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ABSTRACT
Today’s database systems include index advisors that recommend

an appropriate set of indexes for an input workload. Since index

tuning on large and complex workloads can be resource-intensive

and time-consuming, workload compression techniques have been

proposed to improve the scalability of index tuning. Workload

compression techniques aim to efficiently identify a small subset

of queries in the workload to tune such that the indexes recom-

mended when tuning the compressed workload give similar perfor-

mance improvements as when tuning the input workload. In this

paper, we propose ISUM, a new workload compression algorithm

that is based on two key ideas: a low-overhead technique for es-

timating the improvement in performance of the input workload

when a subset of queries is selected for index tuning, and a novel

method for concisely representing information across queries in

the workload that improves scalability by avoiding pairwise com-

parisons between queries when choosing the set of queries to tune.

Our evaluation over industry benchmarks and real-world customer

workloads shows that ISUM results in a 1.4× of median and 2× of

maximum performance improvements for the input workload when

compared to prior techniques over similar compressed workload

sizes.

CCS CONCEPTS
• Information systems→ Autonomous database administra-
tion; • Computer systems organization→ Cloud computing.
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1 INTRODUCTION
Indexes are critical for improving query performance in databases.

Over the past three decades, a number of index advisors [14, 22, 35]
have been proposed that search for appropriate indexes given an

input workload and a set of constraints. However, index tuning

can be resource-intensive and time-consuming when the input

workloads are large and consist of complex SQL queries. Although

this challenge exists for index advisors in on-premises databases, it

is amplified in cloud database-as-a-service setting [1, 4] where large

numbers of databases need to be tuned by the service provider [18].

To improve tuning efficiency, prior work [11, 20] has recognized

the importance for workload compression, i.e., finding a smaller

subset of queries (which we refer to as a compressed workload)

from the input workload that can be used for index tuning. There are

two requirements for any workload compression technique. First,

the improvement in the performance of the input workload due

to the indexes recommended on tuning the compressed workload

should be close to that of the indexes obtained by tuning the input

workload. Second, it is crucial that the compressed workload can

be found efficiently, otherwise the advantage of selecting a smaller

workload is negated.

Limitations of existing workload compression techniques.
Priorwork can be categorized into two categories: indexing-agnostic

and indexing-aware techniques. Among indexing-agnostic approac-

hes, a simple technique is to uniformly sample a subset of queries.

However, sampling fails to capture similarities between queries and

often misses out queries that may lead to substantial improvement

in performance but may be less frequent in the workload. Recently,

[20] proposes a greedy algorithm called GSUM that maximizes the

coverage of features (e.g., columns) in the workload while also en-

suring that the summary workload is representative (i.e., having

similar distribution to that of the entire workload). Unfortunately,

the proposed approach may select queries which are common in

the workload but may not lead to a significant improvement in

performance on index tuning.

Among indexing-aware techniques, [11] proposes a clustering-

based approach that groups query instances sharing the same tem-

plate (i.e., queries that are identical except for parameter bindings)

and then clusters instances within the same group using a distance

function that quantifies the loss in performance when indexes of

one instance is chosen over the other. The queries in the com-

pressed workload are then selected by uniformly sampling from

each of the clusters. There are two issues with this approach. First,

the clustering can be inefficient when there are a large number of

instances per group due to pairwise comparison between queries.

Approximations such as selecting random seeds to avoid pairwise
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comparisons, and limiting the number of iterations can help reduce

the compression time but affect the quality of selected queries (see

Section 8). Second, we observe that real workloads can have many

more unique templates than the desired compressed workload sizes.

For such cases, the proposed distance function cannot quantify the

similarity between queries with different templates, making the

approach less effective when we cannot select at least one instance

per template.

Our Approach. In this work, we develop ISUM
1
, an efficient and

scalable workload summarization technique. ISUM can result in

better index recommendations than existing indexing-aware tech-

niques [11] while achieving similar efficiency compared to state-of-

the-art indexing-agnostic approaches such as GSUM [20]. We make

two main contributions. First, we develop a new technique that can

efficiently estimate the performance improvement over the input

workload when selecting a subset of queries for tuning. We show

that the estimated performance improvements are highly correlated
with the optimizer estimated improvements over the input work-

load. To be able to do so, we represent each query as a set of features

such that two queries with similar values of the features will likely

result in similar set of indexes. This representation also allows us

to quantify the similarity between queries with different templates,

thereby addressing the issue with the distance function in [11]. We

further observe that selecting queries solely based on similarity is

not always effective; rather the selected queries should be more

similar to those queries in the workload that have high potential

for performance improvement on adding indexes (e.g., queries with

high costs and more selective predicates). To do so, we compute the

feature values and adjust the similarity scores using query costs

and statistics that are indicative of the potential improvement in

the costs of queries.

We observe that a naive approach (called all-pairs) that compares

each query with the other queries in the workload and selects the

one that maximizes the estimated improvement has a prohibitively

long running time over large workloads. To improve the efficiency,

we develop a summarization technique that aggregates query-level

features into workload-level features such that higher weight is

given to features of queries with high potential for performance

improvement. The single workload-level representation allowsmea-

suring the similarity of each query with the input workload without

performing pairwise comparisons, thereby allowing us to develop

a fast linear-time algorithm. We present a theoretical as well as

an empirical analysis to show that the linear-time algorithm has

bounded and small loss in the accuracy of estimated improvement

compared to all-pairs algorithm.

We perform an extensive evaluation of ISUM with state-of-the-

art workload compression techniques onmultiple real and synthetic

workloads. Our results show that ISUM results in a median of 1.4×
and a maximum of 2× performance improvements compared to

prior techniques for the same compressed workload sizes. Further-

more, given an input workload consisting of queries along with

their costs, the time to select the compressed workload is small (<

1%) compared to the tuning time of the compressed workload. Fur-

thermore, we evaluate ISUM by varying the complexities of queries

in the workload,the number of instances per template, as well as

the configuration sizes of indexes, and find that ISUM outperforms

baselines on a large majority of these settings while there is no one

baseline that works well over many settings.

1
ISUM stands for Index-based Workload Summarization
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Figure 1: A typical architecture of index advisor as described in [14]
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Figure 2: Scalability challenges in index tuning (TPC-DS workload)

Finally, in this paper, we have assumed that ISUM, as well as other

workload compression techniques we compare with (e.g., [11, 20]),

pre-process the input workload and output a subset of queries for

index tuning. However, commercial index advisors such as DTA [3]

need to report the estimated improvement of the recommended

configuration on the entire input workload. For large input work-

loads, this estimation step can take a large fraction of the overall

tuning time, and hence can significantly reduce the benefits of work-

load compression. Moreover, index advisors support tuning with a

time-budget (e.g., see DTA [12]), and hence workload compression

needs to identify queries for tuning incrementally as more queries

from the input workload are consumed by the tuner. We discuss

these practical challenges and limitations of integrating workload

compression into index advisors and identify areas of future work

in Section 10.

2 BACKGROUND
2.1 Scalability Challenges in Index Tuning
Figure 1 depicts the typical architecture of an index advisor as de-

scribed in [14]. It consists of three steps: (1) generation of syntactical-

ly-relevant indexes by parsing and combining relevant columns in

the query, (2) candidate selection to identify indexes that improve

the performance of each query, and 3) configuration enumeration
that searches the space of subsets of candidate indexes (from all

queries) and picks a configuration (i.e., subset) that results in the

maximum improvement (i.e., decrease in the cost) on the workload.

Specifically, configuration enumeration is a combinatorial optimiza-

tion problem that is even hard to approximate [10, 17]—the number

of potential configurations grows exponentially with respect to the

number of candidate indexes. To estimate the improvement for a

given query-configuration pair, index advisors rely on a “what-if”

API [15], which is an extended functionality of the query optimizer

that can estimate the cost without building the indexes.
Essentially, the scalability and efficiency of an index advisor

depends on the following factors: (1) the number of queries in

the workload, (2) the number of configurations enumerated, and

(3) the number of optimizer invocations or what-if calls [7, 18].
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Figure 3: Impact of workload compression (TPC-DS workload)

Figure 2a depicts the increase in tuning time for a state-of-the-art

index advisor [7] as we increase the number of queries in the TPC-

DS workload. As we can see, the tuning time grows significantly as

we increase the size of the workload. This is primarily because the

space of configurations to explore increases (Figure 2b), resulting

in a large number of expensive optimizer calls (consuming 70% to

80% of the overall tuning time).

To show the efficacy of workload compression, Figure 3 depicts

the impact of the compressed workload as selected by our compres-

sion algorithm (described in later sections). As we can see, using

a compressed workload of carefully selected 20 queries (from 92

queries), we are able to achieve improvement in performance close

to tuning the entire workload in much less time. Note that this time

includes both the compression time as well as the time taken to

tune the compressed workload.

2.2 Problem Formulation
Let𝑊 = {𝑞1, 𝑞2, ..., 𝑞𝑛} be an input workload of 𝑛 queries. Let𝐶 (𝑞𝑖 )
be the optimizer estimated cost of 𝑞𝑖 with the existing physical

design (i.e., without adding or removing indexes), provided as part

of the input workload. Many database systems typically log the

plan details, e.g., Query Store [5] in Microsoft SQL Server, that

can be provided along with query texts to reduce the number of

optimizer calls during workload compression. Let 𝐶 (𝑊 ) be the

optimizer estimated cost for the input workload𝑊 with

𝐶 (𝑊 ) =
∑︁𝑛

𝑖=1

𝐶 (𝑞𝑖 ) .

