming previous observations [27].



Table 1: A Summary of Different Shuffling Strategies, where bold fonts represent the “ideal” scenario. We assume all methods
that require an in-memory buffer have reasonably large buffer size, e.g., 1%-10% of the dataset size.

Shuffling Strategy Convergence Behavior I/O Perf. In-memory Buffer Additional Disk Space
No Shuffle Slow; Lower Accuracy Fast No No

Epoch Shuffle Fast; High Accuracy Slow Yes 2× data size if in-place shuffle impossible

Shuffle Once Fast; High Accuracy Slow Yes 2× data size if in-place shuffle impossible

MRS Shuffle [27] Worse than Shuffle Once Fast Yes No
Sliding-Window [12] Worse than Shuffle Once Fast Yes No

CorgiPile Comparable to Shuffle Once Fast Yes No

Performance. Although Shuffle Once reduces the number of data

shuffles to only once, the shuffle itself can be very expensive on

large datasets, due to the random access of tuples, as we will show

in our experiments. Previous work has also reported that shuffling a

huge dataset could not be finished in one day [27]. Another problem

of Shuffle Once is that, when in-place shuffle is not feasible, it needs

to duplicate the data, which can double the space overhead.

3.2 “No Shuffle”
The No Shuffle strategy does not perform any data shuffle at all, i.e.,

the SGD algorithm runs over the given data order in each epoch.

Simply running MADlib over a dataset picks the No Shuffle strategy.

Convergence. On shuffled data, No Shuffle can achieve comparable

convergence rate to Shuffle Once. However, for clustered data, No
Shuffle leads to a significantly lower model accuracy. This is not

surprising, as SGD relies on a random data order to converge.

Performance. No Shuffle is the fastest data shuffling strategy, as it

can sequentially, instead of randomly, access the data tuples [16].

3.3 “Sliding-Window Shuffle”
The Sliding-Window Shuffle strategy uses a sliding window to per-

form partial data shuffle as follows, which is used by TensorFlow [12].

(1) Allocate a sliding window and fill tuples as they are scanned.

(2) Randomly select a tuple from the window and use it for the

SGD computation. The slot of the selected tuple in the window

is then filled in by the next incoming tuple.

(3) Repeat (2) until all tuples are scanned.

Convergence. As illustrated in Figure 2, for clustered datasets,

Sliding-Window Shuffle can achieve higher model accuracy than No
Shuffle but lower accuracy than Shuffle Once when SGD converges.

The reason is that this strategy shuffles the data only partially. For
two data examples t𝑖 and t𝑗 where t𝑖 is stored much earlier than t𝑗
(𝑖 ≪ 𝑗 ), it is likely that t𝑖 is still selected before t𝑗 . As a result, on
the clustered datasets used in our study, negative tuples are more

likely to be selected (for SGD) before positive ones, which distorts

the training data seen by SGD and leads to low model accuracy.

Performance. Sliding-Window Shuffle can achieve I/O performance

comparable to No Shuffle, as it also only needs to sequentially access

the data tuples with limited additional CPU overhead to maintain

and sample from the sliding window.

3.4 “Multiplexed Reservoir Sampling Shuffle”
Multiplexed Reservoir Sampling (MRS) Shuffle uses two concurrent

threads to read tuples and update a shared model [27]. The first

thread sequentially scans the dataset and performs reservoir sam-
pling. The sampled (i.e., selected) tuples are stored in a buffer 𝐵1 and

the dropped (i.e., not selected) ones are used for SGD. The second

thread loops over the sampled tuples using another buffer 𝐵2 for

SGD, where tuples are simply copied from the buffer 𝐵1.

Convergence. As illustrated in Figure 2, MRS Shuffle achieves

higher accuracy than Sliding-Window Shuffle but lower accuracy
than Shuffle Once when SGD converges. The reason is quite similar

to that given to Sliding-Window Shuffle, as the shuffle based on

reservoir sampling is again partial and therefore is insufficient when

dealing with clustered data. Specifically, the order of the dropped
tuples is also generally increasing, i.e., if 𝑖 ≪ 𝑗 , t𝑖 is likely to be

processed by SGD before t𝑗 . Moreover, looping over the sampled

tuples may lead to suboptimal data distribution—the sampled tuples

in the looping buffer 𝐵2 may be used multiple times, which can

cause data skew and thus decrease the model accuracy.

Performance. MRS Shuffle is fast, as the first thread only needs

to sequentially scan the tuples for reservoir sampling. It is slightly

slower than Sliding-Window Shuffle and No Shuffle, as there is a
second thread that loops over the buffered tuples.

3.5 Analysis and Summary
Table 1 summarizes the characteristics of different data shuffling

strategies. As discussed, the effectiveness of data shuffling strate-

gies for SGD largely depends on two somewhat conflicting factors,

namely, (1) the degree of data randomness of the shuffled tuples

and (2) the I/O efficiency when scanning data from disk. There is an

apparent trade-off between these two factors:

• The more random the tuples are, the better the convergence

rate of SGD is. Epoch Shuffle introduces data randomness

at the highest level, but it is too expensive to implement in

in-DB ML systems. Shuffle Once also introduces significant

data randomness, which is the best practice for in-DB ML.

• A higher degree of randomness implies more random disk

accesses and thus lower I/O efficiency. As a result, the No
Shuffle strategy is the best in terms of I/O efficiency.

The other strategies (Sliding-Window and MRS) try to sacrifice data

randomness for better I/O efficiency, leaving room for improvement.

Example 1. To better understand these issues, consider a clustered
dataset with 1,000 tuples, each of which has a tuple_id and a label,
where tuple_id of the 𝑖-th tuple is 𝑖 . The first 500 tuples are negative
and the next 500 tuples are positive. Figure 3 plots the distributions
of tuple_id and corresponding labels after Sliding-Window and MRS
Shuffle, and compare them with the ideal distributions from a full
shuffle. Specifically, the tuple_id distribution illustrates the positions
of the tuples after shuffling, whereas the label distribution illustrates
the number of negative/positive tuples in every 20 tuples shuffled.
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Figure 3: The tuple id distribution (a-d) and the corresponding label distribution (e-h) of data shuffling strategies. Tuple id
denotes the tuple position after shuffling. #tuple denotes the number of negative/positive tuples in every 20 tuples shuffled.

We can observe that Sliding-Window results in a “linear”-shape
distribution of the tuple_id after shuffling, as shown by Figure 3(b),
which suggests that the tuples are almost not shuffled. The corre-
sponding label distribution in Figure 3(f) further confirms this, where
almost all negative labels still appear before positive ones after shuf-
fling. Similar patterns can be observed for MRS in Figures 3(c) and 3(g),
though MRS has improved over Sliding-Window. In summary, the
data randomness achieved by Sliding-Window or MRS is far from the
ideal case, as shown in Figures 3(d) and 3(h).

