
Budget-aware Index Tuning with Reinforcement Learning
Wentao Wu

†
, Chi Wang

†
, Tarique Siddiqui

†
, Junxiong Wang

‡,∗

Vivek Narasayya
†
, Surajit Chaudhuri

†
, Philip A. Bernstein

†
†
Microsoft Research, Redmond

‡
Cornell University

{wentao.wu, wang.chi, tasidd, viveknar, surajitc, philbe}@microsoft.com, jw2544@cornell.edu

ABSTRACT
Index tuning aims to find the optimal index configuration for an

input workload. It is a resource-intensive task since it requires mak-

ing multiple expensive “what-if ” calls to the query optimizer to

estimate the cost of a query given an index configuration without

actually building the indexes. In this paper, we study the problem

of budget-aware index tuning where the number of what-if calls al-

lowed when searching for the optimal configuration during tuning

is constrained. This problem is challenging as it requires addressing

the trade-off between investing what-if calls on exploring new con-

figurations versus exploiting a known promising configuration. We

formulate budget-aware index tuning as a Markov decision process,

and propose a solution based on Monte Carlo tree search, a classic

reinforcement learning technology. Experimental evaluation on

both standard industry benchmarks and real workloads shows that

our solution can significantly outperform alternative budget-aware

solutions in terms of the quality of the index configuration.

CCS CONCEPTS
• Information systems→ Autonomous database administra-
tion; •Computingmethodologies→Reinforcement learning;
• Computer systems organization→ Cloud computing.

KEYWORDS
index tuning, reinforcement learning, budget allocation

ACM Reference Format:
Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek Narasayya,

Surajit Chaudhuri, Philip A. Bernstein. 2022. Budget-aware Index Tuning

with Reinforcement Learning. In Proceedings of the 2022 International Con-
ference on Management of Data (SIGMOD ’22), June 12–17, 2022, Philadel-
phia, PA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3514221.3526128

1 INTRODUCTION
Index tuning is an important problem in relational database systems,

and has been studied extensively (e.g., [22, 31, 60]). Today’s database

systems include index tuning advisors that take as input a workload

of SQL statements and a set of constraints (e.g., the maximum

∗
This work was done when Junxiong Wang was at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3526128

Candidate Index
Generation

Configuration
Enumeration

Index Tuner

Query
Optimizer
(Extended)

(𝑞𝑖, 𝐶)

𝑊 = 𝑞𝑖 , Γ

𝑐𝑜𝑠𝑡(𝑞𝑖 , 𝐶)

Best 𝐶 ⊆ {𝐼𝑗}

w.r.t. 𝑊,Γ

Database
Server

What-If Calls

𝑊, Γ, {𝐼𝑗}

Workload
Parsing/Analysis

𝑊,Γ

Figure 1: The architecture of cost-based index tuning using
what-if optimizer calls, where𝑊 is the input workload and
𝑞𝑖 ∈𝑊 is a single query, Γ is a set of tuning constraints, {𝐼 𝑗 }
is the set of candidate indexes generated for𝑊 , and 𝐶 ⊆ {𝐼 𝑗 }
represents an index configuration during enumeration.
number of indexes allowed or the total storage taken by the indexes),

and recommend an appropriate set of indexes (a.k.a., configuration)
to create that optimizes the performance of the workload [21, 22,

60]. More recently, with the increasing adoption of database-as-a-

service (DBaaS) by enterprises, cloud providers [1, 2, 5, 6] have also

started to offer such index tuning capabilities in their platforms [27].

A simplified architecture of a typical commercial index tuner is

shown in Figure 1. The index tuner contains twomajor components:

(1) candidate index generation, which identifies for each query, a

set of candidate indexes that can improve the optimizer-estimated

cost of the query; and (2) configuration enumeration, where the goal
is to find an index configuration that minimizes the total cost of

the workload. During enumeration, for a configuration 𝐶 that is

considered by the enumeration algorithm, the index tuner consults

the query optimizer by calling the “what if” API to estimate the cost

of each query in the input workload𝑊 when using indexes in 𝐶

without building the indexes [23]. A what-if call invokes the query

optimizer and can therefore be resource-intensive. The configura-

tion with the lowest estimated cost found during enumeration that

meets the user-specified constraints is returned. A cache is typically

used to enable efficient reuse of what-if calls [21]. An end-to-end

example of index tuning can be found in Section 2.

Motivation. Index tuning can impose significant demands on

resources of the server due to repeated what-if calls to the query

optimizer, particularly when tuning complex queries or large work-

loads. In the cloud database setting, index tuning is often done on

the production server [27] since using “B-instances” for each tuned

database is prohibitively expensive. Therefore, managing interfer-

ence from index tuning on production workloads is a challenge.

Furthermore, the complexity of the enumeration step is exponen-

tial in the number of candidate indexes. It has been shown that

restricted versions of the index tuning problem are NP-hard and

https://doi.org/10.1145/3514221.3526128
https://doi.org/10.1145/3514221.3526128
https://doi.org/10.1145/3514221.3526128

 0

 20

 40

 60

 80

 100

1000 2000 3000 4000 5000

T
im

e
 (

m
in

u
te

s
)

of what−if calls

Time spent on what−if calls
Other time spent on index tuning

Figure 2: The tuning time of TPC-DS workload when varying
the number of what-if calls. The orange bars show the time
spent on the what-if calls, whereas the blue bars show the
other time spent on index tuning.

even hard to approximate [19, 26]. While prior work has tried to ad-

dress this by enumerating configurations in reduced search spaces

(see related work in Section 8), making one what-if call for every

configuration and query remains impractical even for such reduced

search spaces. For example, the greedy algorithm [22] used by state-

of-the-art systems [21] would require𝑂 (𝑚𝑛𝐾) what-if calls, where
𝑚 is the number of queries in the input workload, 𝑛 is the number

of candidate indexes, and 𝐾 is the maximum number of indexes

allowed. Not surprisingly, it has been reported [39, 46] that the over-

head of what-if calls often dominates the total overheads of index

tuning, such as total execution time and CPU/memory resources

consumed. As a result, prior work uses techniques to reduce the

number of what-if calls, such as making what-if calls only for con-

figurations with certain properties (e.g., the atomic configurations
in [22]), or smarter reuse of the cached what-if calls [46]. In this

paper, we propose a budget-aware approach to index tuning, where

we constrain the number of what-if calls that are allowed to be

made when searching for the best index configuration during the

enumeration step. In contrast to prior work, this approach allows

the invoker of the index tuning tool to limit the resource demands

placed on the server during index tuning.

Budget-aware Configuration Enumeration. We are not the first to

highlight the importance of a budget in index tuning. The closest

work we are aware of is the Database Tuning Advisor (DTA) de-
veloped for Microsoft SQL Server, which allows users to specify a

maximum budget on the tuning time [3]. While a budget on tuning

time is easier for users to specify, budgeting the number of what-if

calls has its own merits. First, unlike elapsed time, the number of

what-if calls is not sensitive to the effects of the runtime environ-

ment, which can be significant, especially in multi-tenant cloud

databases. Second, as noted earlier, the time spent on the what-if

calls often dominates the index tuning time. Figure 2 illustrates

this when running the greedy algorithm in a budget-constrained

manner (see Section 4) to tune the TPC-DS workload with 𝐾 = 20

recommended indexes. As we can see, what-if calls consistently

take around 75% to 93% of the total tuning time across different

budgets.
1
Thus, a budget on what-if calls is well correlated with a

budget on tuning time. For these reasons, in this paper we use the

number of what-if calls as the tuning budget. We also note that the

1
We used Microsoft SQL Server 2017 for this measurement. Our observation agrees

with previous work [46]. Each what-if call on most TPC-DS queries takes around 1

second since it incurs a full query optimization cycle (e.g., parsing, analyzing, plan

enumeration, etc.), and therefore 5,000 what-if calls would take 80 to 100 minutes.

budget constraint here is different from other tuning constraints that
are imposed on the outcome of index tuning, such as the maximum

number of indexes allowed, the minimum improvement required,

etc. This line of constrained index tuning has been well studied [18].

Budget Allocation with Reinforcement Learning. The notion of

a budget introduces a budget allocation problem for index tuning.

Specifically, when searching for the best index configuration, we

need to decide the configurations and the queries for which to issue

what-if calls. This introduces a trade-off between exploration and

exploitation. On one hand, we would like to allocate more what-if

calls to configurations that contain known promising configura-

tions as subsets; on the other hand, we would also like to explore
unknown regions in the search space, to increase the chance of

finding more promising configurations that have not yet been eval-

uated. To address this trade-off in a principled manner, we propose

a solution based on reinforcement learning (RL), by formulating

index configuration enumeration/search as a Markov decision pro-

cess (MDP) [58]. In particular, our solution leverages Monte Carlo

tree search (MCTS), a classic RL algorithm [14], and we develop a

novel adaptation of the generic MCTS framework in the context of

index tuning. MCTS runs a number of simulations (called episodes)
and we allocate one what-if call in each episode. We have further

developed new strategies and policies, tailored for index tuning, to

control the overall search and budget allocation process within each

episode of MCTS, based on findings from extensive experiments

over standard benchmarks and real workloads.

Limitations and Open Issues. This work can be viewed as a first

step towards budget-aware index tuning where the focus is limited

to the configuration enumeration step. Extending budget-awareness

to all components of index tuning remains an open challenge. Also,

incorporating the proposed techniques into an index tuning tool

(e.g., DTA [21]) requires addressing other important aspects such

as ensuring the anytime property [21] and being able to handle

a user-specified time budget for tuning, which are not the focus

of this paper. There has also been recent work on applying RL

technologies for online index tuning [11, 47, 54], where the index
tuner needs to create/drop indexes on the fly to handle workload

and database drifts. In contrast, in this paper we limit our focus on

the classic offline index tuning problem where the workload and

database are presumed to be fixed [22, 31, 39, 60]. To this end, our

approach does not generalize to a different workload/database.

Summary of Contributions and Paper Overview. To summarize,

we have made the following contributions:

• We propose and formalize a novel budget-aware index tuning

problem that enforces index configuration enumeration to follow

a budget on the number of what-if calls (Sections 3 and 4).

• We propose a solution to budget-aware configuration enumera-

tion by adapting MCTS, a classic RL technology that has been

widely adopted (Sections 5 and 6).

• We conduct extensive experimental evaluation using both indus-

trial benchmark and real workloads (Section 7). The results show

that our MCTS-based index tuning algorithm yields significantly

better workload cost improvement when running under limited

budget, compared to budget-aware variants of the state-of-the-

art greedy algorithm and existing RL-based methods [47, 57], in

terms of the best configuration found.