For a given index configuration of size𝑚, let 𝐼 (𝑊,𝐴,𝑚) = {𝑖1, 𝑖2,
..., 𝑖𝑚} be a set of𝑚 indexes recommended by an index advisor 𝐴

on tuning𝑊 . Let 𝐶𝐼 (𝑞𝑖 ) be the optimizer estimated cost of 𝑞𝑖 and

correspondingly 𝐶𝐼 (𝑊 ) be cost for the input workload𝑊 , when

using the (hypothetical) indexes in 𝐼 (𝑊,𝐴,𝑚).
We are interested in a subset of queries of𝑊 , tuning which can

result in indexes that minimize the cost of𝑊 . Formally, let𝑊𝑘
be a set of 𝑘 query-weight pairs, consisting of 𝑘 queries from𝑊 .

The weight indicates how representative a query in𝑊𝑘 is of the

queries in𝑊 (discussed in more detail in subsequent sections). Let

𝐼 (𝑊𝑘 , 𝐴,𝑚) be the𝑚 indexes recommended by an index tuner 𝐴

when tuning𝑊𝑘 . Note that it is expensive to invoke index advisor

𝐴 while evaluating subset of queries for𝑊𝑘 , hence during compres-

sion we need to use an efficient estimation technique in place of 𝐴

as we discuss shortly.

Definition 1 (Improvement). We define the improvement, Δ, as
the decrease in the cost of the workload𝑊 when using the indexes in
𝐼 (𝑊𝑘 , 𝐴,𝑚), i.e., Δ = 𝐶 (𝑊 ) −𝐶𝐼 (𝑊𝑘 ,𝐴,𝑚) (𝑊 ) .
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Figure 4: Architecture of ISUM
To simplify notation, we omit 𝐴 and𝑚 in the rest of the paper.

Problem 1 (Workload Compression for Index Tuning). Given as
input the workload𝑊 consisting of 𝑛 queries, their optimizer esti-
mated costs𝐶 (𝑞1),𝐶 (𝑞2), ...,𝐶 (𝑞𝑛), and the number of queries 𝑘 to be
selected, return𝑊𝑘 consisting of 𝑘 queries and their respective weights
𝑤1,𝑤2, ...,𝑤𝑘 s.t. Δ is maximized, i.e.,

𝑊𝑘 = argmax

𝑆𝑘 ⊂𝑊
Δ.

Or, equivalently, since 𝐶 (𝑊 ) does not vary with𝑊𝑘 ,

𝑊𝑘 = argmin

𝑆𝑘 ⊂𝑊
𝐶𝐼 (𝑊𝑘 ) (𝑊 ) .

Note that 𝐶𝐼 (𝑊 ) (𝑊 ) ≤ 𝐶𝐼 (𝑊𝑘 ) (𝑊 ) since selecting indexes by

tuning a subset of the workload in general cannot result in better

performance improvement (on the entire workload) than when

compared to the improvement obtained from indexes by tuning

the entire workload. This is because the latter considers a larger

space of indexes. Hence, optimizing the above problem will also

minimize the difference between 𝐶𝐼 (𝑊 ) (𝑊 ) and 𝐶𝐼 (𝑊𝑘 ) (𝑊 ).
The computation of 𝐶𝐼 (𝑊𝑘 ) (𝑊 ) requires two steps: (1) running

index tuner on𝑊𝑘 to determine 𝐼 (𝑊𝑘 ), followed by (2) computing

the cost of𝑊 using 𝐼 (𝑊𝑘 ) as (hypothetical) indexes. Clearly, it is
costly to invoke the index advisor to compute 𝐼 (𝑊𝑘 ) and running

these two steps negates the purpose of workload compression. Thus,

in this work, one of the key challenges involves developing a mech-

anism to estimate 𝐶𝐼 (𝑊𝑘 ) (𝑊 ) without index tuning. Furthermore,

we should be able to find the compressed workload𝑊𝑘 efficiently.

In particular, the total time taken to compress the workload and

tune the compressed workload should be smaller than the time it

takes to tune the input workload. Lastly, the compression algorithm

should be independent of index advisor and tuning constraints, and

should select queries which are generally effective across a wide

range of constraints.

3 OVERVIEW OF ISUM
We first describe our intuition on how we select a query in the

compressed workload. Then, we discuss how we select a set of

queries while accounting for inter-dependencies between selected

queries. Figure 4 outlines the key steps.

ISUM selects a query if (a) it has a high potential for reduction

in its cost on adding indexes, referred to as the utility of the query,

and (b) the indexes obtained on tuning the selected query has

high potential for reducing the cost of other queries in the input

workload, referred to as the influence of the query. As discussed
earlier, it is expensive to make optimizer calls or use index advisor

to determine the indexes or compute the reduction in cost. Instead,

we use the costs of queries and the statistics such as selectivity

to estimate the potential for reduction in the cost of the query on

adding indexes. Specifically, a query with higher cost and more

selective filters has higher potential for reduction in its cost. For

measuring influence, we also need to characterize how useful are



indexes obtained from the query to other queries in the workload.

To do so, we represent each query using a set of features and assign

weights to features using size of tables, position of columns in the

query, and statistics such as selectivity such that two queries with

a similar set of feature values (measured using weighted Jaccard)
result in a similar set of indexes. A query with higher similarity

with other queries that have high potential for reduction in their

costs has higher influence. Putting together, we select a query with

the highest sum of utility and influence, defined as the benefit of
selecting the query.

In a compressed workload consisting of multiple queries, a) and

b) also depend on the other queries that are selected. For instance,

if a query helps select a given set of indexes, there is no additional

advantage of selecting another query that helps select the same set

of indexes. To address this, we develop a technique that updates

the feature weights and potential for reduction in cost of queries

such that queries that are dissimilar from already selected queries

get higher values of a) and b). Specifically, we propose a greedy
algorithm (Step 3 in Figure 4) that incrementally selects queries in

decreasing order of their benefits (Step 3A in Figure 4). After every

selection, the rest of the queries are updated to consider the impact

of previously selected queries (Step 3B in Figure 4).

The above approach requires the computation of the similarity

of each query with every other query in the workload and thus has

prohibitively high runtime complexity (quadratic in the number of

queries). To improve the efficiency, we propose a technique that

summarizes query-level information into a single workload-level

representation, called summary features (Step 2 in Figure 4). Our key
idea in creating the summary features is to measure the importance

of features of a query at the workload level such that the features of

queries with high potential for reduction have higher weights in the

summary features. The single workload-level representation allows

measuring the similarity of each query with the input workload

without performing pairwise comparisons, thereby allowing us to

develop a linear-time algorithm which is significantly faster.

Finally, note that the queries in the compressed workload rep-

resent the input workload to a varying degree. Thus, we weigh

queries (Step 4 in Figure 4) such that the weight of a query captures

the relative importance of the query with respect to the input work-

load (Section 8). The compressed workload, consisting of queries

and their corresponding weights, is then passed to the index tuner

to generate index recommendations.

4 ESTIMATING IMPROVEMENT
In this section, we introduce a technique that estimates the perfor-

mance improvement over the input workload for a set of selected

queries such that it correlates with the actual performance improve-

ment as measured by the optimizer in the presence of recommended

indexes. We first discuss how we estimate the improvement for a

single query (defined as the benefit of the query) and then extend it

to a set of queries.

4.1 Benefit of Single Query
The computation of benefit of a query consists of two components:

(1) the potential for reduction in cost of the queries (defined as

utility) and (2) the similarity of the query with respect to other

queries in the workload.

Utility. The potential for reduction in costs of queries due to in-

dexes usually depends on the costs of filter, join, order-by, and
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Figure 5: Relationship between utility and reduction in cost due
to indexes when each query is tuned independently in the TPC-H
workload. a) Utility is set to the original cost of the query, b) Utility
considers both original cost and statistics such as selectivity of filter
and join columns. Each point in the charts represents one query in
the workload.

group-by operators as well as the selectivity of filter and join opera-

tors. For instance, if the contribution of these operators to the cost

of the query is high, or if the selectivity of filter and join predicates

is low, the reduction in cost of the query may be high since indexes

can help accelerate such operators. Let 𝐶 (𝑞𝑖 ) be the original cost
of the query 𝑞𝑖 , and let Δ(𝑞𝑖 ) be the estimated reduction in cost of

𝑞𝑖 due to indexes. If 𝑆𝑒𝑙 (𝑞𝑖 ) is the average selectivity of the filter

and join columns in the query, then Δ(𝑞𝑖 ) = (1 − 𝑆𝑒𝑙 (𝑞𝑖 )) ×𝐶 (𝑞𝑖 )
is often correlated with actual improvements. Here, we ignore the

improvements due to grouping and ordering properties which is

hard to quantify without query optimization. Notably, our analysis

over standard benchmarks and real workloads shows that even

only the cost of the query is often highly correlated with the actual

performance improvement (see Figure 5), indicating that if the sta-

tistics are not available, one can use the original cost of the query

as a proxy for the potential reduction in cost. For instance, on the

TPC-H database (see Figure 5), we found that the reduction in cost

of a query when using all indexes recommended by an index advi-

sor after tuning that query is highly correlated (Pearson correlation

= .97) with the cost of the query, and using selectivity of columns

as described above only increases the correlation by a small per-

centage. In our experiments, we show the impact of estimating

reduction on workload compression using both the scenarios.

We introduce the notion of utility that estimates the fraction of

total reduction in cost of the workload on selecting a given query.

Definition 2 (Utility). The utility of query𝑞𝑖 , denoted by𝑈 (𝑞𝑖 ),
is the estimated reduction in cost of 𝑞𝑖 (when all indexes on 𝑞𝑖 are
added) relative to the total estimated reduction in cost across all queries
in the workload:

𝑈 (𝑞𝑖 ) =
Δ(𝑞𝑖 )∑

𝑞 𝑗 ∈𝑊 Δ(𝑞 𝑗 )
.

Intuitively, if a query has higher utility, it contributes to a larger

reduction in cost of the entire workload. While utility is a good

indicator of the potential improvement for a query, we observe that

it is less correlated with the improvement over the input workload.