4 CORGIPILE
Inspired by previous efforts, we present a simple but novel data

shuffling strategy named CorgiPile. The key idea of CorgiPile
lies in the following two-level hierarchical shuffling mechanism:

We first randomly select a set of blocks (each block refers
to a set of contiguous tuples) and put them into an in-
memory buffer; we then randomly shuffle all tuples in
the buffer and use them for SGD.

Despite its simplicity, CorgiPile is highly effective. In terms of

hardware efficiency, when the block size is large enough (e.g.,

10MB+), a random access on the block level can be as efficient as a

sequential scan, as shown in our I/O performance test on HDD and

SSD [7]. In terms of statistical efficiency, as we will show, given the
same buffer size, CorgiPile converges much better than Sliding-
Window andMRS. Nevertheless, both the convergence analysis and

its integration into PostgreSQL are non-trivial. In the following, we

first describe the CorgiPile algorithm precisely and then present

a theoretical analysis on its convergence behavior.

Notations and Definitions. The following is a list of notations

and definitions that we will use:

• ∥ · ∥: the ℓ2-norm for vectors and the spectral norm for matrices;

• ≲: For two arbitrary vectors 𝑎,𝑔, we use 𝑎𝑠 ≲ 𝑔𝑠 to denote that

there exists a certain constant 𝐶 that satisfies 𝑎𝑠 ≤ 𝐶𝑔𝑠 for all 𝑠;
• 𝑁 , the total number of blocks (𝑁 ≥ 2);

Algorithm 1 CorgiPile Algorithm

1: Input: 𝑁 blocks with𝑚 total tuples, total epochs 𝑆 (𝑆 ≥ 1),

𝑎 ≥ 1, 𝐹 (·) = 1

𝑚

∑𝑚
𝑖=1

𝑓𝑖 (·).
2: Initialize x0

0
;

3: for 𝑠 = 0, · · · , 𝑆 do
4: Randomly pick 𝑛 blocks without replacement, each contain-

ing 𝑏 tuples. Load these blocks into the buffer;

5: Shuffle tuple indices among all 𝑛 blocks in the buffer and

obtain the permutation 𝝍𝑠 ;
6: for 𝑘 = 1, ..., 𝑏𝑛 do
7: Update x𝑠

𝑘
= x𝑠

𝑘−1
− 𝜂𝑠∇𝑓𝜓𝑠 (𝑘)

(
x𝑠
𝑘−1

)
;

8: end for
9: x𝑠+1

0
= x𝑠

𝑏𝑛
;

10: end for
11: Return 𝑥𝑆

𝑏𝑛
;

• 𝑛, the buffer size (i.e., the number of blocks kept in the buffer);

• 𝑏, the size (number of tuples) of each data block;

• 𝐵𝑙 , the set of tuple indices in the 𝑙-th block (𝑙 ∈ [𝑁 ] and |𝐵𝑙 | = 𝑏);
• 𝑚, the number of tuples for the finite-sum objective (𝑚 = 𝑁𝑏);

• 𝑓𝑖 (·), the function associated with the 𝑖-th tuple;

• ∇𝐹 (·) and ∇𝑓𝑖 (·), the gradients of the functions 𝐹 (·) and 𝑓𝑖 (·);
• 𝐻𝑖 (·) := ∇2 𝑓𝑖 (·), the Hessian matrix of the function 𝑓𝑖 (·);
• x∗, the global minimizer of the function 𝐹 (·);
• x𝑠

𝑘
, the model x in the 𝑘-th iteration at the 𝑠-th epoch;

• 𝜇-strongly convexity: function 𝐹 (x) is 𝜇-strongly convex if ∀x, y,

𝐹 (x) ≥ 𝐹 (y) + ⟨x − y,∇𝐹 (y)⟩ + 𝜇

2

∥x − y∥2 . (1)

4.1 The CorgiPile Algorithm
Algorithm 1 illustrates the details of CorgiPile. At each epoch

(say, the 𝑠-th epoch), CorgiPile runs the following steps:

(1) (Sample) Randomly sample 𝑛 blocks out of 𝑁 data blocks with-
out replacement and load the 𝑛 blocks into the buffer. Note that
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Figure 4: The tuple id/label distribution of CorgiPile.
we use sample without replacement to avoid visiting the same

tuple multiple times for each epoch, which can converge faster

and is a standard practice in most ML systems [17, 19, 27, 30, 32].

(2) (Shuffle) Shuffle all tuples in the buffer. We use 𝝍𝑠 to denote
an ordered set, whose elements are the indices of the shuffled

tuples at the 𝑠-th epoch. The size of 𝝍𝑠 is 𝑏𝑛, where 𝑏 is the

number of tuples per block. 𝝍𝑠 (𝑘) is the 𝑘-th element in 𝝍𝑠 .
(3) (Update) Perform gradient descent by scanning each tuple with

the shuffle indices in 𝝍𝑠 , yielding the updating rule

x𝑠
𝑘
= x𝑠

𝑘−1
− 𝜂𝑠∇𝑓𝝍𝑠 (𝑘)

(
x𝑠
𝑘−1

)
,

where ∇𝑓𝝍𝑠 (𝑘) (·) is the gradient function averaging the gradi-

ents of all samples in the tuple indexed by 𝝍𝑠 (𝑘), and 𝜂𝑠 is the
learning rate for gradient descent at the epoch 𝑠 . The parameter

update is performed for all 𝑘 = 1, ..., 𝑏𝑛 in one epoch.

Intuition behind CorgiPile. Before we present the formal theo-

retical analysis, we first illustrate the intuition behind CorgiPile,
following the same example used in Section 3.5.

Example 2. Consider the same settings as those in Example 1.
Recall that CorgiPile contains both block-level and tuple-level shuf-
fles. Suppose that the block-level shuffle generates a random order of
blocks as {b20, b8, b45, b0, ...} and the buffer can hold 10 blocks. The
tuple-level shuffle will put the first 10 blocks into the buffer, whose
tuple_ids are {b20[400, 419], b8[160, 179], b45[900, 919], b0[0, 19], ...}.
After shuffling, the buffered tuples will have random tuple_ids in
a large non-contiguous interval that is the union of {[0, 19], [160,
179], ..., [900, 919]}, as shown in the first 200 tuples in Figure 4(a). The
buffered tuples therefore follow a random order closer to what is given
by a full shuffle. As a result, the corresponding label distribution, as
shown in Figure 4(b), is closer to a uniform distribution.