Tables Queries
R (a, b) Q1: Q2:
S (c, d) SELECT a, d FROM R, S SELECT a FROM R, S

WHERE R.b = S.c AND WHERE R.b = S.c AND
R.a = 5 AND S.d > 200 R.a = 40

Input Workload

Candidate Index Generation

1) Extract indexable columns 2) Determine candidate indexes

Q1 Q2

Equality R.a R.a

Range S.d

Join R.b, S.c R.b, S.c

Projection R.a, S.d R.a

Q1 Q2

Filter [R.a; R.b]
[S.d; S.c]

[R.a; R.b]

Join [R.b; R.a]
[S.c; S.d]

[R.b; R.a]
[S.c; ()]

Configuration Enumeration

Input:
(1) Workload W = {Q1, Q2};
(2) Candidate indexes I = {I1, I2, I3, I4, I5}, where

▪ I1 = [R.a; R.b], I2 = [R.b; R.a], I3 = [S.c; S.d], I4 = [S.d, S.c], I5 = [S.c; ()].
Output:
A subset (i.e., configuration) C of I that minimizes the what-if cost of W.

Figure 3: An illustrative example for index tuning.

2 A BRIEF OVERVIEW OF INDEX TUNING
As Figure 1 shows, cost-based index tuning consists of two stages:

• Candidate index generation – For each query in the input

workload, we generate a set of candidate indexes by looking

for the indexable columns [22]; we take the union as the

candidate indexes for the entire workload.

• Configuration enumeration – For a given set of candidate

indexes, we search for a subset (i.e., configuration) of indexes
that minimizes the what-if cost of the input workload.

We illustrate these two stages via a concrete example shown in Fig-

ure 3. Here, the input workload consists of two queries 𝑄1 and 𝑄2.

We first look for columns that appear in filter and join predicates

appearing in the where clause, as well as columns that appear in

group-by and order-by clauses. These columns consist of the basis

of the indexable columns. We are also interested in the columns

that appear in the projection list of the select clause, which can

be included as data/payload columns of a covering index that can

be tremendously useful for “index-only” access paths. We then

determine the candidate indexes for each query based on the in-

dexable columns extracted. For simplicity, suppose that we only

consider the covering indexes shown in Figure 3, where the key
columns of the indexes are underscored. We next take a union of

these candidate indexes and use them as an input to configuration

enumeration, whose goal is to find the best configuration for the

workload with the minimum what-if optimizer cost.

3 BUDGET-AWARE INDEX TUNING
In this work, we focus on the configuration enumeration compo-

nent of the index tuning architecture outlined in Figure 1 and we

focus on index tuning for data analytic workloads (e.g., TPC-H

and TPC-DS). While various implementations have been proposed

(e.g., [15, 17, 22]), we focus our discussion on the classic greedy
search algorithm (Algorithm 1), which has been used by both Au-
toAdmin [22] andDTA [21]. A recent empirical study has shown that

this greedy algorithm, albeit developed two decades ago, still yields

performance improvements comparable to other search algorithms

Algorithm 1: The Greedy algorithm for configuration enu-
meration in the index tuning architecture shown in Figure 1.

Input:𝑊 , the workload; I, the candidate indexes; 𝐾 : the
cardinality constraint.

Output:𝐶min
, the best configuration s.t. |𝐶min | ≤ 𝐾 .

1 𝐶min ← ∅, costmin ← cost(𝑊, ∅) ;
2 while I ≠ ∅ and |𝐶min | < 𝐾 do
3 𝐶 ← 𝐶min

, cost← cost
min

;

4 foreach index 𝐼 ∈ I do
5 𝐶𝐼 ← 𝐶min ∪ {𝐼 }, cost(𝑊,𝐶𝐼) ←

∑
𝑞∈𝑊 cost(𝑞,𝐶𝐼) ;

6 if cost(𝑊,𝐶𝐼) < cost then
7 𝐶 ← 𝐶𝐼 , cost← cost(𝑊,𝐶𝐼) ;
8 if cost ≥ cost

min then
9 return𝐶min;

10 else
11 𝐶min ← 𝐶 , costmin ← cost, I ← I −𝐶min

;

12 return𝐶min;

∅

{𝐼1} {𝐼2} {𝐼3}

{𝐼1, 𝐼2} {𝐼2, 𝐼3}
Greedy
Step 2

Greedy
Step 1

Existing
configuration

Figure 4: An example of running the greedy algorithm.
used for index tuning [39]. Moreover, we focus on the cardinal-
ity constraint 𝐾 on the size of the final index configuration to be

returned. However, as we demonstrate in Section 7, it is straight-

forward to integrate other user-specified tuning constraints, such

as the maximum storage space allowed [19], into the budget-aware

tuning framework that we develop in this paper.

Example 1 (Greedy). Figure 4 illustrates the greedy algorithm
with three candidate indexes {𝐼1, 𝐼2, 𝐼3} and cardinality constraint

𝐾 = 2. Here, ∅ represents the existing index configuration. In the first
greedy step, we consider the three singleton configurations {𝐼1}, {𝐼2},
and {𝐼3}. Suppose that we find that {𝐼2} is the best (i.e., with the lowest
workload cost). In the second step, we expand {𝐼2} by adding one more
index, which results in two configurations {𝐼1, 𝐼2} and {𝐼2, 𝐼3}. Suppose
that {𝐼1, 𝐼2} is better and therefore returned by the greedy algorithm.
Note that {𝐼1, 𝐼3} is never visited.

We start by understanding how the greedy algorithm can be

adapted in a budget-constrained context. We note that cost approxi-
mation is unavoidable in this setting as it is infeasible to have one

what-if call for every configuration enumerated and every query in

the workload. Therefore, we study the implications to the greedy

algorithm when combined with cost approximation. Following that,

we present a formulation of the budget-aware index tuning prob-

lem in this setting where cost approximation has to be used. In

Section 4.2, we present example solutions to this formal problem

statement that are budget-aware variants of the greedy algorithm.

3.1 Cost Approximation via Derivation
Algorithm 1 does not specify how cost(𝑞,𝐶), i.e., the cost of a query
𝑞 given a configuration𝐶 , is obtained via approximation approaches

other than using the what-if cost 𝑐 (𝑞,𝐶) that requires optimizer

calls. One common technique, proposed by AutoAdmin [22] and

also used in DTA [21], is the so-called cost derivation or, derived
cost, which we also use in our work. Next, we give an overview of

cost derivation and analyze its impact when used with the greedy

algorithm in a budget-constrained setting.

3.1.1 Cost Derivation. Given an index configuration𝐶 and a query

𝑞, the derived cost 𝑑 (𝑞,𝐶) is defined as the minimum cost over all

subset configurations of 𝐶 with known what-if costs. Formally,

𝑑 (𝑞,𝐶) = min

𝑆⊆𝐶
𝑐 (𝑞, 𝑆), (1)

where 𝑐 (𝑞, 𝑆) stands for the what-if cost of 𝑞 with the subset 𝑆 of

indexes. This is based on the following assumption on themonotone
property [34, 56] of index configuration costs:

Assumption 1 (Monotonicity). Let 𝐶1 and 𝐶2 be two index
configurations s.t. 𝐶1 ⊆ 𝐶2, and let 𝑞 be an arbitrary query. Then
𝑐 (𝑞,𝐶2) ≤ 𝑐 (𝑞,𝐶1).

In other words, including more indexes into a configuration does

not increase the what-if cost, assuming that the query optimizer

will pick the indexes that lead to the minimum cost of the query.

However, Assumption 1 may not always hold, depending on the

implementation of the query optimizer’s cost model.

Under Assumption 1, it is easy to see that the derived cost is

essentially an upper bound on the what-if cost, since 𝑐 (𝐶,𝑞) ≤
min𝑆⊆𝐶 𝑐 (𝑆, 𝑞). When the what-if cost 𝑐 (𝑞,𝐶) is known, the derived
cost is the same as the what-if cost, i.e., 𝑑 (𝑞,𝐶) = 𝑐 (𝑞,𝐶). Therefore,
when running the greedy algorithm in a budget-constrained setting,

we can simply use 𝑑 (𝑞,𝐶) for the cost(𝑞,𝐶).

3.1.2 The Greedy Algorithm with Derived Cost. We next study the

implications of using derived cost for the greedy algorithm. In

general, it is difficult to have optimality guarantees without making

assumptions over the cost functions used by the query optimizer [25,

43, 63]. Therefore, in the following we study a special case by

focusing on a simpler setting, where we restrict cost derivation

over only singleton subsets, i.e.,

𝑑 (𝑞,𝐶) = min

𝑧∈𝐶
𝑐 (𝑞, {𝑧}) . (2)

Note that 𝑑 (𝑞, {𝑧}) = 𝑐 (𝑞, {𝑧}) for any singleton configuration {𝑧}.
We use 𝑑 (𝑞, ∅) = 𝑐 (𝑞, ∅) when no (recommended) index is used. We

can define the benefit of a configuration 𝐶 given a workload𝑊 as

𝑏 (𝑊,𝐶) = 𝑑 (𝑊, ∅) − 𝑑 (𝑊,𝐶) =
∑︁

𝑞∈𝑊

[
𝑑 (𝑞, ∅) − 𝑑 (𝑞,𝐶)

]
.

We prove the following useful property of 𝑏 (𝑊,𝐶) in [64]:

Theorem 1. For a given workload𝑊 , 𝑏 (𝑊,𝐶) is a non-negative
monotone submodular set function if 𝑑 (𝑞,𝐶) is defined as Equation 2.

Now, given a workload𝑊 with candidate indexes I and cardi-

nality constraint 𝐾 , let Ω be all the configurations of I. We can

formalize the index selection problem using derived cost as:

max

𝑆⊆Ω
{𝑏 (𝑊,𝐶) : |𝐶 | ≤ 𝐾}.

Let 𝐶opt be the optimal solution, and let 𝐶
greedy

be the solution by

the greedy algorithm. We have the following guarantee [40, 45]

based on the submodularity of 𝑏 (𝑊,𝐶):

Theorem 2. Given that 𝑏 (𝑊,𝐶) is a non-negative monotone sub-
modular set function by Theorem 1, it follows that

𝑏 (𝑊,𝐶greedy) ≥ (1 − 1/𝑒) · 𝑏 (𝑊,𝐶opt) .

3.2 Budget Allocation in Configuration Search
Given that we have to rely on cost approximation in budget-aware

index tuning, we need to decide on which configurations and

queries to use what-if calls (and use cost approximation for the

others). Specifically, the following budget allocation problem arises:

Given a budget on the number of what-if calls, how to
distribute it to the queries and configurations to achieve
the best workload cost improvement?

We now formulate this budget allocation problem for configuration

search by introducing the notion of budget allocation matrix.
In our following presentation, let𝑊 be a workload, I be a set

of candidate indexes for𝑊 , and 𝐵 be a budget constraint on the

number of what-if calls.