Figure 6a depicts the improvement over the entire workload as a

function of utility of each query in the TPC-H workload. For each

query, we selected the maximum number of indexes returned by a

state-of-the-art index advisor [3], and measured the improvement

over the entire workload using those indexes. While there is some

correlation between utility of queries and improvements, we see

that indexes from queries with high utility are not always helpful

in reducing the costs of other queries.
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Figure 6: Impact of cost, similarity, and benefit on performance
improvement of TPC-H workload

Similarity. Another way of measuring the benefit of a query is to

look at its similarity with the other queries in the workload. Prior

techniques on workload compression usually select queries that

have high similarity with the queries in the workload (e.g., [20]). In

order to be useful in the context of index tuning, the similarity here

should be defined in terms of the usefulness of indexes between

queries. We develop such a similarity function using indexable

columns and weighted Jaccard [31] (described in Section 4.2).

Figure 6a depicts the performance improvement over the entire

TPC-H workload for a query vs. the sum of its similarity scores

with the other queries, i.e., its similarity with the workload. Once

again, we observe that while there is some correlation between

the similarities and the improvement, the queries with the highest

similarity do not necessarily result in the maximum improvements.

Capturing Similarity and Utility Together.While utility mea-

sures the potential for reduction in cost for a query, say 𝑞𝑖 , it does

not capture the reduction in costs of other queries because of 𝑞𝑖 .

Likewise, similarity measures how useful the indexes selected from

a query 𝑞𝑖 are to other queries, but it does not capture the amount

of reduction in cost of other queries if 𝑞𝑖 is selected. To address this,

we introduce the notion of ‘influence’.

Definition 3 (Influence of a singleqery (𝐹𝑞𝑖 (𝑞 𝑗 )). An influ-
ence of query 𝑞𝑖 on query 𝑞 𝑗 is the reduction in the utility of query 𝑞 𝑗
when query 𝑞𝑖 is selected for index tuning, computed using similarity
and utility as follows:

𝐹𝑞𝑖 (𝑞 𝑗 ) = 𝑆 (𝑞𝑖 , 𝑞 𝑗 ) ×𝑈 (𝑞 𝑗 ),∀𝑞 𝑗 ∉𝑊𝑘 , 𝑞𝑖 ∈𝑊𝑘 .

In other words, the influence of 𝑞𝑖 on 𝑞 𝑗 captures the utility of

𝑞 𝑗 proportional to 𝑞𝑖 ’s similarity with 𝑞 𝑗 . Furthermore, we assume

that two queries both selected in𝑊𝑘 do not influence each other,

since both queries can be tuned by the index tuner, i.e., 𝐹𝑞𝑖 (𝑞 𝑗 ) = 0,

∀𝑞 𝑗 , 𝑞𝑖 ∈𝑊𝑘 . We can now define the ‘benefit’ of selecting a query

that estimates its performance improvement over the workload.

Definition 4 (Benefit of a single qery (𝐵(𝑞𝑖 )). The benefit
of query 𝑞𝑖 is the sum of its utility and its influence on other queries
in the workload, defined as

𝐵(𝑞𝑖 ) = 𝑈 (𝑞𝑖 ) +
∑︁

𝑞 𝑗 ∈𝑊 −{𝑞𝑖 }
𝐹𝑞𝑖 (𝑞 𝑗 ) .

Intuitively, a query is more useful if it has high utility and high

influence on the unselected queries in the workload. To verify the

usefulness of this metric, we compared the benefit of a query (mea-

sured as sum of the benefit of the query with other queries in the

workload) with the performance improvement over the workload

on selecting the query for index tuning (Figure 6c). As we can see,

using benefit is more correlated (0.89) than using utility (0.60) and

similarity (0.58) alone. We observed similar results in our experi-

ments over TPC-DS and real workloads.

Before we discuss how we compute the benefit for a set of se-
lected queries, we describe the similarity measure.

4.2 Similarity Measure
A key component of our solution is the computation of indexing-

aware similarity, 𝑆 (𝑞𝑖 , 𝑞 𝑗 ), between a pair of queries 𝑞𝑖 , 𝑞 𝑗 in the

workload. Previously, [11] has proposed an indexing-aware distance

function for measuring the similarity between two queries. How-

ever, the distance function only captures two queries that have the

same set of table and join columns (referred as signature). Examples

of such queries include multiple instances of an stored procedure

that differ only in parameter bindings. For queries that have at

least one mismatching table or join predicate, the distance function

is undefined. As such, for workloads with high variance in query

templates, the distance function is less effective. Here, we discuss a

low-overhead similarity measure that works for queries with dif-

fering signatures and gives high correlation with the performance

improvement as estimated by the optimizer.

Similarity using Candidate Indexes. For developing an indexing-
aware similarity measure, an ideal option is to look at the overlap

between the sets of selected indexes from both queries. While such

a measure is effective in improving the correlation between benefits

and improvements (e.g., we observe a high correlation of 0.93 on

TPC-H), it requires index tuning for every query, and hence negates

the very purpose of workload compression. Instead, an approxima-

tion could be to look at the set of candidate indexes assuming that

the overlap between the sets of candidate indexes is indicative of

the overlap between selected indexes. If𝐶𝐼𝑞𝑖 and𝐶𝐼𝑞 𝑗 are the sets of

candidate indexes generated for 𝑞𝑖 and 𝑞 𝑗 respectively, the overlap

can be measured using the Jaccard [31] similarity as follows:

𝑆 (𝑞𝑖 , 𝑞 𝑗 ) =
𝐶𝐼𝑞𝑖 ∩𝐶𝐼𝑞 𝑗
𝐶𝐼𝑞𝑖 ∪𝐶𝐼𝑞 𝑗

.

However, we observe that using candidate indexes as the simi-

larity measure is often less correlated with the actual improvement

(see Figure 7a). This is because a candidate index in one query may

not exactly match any of the candidate indexes in the other query

(e.g., the ordering of a same set of columns in candidate indexes

may be different depending on selectivity), but may still lead to an

improvement.

Similarity using Indexable Columns. To address the above issue
as well as to reduce the overhead involved in generating candidate

indexes, we instead consider the individual columns (called index-
able columns) in candidate indexes for measuring similarity.

Definition 5 (Indexable Column). A column in a query is
indexable if it is part of a filter or join condition, or if it specifies the
grouping or ordering of tuples.

Specifically, we consider the following columns as indexable

columns: (1) filter columns, (2) join columns, (3) group-by columns,

and (4) order-by columns. Index advisors derive candidate indexes

from indexable columns by combing them in different orders. Let

𝐶𝑞𝑖 and𝐶𝑞 𝑗 be the sets of indexable columns for 𝑞𝑖 and 𝑞 𝑗 . The sim-

ilarity between 𝑞𝑖 and 𝑞 𝑗 can then be defined in terms of indexable

columns (instead of selected/candidate indexes) as follows:

𝑆 (𝑞𝑖 , 𝑞 𝑗 ) =
𝐶𝑞𝑖 ∩𝐶𝑞 𝑗
𝐶𝑞𝑖 ∪𝐶𝑞 𝑗

.

The problem with the above measure is that all columns are

assumed to be equally effective in reducing the cost of the query.

To address this, we weigh columns based on statistics and rules

that are indicative of how important they are in reducing the cost.
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Figure 7: Impact of using different similarity measures for computing benefit on TPC-H workload.

Measuring Index-Specific Importance of Columns. A large

part of the query cost usually involves accessing, joining, or order-

ing a few expensive tables. Thus, index advisors typically select

indexes on such tables. Let 𝑛(𝑡𝑖 ) be the size of the input table 𝑡𝑖 , we
assign a weight to 𝑡𝑖 as follows:

𝑤𝑡𝑎𝑏𝑙𝑒 (𝑡𝑖 ) =
𝑛(𝑡𝑖 )∑
𝑗 𝑛(𝑡 𝑗 )

.

We discuss two approaches that combine weights of tables with

additional factors to assign weights to individual columns.

(1) Rule-based. The importance of indexable columns can vary

depending on whether they occur as part of filter/join predicates,

or group-by/order-by clauses. Thus, an efficient way of measuring

the importance is to count the proportion of candidate indexes that

a column belongs to. Let 𝑑 (𝑡𝑖 ) denote the total number of possible

candidate indexes that can be generated by combining indexable

columns in different orders, and 𝑑 (𝑡𝑖 , 𝑐) be the fraction of candidate

indexes in 𝑑 (𝑡𝑖 ) that contain the indexable column 𝑐 . The weight

of column 𝑐 based on its position and weight of the corresponding

table can then be computed as:

𝑤 (𝑐) = 𝑑 (𝑡𝑖 , 𝑐)
𝑑 (𝑡𝑖 )

×𝑤𝑡𝑎𝑏𝑙𝑒 (𝑡𝑖 ).

The estimation of 𝑑 (𝑡𝑖 , 𝑐) and 𝑑 (𝑡𝑖 , 𝑐) does not require the invoca-
tion of an index advisor. Index advisors typically apply a set of rules

that combine indexable columns in different orders to generate

candidate indexes. For instance, Table 1 depicts a common set of

such rules that we use in this work. Observe that not all columns

generate equal number of candidates, e.g., order-by columns when

used in the index should always be the leading columns. As such, a

selection or join column is more likely to be part of the candidate in-

dexes than an order-by column. Thus, given a set of common rules

and the number of columns for each position, we can efficiently

estimate 𝑑 (𝑡) and 𝑑 (𝑡, 𝑐).
(2) Statistics-based. Instead of counting the number of candidate

indexes generated from an indexable column, one can use statistics

such as selectivity or density [6] of the columns. If 𝑢 in the number

of distinct values for the column, then density is measured as 1/𝑢.
Two queries with similar values of these statistics tend to generate

similar candidate indexes since index advisors use these statistics

to estimate the importance of an index as well as to order the

columns in an index.We decide whether to use selectivity or density

depending on the position of the column. For filter and join columns,

we use the selectivity, while for order-by and group-by columns

we use the density since the costs of corresponding operations

are usually correlated with the number of unique values in the

column(s). In general, a smaller value of these statistics leads to a

higher weight, indicating that building an index on such a column

will lead to higher improvement in cost. Let 𝑠 (𝑐) be the value of

R1 selection

R2 join

R3 selection + join

R4 join + selection

R5 order-by + selection + join

R6 group-by + selection + join

R7 order-by + join + selection

R8 group-by + selection + join

Table 1: A set of rules for combining indexable columns to estimate
the number of candidate indexes.

statistics for the column 𝑐 , then the weight of 𝑐 can be computed

as:

𝑤 (𝑐) = (1 − 𝑠 (𝑐)) ×𝑤𝑡𝑎𝑏𝑙𝑒 (𝑡𝑖 ) .