Performance.While No Shuffle only requires sequential I/O, our
CorgiPile needs to (1) randomly access blocks, (2) copy all tuples

in these blocks into a buffer, and (3) shuffle the tuples inside the

buffer. Here, random accessing a block means randomly picking a

block and reading the tuples of this block from secondary storage

(e.g., disk) into memory. If the block size is large enough, the I/O per-

formances of random and sequential accesses are close. CorgiPile
incurs additional overheads for buffer copy and in-memory shuffle.
However, these I/O overheads can be hidden via standard tech-

niques such as double buffering. Aswewill show in our experiments,

the optimized version of CorgiPile only incurs 11.7% additional

overhead compared to the most efficient No Shuffle baseline.

4.2 Convergence Analysis
Despite its simplicity, the convergence analysis of CorgiPile is not
trivial—even reasoning about the convergence of SGD with sample
without replacement is an open question for decades [31, 32, 60, 66],

not to say a hierarchical sampling scheme like ours. Luckily, a recent

theoretical advancement [32] provides us with the technical lan-

guage to reason about CorgiPile’s convergence. In the following,

we present a novel theoretical analysis for CorgiPile.
Note that in our analysis, one epoch represents going through

all the tuples in the sampled 𝑛 blocks.

Assumption 1. We make the following standard assumptions, as
that in other previous work on SGD convergence analysis [20, 45]:

(1) 𝐹 (·) and 𝑓𝑖 (·) are twice continuously differentiable.
(2) 𝐿-Lipschitz gradient: ∃𝐿 ∈ R+, ∥∇𝑓𝑖 (x) −∇𝑓𝑖 (y)∥ ≤ 𝐿∥x−y∥

for all 𝑖 ∈ [𝑚].
(3) 𝐿𝐻 -Lipschitz Hessian matrix: ∥𝐻𝑖 (x) −𝐻𝑖 (y)∥ ≤ 𝐿𝐻 ∥x − y∥

for all 𝑖 ∈ [𝑚].
(4) Bounded gradient: ∃𝐺 ∈ R+, ∥∇𝑓𝑖 (x𝑠𝑘 )∥ ≤ 𝐺 for all 𝑖 ∈ [𝑚],

𝑘 ∈ [𝐾 − 1], and 𝑠 ∈ {0, 1 . . . , 𝑆}.
(5) Bounded Variance:E𝜉 [∥∇𝑓𝜉 (x)−∇𝐹 (x)∥2] = 1

𝑚

∑𝑚
𝑖=1

∥∇𝑓𝑖 (x)−
∇𝐹 (x)∥2 ≤ 𝜎2 where 𝜉 is the random variable that takes the
values in [𝑚] with equal probability 1/𝑚.

Factor ℎ𝐷 . In our analysis, we use the factor ℎ𝐷 to characterize

the upper bound of a block-wise data variance:

1

𝑁

𝑁∑︁
𝑙=1



∇𝑓𝐵𝑙
(x) − ∇𝐹 (x)



2 ≤ ℎ𝐷
𝜎2

𝑏
,

where 𝑏 = |𝐵𝑙 | is the size of each data block (recall the definition of

𝑏). Here, ℎ𝐷 is an essential parameter to measure the “cluster” effect

within the original data blocks. Let’s consider two extreme cases:

1) (ℎ𝐷 = 1) all samples in the data set are fully shuffled, such that

the data in each block follows the same distribution; 2) (ℎ𝐷 = 𝑏)

samples are well clustered in each block, for example, all samples

in the same block are identical. Therefore, the larger ℎ𝐷 , the more

“clustered” the data.

We now present the results for both strongly convex objectives

(corresponding to generalized linear models) and non-convex ob-

jectives (corresponding to the deep learning models) respectively,

in order to show the correctness and efficiency of CorgiPile. The
proof of the following theorems is available at [14].

Strongly convex objective. We first show the result for strongly

convex objective that satisfies the strong convexity condition (1).

Theorem 1. Suppose that 𝐹 (x) is a smooth and 𝜇-strongly convex
function. Let 𝑇 = 𝑆𝑛𝑏, that is, the total number of samples used in
training and 𝑆 ≥ 1 is the number of tuples iterated, and choosing 𝜂𝑠 =

6

𝑏𝑛𝜇 (𝑠+𝑎) where 𝑎 ≥ max

{
8𝐿𝐺+24𝐿2+28𝐿𝐻𝐺

𝜇2
, 24𝐿

𝜇

}
, under Assumption

1, CorgiPile has the following convergence rate

E[𝐹 (x̄𝑆 ) − 𝐹 (x∗)] ≲ (1 − 𝛼)ℎ𝐷𝜎2
1

𝑇
+ 𝛽 1

𝑇 2
+ 𝛾𝑚

3

𝑇 3
, (2)

where x̄𝑆 =

∑
𝑠 (𝑠+𝑎)3x𝑠∑
𝑠 (𝑠+𝑎)3

, and

𝛼 :=
𝑛 − 1

𝑁 − 1

, 𝛽 := 𝛼2 + (1 − 𝛼)2 (𝑏 − 1)2, 𝛾 :=
𝑛3

𝑁 3
.



Tightness. The convergence rate of CorgiPile is tight in the

following sense:

• 𝛼 = 1: It means that 𝑛 = 𝑁 , i.e., all tuples are fetched to the

buffer. Then CorgiPile reduces to full-shuffle SGD [32]. In this

case, the upper bound in Theorem 1 is 𝑂 (1/𝑇 2 +𝑚3/𝑇 3), which
matches the result of the full shuffle SGD algorithm [32].

• 𝛼 = 0: It means that 𝑛 = 1, i.e., only sampling one block each time.

Then CorgiPile is very close to mini-batch SGD (by viewing

a block as a mini-batch), except that the model is updated once

per data tuple. Ignoring the higher-order terms in (2), our upper

bound 𝑂 (ℎ𝐷𝜎2/𝑇 ) is consistent with that of mini-batch SGD.

Comparison to vanilla SGD. In vanilla SGD, we only randomly

select one tuple from the dataset to update the model. It admits

the convergence rate 𝑂 (𝜎2/𝑇 ). Comparing to the leading term

(1 − 𝛼)ℎ𝐷 (𝜎2/𝑇 ) in (2) for our algorithm, if 𝑛 ≫ (ℎ𝐷 − 1) (𝑁 −
1)/ℎ𝐷 + 1 (for ℎ𝐷 > 0), (1 − 𝛼)ℎ𝐷 will be much smaller than 1,

indicating that our algorithm outperforms vanilla SGD in terms

of sample complexity. It is also worth noting that, even if 𝑛 is

small, CorgiPile may still significantly outperform vanilla SGD.