3.2.1 Budget Allocation Matrix. The budget allocation matrix B is

an 𝑁 ×𝑀 matrix, where 𝑁 = 2
|I | − 1 and 𝑀 = |𝑊 |. Each row of

B represents a configuration from indexes in I and each column

of B represents a query from𝑊 . A cell B𝑖 𝑗 receives value 1 if the
what-if cost 𝑐 (𝑞𝑖 ,𝐶 𝑗) is known (i.e., a what-if call has been made)

for the corresponding query 𝑞𝑖 ∈ 𝑊 and configuration 𝐶 𝑗 ∈ 2
I

(where 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑀), and receives value 0 otherwise.

We use 𝑣 (B𝑖 𝑗) to represent the value of the cell B𝑖 𝑗 . Moreover, the

sum of all cell values is equal to the budget constraint 𝐵, i.e.,∑︁
1≤𝑖≤𝑁

∑︁
1≤ 𝑗≤𝑀 𝑣 (B𝑖 𝑗) = 𝐵. (3)

Each specific way of filling in the cell values of B is called a layout:

Definition 1 (Layout). A layout of the budget allocation matrix
B is an ordered mapping 𝜙 : [𝐵] → {B𝑖 𝑗 }, where [𝐵] = {1, 2, ..., 𝐵},
1 ≤ 𝑖 ≤ 𝑁 , and 1 ≤ 𝑗 ≤ 𝑀 , such that 𝑣 (𝜙 (𝑏)) = 1 for 𝑏 ∈ [𝐵].

Intuitively, the layout of the budget allocation matrix captures

the trace of the what-if calls issued during configuration search.

Example 2 (Budget Allocation Matrix). Figure 5(a) presents
an example budget allocation matrix for a workload𝑊 = {𝑞1, 𝑞2, 𝑞3}
with candidate indexes I = {𝐼1, 𝐼2, 𝐼3}, where the budget constraint
is 𝐵 = 7. It also presents the outcome of a specific layout, where the
cells marked with ‘X’ receive value 1 and the others receive value 0.

3.2.2 Budget Allocation as Layout. Let B be the budget allocation

matrix w.r.t.𝑊 and I. A configuration search/enumeration algo-

rithm with budget 𝐵 can use what-if costs for 𝐵 cells in B, and use

derived costs for the others. Each particular way of selecting these

𝐵 cells corresponds to a particular layout of B — the cells with

what-if costs receive value 1 and the others receive value 0. An

enumeration algorithm may not visit all cells of B — the cells not

visited receive value 0 by default. The decision on whether to use

what-if cost or derived cost can be made during the enumeration.

We now define a budget allocation of the configuration enumer-

ation algorithm as a layout 𝐿 of B. We call such a configuration

enumeration algorithm that performs budget allocation a “budget-
aware configuration enumeration algorithm.”

𝑪/𝒒 𝑞1 𝑞2 𝑞3

{𝐼1} X

{𝐼2} X X

{𝐼3} X

{𝐼1, 𝐼2} X

{𝐼1, 𝐼3} X

{𝐼2, 𝐼3} X

{𝐼1, 𝐼2, 𝐼3}

(a) An example

𝑪/𝒒 𝑞1 𝑞2 𝑞3

{𝐼1} X X X

{𝑰𝟐} X X X

{𝐼3} X

{𝐼1, 𝐼2}

{𝐼1, 𝐼3}

{𝐼2, 𝐼3}

{𝐼1, 𝐼2, 𝐼3}

(b) First come first serve

𝑪/𝒒 𝑞1 𝑞2 𝑞3

{𝐼1} X X

{𝑰𝟐} X X

{𝐼3} X

{𝐼1, 𝐼2} X

{𝐼1, 𝐼3}

{𝐼2, 𝐼3} X

{𝐼1, 𝐼2, 𝐼3}

(c) Two-phase

𝑪/𝒒 𝑞1 𝑞2 𝑞3

{𝐼1} X X X

{𝑰𝟐} X X

{𝐼3} X X

{𝐼1, 𝐼2}

{𝐼1, 𝐼3}

{𝐼2, 𝐼3}

{𝐼1, 𝐼2, 𝐼3}

Atomic
Configurations

Non-atomic
Configurations

(d) Atomic configuration

Figure 5: Illustration of the budget allocation matrix, where the budget on the what-if calls is 𝐵 = 7.

3.3 Problem Statement
We can now formulate the optimization problem of budget-aware

configuration enumeration as follows:

Definition 2 (Optimal Budget-aware Configuration Enu-

meration). Given an input workload𝑊 with candidate indexes I, a
cardinality constraint 𝐾 , and a budget 𝐵 on what-if calls, let B be the
budget allocation matrix with respect to𝑊 , I, and 𝐵, and let L be
all possible layouts of B. Our goal is to find a configuration 𝐶∗ ⊆ I
s.t. |𝐶∗ | ≤ 𝐾 and the derived cost 𝑑 (𝑊,𝐶∗) is minimized, i.e.,

𝐶∗ = argmin𝐶⊆I, |𝐶 | ≤𝐾 𝑑 (𝑊,𝐶).

Here, 𝑑 (𝑊,𝐶) is restricted to using the what-if costs corresponding to
the cells (i.e., configuration-query pairs) in B with value 1 that are
filled by following layouts in L.

This optimal budget-aware configuration enumeration problem

is clearly NP-hard, since it contains the original configuration enu-

meration problem, which is by itself NP-hard [19, 26], as a special

case where the budget can be unlimited. In the rest of this paper,

we propose various budget-aware configuration enumeration al-

gorithms that are heuristic solutions to this optimization problem.

Specifically, in Section 4, we focus on the greedy search algorithm

and study how to make it budget-aware; in Section 5, we further

propose a novel budget-aware search algorithm based on MCTS.

4 BUDGET-AWARE GREEDY SEARCH
Although there is little prior work on explicit solutions to the prob-

lem of budget-aware index tuning, in this section we explore how

we can adapt the greedy search algorithm (presented in Algorithm 1)

to make it budget-aware. As shown earlier, the greedy algorithm

has certain optimality guarantees when combined with cost deriva-

tion in a budget-constrained setting (Section 3.1.2). Moreover, as we

will discuss shortly, it has an order-insensitive property that allows

us to focus on the outcome of the layouts of the budget allocation
matrix without worrying about the orders of filling in the cells

(Section 4.1). We leave the investigation of budget-aware variants

of other configuration search algorithms as future work.

4.1 Order Insensitivity
One can see that a layout 𝐿 specifies not only the outcome of the
budget allocation matrix B but also the order of filling in the cells

that lead to the outcome. In general, the order does matter, as the

behavior of the budget-aware search algorithm (and therefore the

configuration returned) can be affected by the matrix B with partial
outcome that follows a prefix of the layout. This is, however, not

Algorithm 2: Two-phase greedy search.

Input:𝑊 , the workload; 𝐾 , the cardinality constraint.

Output:𝐶min
: the best index configuration s.t. |𝐶min | ≤ 𝐾 .

1 I ← ∅;
2 foreach 𝑞 ∈𝑊 do
3 𝐶𝑞 ←Greedy({𝑞 }, I{𝑞} , 𝐾);
4 I ← I ∪𝐶𝑞 ;

5 𝐶min ←Greedy(𝑊 , I, 𝐾);
6 return𝐶min

;

the case for the greedy algorithm — all layouts that produce the

same outcome would yield the same configuration returned by the

greedy algorithm. We prove this order-insensitive property of the

greedy algorithm under a budget-constrained setting in [64]:

Theorem 3. Let 𝐿1 and 𝐿2 be two layouts that produce the same
outcome of the matrix B for the greedy algorithm, and let 𝐶𝐿1 and
𝐶𝐿2 be the corresponding final configurations returned. Then

𝑑 (𝑊,𝐶𝐿1) = 𝑑 (𝑊,𝐶𝐿2) .

As a result, we can focus on the outcome of the layouts without
worrying about the order of filling in the matrix cells.

4.2 Budget-aware Greedy Variants
We now discuss different budget allocation strategies to make the

greedy algorithm (Algorithm 1) budget-aware.

4.2.1 First Come First Serve. One simple idea is to keep using

what-if costs until the budget runs out, after which derived costs

are used. This “first come first serve” (FCFS) idea leads to a layout

of the budget allocation matrix that fills in the cells in a special row-
major order, as shown in Figure 5(b). Here we follow Example 1 by

assuming that {𝐼2} is the best configuration found in the first greedy
step. Clearly, this approach would have trouble when dealing with

large workloads — it may only be able to visit a couple of rows (i.e.,
configurations) under limited budget. Even for the toy example

here, only the first three rows are visited.

4.2.2 Two-phase Search. Another idea is to follow the “two phase”

greedy search as was pioneered in AutoAdmin [22]. As outlined in

Algorithm 2, in the first phase, each query is deemed as a singleton
workload by itself and tuned by Greedy (i.e., Algorithm 1); in the

second phase, we take the union of the best indexes found for each

query and use it as the refined set of candidate indexes for the

entire workload — we then run Greedy again, this time for the

entire workload, with this reduced set of candidates.

It is easy tomake the two-phase greedy search algorithm “budget-

aware” by combining it with the FCFS budget allocation strategy.

This leads to a layout over the budget allocation matrix that fills

in the cells in a special column-major order in the first phase, as

shown in Figure 5(c), before coming back to the row-major order in
the second phase. The shortcoming of this approach is also clear

when dealing with large search spaces — it may only be able to visit

a couple of columns (i.e., queries) under limited budget. Even for

the toy example here, only the first two columns are visited.

Special Configurations. One can further focus on allocating bud-

get to only a special subset of the configurations, such as the single-
join atomic configurations suggested by AutoAdmin [22]. Figure 5(d)

illustrates how this strategy works when combined with two-phase

search and FCFS. Here we only consider atomic configurations of

size 1, i.e., singletons. Essentially, it leads to a layout over the budget

allocation matrix that fills in the cells in an even special bounded
column-major order in the first phase, as the filling is bounded by the
size constraint required by the single-join atomic configurations.

5 BUDGET ALLOCATIONWITH MCTS
The budget-aware variants of the greedy algorithm presented in

Section 4.2 are based on various rules and heuristics that lead to

special classes of layouts of the budget allocation matrix. Hence,

they are not able to adapt based on the configuration costs observed
during search. As was shown in Figure 5, they may have wasted

budget on evaluating configurations and queries that turned out to

be unnecessary. Essentially, there is a trade-off between exploitation
and exploration when allocating budget what-if calls:

• Exploitation – one may want to allocate budget to the con-

figurations that already show promise, e.g., configurations
that contain the best configuration found by the greedy al-

gorithm so far as a subset;

• Exploration – one may also want to allocate budget to

the configurations that have potential, e.g., configurations
that do not contain the best configuration found so far by

the greedy algorithm but contain other configurations with

similar costs as subsets.