We call indexable columns as features for the query and use the

normalized weights as the values of the features, computed using

min-max normalization as follows:

�̄�𝑐𝑖 =
𝑤𝑐𝑖

max𝑗 (𝑤𝑐 𝑗 ) −min𝑗 (𝑤𝑐 𝑗 )
.

Definition 6 (qery features). Query features is a set of nor-
malized weights, one for each indexable column in the query.

For simplicity, we use the same symbol 𝑞𝑖 to represent the query

features of query 𝑞𝑖 . We use 𝑞𝑖𝑐 to denote the normalized weight

of the column 𝑐 in 𝑞𝑖 .

Computing similarity between query features. Intuitively,
the query features for each query represents a region in a multi-

dimensional space where each feature (i.e., indexable column) repre-

sents a dimension. We measure the similarity between two queries

as the overlap between their corresponding regions in this space,

such that a higher overlap between the regions of two queries re-

sults in higher relevance of the indexes to each other. The overlap

between the query features 𝑞𝑖 and 𝑞 𝑗 can be measured using the

weighted Jaccard [31], defined as follows:

𝑆 (𝑞𝑖 , 𝑞 𝑗 ) =
∑
𝑐 min(𝑞𝑖𝑐 , 𝑞 𝑗𝑐 )∑
𝑐 max(𝑞𝑖𝑐 , 𝑞 𝑗𝑐 )

.

More specifically, the weighted Jaccard measures the area of overlap

between queries normalized by the total area covered by the queries.

Our empirical results show that weighted Jaccard, when used as part

of the benefit measure, correlates strongly with the performance

improvement (Figure 7), giving better results than using candidate

indexes or Jaccard similarity with unweighted columns. Further-

more, the differences in improvements when using statistics-based

approach vs rule-based approach is not significant; however, the

statistics-based approach requires additional overheads of storing

and maintaining histograms for estimating selectivity and density

of indexable columns.



4.3 Benefit of Set of Queries
So far, while computing the benefit of selecting a query, we assumed

that no other query is selected. However, a compressed workload

may consist of multiple queries and thus, the benefit of a query also

depends on the other queries that are selected.

To address this, we update the costs and query features of the

unselected queries. We use 𝑞 𝑗 |𝑞𝑖 to denote the updated 𝑞 𝑗 after

considering the influence of selected query 𝑞𝑖 . If there are multiple

queries 𝑞𝑖1 , 𝑞𝑖2 , ..., 𝑞𝑖𝑛 that are selected, we update 𝑞 𝑗 with these

queries in their order of selection. We discuss how we decide the

order of selection shortly. We use 𝑞 𝑗 |𝑞𝑖1 , 𝑞𝑖2 , ..., 𝑞𝑖𝑛 to denote that

𝑞 𝑗 is updated using 𝑞𝑖1 , 𝑞𝑖2 , ..., 𝑞𝑖𝑛 in order. We now discuss how

we update the cost and query features of 𝑞 𝑗 assuming that only one

query 𝑞𝑖 is selected.

Updating utility.When a query 𝑞𝑖 is selected, we assume that the

selected indexes on 𝑞𝑖 would help reduce the utility of 𝑞 𝑗 propor-
tional to its similarity, i.e.,

𝑈 (𝑞 𝑗 |𝑞𝑖 ) = 𝑈 (𝑞 𝑗 ) −𝑈 (𝑞 𝑗 ) × 𝑆 (𝑞𝑖 , 𝑞 𝑗 ).

In other words, we reduce𝑈 (𝑞 𝑗 ) by 𝐹𝑞𝑖 (𝑞 𝑗 ).
Updating query features. Further, we update the query features

of 𝑞 𝑗 so that queries similar to 𝑞𝑖 have reduced similarity to each

other. There are two ways of updating the query features. One

option is to reduce the weights of features in 𝑞𝑖 by 𝑆 (𝑞𝑖 , 𝑞 𝑗 ), i.e.,

𝑞 𝑗 |𝑞𝑖 = 𝑞𝑖 − 𝑆 (𝑞𝑖 , 𝑞 𝑗 ).

Another option is to set the weights of the indexable columns that

are present in the selected query 𝑞 𝑗 to 0, assuming that this column

has been “covered” and the updated utility should be calculated

based on the uncovered columns. Formally,

𝑞 𝑗 |𝑞𝑖 : SET 𝑞 𝑗𝑐 = 0, ∀𝑞𝑖𝑐 > 0.

We empirically explore the performances of update strategies in

Section 8.2 and observe that the second option is usually more

effective.

Now that we have discussed how we update the query features

and utility after selecting queries, we introduce the notion of condi-
tional influence, which extends the notion of influence to take into

account the impact of a sequence of selected queries. For ease of

exposition, given a set of selected queries 𝑄 = {𝑞1, ..., 𝑞𝐾 }, we use
𝜋 (𝑄) = 𝑞𝑖1 , ..., 𝑞𝑖𝐾 to represent an arbitrary order/sequence of 𝑄 .

We also use 𝑞 |𝜋 (𝑄) to denote the updated query 𝑞 by following the

sequence of queries in 𝜋 (𝑄).

Definition 7 (Conditional Influence). Given a sequence of
selected queries 𝜋 (𝑄), the conditional influence of a query 𝑞 ∉ 𝑄 on a
query 𝑞′ ∉ 𝑄 is the reduction in cost of 𝑞′ (𝑞′ ≠ 𝑞) given the influence
of queries in the order of 𝜋 (𝑄), defined as

𝐹𝑞 |𝜋 (𝑄) (𝑞′ |𝜋 (𝑄)) = 𝑆 (𝑞 |𝜋 (𝑄), 𝑞′ |𝜋 (𝑄)) ×𝑈 (𝑞′ |𝜋 (𝑄)) . (1)

To simplify notation, in the following we use

𝐹𝑞 |𝜋 (𝑄) (𝑞′) := 𝐹𝑞 |𝜋 (𝑄) (𝑞′ |𝜋 (𝑄)),

𝑆𝜋 (𝑄) (𝑞, 𝑞′) := 𝑆 (𝑞 |𝜋 (𝑄), 𝑞′ |𝜋 (𝑄)),

𝑈𝜋 (𝑄) (𝑞′) := 𝑈 (𝑞′ |𝜋 (𝑄)) .
As a result, Equation 1 can be alternatively written as

𝐹𝑞 |𝜋 (𝑄) (𝑞′) = 𝑆𝜋 (𝑄) (𝑞, 𝑞′) ×𝑈𝜋 (𝑄) (𝑞′) . (2)

Definition 8 (Cumulative Influence). The cumulative influ-
ence of a sequence of selected queries 𝜋 (𝑄) = 𝑞𝑖1 , ..., 𝑞𝑖𝐾 over a query
𝑞′ ∉ 𝑄 is the sum of the conditional influence of 𝑞𝑖𝑙 on 𝑞

′ with respect
the prefix sequence 𝑞𝑖1 , ..., 𝑞𝑖𝑙−1

, where 1 ≤ 𝑙 ≤ 𝐾 . Formally,

𝐹𝜋 (𝑄) (𝑞′) =
∑︁𝐾

𝑙=1

𝐹𝑞𝑖𝑙 |𝑞𝑖1 ,...,𝑞𝑖𝑙−1

(𝑞′). (3)

Definition 9 (Benefit of a set of qeries). The benefit 𝐵(𝑄)
of a set of queries 𝑄 = {𝑞1, ..., 𝑞𝐾 } is the sum of the utilities of the
queries in 𝑄 and the maximum cumulative influence on queries not
in 𝑄 w.r.t. any order 𝜋 (𝑄). Formally,

𝐵(𝑄) = 𝑈 (𝑄) + max

𝜋 (𝑄)

∑︁
𝑞′∈𝑊 −𝑄 𝐹𝜋 (𝑄) (𝑞

′), (4)

where𝑈 (𝑄) = ∑
𝑞∈𝑄 𝑈 (𝑞).

Problem 2 (Maximizing Benefit). We can now define the original
workload compression problem (Problem 1) in terms of the benefit of
a set of queries as follows:

𝑊𝑘 = argmax

𝑆𝑘 ⊂𝑊
𝐵(𝑆𝑘 ) .

Hardness:We show that even a relaxed version of Problem 2 is NP-

hard. To simplify, we ignore that𝑈 (𝑄) = ∑
𝑞∈𝑄 𝑈 (𝑞) in Equation 4

and assume that the influence of a query 𝑞𝑖 on 𝑞𝑙 does not depend

on selection of other queries. In other words, conditional influence

of a query is equivalent to its influence, i.e.,

𝑊𝑘 = argmax

𝑆𝑘 ⊂𝑊
(
∑︁
𝑞𝑙 ∈𝑊

𝐹𝑆𝑘 (𝑞𝑙 )).

This problem is a variant of the 𝑘-center problem, where, given a

set of 𝑛 points in a metric space and an integer 𝑘 ≤ 𝑛, the goal is to
find a set of 𝑘 points such that the sum of distances of the 𝑛 points

to the 𝑘 selected points is maximized or minimized. The 𝑘-center

problem is known to be NP-hard [24].