Assuming that reading a random single tuple incurs an overhead

of 𝑡
lat

+ 𝑡t and reading a block of 𝑏 tuples incurs an overhead of

𝑡
lat

+ 𝑏𝑡t, where 𝑡lat is the “latency” for one read/write operation
that does not grow linearly with respect to the amount of data that

one reads/writes (e.g., SSD read/write latency or HDD “seek and

rotate” time), and 𝑡t is the time that one needs to transfer a single

tuple. To reach an error of 𝜖 , vanilla SGD requires, in physical time,

𝑂

(
𝜎2

𝜖
𝑡
lat

+ 𝜎
2

𝜖
𝑡t

)
,

whereas CorgiPile requires

𝑂

(
(1 − 𝛼)ℎ𝐷

𝑏
· 𝜎

2

𝜖
𝑡
lat

+ (1 − 𝛼)ℎ𝐷 · 𝜎
2

𝜖
𝑡t

)
.

Because (1 − 𝛼) ℎ𝐷
𝑏

< 1, CorgiPile always provides benefit over

vanilla SGD in terms of the read/write latency 𝑡
lat
. When 𝑡

lat
domi-

nates the transfer time 𝑡t, CorgiPile can outperform vanilla SGD

even for small buffers.

Non-convex objective. We further conduct an analysis on objec-

tives that are non-convex or satisfy the Polyak-Łojasiewicz condi-

tion, which leads to similar insights on the behavior of CorgiPile.

Theorem 2. Suppose that 𝐹 (x) is a smooth function. Letting 𝑇 =

𝑆𝑛𝑏 be the number of tuples iterated, under Assumption 1, CorgiPile
has the following convergence rate:

(1) When 𝛼 ≤ 𝑁−2

𝑁−1
, choosing 𝜂𝑠 = 1√

𝑏𝑛 (1−𝛼)ℎ𝐷𝜎2𝑆
and assuming

𝑆 ≥ 𝑏𝑛 ( 104

3
𝐿+ 4

3
𝐿𝐻 )2

𝜎2 (1−𝛼)ℎ𝐷 , we have

1

𝑆

𝑆∑︁
𝑠=1

E∥∇𝐹 (x𝑠
0
)∥2 ≲(1 − 𝛼)1/2

√︁
ℎ𝐷𝜎√
𝑇

+ 𝛽 1

𝑇
+ 𝛾𝑚

3

𝑇
3

2

,

where the factors are defined as

𝛼 :=
𝑛 − 1

𝑁 − 1

, 𝛽 :=
𝛼2

1 − 𝛼
1

ℎ𝐷𝜎
2
+ (1 − 𝛼) (𝑏 − 1)2

ℎ𝐷𝜎
2
, 𝛾 :=

𝑛3

(1 − 𝛼)𝑁 3
;

(2) When 𝛼 = 1, choosing 𝜂𝑠 = 1

(𝑚𝑆)
1

3

and assuming 𝑆 ≥ ( 416

3
𝐿+

16

3
𝐿𝐻 )3𝑏2𝑛3/𝑁 , we have

1

𝑆

𝑆∑︁
𝑠=1

E∥∇𝐹 (x𝑠
0
)∥2 ≲

1

𝑇
2

3

+ 𝛾 ′𝑚
3

𝑇
,

where we define 𝛾 ′ := 𝑛3

𝑁 3
.

We can apply a similar analysis as that of Theorem 1 to compare

CorgiPile with vanilla SGD, in terms of convergence rate, and

reach similar insights.

5 IN-DATABASE IMPLEMENTATION
We integrate CorgiPile into PostgreSQL. Our implementation pro-

vides a simple SQL-based interface for users to invoke CorgiPile,
with the following query template:

SELECT * FROM table TRAIN BY model WITH params.

This interface is similar to that offered by existing in-DBML systems

such as MADlib [4, 34] and Bismarck [27]. Examples of the params
include learning_rate = 0.1, max_epoch_num = 20, and block_size =
10MB. CorgiPile outputs various metrics after each epoch, such

as training loss, accuracy, and execution time.

The Need of a Deeper Integration. Unlike existing in-DB ML sys-

tems, we choose not to implement our CorgiPile strategy using

UDAs. Instead, we choose to integrate CorgiPile into PostgreSQL

by introducing physical operators. Is it necessary for such a deeper
integration with database system internals, compared to a potential
UDA-based implementation without modifying the internals?

While a UDA-based implementation is conceptually possible, it

is not natural for CorgiPile, which requires accessing low-level

data layout information such as table pages, tuples, and buffers.

A deeper integration with database internals makes it much eas-

ier to reuse such functionalities that have been built into the core

APIs offered by database system internals but not yet have been

externally exposed as UDAs. Moreover, such a physical-level inte-

gration opens up the door for more advanced optimizations, such

as double-buffering that will be illustrated in Section 5.3.

5.1 Design Considerations
As discussed in Section 4.1, CorgiPile consists of three steps: (1)

block-level shuffling, (2) tuple-level shuffling, and (3) SGD compu-

tation. Accordingly, we design three physical operators, one for

each of the three steps:

• BlockShuffle, an operator for randomly accessing blocks;

• TupleShuffle, an operator for buffering a batch of blocks

and shuffling their tuples;

• SGD, an operator for the SGD computation.

We then chain these three operators together to form a pipeline,

and implement the getNext()method for each operator, following

the classic Volcano-style execution model [29] that is also the query

execution paradigm of PostgreSQL.

One challenge is the design and implementation of the SGD op-

erator, which requires an iterative procedure that is not typically
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Figure 5: The implementation of CorgiPile with new operators and the “double-buffering” optimization, in PostgreSQL.

supported by database systems. We choose to implement it by lever-

aging the built-in re-scan mechanism of PostgreSQL to reshuffle

and reread the data after each epoch.

Moreover, we store the training dataset as a table in PostgreSQL,

using the schema of ⟨id, features_k[], features_v[], label⟩, which is

similar to the one used by Bismarck [27]. For sparse datasets,

features_k[] indicates which dimensions have non-zero values, and

features_v[] refers to the corresponding non-zero feature values.

For dense dataset, only features_v[] is used.
Currently, we store the (learned) machine learning model as an

in-memory object (a C-style Struct) with a Name in PostgreSQL’s

kernel instead of using UDA. Users can initialize the model hyper-

parameters via the query. For the inference, users can execute a

query as “SELECT table PREDICT BY model Name”, which in-

vokes the learned model for the prediction.