In this section, we propose using reinforcement learning (RL)

to make better decisions on this exploitation/exploration trade-off

in a principled manner [58]. RL aims for maximizing cumulative
rewardswhen taking actions in a search space captured by aMarkov

decision process (MDP) [13, 51]. In the following, we discuss how

we can model configuration search using MDP. We then present a

budget-aware search framework based on Monte Carlo tree search

(MCTS), a well-known RL technology [14]. In Section 6 we further

discuss various design choices and implementation details of the

major components in this MCTS-based framework.

5.1 An MDP View of Configuration Search
We model configuration search as an MDP (S,A,P,R), where
S represents the set of states, A represents the set of actions, P
represents the set of transition probabilities, and R represents the

set of rewards. Below we present the details for each of them (see

Figure 6 and Example 3 for a concrete example).

5.1.1 States. We define the set of states S of the MDP as all index

configurations in the search space. For a given set of candidate

indexes I, we have |S| = 2
|I |

.

{𝐼1}

∅

{𝐼2} {𝐼3}

{𝐼1, 𝐼2} {𝐼1, 𝐼3} {𝐼2, 𝐼3}

𝐼1
𝐼2

𝐼3

𝐼1 𝐼3𝐼2 𝐼3 𝐼1
𝐼2

Figure 6: An example of MDP formulation for index tuning.
5.1.2 Actions. For a state 𝑠 ∈ S, we define its set of actions A(𝑠)
as the indexes that are not included by 𝑠 , i.e., A(𝑠) = I − 𝑠 .2

5.1.3 Transition Probabilities. Suppose that we are in the state

(i.e., configuration) 𝑠 at time 𝑡 and we select the action (i.e., index)

𝑎 ∈ A(𝑠), which leads to the state 𝑠 ′ at time 𝑡 + 1. The transition
probabilitiesP are then Pr(𝑠𝑡+1 = 𝑠 ′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) by the definition
of MDP. In our context of index tuning, the next state 𝑠 ′ is a deter-
ministic function given 𝑠 and 𝑎, i.e., 𝑠 ′ = 𝑓 (𝑠, 𝑎) = 𝑠∪{𝑎}. As a result,
the transition probabilities are Pr(𝑠𝑡+1 = 𝑓 (𝑠, 𝑎) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 1

and 0 otherwise, for all 𝑠 , 𝑎, and 𝑡 .

5.1.4 Rewards and Expected Returns. The expected return of a state
𝑠 (w.r.t. some policy 𝜋) is the expected cumulative reward when

starting from 𝑠 and following the policy 𝜋 .3 The expected return is

well-known as the state-value function in the RL literature, denoted

as𝑉𝜋 (𝑠). Similarly, one can define the action value function𝑄𝜋 (𝑠, 𝑎),
which indicates the expected return when starting at 𝑠 , taking the

action 𝑎, and then following the policy 𝜋 . The goal of RL is to find

an optimal policy 𝜋∗ that maximizes the state-value function. We

denote this optimal state-value function as 𝑉 ∗ (𝑠). Interestingly, 𝜋∗
also maximizes the action-value function, denoted by 𝑄∗ (𝑠, 𝑎) [58].
As a result, to find 𝜋∗, one can maximize either 𝑉𝜋 (𝑠) or 𝑄𝜋 (𝑠, 𝑎).

Since the goal of RL is to maximize the expected return (as

encoded by the state/action value function), the semantics of the

expected return has to be consistent with the optimization goal of

configuration search. Therefore, we define the expected return of a

state 𝑠 as the expected percentage improvement of configurations
that contain 𝑠 as a subset. Specifically, the percentage improvement

of a configuration 𝐶 over the workload𝑊 is

𝜂 (𝑊,𝐶) =
(
1 − cost(𝑊,𝐶)

cost(𝑊, ∅)

)
× 100%, (4)

where cost(𝑊,𝐶) = ∑
𝑞∈𝑊 cost(𝑞,𝐶). In budget-aware configura-

tion search, cost(𝑊,𝐶) may not be evaluated precisely by using

the what-if costs, due to budget constraints. As a result, we use the

derived cost 𝑑 (𝑊,𝐶) = ∑
𝑞∈𝑊 𝑑 (𝑞,𝐶) as an approximation.

Example 3. Figure 6 presents an example of the MDP for index
configuration search. Again, we follow Example 1 using a search space
with candidate indexes {𝐼1, 𝐼2, 𝐼3} and cardinality constraint 𝐾 = 2.
Here, we only show state transitions with nonzero probabilities, and we
have omitted the rewards to avoid clutter. One cannot further expand
the states with two indexes by adding more indexes, as otherwise the
cardinality constraint would be violated. In this paper, we call such
states without outgoing transitions terminal states.

2
We abuse notation by using 𝑠 to also denote the configuration that it represents.

3
A policy 𝜋 (𝑎 |𝑠) specifies the action 𝑎 that should be taken when at the state 𝑠 . A

policy can be either deterministic or stochastic.

5.2 MCTS for Budget-aware Index Tuning
When the state space S is small, one can just use dynamic program-
ming to find 𝑉 ∗ (𝑠) or 𝑄∗ (𝑠, 𝑎), given the recursive relationships

between the state/action values [58]. Unfortunately, dynamic pro-

gramming is infeasible for a large state/action space, encountered

when tuning large workloads — the computation time and amount

of memory required to run dynamic programming to compute

𝑉 𝜋 (𝑠) or 𝑄𝜋 (𝑠, 𝑎) would be enormous. As a result, one has to seek

approximate solutions for such MDP problems. We next show how

we adapt Monte Carlo tree search (MCTS), a popular RL technology

that does not require explicitly representing the entire state/action

space [14], to address this scalability challenge.

At a high level, MCTS is a simulation-based RL technology that

estimates the action value function 𝑄 (𝑠, 𝑎) using sampled traces by

following the state transitions in the MDP. However, MCTS does

not need to estimate 𝑄 (𝑠, 𝑎) for all state-action pairs (𝑠, 𝑎); rather,
it only focuses on state-action pairs that show promise in the long

run. It achieves this by progressively pruning unpromising pairs

and narrowing down the search space.

Specifically, MCTS organizes the entire search space using a tree
structure (see Figure 7 and Example 4 for a concrete example). Each

node in the tree represents a state (i.e., configuration) in the MDP,

and each outgoing edge of a node represents an action (i.e., the

next index to be included) of the state. MCTS then runs a number

of episodes that progressively expand the search tree and sample

configurations. In each episode we start from the root of the tree
and execute the following steps as depicted in Figure 7:

• Selection – We pick an outgoing edge (i.e., an action) from the

current node (i.e., the current state) based on some action selection
policy (Section 6.1), and then visit the corresponding child node

(i.e., the next state) by following the selected edge;

• Expansion – If the current node is a leaf that has been visited,

we expand the search tree by following the edge selected and

adding the node that represents the next state;

• Simulation – After reaching a leaf that does not represent a

terminal state and has not been visited yet, we perform a rollout
by randomly adding indexes into the configuration represented

by the leaf (Section 6.2);

• Update – We evaluate the configuration returned by the rollout

to obtain its what-if cost, and use that to update the average
reward of every node along the path from the root to the leaf.

Algorithm 3 presents a formal description of this framework

when applied to the MDP problem for configuration search. Below

we outline the details of some functions that have been omitted:

• CreateNode – It takes a configuration 𝐶 and the candidate in-

dexes I as inputs, and creates a new node in the search tree

that represents the state 𝑠 corresponding to 𝐶 . Meanwhile, it

initializes the action set A(𝑠) of 𝑠 , which includes all candidate

indexes that are not covered by 𝐶 , i.e., A(𝑠) = I −𝐶 . Moreover,

it initializes bookkeeping information for each action 𝑎 ∈ A(𝑠)
w.r.t. the action selection policy (Section 6.1).

• EvaluateCostWithBudget – This is where the budget is allo-

cated. Our current strategy is to pick one query𝑞 and use its what-

if cost for cost(𝑞,𝐶). For the rest of the workload we simply use

cost derivation, i.e., cost(𝑊,𝐶) ← 𝑐 (𝑞,𝐶) +∑𝑞′∈𝑊,𝑞′≠𝑞 𝑑 (𝑞′,𝐶) .
We currently pick the query 𝑞 with probability proportional to its

Algorithm 3:MCTS for budget-aware index tuning.

Input:𝑊 , the workload; I, the candidate indexes; 𝐾 : the
cardinality constraint; 𝐵, the budget.

Output:𝐶min
, the best index configuration s.t. |𝐶min | ≤ 𝐾 .

1 Main:
2 𝑠0 ←CreateNode(∅, I), 𝑏 ← 𝐵;

3 while 𝑏 > 0 do
4 𝑏 ←RunEpisode(𝑠0, 𝑏,𝑊 , 𝐾);

5 𝐶min ←ExtractBestConfiguration(𝑠0);
6 return𝐶min;
7

8 RunEpisode(𝑠 : state, 𝑏: budget,𝑊 , 𝐾)

9 𝐶 ←SampleConfiguration(𝑠 , 𝐾);

10

(
cost(𝑊,𝐶), 𝑏′

)
←EvaluateCostWithBudget(𝑊 ,𝐶 , 𝑏);

11 𝜂 (𝑊,𝐶) ←
(
1 − cost(𝑊,𝐶)

cost(𝑊,∅)

)
× 100%;

12 foreach state 𝑠′ in the path that leads to𝐶 do
13 Update the average reward of 𝑠′ with 𝜂 (𝑊,𝐶) ;
14 return 𝑏′;
15

16 SampleConfiguration(𝑠 : state, 𝐾)
17 if 𝑠 is leaf then
18 if 𝑠 has not been visited before then
19 return Rollout(𝑠);
20 else if 𝑠 is a terminal state, i.e., |𝑠 | == 𝐾 then
21 return 𝑠 ;
22 𝑎 ←SelectAction(𝑠);
23 𝑠′ ←GetOrCreateNextState(𝑠 , 𝑎);
24 return SampleConfiguration(𝑠′, 𝐾);

derived cost, though other strategies are possible. The remaining

budget 𝑏 ′ is simply 𝑏 ′ ← 𝑏 − 1.
• GetOrCreateNextState – It retrieves the node corresponding

to the next state 𝑠 ′ based on the given state 𝑠 and action 𝑎. If 𝑠 ′

does not exist in the search tree, it creates a node for 𝑠 ′ by calling
CreateNode(𝑠 ′,I).
• SelectAction – It selects an action 𝑎 ∈ A(𝑠) for the given state

𝑠 , based on the action selection policy (Section 6.1).

• Rollout – It generates a configuration by randomly inserting

indexes. The details of this procedure, called a rollout policy, again
depend on the action selection policy (Section 6.2).

• ExtractBestConfiguration – There are various ways of ex-

tracting the best configurations from the search tree, which again

depend on the action selection policy (Section 6.3).

Example 4 (MCTS for index configuration enumeration).