Algorithm 1 FindMaxBenefitQuery
1: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = -1

2: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦 = 𝑁𝑈𝐿𝐿
3: for all 𝑞𝑖 ∈𝑊 do
4: if all 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 in 𝑞 𝑗 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 0 then
5: continue;

6: end if
7: 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = 𝑞𝑖 .𝑢𝑡𝑖𝑙𝑖𝑡𝑦;
8: for all 𝑞 𝑗 ∈𝑊 do
9: 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 + = 𝑆 (𝑞𝑖 , 𝑞 𝑗 ) × 𝑞 𝑗 .𝑢𝑡𝑖𝑙𝑖𝑡𝑦;
10: end for
11: if 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 >𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 then
12: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡
13: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦 = 𝑞𝑖
14: end if
15: end for
16: Return𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦

5 AN ALL-PAIRS GREEDY ALGORITHM
A key requirement to scale to a large input workload is the efficient

computation of the compressedworkload. Given that the problem of

maximizing the benefit of selected queries is NP-hard (Section 4.3),

we develop a greedy algorithm (Algorithm 2) that trades-off accu-

racy to solve the optimization problem efficiently. We discuss the

steps in the algorithm and then analyze its optimality.

The algorithm starts with an empty set. In each iteration, the

algorithm selects the query with the maximum conditional benefit,
defined as follows (and computed by Algorithm 1):



Algorithm 2 Greedy Selection
1: for all 𝑞𝑖 ∈𝑊 do //𝑊 refers to input workload

2: 𝑞𝑖 .𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = ComputeUtility(𝑞𝑖)
3: 𝑞𝑖 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = ComputeQueryFeatures(𝑞𝑖)
4: end for
5: 𝑊𝑘 = ∅ // reference to compressed workload

6: 𝑇 ←𝑊
7: while𝑊𝑘 .size()<𝑘 do
8: 𝑞𝑠 ← FindMaxBenefitQuery(𝑇)
9: 𝑊𝑘 ← AddQueryToCompressedWorkload(𝑊𝑘,𝑞𝑠)
10: 𝑇 ← RemoveQueryFromInputWorkload(𝑇,𝑞𝑠)
11: 𝑇 ← UpdateInputWorkload(𝑇, 𝑞𝑠)
12: 𝑇 ← ResetQueryFeaturesIfAllWeightsZero(𝑇, 𝑊 )
13: end while
14: Return𝑊𝑘

Definition 10 (Conditional Benefit). Given a sequence of
selected queries 𝜋 (𝑄), the conditional benefit of a query 𝑞 ∉ 𝑄 is the
sum of the (discounted) utility of 𝑞 and its conditional influence over
the unselected queries (other than 𝑞), with respect to selected queries
in the order of 𝜋 (𝑄). Formally,

𝐵𝜋 (𝑄) (𝑞) = 𝑈𝜋 (𝑄) (𝑞) +
∑︁

𝑞′∈𝑊 −
(
𝑄∪{𝑞 }

) 𝐹𝑞 |𝜋 (𝑄) (𝑞′). (5)

Intuitively, at each greedy step, we select the query with the

maximum conditional benefit over the remaining queries in the

workload. After a query is selected, we update the query features

and costs of unselected queries as discussed in Section 4.3.

Note that in some cases, the weights of all features of a query

may be set to zero after selecting a few queries. In such scenarios,

we assume that selected queries can cover all the indexes of a query

with zero weights, and consider only those queries with at least

one non-zero weight (Algorithm 2). However, for large sizes of

compressed workload, it is possible that after certain point, all the

remaining queries have zero-weight features. In such cases, we reset

the query features of unselected queries to their original weights

(line 12 of Algorithm 2).

5.1 Optimality Analysis
We show that under mild conditions the benefit function is a non-

negative monotone submodular set function. As a result, the greedy
algorithm can achieve worst-case (1 − 1/𝑒) ≈ 0.63 optimality guar-

antee [27, 30] under such conditions. Due to space constraints,

we defer the full details, including all the proofs, to the complete

version of this paper [34].

Specifically, given a set of queries 𝑄 = {𝑞1, ..., 𝑞𝐾 } and a particu-

lar order/sequence 𝜋 (𝑄) = 𝑞𝑖1 , ..., 𝑞𝑖𝐾 , we define

𝐹 (𝜋 (𝑄)) =
∑︁

𝑞′∈𝑊 −𝑄 𝐹𝜋 (𝑄) (𝑞
′) .

Intuitively, 𝐹 (𝜋 (𝑄)) measures the influence of the queries in 𝑄 as

a whole (over queries not in 𝑄) w.r.t. the order 𝜋 (𝑄). As a result,
we can further define the benefit function 𝐵(𝜋 (𝑄)) with respect to
the order/sequence 𝜋 (𝑄), in terms of 𝐹 (𝜋 (𝑄)):

𝐵(𝜋 (𝑄)) = 𝑈 (𝑄) + 𝐹 (𝜋 (𝑄)) .
Moreover, our optimization goal now becomes

𝐵(𝑄) = max

𝜋 (𝑄)
𝐵(𝜋 (𝑄)) = 𝑈 (𝑄) + max

𝜋 (𝑄)
𝐹 (𝜋 (𝑄)) .

Theorem 1 (Monotonicity). Given 𝑋 ⊆ 𝑌 , if, for any permutations
𝜋 (𝑋 ) over 𝑋 and 𝜋 (𝑌 ) over 𝑌 , it holds that

𝑈 (𝑌 ) −𝑈 (𝑋 ) ≥ 𝐹 (𝜋 (𝑋 )) − 𝐹 (𝜋 (𝑌 )),
then 𝐵(𝑋 ) ≤ 𝐵(𝑌 ), i.e., 𝐵 is monotone.

Clearly, 𝑈 (𝑌 ) ≥ 𝑈 (𝑋 ) since 𝑋 ⊆ 𝑌 . Therefore, as long as the

gain on the utility when expanding 𝑋 to 𝑌 can offset the loss on
the influence, 𝐵 is monotone.

Theorem 2 (Submodularity). Given 𝑋 ⊆ 𝑌 and 𝑧 ∉ 𝑌 , let 𝜋 (𝑋 )
and 𝜋 (𝑌 ) be arbitrary orders of 𝑋 and 𝑌 . We define
• 𝜋∗ (𝑋 ), 𝜋∗ (𝑌 ) as the best orders on 𝑋 and 𝑌 that maximize 𝐵(𝑋 )
and 𝐵(𝑌 ), respectively;
• 𝜋∗𝑧 (𝑋 ), 𝜋∗𝑧 (𝑌 ) as the orders on 𝑋 ∪ {𝑧} and 𝑌 ∪ {𝑧} that append 𝑧
at the end of 𝜋∗ (𝑋 ) and 𝜋∗ (𝑌 ), respectively;
• 𝜋∗ (𝑋 ∪{𝑧}), 𝜋∗ (𝑌 ∪{𝑧}) as the best orders on𝑋 ∪{𝑧} and 𝑌 ∪{𝑧}
that maximize 𝐵(𝑋 ∪ {𝑧}) and 𝐵(𝑌 ∪ {𝑧}), respectively.

𝐵 is submodular under the following conditions:

(C1) For any 𝑞′ ∈ 𝑌 ∪ {𝑧}, 𝐹𝑧 |𝜋 (𝑋 ) (𝑞′) ≥ 𝐹𝑧 |𝜋 (𝑌 ) (𝑞′);
(C2) 𝐹𝜋 (𝑌 ) (𝑧) ≥ 𝐹𝜋 (𝑋 ) (𝑧);
(C3) 𝐹 (𝜋∗ (𝑋 ∪ {𝑧})) − 𝐹 (𝜋∗𝑧 (𝑋 )) ≥ 𝐹 (𝜋∗ (𝑌 ∪ {𝑧})) − 𝐹 (𝜋∗𝑧 (𝑌 )).
C1 means that, as we expand 𝑋 to 𝑌 by including more queries,

the conditional influence of 𝑧 over 𝑞′, both of which are outside 𝑌 ,

will decrease regardless of the orders 𝜋 (𝑋 ) and 𝜋 (𝑌 ). This matches

our intuition that the conditional influence of a query should in

general decrease when following a larger number of queries. On

the other hand, C2 states that the cumulative influence on 𝑧 should
in general increase when expanding𝑋 to𝑌 , regardless of the orders

𝜋 (𝑋 ) and 𝜋 (𝑌 ), which also matches our intuition. Moreover, C3

implies that the marginal gain on influence of including 𝑧 dimin-

ishes as we expand 𝑋 to 𝑌 , with respect to the best possible order

and the best order that appends 𝑧 at the end. Note that this trend is

consistent with that stated in C1.

6 IMPROVING EFFICIENCY
A major issue with all-pairs algorithm is that its runtime is pro-

hibitively high for large workloads. Specifically, if 𝑛 is the number

of queries in the workload, and 𝑘 is the size of the compressed

workload, the runtime complexity of the algorithm is 𝑂 (𝑘 × 𝑛2).
In order to improve the efficiency, we summarize all queries

in the workload using a concise representation, called summary
features. We then compute the utility of each query with respect

to the summary features, avoiding all-pairs comparison. We first

discuss how we generate the summary features and then discuss

how we adapt the all-pairs algorithm to leverage the summary

features.

6.1 Workload Summary Features
One of the key challenges in coming up with the summary features

is to ensure that the salient characteristics of queries are preserved

in the summary features. A simple summarization approach could

be to sum up or take the average of query features across all the

queries. The issue with this approach is that query features of

all queries get equal importance, while in practice some queries

contribute more to the influence depending on their utilities.