5.2 Physical Operators
The control flow of the three operators is shown in Figure 5, which

leverages PostgreSQL’s pull-style dataflow to read tuples and per-

form the SGD computation. In the following, we assume that the

readers are familiar with the structure of PostgreSQL’s operators,

e.g., functions such as ExecInit() and getNext().
After parsing the input query, CorgiPile invokes ExecInit()

of each operator to initialize their states such as ML models and

I/O buffers. At each epoch, the SGD operator pulls tuples from

the TupleShuffle operator for SGD computation, which further

pulls tuples from the BlockShuffle operator. The BlockShuffle
operator is responsible for shuffling blocks and reading their tuples.

We now present the implementation of these operators.

BlockShuffle. It first obtains the total number of pages using Post-

greSQL’s RelationGetNumberOfBlocks(). It then computes the

number of blocks BN by BN = page_num ∗ page_size/block_size.
After that, it shuffles the block indices [0, . . . , BN − 1] and obtains

shuffled block ids, where each block corresponds to a batch of

contiguous table pages. For each shuffled block id, it reads the cor-

responding pages using heapgetpage() and returns each fetched

tuple to the TupleShuffle operator. The BlockShuffle operator

is somewhat similar to PostgreSQL’s Scan operator, although the

Scan operator reads pages sequentially instead of randomly.

TupleShuffle. It first allocates a buffer, and then pulls the tu-

ples one by one from the BlockShuffle operator by invoking

its ExecTupleShuffle(), i.e., getNext(). Each pulled tuple is

transformed to an SGDTuple object, which is then copied to the

buffer. Once the buffer is filled, it shuffles the buffered tuples, which

is similar to how the Sort operator works in PostgreSQL. After that,
the shuffled tuples are returned one by one to the SGD operator.

SGD. It first initializes an ML model in ExecInitSGD() and then

executes SGD in ExecSGD(). At each epoch, ExecSGD() pulls tu-

ples from TupleShuffle one by one, and runs SGD computation.

Once all tuples are processed, an epoch ends. It then has to reshuf-

fle and reread the tuples for the next epoch, using the re-scan
mechanism of PostgreSQL. Specifically, after each epoch, SGD in-

vokes ExecReScan() of TupleShuffle to reset the I/O states of

the buffer. It further invokes ExecReScan() of BlockShuffle to

reshuffle the block ids. After that, SGD operator can reread shuffled

tuples via ExecSGD() for the next epoch. This is similar to the

multiple table/index scans in PostgreSQL’s NestedLoopJoin.

5.3 Optimizations
As discussed in Section 4.1, CorgiPile introduces additional over-

heads for buffer copy and shuffle. To reduce them, we use a double-

buffering strategy as shown in Figure 5. Specifically, we launch two

concurrent threads for TupleShuffle with two buffers. One write
thread is responsible for pulling tuples from BlockShuffle into

one buffer and shuffling the buffered tuples; the other read thread

is responsible for reading tuples from another buffer and returning

them to SGD. The two buffers are swapped once one is full and the

other has been consumed by SGD. As a result, the data loading (i.e.,

block-level and tuple-level shuffling) and SGD computation can be

executed concurrently, reducing the overhead.

6 EVALUATION
We evaluate CorgiPile, mainly focusing on in-DB ML systems.

Our goal is to study the statistical and hardware efficiency of

CorgiPile when applied to in-DB ML, i.e., whether it can achieve

high accuracy and high performance in database systems. For this

purpose, we compare our PostgreSQL-based implementation with

two state-of-the-art systems, Apache MADlib and Bismarck with

diverse models and datasets as follows. We first evaluate the linear

models with standard SGD in PostgreSQL in Section 6.2. We fur-

ther evaluate linear models with mini-batch SGD as well as other

types of (continuous, multi-class, and feature-ordered) datasets in



Table 2: Datasets. The first four are from LIBSVM [3]. For
criteo, we extract 98M tuples from the criteo terabyte
dataset. For yfcc, we extract 3.6M tuples from the yfcc100m
dataset [63]; the outdoor and indoor tuples are marked as
negative (-1) and positive (+1). #Tuples like 4.5/0.5M refer to
4.5M tuples for training and 0.5M tuples for testing.

Name Type #Tuples #Features Size in DB

higgs dense 10.0/1.0M 28 2.8 GB

susy dense 4.5/0.5M 18 0.9 GB

epsilon dense 0.4/0.1M 2,000 6.3 GB

criteo sparse 92/6.0M 1,000,000 50 GB

yfcc dense 3.3/0.3M 4,096 55 GB

PostgreSQL in Section 6.3. In Section 6.4, we also briefly discuss

CorgiPile for deep learning workloads. It shows an interesting

but orthogonal line of future work to understand how to integrate

CorgiPile as another file scanner in systems such as TensorFlow

and PyTorch, which are not in-DB ML systems.

6.1 Experimental Setup

Runtime. We perform our experiments on a single ecs.i2.xlarge
node in Alibaba Cloud. It has 2 physical cores (4 vCPU), 32 GB

RAM, 1000 GB HDD, and 894 GB SSD. The HDD has a maximum

140MB/s bandwidth, and the SSD has amaximum 1GB/s bandwidth.

Moreover, CorgiPile only uses a single physical core, and we bind
the two threads (see Section 5.3) to the same physical core using the

“taskset -c” command. We run all experiments under CentOS

7.6, and we clear the OS cache before running each experiment.

Datasets. We use a variety of datasets in our evaluation, includ-

ing dense/sparse and small/large ones as shown in Table 2. The

datasets in Table 2 are stored in PostgreSQL for in-DB ML experi-

ments. We focus on the evaluation over the clustered datasets, since

SGD with various data shuffling strategies can achieve comparable

convergence rates on the shuffled datasets, as shown in Figure 2.

Models and Parameters. For the evaluation on in-DBML systems,

we train two popular generalized linear models, logistic regression

(LR) and support vector machine (SVM), that are also supported

by Bismarck and MADlib. Currently, Bismarck and MADlib only

support two of the baseline data shuffling strategies, namely, No
Shuffle and Shuffle Once, which we compare our PostgreSQL-based

implementation against. Note that the code of MRS Shuffle has not
been released by Bismarck yet.