Figure 7 illustrates the four major steps in one episode of MCTS for
configuration search. Once again, we follow Example 1 by assuming
a search space with candidate indexes {𝐼1, 𝐼2, 𝐼3}. We start from the
root and pick 𝐼2 based on the action selection policy (i.e., the selection
step). Since {𝐼2} is a leaf that has been visited before, we expand it by
picking the action 𝐼3, which leads to adding the new (leaf) state {𝐼2, 𝐼3}
into the search tree (i.e., the expansion step). We then (recursively)
visit this new leaf. Since it has not been visited before, we run a rollout
to estimate its average return (i.e., the simulation step). We finally
update the average returns for the states/actions along the path from
the root to the leaf (i.e., {𝐼2} and {𝐼2, 𝐼3}), with the reward observed
on the sampled configuration by rollout (i.e., the update step).

Repeat when budget allows

Selection Simulation Update

{𝐼1}

∅

{𝐼2} {𝐼3}

𝐼1
𝐼2 𝐼3

Expansion

{𝐼1}

∅

{𝐼2} {𝐼3}

𝐼1
𝐼2 𝐼3

{𝐼2, 𝐼3 }

𝐼3

{𝐼1}

∅

{𝐼2} {𝐼3}

𝐼1
𝐼2 𝐼3

{𝐼2, 𝐼3 }

𝐼3

Rollout

{𝐼1}

∅

{𝐼2} {𝐼3}

𝐼1
𝐼2 𝐼3

{𝐼2, 𝐼3 }

𝐼3

Rollout

reward

Figure 7: MCTS for index configuration enumeration.
6 IMPLEMENTATIONS OF MCTS POLICIES
As we have noted in Algorithm 3, various policies can be employed

for (1) action selection, (2) rollout, and (3) extraction of the best

configuration. In this section, we present design considerations and

implementation details of these MCTS policies.

6.1 Action Selection Policy
The action selection policy 𝜋 (𝑎 |𝑠) specifies that, given a state 𝑠 ,

which action 𝑎 should be taken next. Below we discuss two popular

policies, UCT and 𝜖-greedy that we adapted for index tuning.

6.1.1 UCT. One common action selection policy used in practice

for MCTS is UCT [38], which models action selection as a stochastic

multi-armed bandit problem and uses the upper confidence bound
(UCB) for the trade-off between exploration and exploitation [8–10].

Specifically, let 𝑠 be a state and A(𝑠) be its action set. Let 𝑁 (𝑠)
be the number of visits to the state 𝑠 , and 𝑛(𝑠, 𝑎) be the number

of visits to an action 𝑎 ∈ A(𝑠). Clearly, 𝑁 (𝑠) = ∑
𝑎∈A(𝑠) 𝑛(𝑠, 𝑎) .

Assuming that all rewards are in the range of [0, 1], which is true

in our MDP formulation of index configuration search since we

use percentage improvements as rewards (ref. Equation 4), the UCT
policy picks the action 𝑎 ∈ A(𝑠) that maximizes the UCB score, i.e.,

argmax

𝑎

[
�̂� (𝑠, 𝑎) + 𝜆 ·

√︄
ln𝑁 (𝑠)
𝑛(𝑠, 𝑎)

]
. (5)

Here, we use �̂� (𝑠, 𝑎) to represent the current estimate of the action

value function 𝑄 (𝑠, 𝑎), which in our context represents the average
return by taking the action𝑎 at the state 𝑠 . The initial value of �̂� (𝑠, 𝑎)
is zero, since no reward has been accumulated. 𝜆 is a constant that

balances exploration and exploitation. We chose 𝜆 =
√
2 as suggested

by the original UCT paper [38].

One problem of UCT is that it makes slow progress when there

is a large number of candidate indexes. Based on the UCB1 crite-

rion (i.e., Equation 5), once a tree node is expanded, all of its child

nodes have to be visited at least once before any of them can be

further expanded, because child nodes that are not visited, i.e., with

𝑛(𝑠, 𝑎) = 0 in Equation 5, would receive infinite UCB score. As a

result, given a relatively small budget 𝐵, only the first one or two

levels of the search tree would be expanded.

6.1.2 𝜖-Greedy. Anotherwell-known policy is 𝜖-greedy [58], where
one picks the best action found so far, i.e., with the largest �̂� (𝑠, 𝑎)
as in Equation 5, with probability 1 − 𝜖 , and picks an action uni-
formly randomly from the rest with probability

𝜖
|A (𝑠) |−1 . One ap-

parent drawback is that 𝜖-greedy does not distinguish among the

remaining actions except for the current best one. That is, it is

equally likely to select the next-to-best action and the worst ac-
tion. As a result, when applied to MCTS, people usually use some

variants of 𝜖-greedy. For example, one popular variant is the Boltz-
mann’s exploration [48], which chooses an action 𝑎 with probability

Pr(𝑎 |𝑠) = 𝑒�̂� (𝑠,𝑎)/𝜏∑
𝑏∈A(𝑠) 𝑒�̂� (𝑠,𝑏)/𝜏

. Here, 𝜏 > 0 is some temperature param-

eter that needs to be set.

Motivated by the Boltzmann’s exploration but to get rid of the

dependency on additional hyperparameters, we propose a simpler

variant of 𝜖-greedy that is more intuitive in our context. That is,

we simply pick an action 𝑎 with probability that is proportional to

its estimated action value:

Pr(𝑎 |𝑠) = �̂� (𝑠, 𝑎)∑
𝑏∈A(𝑠) �̂� (𝑠, 𝑏)

. (6)

We also note that all these variants of 𝜖-greedy do not change

the convergence of MCTS in the long run. That is, given enough

episodes such that all states are visited sufficient number of times,

the estimated action value function �̂� (𝑠, 𝑎) can eventually converge

to the actual action value function𝑄 (𝑠, 𝑎). In fact, even choosing an

action just uniformly randomly can guarantee the convergence of

MCTS [48]. Nonetheless, when MCTS is run under limited budget

(as in our case), different action selection policies can make a dif-

ference due to their different convergence rates. In our evaluation

we observed that our 𝜖-greedy variant works well, which often

outperforms UCT significantly under the budget constraints we

tested (see [64]), though UCT is theoretically more attractive due

to its provable convergence rate in the long run [38].

One new challenge raised by our 𝜖-greedy variant under lim-

ited budget is that the estimates �̂� (𝑠, 𝑎) are typically very “sparse.”

Clearly, to make �̂� (𝑠, 𝑎) a reasonable estimate, one has to take

the action 𝑎 at least once. In practical index tuning applications

with budget constraints, it is often infeasible to visit every action

𝑏 ∈ A(𝑠) given the large action space, as we have pointed out in

the UCT case. To address this challenge, we assign some “prior

reward” to each action 𝑎 that has not been taken yet. Specifically,

we define the prior reward as the percentage improvement of the

singleton configuration corresponding to 𝑎, i.e., 𝜂 (W, {𝑎}). We then

initialize �̂� (𝑠, 𝑎) with 𝜂 (W, {𝑎}), independent of the state 𝑠 . This
idea, however, introduces a nontrivial problem of computing per-

centage improvements for singleton configurations under limited
budget, as it requires what-if calls. Algorithm 4 outlines our current

approach. In a budget-constrained setting, the basic idea is to pick

singletons selectively to evaluate. Specifically, for each budget what-

if call, we first select a query 𝑞 (via QuerySelection) and then

select one of its candidate indexes 𝐼 that has not been evaluated yet

(via IndexSelection), based on certain query selection and index

selection policies that we will discuss shortly.

Another question is how much budget 𝐵′ on the number of

what-if calls we should give to Algorithm 4. In our current imple-

mentation, we set 𝐵′ = min(𝐵/2, 𝑃), where 𝐵 is the total budget for

configuration search and 𝑃 is the total number of query-index pairs,
which works well in our evaluation. It is an interesting question

regarding the optimal setting of 𝐵′, which we leave for future work.

Query Selection. Once again, there can be various strategies for

query selection. One idea is to use the same strategy as in the

EvaluateCostWithBudget procedure of Algorithm 3. However,

Algorithm 4: Compute percentage improvements for sin-

gleton configurations under limited budget

Input:𝑊 , the workload; I, the candidate indexes; 𝐵′, the budget
on the number of what-if calls.

Output: 𝜂 (𝑊, {𝐼 }) for all 𝐼 ∈ I.
1 foreach 𝐼 ∈ I do
2 cost(𝑊, {𝐼 }) ← 𝑐 (𝑊, ∅) ;
3 for 1 ≤ 𝑏 ≤ 𝐵′ do
4 𝑞 ←QuerySelection(𝑊);

5 𝐼 ←IndexSelection(𝑞, I);
6 cost(𝑊, {𝐼 }) ← cost(𝑊, {𝐼 }) − 𝑐 (𝑞, ∅) + 𝑐 (𝑞, 𝐼) ;
7 foreach 𝐼 ∈ I do
8 𝜂 (𝑊, {𝐼 }) ←

(
1 − cost(𝑊,{𝐼 })

cost(𝑊,∅)

)
× 100%;

our goal here is different. Specifically, we aim for finding impactful

indexes (i.e., singleton configurations) at workload-level, which

implies that we should encourage more on exploring new queries

(so that we can find new indexes) than exploiting queries that have

been selected before. Hence, in our current implementation, we use

the simple round-robin strategy, which is robust and works well

on the workloads that we tested in our experiments (Section 7). Of

course, this is not a perfect solution (e.g., it may give more than

necessary what-if calls to unimportant queries), and perhaps cannot

scale to extreme cases (e.g., if the workload size is larger than the

budget on what-if calls). To address the scalability issue, we can

further combine round-robin with other heuristics. For example,

one can select a subset (e.g., a random sample) of the queries and

apply round-robin only within this subset.

Index Selection. In our current implementation, we choose to

favor candidate indexes over large tables, since for a particular

query intuitively indexes over large tables are more useful. That is,

we first select indexes on the largest table accessed by the query,

and then select indexes on the second largest table, and so on. This

strategy works well since we focus on cardinality constraint. Other

strategies can be devised if we want to further optimize for other

constraints (e.g., storage space), which we leave for future work.

6.2 Rollout Policy
The rollout policy specifies how to generate a configuration by

randomly inserting indexes. Specifically, we first generate a “look-

ahead step size” 𝑙 ∈ {0, 1, ..., 𝐾 − 𝑑} in a uniformly random manner,

where 𝑑 is the depth of the current state 𝑠 in the search tree.