Key idea. The computation of summary features is inspired from

how we measure the influence of a query (say 𝑞𝑠 ) over the entire

workload. Recall

𝐹𝑞𝑠 (𝑊 ) =
∑︁

𝑞 𝑗 ∈𝑊 −{𝑞𝑠 }
𝑆 (𝑞𝑠 , 𝑞 𝑗 ) ×𝑈 (𝑞 𝑗 ) .

Intuitively, this means that the influence is the weighted sum of

similarity across queries in the workload.

For a given query 𝑞𝑖 , the weight of a column 𝑐 denoted by query

𝑞𝑖𝑐 represents the importance of 𝑐 in 𝑞𝑖𝑐 . We modify the weight
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Figure 8: Impact of using summary features
such that it reflects the weight of the column at workload-level.

The weight of a column 𝑐 in query 𝑞𝑖 at workload-level, denoted

by 𝑉𝑖𝑐 , can be measured using the utility of 𝑞𝑖 as follows:

𝑉𝑖𝑐 = 𝑞𝑖𝑐 ×𝑈 (𝑞𝑖 ) .
Similarly, the weight of a column 𝑐 at workload-level can be derived

as the sum of the weights of 𝑐 across all queries at workload-level:

𝑉𝑐 =
∑︁

𝑞𝑖 ∈𝑊
𝑞𝑖𝑐 ×𝑈 (𝑞𝑖 ).

Definition 11 (summary features). Summary features is a set
of all indexable columns in the workload where the value of each
feature is the weighted (using normalized utility of the query) sum of
values of the features across all queries.

Now, the influence of a query 𝑞𝑠 with respect to a summary

features 𝑉 that excludes 𝑞𝑠 , can be computed as follows:

𝐹𝑞𝑠 (𝑉 ) = 𝑆 (𝑞𝑠 ,𝑉 ).
Thus, given a summary features,𝑉 , we can directly compute the

influence of 𝑞𝑖 as 𝐹𝑞𝑠 (𝑉 ) instead of 𝐹𝑞𝑠 (𝑊 ), thereby avoiding all-

pairs comparisons. We prove the following result (see Appendix B

in [34]) on the difference between 𝐹𝑞𝑠 (𝑉 ) and 𝐹𝑞𝑠 (𝑊 ) when using

weighted Jaccard as the similarity measure.

Theorem 3.
𝑅

𝑛 ×𝑈𝐿
≤
𝐹𝑞𝑠 (𝑉 )
𝐹𝑞𝑠 (𝑊 )

≤ 1

𝑛 × 𝑅 ×𝑈𝑆
.

Here,𝑈𝑆 = min𝑖 {𝑈 (𝑞𝑖 )},𝑈𝐿 = max𝑖 {𝑈 (𝑞𝑖 )}, 𝑛 = |𝑊 |,

𝑅 = min

𝑐

min𝑖 {𝑞𝑖𝑐 }
max𝑖 {𝑞𝑖𝑐 }

,

i.e., the smallest ratio between any two values of the same column.

We make the following observations from this theorem. First, as

𝑅 increases, i.e, as the similarity between two values of a column

increases, both under-estimation and over-estimation decrease. In

other words, the summary features closely approximates the work-

load as 𝑅 increases. Second, assuming uniform distribution of utili-

ties and values of columns, as the queries in the workload increases,

the over-estimation increases faster than the under-estimation. This

is because, as 𝑛 increases, both𝑈𝐿 and𝑈𝑆 decrease. Finally, an in-

crease in skew between the utilities of the queries may lead to more

under-estimation and over-estimation.

To validate further, we empirically evaluate the estimation error

of 𝐹𝑞𝑠 (𝑉 ) w.r.t 𝐹𝑞𝑠 (𝑊 ) over the TPC-H and TPC-DS datasets as

depicted in Figure 8a. We find that for over 70% of the queries,

the error is less than 2×, which is significantly smaller than the

theoretical bounds. Furthermore, measuring benefit using the sum-

mary features still gives a very high correlation with performance

improvement (0.83 vs 0.87 over the TPC-H workload.) We further

evaluate the impact of summary features on the performance im-

provement and the improvement in efficiency in Section 8.

6.2 An Efficient Greedy Algorithm
Algorithm 3 depicts an adapted version of Algorithm 1 for finding

the query with the maximum benefit using summary features. Note

that while summary features help us directly compute the influence

of a query; it is more erroneous to update the summary features

directly for computing conditional influence. Thus, after selecting

each query, we update all the query features and utility of queries

as discussed in Section 4.3 (similar to all-pairs algorithm) and then

regenerate the summary features.

Algorithm 3 FindMaxBenefitQueryUsingSummaryFeatures

1: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = -1;

2: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦 = 𝑁𝑈𝐿𝐿
3: 𝑉 = ComputeSummaryFeatures(𝑊 )
4: 𝑡𝑜𝑡𝑎𝑙𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = ComputeTotalUtility(𝑊 )
5: for all 𝑞𝑖 ∈𝑊 do
6: if all 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 in 𝑞𝑖 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 0 then
7: continue;

8: end if
9: 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑡𝑜𝑉 = 𝑞𝑖 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
10: 𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑡𝑜𝑡𝑎𝑙𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑡𝑜𝑡𝑎𝑙𝑢𝑡𝑖𝑙𝑖𝑡𝑦 − 𝑞𝑖 .𝑢𝑡𝑖𝑙𝑖𝑡𝑦
11: 𝑉 ′ = (𝑉 − 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑡𝑜𝑉 ) × 𝑡𝑜𝑡𝑎𝑙𝑢𝑡𝑖𝑙𝑖𝑡𝑦

𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑡𝑜𝑡𝑎𝑙𝑢𝑡𝑖𝑙𝑖𝑡𝑦
;

12: 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = 𝑞𝑖 .𝑢𝑡𝑖𝑙𝑖𝑡𝑦 + 𝑆 (𝑞𝑖 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑉 ′)
13: if 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 >𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 then
14: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡
15: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦 = 𝑞𝑖
16: end if
17: end for
18: Return𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦

If 𝑛 is the number of queries in the workload, and 𝑘 is the size of

the compressed workload, the runtime complexity of the algorithm

is𝑂 (𝑘 × 𝑛), resulting in orders of magnitude more improvement in

efficiency compared to all-pairs algorithm.

The optimality guarantee of Algorithm 3w.r.t. the optimal choices

when using 𝐹𝑞𝑠 (𝑉 ) for measuring influence is the same (i.e., 1 −
1/𝑒 ≈ 0.63) as that of Algorithm 1, which uses 𝐹𝑞𝑠 (𝑊 ) for mea-

suring influence. While Theorems 1 and 2 hold for both 𝐹𝑞𝑠 (𝑉 )
and 𝐹𝑞𝑠 (𝑊 ), the derivation of the optimality guarantee requires

that both the greedy and optimal algorithm use the same 𝐹 . Given

that finding the optimal solution is NP-hard, a direct comparison

between choices made by the greedy algorithm using 𝐹𝑞𝑠 (𝑉 ) vs. the
choices made by an optimal algorithm using 𝐹𝑞𝑠 (𝑊 ) is not feasible.
Nevertheless, Theorem 3 offered some insights on the relationship

between 𝐹𝑞𝑠 (𝑉 ) and 𝐹𝑞𝑠 (𝑊 ), and Figure 8a further validated the

approximation error of 𝐹𝑞𝑠 (𝑉 ) w.r.t. 𝐹𝑞𝑠 (𝑊 ). We also empirically

compare the impact on performance improvement and compression

time between Algorithm 1 and Algorithm 3 in Section 8.

7 WEIGHING QUERIES IN COMPRESSED
WORKLOAD

While passing the compressed workload to the index tuner, we need

to assign weights to each of the queries based on their own utility

and influence on the other queries in the workload. Given a weight

𝑤𝑡 (𝑞𝑖 ) for query 𝑞𝑖 and the set of indexes 𝐼𝑘 selected by tuning the

compressed workload𝑊𝑘 , the improvement over the workload𝑊

is defined as Δ(𝑊 ) = ∑
𝑞𝑖 ∈𝑊 𝑤𝑡 (𝑞𝑖) × (𝐶 (𝑞𝑖 ) −𝐶𝐼𝑘 (𝑞𝑖 )).

Given a selected query 𝑞𝑖 in𝑊𝑘 , a straightforward approach is to

re-use the value of conditional benefit of queries during query selec-

tion. However, the benefits of queries only reflect their importance

at workload-level when they are selected, which may have changed



after all 𝑘 queries are selected. Therefore, we need to adjust their

relative importance afterwards.

Thus, once we have selected the 𝑘 queries, we re-calibrate the

benefits of individual queries using a variant of the summary feature-

based greedy algorithm (Algorithm 5). Specifically, we consider only

the queries from𝑊𝑘 at each step, and construct summary feature

using only the unselected queries. The weight of each query is the

normalized re-calibrated benefit.

Furthermore, in certain scenarios, we note that the workload

may consist of multiple instances of the same query template. Thus,

indexes selected for one of the instances may benefit all instances

within the same template, though the amount of benefit may vary

depending on the selectivity of predicates and costs of queries. For

such scenarios, we note that it is more effective as well as efficient

to modify the utility of a selected instance to the total utility of

all instances in the input workload that have the same template as

the selected instance (Algorithm 4). For the rest of the queries with

non-matching templates, we compute their benefits following an

approach similar to that of query selection (Algorithm 5).