3
Therefore, we leave it out of our

end-to-end comparisons. Instead, we implemented MRS Shuffle in
PyTorch and compare with it when we discuss the convergence

rates of different data shuffling strategies (Figure 7). The hyperpa-

rameters include the learning rate, the decay factor, and the number

of epochs (scanning the whole dataset per epoch). We use an expo-

nential learning rate decay with 0.95. We set the number of epochs

to 20 and use grid search to tune the best learning rate from {0.1, 0.01,

0.001}. We use the same initial parameters and hyperparameters

among the compared MADlib, Bismarck, and CorgiPile.

Settings of CorgiPile. CorgiPile has two more parameters, i.e.,

the buffer size and the block size. We experiment with a diverse

3
We have confirmed this with the author of Bismarck (private communication).

range of buffer sizes in {1%, 2%, 5%, 10%} and the block size is

chosen in {2MB, 10MB, 50MB}. We always use the same buffer size

(by default 10% of the whole dataset size) for Sliding-Window Shuffle,
MRS Shuffle, and our CorgiPile.

Settings of PostgreSQL. For PostgreSQL, we set the work_mem to

be the maximum RAM size and tune shared_buffers. Note that
PostgreSQL can further compress high-dimensional datasets using

the so-called TOAST [11] technology, which tries to compress large

field value or break it into multiple physical rows. For our dense

epsilon and yfcc datasets with 2,000+ dimensions, PostgreSQL

uses TOAST to compress their features_v columns.

6.2 Evaluation on SGD with In-DB ML Systems
We first evaluate CorgiPile in terms of the end-to-end execu-

tion time. The compared systems include the No Shuffle and Shuf-
fle Once strategies in MADlib and Bismarck, as well as a simpler

version of our CorgiPile named Block-Only Shuffle, to see how

CorgiPile behaves without tuple-level shuffling. We then analyse

the convergence rates, in comparison with other strategies, includ-

ing MRS Shuffle and Sliding-Window Shuffle. We finally study the

overhead of CorgiPile by comparing the per-epoch execution

time of CorgiPile with the fastest No Shuffle baseline.
In the following, we set the buffer size to 10% of the whole dataset

and block size to 10𝑀𝐵 for all methods. We report a sensitivity

analysis on the impact of buffer sizes and block sizes in Section 6.2.4.

6.2.1 End-to-end Execution Time. Figure 6 presents the end-to-end
execution time of SGD for in-DB ML systems, for clustered datasets

on both HDD and SSD. The end-to-end execution time includes: (1)

the time for shuffling the data, i.e., Shuffle Once needs to perform a

full data shuffle before SGD starts running;
4
(2) the data caching

time, i.e., the time spent on loading data from disk to the OS cache

during the first epoch;
5
and (3) the execution time of all epochs.

From Figure 6, we can observe that CorgiPile converges the

fastest among all systems, and simultaneously achieves comparable

converged accuracy to the best Shuffle Once baseline, usually within
1-3 epochs because of the large number of data tuples. Compared to

Shuffle Once in MADlib and Bismarck, CorgiPile converges 2.9×-
12.8× faster than MADlib and 2×-4.7× faster than Bismarck, on

HDD and SSD. This is due to the eliminated data shuffling time. For

example, for the clustered yfcc dataset on HDD, CorgiPile can

converge in 16 minutes, whereas Shuffle Once in Bismarck needs 50

minutes to shuffle the dataset and another 15 minutes to execute

the first epoch (to converge). That is, when CorgiPile converges,

Shuffle Once is still performing data shuffling. For other datasets

like criteo and epsilon, similar observations hold. Moreover,

data shuffling using ORDER BY RANDOM() in PostgreSQL, as imple-

mented by Shuffle Once in MADlib/Bismarck, requires 2× disk space

to generate and store the shuffled data. Therefore, CorgiPile is

both more efficient and requires less space.

MADlib is slower than Bismarck given that it performs more

computation on some auxiliary statistical metrics and has less effi-

cient implementation [37]. Moreover, for high-dimensional dense

datasets, such as epsilon and yfcc, MADlib LR cannot finish even

4
Therefore, Shuffle Once in MADlib and Bismarck starts later than the others.

5
This is determined by the I/O bandwidth. Since SSD has higher I/O performance than

HDD, the GLMs’ first epoch on SSD starts earlier than that on HDD.
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Figure 6: The end-to-end execution time of SGD with different data shuffling strategies in PostgreSQL, for clustered datasets on
HDD and SSD. We only show the first 5 epochs for Shuffle Once and CorgiPile, since they converge in 1-3 epochs.

a single epoch within 4 hours, due to some expensive matrix compu-

tations on a metric named stderr.6 MADlib’s SVM implementation

does not have this problem and can finish its execution on high-

dimensional dense datasets. In addition, MADlib currently does not

support training LR/SVM on sparse datasets such as criteo.

6.2.2 Convergence rates. For all datasets inspected, the gap be-

tween Shuffle Once and CorgiPile is below 1% for the final train-

ing/testing accuracy, as shown in Table 3. We attribute this to the

fact that CorgiPile can yield good data randomness in each epoch

of SGD (Section 4.2). No Shuffle results in the lowest accuracy when

SGD converges, as illustrated in Figure 6. The Block-Only Shuffle
baseline, where we simply omit tuple-level shuffle in CorgiPile,
can achieve higher accuracy than No Shuffle but lower accuracy
than Shuffle Once. The reason is that Block-Only Shuffle can only

yield a partial random order, and the tuples in each block can all

be negative or positive for clustered data.

Since MRS Shuffle and Sliding-Window Shuffle are not available
in the current MADlib/Bismarck, we use our own implementations

(in PyTorch) and compare their convergence rates. Figure 7 shows

the convergence rates of all strategies, where Sliding-Window, MRS,
and CorgiPile all use the same buffer size (10% of the dataset).

As shown in Figure 7, Sliding-Window Shuffle suffers from lower

accuracy, whereas MRS Shuffle only achieves comparable accuracy

to Shuffle Once on yfcc but suffers on the other datasets.

6.2.3 Per-epoch Overhead. To study the overhead of CorgiPile,
we compare its per-epoch execution time with the fastest No Shuffle
baseline, as well as the single-buffer version of CorgiPile, as
shown in Figure 8. We make the following three observations.

6
We have confirmed this behavior with the MADlib developers.

Table 3: The final training and testing accuracy of Shuffle
Once (SO) and CorgiPile.