Depending on the action selection policy, we then insert 𝑙 in-

dexes, randomly chosen from A(𝑠), as follows:
• UCT – we choose the 𝑙 indexes uniformly;
• 𝜖-greedy – we choose the 𝑙 indexes from A(𝑠) w.r.t. the priors
of actions, i.e., the probability of sampling 𝑎 ∈ A(𝑠) is given by

Equation 6 where we use the prior reward of 𝑎 for �̂� (𝑠, 𝑎).
Clearly, there are other possible rollout policies. For instance,

rather than using a randomly generated look-ahead step size, one

can use a fixed look-ahead step size. The �̂� (𝑠, 𝑎) obtained by using

such a policy is no longer an unbiased estimator of𝑄 (𝑠, 𝑎). However,
it may make sense in a budget-limited setting where we have to

resort to approximations such as derived costs after running out

of budget. For example, in the above strategy, one may choose to

be more “myopic” by focusing on a small step size, say, 0 or 1,

which would allow for more exploration in the neighborhood of

the current state compared to remote regions in the entire search

space.
4
We compare the standard rollout policy and its “myopic”

variants in more detail in the full version of this paper [64].

6.3 Extraction of the Best Configuration
Finally, one needs to extract the best configuration from the search

tree. Again, there are various strategies, and we have considered

the following in our implementation:

• Best Configuration Explored (BCE), where we simply return the

best configuration found duringMCTS, among the configurations

explored. The explored configurations include all configurations

corresponding to states in the final expanded search tree, as well

as configurations sampled by rollouts.

• Best Greedy (BG), where we use a greedy strategy to traverse the

search tree. There are various variants based on what metric to

be optimized, which we will discuss next.

The BG strategy here works similarly as the Greedy procedure in

Algorithm 1, though it is not tied to minimizing the workload cost.

For example, one can pick the action that maximizes the estimated

average return, i.e., �̂� (𝑠, 𝑎), in each greedy step. Or, if UCT is used

as the action selection policy, then one can pick the action that

maximizes the UCB score, or even the most frequent action.

We currently choose to implement the BG strategy by just reusing

Algorithm 1, for a couple of considerations. First, it does not rely on

the action selection policy used. Second, it improves code reusabil-

ity and makes the integration with existing index tuning systems

(such asDTA [21]) easier. Third, it significantly outperforms the BCE
strategy, as reported by our evaluation results (see [64]). Fourth, by

Theorem 2 (see Section 3.1.2) and Theorem 3 (see Section 4.1), it

has certain merits and desired properties when combined with cost

derivation and budget allocation strategies.

Remark. We note that, a similar greedy strategy, which picks the

action 𝑎 in each greedy step that maximizes �̂� (𝑠, 𝑎), is in theory

the optimal policy [58], if �̂� (𝑠, 𝑎) has converged to the optimal
𝑄 (𝑠, 𝑎), i.e., the 𝑄∗ (𝑠, 𝑎) in Section 5.2. In practice when the budget

is typically small compared to the size of the search space, this

convergence condition rarely holds. As a result, this variant of the

BG strategy does not have any optimality guarantee in general.

7 EXPERIMENTAL EVALUATION
We now report experimental results on evaluating the performance

of our budget-aware configuration search algorithm based onMCTS.

In our experiments, we vary the budget on the number of what-if

calls, and measure the percentage improvement, i.e., Equation 4, of

a given workload in terms of the actual what-if cost. We also vary

the cardinality constraint 𝐾 , i.e., the maximum number of indexes

to be returned, to test the robustness of the algorithm.

Datasets and Workloads. We used various benchmark and real

workloads in our study. Table 1 summarizes the information of

the workloads. For benchmark workloads, we use the join order

benchmark (JOB) proposed by Leis et al. [43] that is publicly avail-

able at [42], as well as both the TPC-H and TPC-DS benchmarks

with scaling factor 10.
5
We further use two real workloads, denoted

4
A step size of 0 means that we only pick the configuration represented by the current

state without inserting additional indexes.

5JOB contains 113 query instances in total, which are grouped into 33 templates, and

we pick one query instance from each template. We also follow the same protocol for

Name Size #
Queries

#
Tables

Avg. #
Joins

Avg. #
Filters

Avg. #
Scans

JOB 9.2GB 33 21 7.9 2.5 8.9

TPC-H sf =10 22 8 2.8 0.3 3.7

TPC-DS sf =10 99 24 7.7 0.5 8.8

Real-D 587GB 32 7,912 15.6 0.2 17

Real-M 26GB 317 474 20.2 1.5 21.7

Table 1: Summary of database and workload statistics.
by Real-D and Real-M in Table 1, which are significantly more

complicated compared to the benchmark workloads, in terms of

schema complexity (e.g., the number of tables), query complexity

(e.g., the average number of joins and table scans contained by a

query), and database/workload size.

Experimental Setup. In our experiments, we varied the cardinality

constraint 𝐾 within {5, 10, 20}. Since the two workloads JOB and

TPC-H are relatively small, we varied the budget 𝐵 on the number

of what-if calls within {50, 100, 200, 500, 1000}; on the other hand,

for the remaining three large workloads, TPC-DS, Real-D, and
Real-M, we varied 𝐵 from 1,000 to 5,000, with 1,000 increment. We

perform all experiments using Microsoft SQL Server 2017 under

Windows Server 2019, running on a workstation equipped with

2.6 GHz Intel CPUs and 192 GB main memory. Since our MCTS-

based approach requires randomization, we run it five times with

different seeds for the random number generator (RNG) it uses, and

we report its average performance as well as the observed standard

deviation (shown as error bars).

Remark. Due to space constraints, we defer the experimental

results on the two small workloads, JOB and TPC-H, to [64]. The

observations on these two workloads are similar.

7.1 Comparison with Baselines
We first compare our MCTS-based algorithm with the following

baseline algorithms that are budget-aware greedy variants of Algo-

rithm 1, discussed in Section 4.2:

• Vanilla greedy, which simply runs greedy search at workload-

level, i.e., the one-phase framework outlined in Algorithm 1, with

FCFS as its budget allocation strategy.

• Two-phase greedy, which runs greedy search at both query-level

and workload-level, i.e., the two-phase framework in Algorithm 2,

with FCFS as its budget allocation strategy.

• AutoAdmin greedy, which uses the same two-phase greedy search

framework as two-phase greedy, with the exception that it focuses
on allocating budget to only atomic configurations suggested
by [22], again in an FCFS manner.

Figures 8 to 10 present the results over various workloads. In each

figure, the 𝑥-axis represents the number of what-if calls allowed (as

well as the corresponding tuning time in minutes), and the 𝑦-axis

represents the percentage improvement on the overall workload

cost. Here we show the results for our MCTS algorithm based on

the following setting: (1) 𝜖-greedy for action selection, (2) myopic

rollout with step size 0 (i.e., no random indexes added), and (3)

greedy extraction of the best configuration (i.e., the BG strategy in

Section 6.3). This setting overall gives the best and most consistent

both TPC-H and TPC-DS. While the multi-instance versions of the workloads are also

interesting, various other techniques can be used for workload compression [20, 29],

which introduces another dimension that can affect the performance of index tuning.

For these reasons, we leave the study of multi-instance workloads as future work.

performance among the various settings we tested in our ablation

study that can be found in the full version of this paper [64].

7.1.1 TPC-DS Results. Figure 8 presents the TPC-DS results. Our

MCTS-based approach can consistently outperform the baseline

approaches. Among the baselines, vanilla greedy performs the worst

overall, whereas two-phase greedy and AutoAdmin greedy perform

similarly. The gap between vanilla greedy and the other two is often

quite large, especially when the budget is small, though vanilla
greedy can eventually catch up with increased budget.

7.1.2 Real-D Results. Our approach again significantly outper-

forms the baseline approaches on Real-D, especially when the

budget is small. For example, with 1,000 what-if calls, the improve-

ments obtained by our approach and the baseline approaches are

60% vs. 40%, respectively, for all 𝐾 ∈ {5, 10, 20}. Meanwhile, al-

though the three baselines perform similarly, vanilla greedy finally

outperforms the other two approaches with 10%more improvement

when setting 𝐾 = 10 and 𝐾 = 20 with 5,000 what-if calls.

7.1.3 Real-M Results. On Real-M, our approach significantly out-

performs all the baselines when 𝐾 = 10 and 𝐾 = 20, while it

performs better than or closely to two-phase greedy and AutoAdmin
greedy when 𝐾 = 5. Vanilla greedy, however, performs significantly

worse. The improvement from vanilla greedy is 0% when the num-

ber of budget what-if calls is set to 1,000 and never exceeds 5% when

increasing the budget from 1,000 to 5,000, for all 𝐾 ∈ {5, 10, 20}.
Meanwhile, our approach reports improvement around 35% to 40%,

a 7× to 8× relative improvement.

7.1.4 Summary. Based on the results above, we observe that (1)

MCTS outperforms the baselines consistently and often signifi-

cantly, especially with small tuning budget; and (2) there is no clear

winner among the three baselines.

7.2 Comparison with Existing RL Approaches
We next compare our MCTS-based approach with two existing RL

approaches: (1) DBA bandits [47] and (2) No DBA [57]. Figures 11

to 13 summarize the results on TPC-DS, Real-D, and Real-M,

where we present the improvements of the best configurations
found by DBA bandits and No DBA in each experimental setting.

7.2.1 DBA Bandits. The idea is to model the index selection prob-

lem using contextual combinatorial bandit [50]. We focus on the

“static workload” setting described in [47], where we break the

overall execution into multiple rounds. In each round, we make

a what-if call to each query in the workload to observe its cost

under the current index configuration selected by DBA bandits, and
we use this information to compute the rewards required by DBA
bandits to refine its index recommendations.

6

Our MCTS-based approach significantly outperforms DBA ban-
dits on all three workloads (with up to 3.3× relative improvement).

While DBA bandits can quickly land on an initial configuration

that looks promising, it makes slow progress on the follow-up re-

finements. To demonstrate this, Figure 14 presents the percentage

improvement of the best configuration found by DBA bandits in
each round. One reason for this behavior could be the large search

spaces for the workloads used in our evaluation, which consist of

6DBA bandits targets an online index tuning scenario where actual execution time

is used to compute rewards. In our offline index tuning setting, we do not actually

execute queries and that is why we have to use what-if cost instead.

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(65) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(a) 𝐾 = 5

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(65) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(b) 𝐾 = 10

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(65) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(c) 𝐾 = 20

Figure 8: End-to-end performance comparison on TPC-DS with budget-aware Greedy variants.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(a) 𝐾 = 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(b) 𝐾 = 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(c) 𝐾 = 20

Figure 9: End-to-end performance comparison on Real-D with budget-aware Greedy variants.

 0

 10

 20

 30

 40

 50

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(a) 𝐾 = 5

 0

 10

 20

 30

 40

 50

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(b) 𝐾 = 10

 0

 10

 20

 30

 40

 50

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(c) 𝐾 = 20

Figure 10: End-to-end performance comparison on Real-M with budget-aware Greedy variants.

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(65) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(a) 𝐾 = 5

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(65) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(b) 𝐾 = 10

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(60) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(c) 𝐾 = 20

Figure 11: End-to-end performance comparison on TPC-DS with existing RL approaches.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(a) 𝐾 = 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(b) 𝐾 = 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(c) 𝐾 = 20

Figure 12: End-to-end performance comparison on Real-D with existing RL approaches.