Algorithm 4 Template-based Utility Computation
1: 𝑇 ← Identify unique query templates in 𝑊𝑘
2: for all 𝑡 ∈ 𝑇 do
3: 𝑡 .𝑓 𝑟𝑒𝑞 ← Compute the number of queries matching template 𝑡

in 𝑊𝑘
4: 𝑡 .𝑡𝑜𝑡𝑎𝑙𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ← Compute the sum of utilities of queries in
𝑊 for template 𝑡

5: end for
6: 𝑊 ′ ← Remove queries in 𝑊 with matching templates in 𝑇
7: 𝑊 ′

𝑘
← ∅

8: for all 𝑞𝑖 ∈𝑊𝑘 do
9: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← 𝑞𝑖 .𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

10: 𝑞𝑖 .𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒.𝑡𝑜𝑡𝑎𝑙𝑢𝑡𝑖𝑙𝑖𝑡𝑦

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒.𝑓 𝑟𝑒𝑞

11: end for
12: Return𝑊𝑘 ,𝑊

′
;

Algorithm 5 Weighing of Selected Queries
1: 𝑊𝑘 ,𝑊𝑢 ← TemplateBasedUtilityComputation(𝑊𝑘, 𝑊 )
2: 𝑄 = ComputeSummaryFeatures(𝑊𝑢)
3: 𝑞𝑢𝑒𝑟𝑦𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = {}, 𝑡𝑜𝑡𝑎𝑙𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑠 = 0

4: while𝑊𝑘 .size() > do
5: for all 𝑞𝑖 ∈𝑊𝑘 do
6: 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = 𝑞𝑖 .𝑢𝑡𝑖𝑙𝑖𝑡𝑦 + 𝑆 (𝑞𝑖 .𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑄)
7: if 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 >𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 then
8: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 = 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡
9: 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦 = 𝑞𝑖
10: end if
11: end for
12: 𝑡𝑜𝑡𝑎𝑙𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑠 ← 𝑡𝑜𝑡𝑎𝑙𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑠 +𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡
13: 𝑞𝑢𝑒𝑟𝑦𝑤𝑒𝑖𝑔ℎ𝑡𝑠.Add(𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦,𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 )
14: 𝑊𝑘 ← RemoveQuery(𝑊𝑘 ,𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦)
15: 𝑊𝑢 ← UpdateWorkload(𝑊𝑢, 𝑚𝑎𝑥𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑞𝑢𝑒𝑟𝑦)
16: end while
17: for all 𝑞𝑖 ∈ 𝑞𝑢𝑒𝑟𝑦𝑤𝑒𝑖𝑔ℎ𝑡𝑠.Keys() do
18: 𝑞𝑢𝑒𝑟𝑦𝑤𝑒𝑖𝑔ℎ𝑡𝑠 [𝑞𝑖 ] = 𝑞𝑢𝑒𝑟𝑦𝑤𝑒𝑖𝑔ℎ𝑡𝑠 [𝑞𝑖 ]/𝑡𝑜𝑡𝑎𝑙𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑠 ;
19: end for
20: Return 𝑞𝑢𝑒𝑟𝑦𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ;

8 EXPERIMENTS
Workloads. As summarized in Table 2, we use two standard bench-

marks: TPC-H and TPC-DS, a recent variant of TPC-DS benchmark

DSB [21], and a real customer workload Real-M. Both DSB and

Real-M are complex, with a large variety of query templates and

Name #Queries # Templates #Tables

TPC-H (sf =10) 2200 22 8

TPC-DS (sf =10) 9100 91 24

DSB [21] (sf =10) 520 52 24

Real-M (26GB) 473 456 474

Table 2: Summary of workloads

skewed data distribution. We instantiate the TPC-H, TPC-DS, and

DSB workloads using the qgen tools of the benchmarks.

Baselines. ISUM, by default, uses rule-based strategies to weigh

columns using query costs, table sizes, and the number of candidate

indexes they generate. We use ISUM-S to denote the variant where
we use statistics such as selectivity and density to weigh columns

as described in Section 4. We compare ISUM and ISUM-S with the

following baselines: 1. Uniform Sampling. It randomly samples 𝑘

queries from the workload. 2. Cost. It selects top-𝑘 queries with the

highest costs. 3. Stratified. It clusters queries based on templates

and then uniformly samples equal number of queries from each

cluster. 4. GSUM [20]. It is a recently proposed workload compres-

sion technique that maximizes both coverage and representativity as

discussed in the Section 9. Note that all of the above baselines are

efficient, i.e., given the input workload consisting of queries, their

optimizer estimated costs and the statistics, the workload compres-

sion usually takes < 1% of the tuning time of compressed workload.

Hence, for comparing with the above baselines, we use the linear-

time algorithm for ISUM that has comparable compression time.

We also compare ISUMwith the following two algorithms using our

proposed benefit measure. 5. All-pairs. It selects top-𝑘 queries as

described in Section 5. 6. 𝑘-mediod. Using 𝑘 random seeds, it clus-

ters queries into 𝑘 clusters until convergence as described in [11].

Both the algorithms have prohibitively high time complexity, which

limits their benefits over large workloads.

Evaluation Metrics. We use the following two metrics. (1) Im-
provement (%). If𝐶 (𝑊 ) is the original optimizer estimated cost of

the workload without adding or removing the existing indexes, and

𝐶𝑘 (𝑊 ) is the optimizer estimated cost of the workload when using

recommended indexes based on tuning of the compressed work-

load, we measure improvement (%) on𝑊 as:
𝐶 (𝑊 )−𝐶𝑘 (𝑊 )

𝐶 (𝑊 ) × 100%.

Index advisors use a similar metric report the performance improve-

ment [26]. We use the Database Tuning Advisor (DTA) tool [3] of

Microsoft SQL Server as our default choice for index tuning. A re-

cent benchmark study [26] compares the performances of various

index tuning tools and reports that DTA can yield the state-of-the-

art performance. To assess the generalizability, we also evaluate

the effectiveness of proposed estimation techniques for improve-

ment as well as well as compare ISUM and baselines over varying

workload sizes using DEXTER [2], an open-source index tuning

tool for PostgreSQL. (2) Time: The time (in seconds unless other-

wise specified) it takes to compress the workload consisting of the

queries, their optimizer estimated costs, and the statistics.

8.1 Comparison with Baselines
Improvement on varying compressed workload size.We com-

pare different approaches as we vary the size of the compressed

workload from a small size (< 5) to 2

√
𝑛 (𝑛 is the size of input work-

load). For compressed workload sizes > 2

√
𝑛, we see insignificant

difference between different approaches. As depicted in Figure 9a,

we see that both ISUM and ISUM-S result in higher improvement
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Figure 9: Impact of different compression algorithms on workload performance improvement on index tuning
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Figure 10: Impact of varying storage size.

w.r.t. other baselines. For these workloads, while both influence and

utility of queries are important to maximize the improvement (see

our discussion in Sec 4.2), the baselines capture only one of these

two properties. Furthermore, we see that there is no one baseline

that performs consistently well over all the workloads. For instance,

the cost-based approach does well for Real-M, however it does not

perform that well for TPC-H and TPC-DS. The reason is that the

queries in Real-M are more similar to each other, and the cost of

queries is a more dominant factor. Finally, we see that ISUM vari-

ants perform better on both Real-M and DSB, which consists of

more complex and larger variety of query templates. Notably, the

difference between ISUM-S and ISUM is insignificant, even though

ISUM-S uses statistics such as selectivity and density to measure

utility and weigh columns. From our analysis of these workloads,

we find that (a) the cost of a query is often strongly correlated with

potential improvement as we also see in Figure 5; (b) most of the

frequently used filter and join attributes in the workload are highly

selective for a large number of queries; and finally (c) weighing of

indexable columns according to the number of candidate indexes

they participate is helpful in capturing similarity across queries.

Improvement on varying configuration size. Next, we fix the
compressed workload size to 0.5

√
𝑛 and measure the improvement

as we vary the size of the index configuration from 5 to 60 (Fig-

ure 9b). We see that the improvement (%) generally increases as

the size of the configuration increases; however ISUM and ISUM-S

perform better than other baselines over a wide range of index

configuration sizes. We also note that for most of the workloads,

the improvement after selecting 30 indexes is negligible, indicat-

ing that additional indexes do not have significant impact on the

performance. For a few configuration sizes (e.g., > 10 on Real-M),

we see some unexpected decrease in improvement. This is because

the behaviour of index tuners like DTA is not always monotonic as

they use greedy algorithms and other approximations to efficiently

search the indexes. This has also been observed in prior work [26].

For many compressed workload sizes (see Figure 9a) and config-

uration sizes (Figure 9b), ISUM gives 30% more improvement than

GSUM. For complex real workload like Real-M, GSUM performs

worse than other baselines, with ISUM giving significantly better

improvements. ISUM also consistently performs better than all the

baselines over many settings. Furthermore, ISUM is able to identify

promising queries that lead to higher improvement with smaller
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Figure 11: Comparing summary-features based algorithm with all-
pairs and 𝑘-mediod [11] algorithms.

compressed workload sizes than GSUM and converges faster, e.g.,

on TPC-H we see that ISUM gives 60% improvement in half the

number of queries and tuning time than that of GSUM.

Improvement on varying storage. We assess the impact of vary-

ing the storage size from 1.5× to 3× of the original database size

on the improvement for different algorithms (Figure 10). Note that

DTA uses the default storage budget of 3× the original size of the

database. We omit the results of ISUM-S as it shows results similar

to that of ISUM. To assess the impact of using table size as a fea-

ture for weighing columns, we consider another variant of ISUM-S

(denoted by ISUM-NoTable) where we skip the table size and only

weigh columns based on statistics. Among the baselines and ISUM

variants, we make similar observations as when varying configu-

ration sizes. However, for 1.5× we see that ISUM-NoTable results

in better improvement due to selection of indexes over smaller ta-

bles. Nonetheless, the performance of this approach is significantly

worse as we increase the storage budget to 2× and beyond.