LR or VGG19 (SO | Ours) SVM or ResNet18 (SO | Ours)

Dataset Train acc. (%) Test acc. (%) Train acc. (%) Test acc. (%)

higgs 64.04 | 64.07 64.04 | 64.06 64.11 | 64.22 63.93 | 63.95

susy 78.61 | 78.54 78.69 | 78.66 78.61 | 78.66 78.73 | 78.66

epsilon 90.02 | 90.01 89.77 | 89.74 90.12 | 90.11 89.81 | 89.80

criteo 78.97 | 78.91 78.77 | 78.69 78.31 | 78.41 78.45 | 78.44

yfcc 96.43 | 96.38 96.14 | 96.11 96.35 | 96.31 96.23 | 96.20

cifar-10 99.44 | 99.10 92.29 | 92.15 99.88 | 99.86 93.82 | 94.11

• For small datasets with in-memory I/O bandwidth, the average

per-epoch time of CorgiPile is comparable to that of No Shuffle.
• For large datasets with disk I/O bandwidth, the average per-epoch

time of CorgiPile is up to ∼1.1× slower than that of No Shuffle,
i.e., it incurs at most an additional 11.7% overhead, due to buffer

copy and tuple shuffle.

• By using double-buffering optimization, CorgiPile can achieve

up to 23.6% shorter per-epoch execution time, compared to its

single-buffering version.

The above results reveal that CorgiPile with double-buffering

optimization can introduce limited overhead (11.7% longer per-

epoch execution time), compared to the best No Shuffle baseline.

6.2.4 Sensitivity Analysis. We next study the effects of different

buffer sizes, I/O bandwidths, and block sizes for CorgiPile.

The effects of buffer size. Figure 9 reports the convergence behav-
ior of CorgiPile on the two largest datasets with different buffer

sizes: 1%, 2%, and 5% of the dataset size. We see that CorgiPile
only requires a buffer size of 2% to maintain the same convergence

behavior as Shuffle Once. With a 1% buffer, it only converges slightly
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Figure 7: The convergence rates of LR and SVM with different shuffling strategies for clustered datasets.
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Figure 9: CorgiPile’s convergence with varying buffer sizes.
slower than Shuffle Once, but achieves the same final accuracy. On

the other hand, as discussed in previous sections, Sliding-Window
Shuffle and MRS Shuffle achieve a much lower accuracy even when

given a much larger buffer (10%).

The effects of I/O bandwidth. As shown in Figure 8, for smaller

datasets such as higgs, susy, and epsilon, CorgiPile on HDD

and CorgiPile on SSD achieve the similar per-epoch times, since

these datasets have been cached in memory after the first epoch. For

larger datasets such as criteo, CorgiPile is faster on SSD than

HDD, as expected. Interestingly, for yfcc, CorgiPile achieves

similar performance on both HDD and SSD. The reason is that the

TOAST compression on yfcc slows down data loading to only∼130
MB/s on both SSD and HDD. In contrast, for criteo without this

compression, CorgiPile achieves ∼700 MB/s on SSD and ∼130
MB/s on HDD, as expected. These observations also hold for the

No Shuffle on HDD/SSD for these datasets.

The effects of block size. We vary the block size in {2MB, 10MB,

50MB} on the large criteo and yfcc datasets. Figure 10 shows that
the per-epoch time decreases as the block size increases from 2MB

to 50MB, due to the higher I/O bandwidth (throughput). However,

the time difference between 10MB and 50MB is limited (under

10%), because using 10MB has achieved the highest possible I/O

bandwidth (130 MB/s on HDD). In practice, we recommend users
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Figure 10: Epoch time of CorgiPilewith varying block sizes.
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Figure 11: The per-epoch time comparison between in-DB
CorgiPile and PyTorch on SSD.
to choose the smallest block size that can achieve high-enough I/O

throughput, using I/O test commands such as “fio” in Linux.

6.2.5 Performance comparison with PyTorch. To further understand
the performance gap between our in-DB CorgiPile and the start-

of-the-art PyTorch outside DB, we compare them in two ways.

(1) CorgiPile in PostgreSQL vs. PyTorch: Figure 11 shows the

per-epoch time comparison between CorgiPile in PostgreSQL

and PyTorch with No Shuffle. For PyTorch, we load small datasets

into memory before training to reduce the I/O overhead, and store

the large criteo and yfcc datasets on disk. The comparison results

in Figure 11 show that our in-DB CorgiPile is 2-16× faster than

PyTorch on higgs, susy, criteo, and yfcc datasets. We speculate
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Figure 12: The end-to-end execution time of LR and SVM using mini-batch SGD in PostgreSQL, for clustered datasets on SSD.
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Figure 13: The end-to-end execution time of linear and soft-
max regression in PostgreSQL, for clustered datasets on SSD.
that this is because PyTorch has high overhead of Python-C++ invo-

cations of forward/backward/update functions for each tuple, and

these datasets have a large number (3-92 millions) of tuples. Only

for the epsilon dataset, PyTorch is 2-3× faster than CorgiPile.
The reason is that this dataset is compressed in DB by TOAST [11].

CorgiPile needs to decompress each tuple, while PyTorch directly

computes on the in-memory uncompressed data.

(2) Outside DB: Figure 11 shows that PyTorch with CorgiPile
introduces small (up to 16%) overhead compared to PyTorch with

No Shuffle, which is consistent with what we observed inside DB.

6.3 Evaluation on Mini-Batch SGD and other
types of datasets with In-DB ML Systems

In the previous experiments, we focus on the standard SGD algo-

rithm, which updates the model per tuple. Since it is also common

to use mini-batch SGD, we implement mini-batch SGD for CorgiPile,
Once Shuffle, No Shuffle, and Block-Only Shuffle, using our in-DB

operators in PostgreSQL. Since MADlib and Bismarck currently do

not support mini-batch SGD for linear models, we compare these

shuffling strategies based on our PostgreSQL implementations.

6.3.1 Mini-batch LR and SVM models. We first perform LR and

SVM using mini-batch SGD on the clustered datasets. Figure 12

illustrates the end-to-end execution time of these two models in

PostgreSQL on SSD. The result is similar to that of the standard

SGD. Our CorgiPile achieves comparable convergence rate and

accuracy to Shuffle Once but 1.7-3.3× faster than it to converge.

Other strategies like No Shuffle and Block-Only Shuffle suffer from
either lower converged accuracy or lower convergence rate.
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Figure 14: The converged accuracy of LR and SVM on the
datasets ordered by features instead of the label.
6.3.2 Linear regression and Softmax regression models. Apart from
LR/SVM on binary-class datasets, users may also want to train ML

models on continuous and multi-class datasets in DB. For these

cases, we further implement linear regression for training contin-

uous dataset and softmax regression (i.e., multinomial logistic re-

gression) for multi-class datasets, based on our in-DB operators

in PostgreSQL. Figure 13 shows the end-to-end execution time of

linear regression for continuous YearPredictionMSD dataset [3]

and softmax regression for 10-class mini8m dataset [3], with dif-

ferent batch sizes on SSD. Our CorgiPile again achieves similar

convergence rate and accuracy (i.e., coefficient of determination 𝑅2

for linear regression) to the best Shuffle Once, but 1.6-2.1× faster.