 0

 10

 20

 30

 40

 50

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(a) 𝐾 = 5

 0

 10

 20

 30

 40

 50

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(b) 𝐾 = 10

 0

 10

 20

 30

 40

 50

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DBA Bandits No DBA MCTS

(c) 𝐾 = 20

Figure 13: End-to-end performance comparison on Real-M with with existing RL approaches.

hundreds to thousands of candidate indexes. Under limited budget,

only a few index configurations in this large search space can be

explored by DBA bandits. This highlights the importance of priori-

tizing queries and candidate indexes when it comes to allocating

the budget of what-if calls, which has been discussed in Section 6.1

in detail. On the other hand, DBA bandits leveraged certain featur-

ization techniques to represent candidate indexes, which merits

further consideration in our MCTS-based approach. In our evalua-

tion, we observed that appropriate featurization could help identify

promising index configurations more quickly (e.g., see the results

on TPC-H and JOB in [64]).

7.2.2 No DBA. The idea is to use deep RL to solve the index tun-

ing problem. As noted in [39], No DBA is not suitable for offline

index tuning in general without adaptation, as it only supports a

subset of TPC-H queries and can only recommend single-column

indexes. It is also much slower compared to other offline index tun-

ing algorithms, as it uses actual query execution time to compute

rewards and needs GPU support in general for training deep neural

networks (DNNs). We therefore implement a variant of No DBA
with the following adaptations: (1) we use one-hot encoding ℎ𝐶 to

represent an index configuration/state 𝐶 ⊆ I, where I represents

the universe of candidate indexes; we set ℎ𝐶 [𝑖] = 1 if 𝑖 ∈ I appears

in 𝐶 , and 0 otherwise; (2) we use optimizer’s estimated what-if

cost instead of query execution time to compute rewards; (3) we

use deep Q-learning [35] as our deep RL technology; (4) we use

a relatively small DNN that contains three fully connected layers,

each with 96 neurons, and we use relu as the activation function.
7

Following [39], we only use CPU for training the DNN, for a fair

comparison against the other technologies.

We ran our variant of No DBA in a budget-constrained manner,

where again we split the overall execution into multiple rounds

and in each round we evaluate each query in the workload for the

current configuration selected by deep Q-learning to compute its

reward. From the results shown in Figures 11 to 13, ourMCTS-based

approach significantly outperformsNoDBA inmost of the cases that

we tested (with up to 14.4× relative improvement). One important

issue of No DBA we observed when running under limited budget

is again its slow convergence, as demonstrated in Figure 14.

7.3 Comparison with DTA
We further compare our MCTS-based approach against DTA [3, 21],

since DTA allows user to specify an (optional) budget on the tuning

time in minutes. However, DTA cannot accept the number of what-

if calls as budget. Therefore, we make a best-effort comparison to

DTA by giving it the same amount of tuning time that our MCTS-

based approach spends. Since DTA supports storage constraint (SC),

we compare our approach and DTA with and without SC. When

enabling SC, we set the allowed storage size as 3× of the database

size, which is the default setting used by DTA [3].

We note that this comparison is not completely fair. First, DTA

needs to deal with a more challenging problem of allocating the

time budget to all components of index tuning, not just the config-

uration enumeration step, to ensure the anytime property [21] that

7
The original implementation of No DBA, available at [4], allows for various types of
deep-RL agents, such as deep Q-learning (DQN), SARSA [53], Cross Entropy Method

(CEM) [52], and Deep Deterministic Policy Gradient (DDPG) [44], and it does not

specify which particular agent to use.

our current work does not consider. Second, DTA is a full-fledged

index tuning tool with additional optimizations (e.g., “table subset”

selection [7, 21], index merging [24], etc.) that we did not imple-

ment. Our purpose of comparing with DTA here is to understand

if, by only improving the configuration enumeration algorithm via

budget-aware tuning, what the performance gap is from a compre-

hensive index tuning tool that also takes a time budget as input.

An interesting question is how much improvement we would see if

we integrate our techniques into DTA’s configuration enumeration

step, which is beyond the scope of this paper.

Figure 15 summarizes the results on TPC-DS,Real-D, andReal-
M. Here we do not show the variances of our approach when using

different RNG seeds, which are similar to those shown in Figures 8

to 13, to avoid clutter. On TPC-DS, our approach achieves similar

performance compared to DTA, except for a couple of cases where

DTA’s performance drops. For example, as shown in Figure 15(d),

when disabling SC and setting 𝐾 = 10, our approach outperforms

DTA with a budget of 1,000 what-if calls – 40% vs. 10% improve-

ment. On Real-D, we observe some different patterns compared

to what we observed on TPC-DS. For example, as shown in Fig-

ure 15(e), when disabling SC and setting 𝐾 ∈ {5, 10}, our approach
performs quite similarly to DTA; however, when setting𝐾 = 20, our

approach outperforms DTA. We can see that DTA’s performance

even drops before finally catching up, when increasing its tuning

time limit. Such non-monotonic behavior of DTA has also been ob-

served in previous work [29]. Figure 15(b) shows another example

when enabling SC and setting 𝐾 = 20, where DTA could not return

useful indexes in several cases. DTA adopts a time-slice based ar-

chitecture [21]. In each time slice, it consumes the next batch of

queries, and the recommended indexes are based on the queries

tuned so far. Internally, DTA uses a cost-based priority queue to

select the next query to tune [21]. It is possible that DTA hits some

costly query and spends the time budget tuning that query without

finding useful indexes. Our approach overcomes such issues with

stochastic policies on selecting queries and configurations. DTA

may alleviate such issues, too, when given sufficient time. On Real-
M, we can outperform DTA in some cases and DTA outperforms

our approach in some other cases. For example, as shown in Fig-

ure 15(f), when disabling SC and setting 𝐾 = 10, with 3,000 what-if

calls our approach reports 35% improvement while DTA reports

0% improvement (i.e., no indexes recommended). Overall, DTA’s

behavior is again non-monotonic.

Furthermore, considering the impact of the storage constraint on

our MCTS-based approach, we observe that increasing the storage

space in general allows our approach to find better configurations,

which is intuitive and consistent with findings on other index con-

figuration search algorithms [39].

8 RELATEDWORK
The problem of index tuning has been studied extensively in the

literature. Existing work includes, but not limited to, the following:

Drop [62], AutoAdmin [22], DTA [21], DB2Advisor, Relaxation [15],

CoPhy [28], Dexter [37], Extend [55], etc. We refer the readers to

the recent work [39] for more details of these solutions, which also

conducted a benchmark study that compares their performances.

Based on the reported results,DTAwith the greedy search algorithm

can yield the state-of-the-art performance. This is one important

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50 55

Im
p
ro

v
e
m

e
n
t
(%

)

Round

DBA Bandits No DBA MCTS

(a) TPC-DS, 𝐾 = 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180

Im
p
ro

v
e
m

e
n
t
(%

)

Round

DBA Bandits No DBA MCTS

(b) Real-D, 𝐾 = 10

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

Im
p
ro

v
e
m

e
n
t
(%

)

Round

DBA Bandits No DBA MCTS

(c) Real-M, 𝐾 = 20

Figure 14: Convergence of DBA bandits and No DBA. The budget on the number of what-if calls is set to 5,000. For comparison,
we also include the average improvement reported by our MCTS-based approach in each chart.

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(65) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DTA (K=5)
MCTS (K=5)

DTA (K=10)
MCTS (K=10)

DTA (K=20)
MCTS (K=20)

(a) TPC-DS, with SC

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DTA (K=5)
MCTS (K=5)

DTA (K=10)
MCTS (K=10)

DTA (K=20)
MCTS (K=20)

(b) Real-D, with SC

 0

 10

 20

 30

 40

 50

 60

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DTA (K=5)
MCTS (K=5)

DTA (K=10)
MCTS (K=10)

DTA (K=20)
MCTS (K=20)

(c) Real-M, with SC

 0

 10

 20

 30

 40

 50

 60

 70

1000(20) 2000(40) 3000(55) 4000(65) 5000(80)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DTA (K=5)
MCTS (K=5)

DTA (K=10)
MCTS (K=10)

DTA (K=20)
MCTS (K=20)

(d) TPC-DS, without SC

 0

 10

 20

 30

 40

 50

 60

 70

 80

1000(75) 2000(110) 3000(150) 4000(195) 5000(235)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DTA (K=5)
MCTS (K=5)

DTA (K=10)
MCTS (K=10)

DTA (K=20)
MCTS (K=20)

(e) Real-D, without SC

 0

 10

 20

 30

 40

 50

 60

1000(110) 2000(135) 3000(160) 4000(190) 5000(240)

Im
p
ro

v
e
m

e
n
t
(%

)

Budget on the # of ’what if’ calls (and tuning time in minutes)

DTA (K=5)
MCTS (K=5)

DTA (K=10)
MCTS (K=10)

DTA (K=20)
MCTS (K=20)

(f) Real-M, without SC

Figure 15: End-to-end performance comparison vs. DTA with and without storage constraint (SC).

reason for us to focus on the greedy algorithm when considering

the budget-aware index tuning problem.

There has also been recent work on applying ML/RL [11, 47,

54] to online index tuning [16], which is different from the offline
setting studied in this paper. To the best of our knowledge, there

is limited work on applying ML/RL to offline index tuning. Ding

et al. [30] proposed to train a classifier using execution data to

improve configuration search, with the (different) goal of reducing

the chance of query performance regression after building the

indexes selected by the index tuner. No DBA [57] used deep RL and

real query execution time to compute reward. As reported by [39],

it took No DBA eight hours to tune a workload of ten queries

on the 1GB TPC-H database and came up with “on par” results

compared to traditional approaches. Recent work by Lan et al. [41]

proposed a deep-RL based index advisor similar to No DBA [57],

though using what-if cost for reward calculation. Again, it could

tune a subset of TPC-H queries at 1GB scale with improvement

similar to traditional approaches; however, the tuning time was

not reported. Nevertheless, none of these efforts has considered the

budget-constrained index configuration search problem that we

studied in this paper.

Compared to using the number of what-if calls as budget, using

execution time may be more attractive from user’s perspective.

Indeed, it is not our intention to expose the number of what-if

calls as a tunable knob to the end user — we propose to retain the

same control that DTA provides today, which is tuning time as a

budget [3]. Internally, we can map this time budget to the number

of what-if calls allowed (e.g., we can divide the time budget by the

average time of a what-if call), which is transparent to the end user.