Effectiveness of summary features. Figure 11 depicts the effec-
tiveness of summary-features based greedy approach w.r.t. to the

all-pairs greedy (Section 5) and 𝑘-mediod [11] approaches. We use

our weighted Jaccard based benefit measure for 𝑘-mediod since the

proposed distance function in [11] is not defined for queries across

different templates (e.g., differing in tables). First, we see that the

improvements using summary-features based approach is close to

all-pairs approach, indicating that summary features capture the

key characteristics of the workload. However, the time taken by

all-pairs increases rapidly as the size of the workload (close to 1,000

seconds for 2,000 queries) increases while using summary-features

is significantly more efficient (< 10s). 𝑘-mediod [11] is faster than

all-pairs as it avoids all-pairs comparison by randomly selecting

𝑘 queries as starting points for each cluster and then comparing

all other queries with 𝑘 queries in each iteration. However, the

number of iterations for convergence can still be very large, taking

much more time than summary-features. In terms of quality, we

find that 𝑘-mediod has generally the worst improvement results as

the clusters chosen by 𝑘-mediod are prone to local minima.
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Figure 12: Impact of Complexity of Queries (DSB)
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Figure 14: Impact of weighing strategies on TPC-H

8.2 Sensitivity of ISUM
We next explore the sensitivity of ISUM on varying workload char-

acteristics as well as the effectiveness of different strategies ISUM

employs during query selection and weighing.

Varying characteristics of workload. Figure 12a depicts the

impact of increasing the number of instances per template on im-

provement over the DSB benchmark. We see that ISUM is less

affected due to the changes in the number of instances; however

the performance of baselines varies significantly as we vary the

number of instances. For example, we see that the improvement

increases for GSUM as we add more instances as it is able to discrim-

inate between similar queries. On the other hand, the improvement

for the cost-based approach decreases as it selects multiple simi-

lar instances from the same template, which do not help add new

indexes. However, ISUM performs reasonably well as it is able to

capture the best of both scenarios.

Figure 12b-d depict the performance of algorithms for varying

query complexities: SPJ, Aggregate, and Complex (as categorized

in DSB benchmark). For SPJ and Complex queries, we see similar

trends as in Figure 9a. However, for Aggregate queries, we see less

overall improvement and insignificant differences between different

algorithms, indicating that indexes are less effective in improving

the performance of such queries.

Effectiveness of benefit metric for a set of queries and update
strategies. Figure 13 depicts the efficacy of benefit computation

over a set of queries and the impact of different update strategies

on the improvement (%) on the TPC-H and TPC-DS workloads. We

use the all-pairs greedy algorithm to select queries incrementally.
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Figure 15: Comparing compression algorithms using DEXTER on
PostgreSQL

TPC-H TPC-DS

Estimation Technique DTA (SQL-
Server)

DEXTER
(PostgreSQL)

DTA (SQL-
Server)

DEXTER
(PostgreSQL)

Utility (only cost) .54 .40 .33 .28

Utility (cost + selectivity) .60 .41 .44 .35

Similarity (Rule-based) .61 .53 .55 .51

Similarity (Stats-based) .68 .50 .62 .48

Benefit (Rule-based) .87 .59 .70 .54

Benefit (Stats-based) .88 .62 .73 .59

Table 3: Correlation of improvement estimation techniques
with respect to the actual improvement reported by DTA and
DEXTER.

As we can see, selecting queries without any update has worst

improvement, indicating that defining benefit for a set of queries

while updating queries is helpful. Furthermore, we see that updating

only utility is not sufficient—we also need to update the query

features. Among the two ways of updating query features discussed

in Section 8.2, we see that setting weights to zero is more effective

than reducing the weights.

Effectiveness of weighing. Figure 14 depicts the impact of differ-

ent weighing strategies on improvement. We see that no weighing

results in indexes that lead to low improvement in performance.

This is because all queries get equal importance during tuning even

though they do not equally represent the workload. Furthermore,

using benefits computed during greedy selection of queries is not

representative, as queries selected earlier get much higher weights

as discussed in Section 7. We fix this by recomputing the benefits of

selected queries while ignoring their influence on each other, which

improves the results. Finally, we see that changing the utility of

selected queries based on the utilities of other queries with the same

query template significantly improves the performance, demon-

strating the effectiveness of template-based weight readjustment

discussed in Section 7.

8.3 Effectiveness over Another Index Advisor
To assess the generalizability of ISUM, we compared ISUM and

baselines using DEXTER [2], an open-source index advisor for

PostgreSQL. DEXTER exposes a parameter, called minimum im-

provement, for a candidate index to be considered for selection,

which we set to 5% to let it consider a large number of candidate

indexes. As depicted in Figure 15, we see that ISUM outperforms the

baseline algorithms for a large majority of the compressed workload

sizes. To further understand, we perform micro-benchmarks over

the TPC-H and TPC-DS workloads that compares the correlation of

different techniques (discussed in Section 4) for estimating improve-

ment with the actual improvement reported by each of the index

tuning tools (see Table 3). We observe that our proposed “benefit”

metric that captures both utility and similarity between queries has



higher correlation with the actual performance improvement com-

pared to only using utility or similarity. The baseline algorithms

either optimize for utility or similarity but not both. Note that the

improvements are in general smaller than DTA, which is likely

because the tuning algorithm leveraged by DEXTER is simpler

than DTA and misses optimizations such as index merging [26].

Furthermore, we observe that DEXTER is significantly limited in

terms of supported features such as constraining tuning based on

the number of indexes or storage budget, which prevents us from

doing a more thorough comparison.

9 RELATEDWORK
A compressed workload on index tuning should lead to indexes that

result in high performance improvement for the input workload. In

order to achieve this, a compression technique should select queries

that are similar to queries in the input workload that have potential

for performance improvement. Furthermore, the technique much

be efficient. We observe that prior techniques on workload com-

pression do not effectively capture both of these requirements. For

instance, sampling-based approaches miss out queries that lead to

high performance improvement but are less frequent in workload.

This is because sampling lacks information about query structure

and the similarity between queries. On the other hand, clustering-

based approaches [7, 11, 28] have been proposed that group similar

queries and sample from each cluster. Unfortunately, clustering is

costly (quadratic in the number of queries), and thus do not scale to

large workloads. Furthermore, the distance functions[11] employed

for comparing queries in these techniques are less effective in char-

acterizing similarity between queries with varying templates.

Prior work have proposed metrics such as coverage [20, 29], rep-

resentativity [20, 33], and diversity [19] for compressing workloads.

Among them, GSUM [19] is the most relevant to SQL workloads.

It uses an efficient greedy algorithm that maximizes coverage of

features (e.g., columns) in the workload while also ensuring that

the summary workload is representative (i.e., having similar distri-

bution to that of the entire workload). There are two issues with

this approach. First, the featurization and the computation of cov-

erage and representativity metrics is agnostic of the features that

are more relevant to index tuning. For instance, not all columns

in a query lead to useful indexes. Second, it is also agnostic of the

potential improvement in performance of queries. For instance,

more importance should be given to queries that can lead to large

improvement in performance as against minimizing the difference

between the distributions of the summaryworkload and the original

workload. [25] proposes a machine learning approach for work-

load compression by training a model specifically for SQL queries.

However, this technique requires expensive prepossessing to train

the models. In addition, [13] proposes a new SQL operator specifi-

cally for summarizing workloads. However, it also suffers from the

quadratic complexity like clustering-based approaches.

To improve the scalability of index advisors, there has been previ-

ous work that reduces the number of optimizer calls during tuning

by trading off accuracy. For instance, [23, 32] avoid unnecessary

optimizer calls by caching and reasoning about reuse of costs of

sub-expressions across queries. Index merging [16] extends the

basic design framework for performing candidate selection through

merging candidate indexes, thereby reducing optimizer calls. [8, 9]

compute the bounds on costs of queries based on query optimiza-

tion of past configurations, which can be used for pruning optimizer

calls. While most of these works share our goal of improving the

scalability of index advisors, in this work we focus on a solution

that does not rely on the index advisor or the query optimizer.

10 LIMITATIONS AND FUTUREWORK
Index advisors such as Database Tuning Advisor (DTA) [3] report

the actual improvement on the entire (uncompressed) input work-

load due to the recommended set of indexes, along with drill-downs

on which indexes were used by each query. This involves making

an optimizer call for each query in the input workload. For large

input workloads, we observe that making these calls can consume a

significant proportion of the tuning time, thereby limiting the ben-

efits of workload compression. It is an open question as to whether

the above contract with users could be relaxed without affecting the

interpretability of the index recommendations output by the tool.

One direction to explore is reporting the estimated improvement

and drill-downs on the compressed workload, while providing ad-

ditional details and how each query in the compressed workload

represents queries in the input workload that were not tuned.

In this work, we assume that the optimizer estimated cost of

each query in the workload is provided as input. We observe that

most DBMSs expose functionality to collect historical workload

information including the execution plan for a query, e.g., Query

Store [5] in Microsoft SQL Server. Such information can be lever-

aged by ISUM for analyzing queries without making optimizer calls.

However, in cases where such logs are not available, ISUM needs

to make an optimizer call for each query in the workload to get its

plan and cost. For large input workloads, such calls may dominate

the compression time of the algorithm.

Additionally, index advisors (e.g., see DTA [7]) support tuning

with a time-budget, where queries from the input workload are

consumed and tuned incrementally. However ISUM requires pre-

processing all the queries from the input workload before it can

select queries for tuning. Thus, more work is needed to make the

ISUM algorithm incremental when it only has information available

about a subset of queries from the input workload.

Finally, there are opportunities to extend our approach to design

workload compression algorithms for other physical design tuning

problems, e.g., selecting materialized views or choosing data parti-

tioning strategy. Investigating these problems is an interesting area

of future work.

11 CONCLUSION
In this work, we developed ISUM, an efficient workload compres-

sion algorithm that identifies a subset of salient queries in large

workloads for scalable index tuning. In contrast to prior work on

workload compression that focuses on syntactic relevance, ISUM

also considers the potential for performance improvement while se-

lecting queries. Furthermore, it introduces novel indexing-specific

query featurization and weighing that helps measure the similarity

between queries in terms of index usage. We show that ISUM is ef-

ficient, and the recommended indexes based on queries selected by

ISUM significantly improve the performance of the input workload

compared to state-of-the-art workload compression techniques.
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