6.3.3 Beyond label-clustered datasets. We conduct additional ex-

periments using LR and SVM on all the binary-class datasets or-

dered by features instead of the labels. For low-dimensional higgs
and susy, we sort each feature of them and report the statistics

of the converged accuracy in Figure 14. For the other three high-

dimensional datasets, we select 9 features such that 3/3/3 of them

have the highest/lowest/median correlations with the labels.

Figure 14 shows that No Shuffle again leads to lower accuracy

than Shuffle Once. Only for yfccwith image-extracted features and

epsilon (with unknown features [1]), the accuracy gap is limited.

In contrast, CorgiPile achieves similar converged accuracy to

Shuffle Once on all the datasets. This implies simply scanning does

not work on the datasets clustered by labels or by features.

6.4 Evaluation Beyond In-DB ML Systems
CorgiPile is not tied to in-DB ML; rather, it is a general data

shuffling strategy for any SGD implementation. To understand its

impact beyond in-DB ML systems and workloads, we implement

the CorgiPile strategy as well as others in PyTorch and compare

them on deep learning models, for both image classification and

text classification. For image classification, we perform the classical
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Figure 15: The convergence rates of DLMs with different data shuffling strategies on the clustered image/text datasets.

VGG19 and ResNet18 models on the clustered cifar-10 dataset,

which has 10 classes and is stored as binary data on disk. For text

classification, we perform the classical HAN [65] and TextCNN [42]

models with pre-trained word embeddings [54] on the clustered

yelp-review-full dataset [70], which has 5 classes. Figure 15

illustrates the convergence rates with different data shuffling strate-

gies and batch_size = 128. The buffer size is 10% of the whole dataset.

We observe that CorgiPile can achieve the similar accuracy

and convergence rate to the best Shuffle Once baseline. This implies

that CorgiPile can work well for non-convex optimization prob-

lems, too. In contrast, Block-Only Shuffle and MRS Shuffle suffer
from lower accuracy, because they only generate partial random

order of the data tuples. Sliding-Window Shuffle, which is used by

TensorFlow, also suffers from lower accuracy.

7 RELATEDWORK
Stochastic gradient descent (SGD). SGD is broadly used in ma-

chine learning to solve large-scale optimization problems [18]. It

admits the convergence rate 𝑂 (1/𝑇 ) for strongly convex objec-

tives, and𝑂 (1/
√
𝑇 ) for the general convex case [28, 51], where𝑇 is

the number of iterations. For non-convex optimization problems,

an ergodic convergence rate 𝑂 (1/
√
𝑇 ) is proved by Ghadimi and

Lan [28], and the convergence rate is 𝑂 (1/𝑇 ) (e.g., [32]) under the
Polyak-Łojasiewicz condition [55]. In the analysis of the above

cases, the common assumption is that data is sampled uniformly

and independently with replacement in each epoch. We call SGD

methods based on this assumption as vanilla/standard SGD.
Data shuffling strategies for SGD. In practice, random-shuffle

SGD is a more practical and efficient way of implementing SGD [19].

In each epoch, the data is reshuffled and iterated one by one with-
out replacement. Empirically, it can also be observed that random-

shuffle SGD converges much faster than vanilla SGD [17, 30, 32]. In

Section 3, we empirically studied the state-of-the-art data shuffling

strategies for SGD, including Epoch Shuffle, No Shuffle, Shuffle Once,
Sliding-Window Shuffle [12] and MRS Shuffle [27]. Our empirical

study shows that Shuffle Once achieves good convergence rate but

suffers from low performance, whereas other strategies suffer from

low accuracy when running on top of clustered data.

In-DB ML. Previous work [9, 22, 27, 34, 36, 39, 41, 43, 46–48, 53,

57, 59, 67, 69] has intensively discussed how to implement ML mod-

els on relational data, such as linear models [43, 53, 59], linear alge-

bra [22, 46, 47], factorization models [57], neural networks [36, 47,

67] and other statistical learning models [41], using Batch Gradient

Descent (BGD) or SGD, over join or self-defined matrix/tensors, etc.

The most common way of integrating ML algorithm into RDBMS is

to use User-Defined Aggregate Functions (UDAs). The representa-

tive in-DB ML tools are Apache MADlib [4, 34] and Bismarck [27],

which use PostgreSQL’s UDAs to implement SGD, and leverage

SQL LOOP (Bismarck) or Python driver (MADlib) to implement

iterations. Recently, DB4ML [37] proposes another approach called

iterative transactions to implement iterative SGD/graph algorithm

in DB. However, it still uses/assumes the Shuffle Once strategy as

that of Bismarck/MADlib. Since the source code of DB4ML has not

been released yet, we only compare with MADlib and Bismarck.

Scalable ML for distributed database. In recent years, there has

been active research on integrating ML models into distributed

database systems to enable scalable ML, such as MADlib on Green-

plum [13], Vertica-ML [26], Google’s BigQuery ML [6], Microsoft

SQL Server ML Services [8], etc. Another trend is to leverage big

data systems to build scalable ML models based on different ar-

chitectures, e.g., MPI [23, 40], MapReduce [21, 49, 72], Parameter

Server [25, 38, 64] and decentralization [44, 62]. Some of these sys-

tems can be integrated with distributed databases to support in-DB

machine learning training, such as Spark MLlib [49] and SimSQL on

Hadoop [35]. Recent work also started discussing how to integrate

deep learning into databases [52, 71]. These efforts are orthogonal

to CorgiPile and offer an exciting future direction to understand

how to combine CorgiPile with these distributed learning efforts.

8 CONCLUSION
We have presented CorgiPile, a simple but novel data shuffling

strategy for efficient SGD computation on top of block-addressable

secondary storage systems such as HDD and SSD. CorgiPile
adopts a two-level (i.e., block-level and tuple-level) hierarchical

shuffle mechanism that avoids the computation and storage over-

head of full data shuffling while retaining similar convergence rates

of SGD as if a full data shuffle were performed. We provide a rigor-

ous theoretical analysis on the convergence behavior of CorgiPile
and further integrate it into PostgreSQL. Experimental evaluations

demonstrate both statistical and hardware efficiency of CorgiPile
when compared to state-of-the-art in-DB ML systems on top of

PostgreSQL as well as deep learning systems.
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