Our choice of using MCTS for index tuning was motivated by

SkinnerDB [59], which used MCTS to select the optimal join or-

der. Compared to other RL techniques such as policy iteration [12],

value iteration [49], and Q-learning [36, 61], the tree structure lever-

aged by MCTS captures the hierarchical relationship between index

configurations naturally. Further optimizations are possible. For ex-

ample, one may consider the “rapid action value estimation” (RAVE)

method [33] in the update policy. One may also consider combining

featurization technologies, such as ones used by DBA bandits [47]
or other deep RL [32, 35] approaches, with our MCTS framework

to achieve more compact representation of the state/action space.

9 CONCLUSION
In this paper, we studied the budget-aware index configuration enu-

meration/search problem. We presented a formal problem defini-

tion of budget allocation in configuration search, as well as analysis

when combining budget allocation with the classic greedy search

algorithm. We further proposed a solution based on MCTS, by mod-

eling configuration search as an MDP. Our evaluation demonstrates

that the MCTS-based solution can often significantly outperform

the budget-aware greedy algorithms as well as variants of existing

RL-based approaches to index tuning, across a variety of industrial

benchmarks and real workloads.

Acknowledgments: We thank the anonymous reviewers, Arnd

Christian König, and Bailu Ding for their valuable feedback.

REFERENCES
[1] [n.d.]. Amazon Relational Database Service. https://aws.amazon.com/rds/.

[2] [n.d.]. Azure SQL Database. https://azure.microsoft.com/en-us/products/azure-

sql/database/.

[3] [n.d.]. DTA utility. https://docs.microsoft.com/en-us/sql/tools/dta/dta-utility?

view=sql-server-ver15.

[4] [n.d.]. GitHub Repository of No DBA. https://github.com/shankur/autoindex.

[5] [n.d.]. Google Cloud SQL. https://cloud.google.com/sql.

[6] [n.d.]. Oracle Database Cloud Service. https://www.oracle.com/database/.

[7] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated

Selection of Materialized Views and Indexes in SQL Databases. In VLDB. 496–505.
[8] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. 2006. Use of variance

estimation in the multi-armed bandit problem. (2006).

[9] Peter Auer. 2002. Using Confidence Bounds for Exploitation-Exploration Trade-

offs. J. Mach. Learn. Res. 3 (2002), 397–422.
[10] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of

the Multiarmed Bandit Problem. Mach. Learn. 47, 2-3 (2002), 235–256.
[11] Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zihong Yuan, Pierre

Senellart, and Stéphane Bressan. 2015. Cost-Model Oblivious Database Tuning

with Reinforcement Learning. In DEXA. 253–268.
[12] R. E. Bellman. 1957. Dynamic Programming. Princeton University Press.

[13] Dimitri P. Bertsekas. 2005. Dynamic programming and optimal control, 3rd Edition.
Athena Scientific.

[14] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,

Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree

Search Methods. IEEE Trans. Comput. Intell. AI Games 4, 1 (2012), 1–43.
[15] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning:

A Relaxation-based Approach. In SIGMOD. 227–238.
[16] Nicolas Bruno and Surajit Chaudhuri. 2007. An Online Approach to Physical

Design Tuning. In ICDE. 826–835.
[17] Nicolas Bruno and Surajit Chaudhuri. 2007. Physical design refinement: The

‘merge-reduce’ approach. ACM Trans. Database Syst. 32, 4 (2007), 28.
[18] Nicolas Bruno and Surajit Chaudhuri. 2008. Constrained physical design tuning.

Proc. VLDB Endow. 1, 1 (2008), 4–15.
[19] Surajit Chaudhuri, Mayur Datar, and Vivek R. Narasayya. 2004. Index Selection

for Databases: A Hardness Study and a Principled Heuristic Solution. IEEE Trans.
Knowl. Data Eng. 16, 11 (2004), 1313–1323.

[20] Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek R. Narasayya. 2002. Com-

pressing SQL workloads. In SIGMOD. 488–499.
[21] Surajit Chaudhuri and Vivek Narasayya. 2020. Anytime Algorithm of Database

Tuning Advisor for Microsoft SQL Server.

[22] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index

Selection Tool for Microsoft SQL Server. In VLDB. 146–155.
[23] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin ’What-if’ Index

Analysis Utility. In SIGMOD. 367–378.
[24] Surajit Chaudhuri and Vivek R. Narasayya. 1999. Index Merging. In ICDE.
[25] Sunil Choenni, Henk M. Blanken, and Thiel Chang. 1993. On the Selection of

Secondary Indices in Relational Databases. Data Knowl. Eng. 11, 3 (1993).
[26] Douglas Comer. 1978. The Difficulty of Optimum Index Selection. ACM Trans.

Database Syst. 3, 4 (1978), 440–445.
[27] SudiptoDas,Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek R.

Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit Chaudhuri.

2019. Automatically Indexing Millions of Databases in Microsoft Azure SQL

Database. In SIGMOD. 666–679.
[28] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A

Scalable, Portable, and Interactive Index Advisor for Large Workloads. Proc.
VLDB Endow. 4, 6 (2011), 362–372.

[29] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey F. Naughton, and

Stratis Viglas. 2020. Comprehensive and Efficient Workload Compression. Proc.
VLDB Endow. 14, 3 (2020), 418–430.

[30] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and

Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve

Index Recommendations. In SIGMOD. 1241–1258.
[31] S. J. Finkelstein, M. Schkolnick, and P. Tiberio. 1988. Physical Database Design

for Relational Databases. ACM Trans. Database Syst. 13, 1 (1988).
[32] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and

Joelle Pineau. 2018. An Introduction to Deep Reinforcement Learning. Found.
Trends Mach. Learn. 11, 3-4 (2018), 219–354.

[33] Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action

value estimation in computer Go. Artif. Intell. 175, 11 (2011), 1856–1875.
[34] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman.

1997. Index Selection for OLAP. In ICDE. 208–219.
[35] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,

Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,

John P. Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-learning

From Demonstrations. In AAAI. 3223–3230.
[36] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Rein-

forcement Learning: A Survey. J. Artif. Intell. Res. 4 (1996), 237–285.
[37] Andrew Kane. 2017. Introducing Dexter, the Automatic Indexer for Post-

gres. https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-

for-postgres-5f8fa8b28f27.

[38] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.

In ECML. 282–293.
[39] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic

mirror in my hand, which is the best in the land? An Experimental Evaluation of

Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.
[40] Andreas Krause and Daniel Golovin. 2014. Submodular Function Maximization.

In Tractability: Practical Approaches to Hard Problems. Cambridge University

Press, 71–104.

[41] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep

Reinforcement Learning. In CIKM. 2105–2108.

[42] Viktor Leis. [n.d.]. Join Order Benchmark. https://github.com/gregrahn/join-

order-benchmark.

[43] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,

and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[44] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control

with deep reinforcement learning. In ICLR.
[45] G. L. Nemhauser et al. 1978. An analysis of approximations for maximizing

submodular set functions - I. Math. Program. 14, 1 (1978).
[46] Stratos Papadomanolakis, Debabrata Dash, and Anastassia Ailamaki. 2007. Effi-

cient Use of the Query Optimizer for Automated Database Design. ACM.

[47] Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata Borovica-

Gajic. 2020. DBA bandits: Self-driving index tuning under ad-hoc, analytical

workloads with safety guarantees. CoRR abs/2010.09208 (2020).

[48] Laurent Péret and Frédérick Garcia. 2004. On-Line Search for Solving Markov

Decision Processes via Heuristic Sampling. In ECAI. 530–534.
[49] M. L. Puterman and M. C. Shin. 1978. Modified policy iteration algorithms for

discounted Markov decision problems. Management Science 24, 11 (1978).
[50] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. 2014. Contextual Combinatorial

Bandit and its Application on Diversified Online Recommendation. In SDM.

461–469.

[51] S. Ross. 2014. Introduction to stochastic dynamic programming. Academic press.

[52] Reuven Rubinstein. 1999. The cross-entropy method for combinatorial and

continuous optimization. Methodology and computing in applied probability 1, 2

(1999), 127–190.

[53] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge.

[54] Zahra Sadri, Le Gruenwald, and Eleazar Leal. 2020. Online Index Selection Using

Deep Reinforcement Learning for a Cluster Database. In ICDE Workshops.
[55] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable

Multi-attribute Index Selection Using Recursive Strategies. In ICDE. 1238–1249.
[56] Karl Schnaitter, Neoklis Polyzotis, and Lise Getoor. 2009. Index Interactions

in Physical Design Tuning: Modeling, Analysis, and Applications. Proc. VLDB
Endow. 2, 1 (2009), 1234–1245.

[57] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The Case for

Automatic Database Administration using Deep Reinforcement Learning. CoRR
abs/1801.05643 (2018).

[58] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[59] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan

Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded Query Evaluation

via Reinforcement Learning. In SIGMOD. 1153–1170.
[60] Gary Valentin, Michael Zuliani, Daniel C. Zilio, GuyM. Lohman, and Alan Skelley.

2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.

In ICDE. 101–110.
[61] Christopher J. C. H. Watkins and Peter Dayan. 1992. Technical Note Q-Learning.

Mach. Learn. 8 (1992), 279–292.
[62] Kyu-Young Whang. 1985. Index Selection in Relational Databases. In Foundations

of Data Organization. 487–500.
[63] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs, and

Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer cost

models really unusable?. In ICDE. 1081–1092.
[64] Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek Narasayya,

Surajit Chaudhuri, and Philip A. Bernstein. 2022. Budget-aware Index Tuning with
Reinforcement Learning (Extended Version). Technical Report. Microsoft Research.

https://www.microsoft.com/en-us/research/people/wentwu/publications/

https://aws.amazon.com/rds/
https://azure.microsoft.com/en-us/products/azure-sql/database/
https://azure.microsoft.com/en-us/products/azure-sql/database/
https://docs.microsoft.com/en-us/sql/tools/dta/dta-utility?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/dta/dta-utility?view=sql-server-ver15
https://github.com/shankur/autoindex
https://cloud.google.com/sql
https://www.oracle.com/database/
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://github.com/gregrahn/join-order-benchmark
https://github.com/gregrahn/join-order-benchmark
https://www.microsoft.com/en-us/research/people/wentwu/publications/

	Abstract
	1 Introduction
	2 A Brief Overview of Index Tuning
	3 Budget-aware Index Tuning
	3.1 Cost Approximation via Derivation
	3.2 Budget Allocation in Configuration Search
	3.3 Problem Statement

	4 Budget-aware Greedy Search
	4.1 Order Insensitivity
	4.2 Budget-aware Greedy Variants

	5 Budget Allocation with MCTS
	5.1 An MDP View of Configuration Search
	5.2 MCTS for Budget-aware Index Tuning

	6 Implementations of MCTS Policies
	6.1 Action Selection Policy
	6.2 Rollout Policy
	6.3 Extraction of the Best Configuration

	7 Experimental Evaluation
	7.1 Comparison with Baselines
	7.2 Comparison with Existing RL Approaches
	7.3 Comparison with DTA

	8 Related Work
	9 Conclusion
	References

