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ABSTRACT
Modern database systems rely on cost-based query op-
timizers to come up with good execution plans for in-
put queries. Such query optimizers rely on cost mod-
els to estimate the costs of candidate query execution
plans. A cost model represents a function from a set
of cost units to query execution cost, where each cost
unit specifies the unit cost of executing a certain type of
query processing operation (such as table scan or join).
These cost units are traditionally viewed as constants,
whose values only depend on the platform configura-
tion where the database system runs on top of but are
invariant for queries processed by the database system.
In this paper, we challenge this classic view by thinking
of these cost units as variables instead. We show that, by
varying the cost-unit values one can obtain query plans
that significantly outperform the default query plans re-
turned by the query optimizer when viewing the cost
units as constants. We term this cost-unit tuning process
“query tuning” (QT) and show that it is similar to the
well-known hyper-parameter optimization (HPO) prob-
lem in AutoML. As a result, any state-of-the-art HPO
technologies can be applied to QT. We study the QT
problem in the context of anytime tuning, which is de-
sirable in practice by constraining the total time spent on
QT within a given budget—we call this problem budget-
aware query tuning. We further extend our study from
tuning a single query to tuning a workload with multiple
queries, and we call this generalized problem budget-
aware workload tuning (WT), which aims for minimiz-
ing the execution time of the entire workload. WT is
more challenging as one needs to further prioritize indi-
vidual query tuning within the given time budget. We
propose solutions to both QT and WT and experimen-
tal evaluation using both benchmark and real workloads
demonstrates the efficacy of our proposed solutions.

1. INTRODUCTION
Modern database systems rely on cost-based query

optimizers to come up with good execution plans for in-
put queries. Such query optimizers rely on cost models

Cost Unit Default Value
seq_page_cost 1.0

random_page_cost 4.0
cpu_tuple_cost 0.01

cpu_index_tuple_cost 0.005
cpu_operator_cost 0.0025
parallel_tuple_cost 0.1

Table 1: Examples of cost units used by Post-
greSQL’s query planner/optimizer [1].
to estimate costs of candidate query execution plans. A
cost model represents a function from a set of cost units
to the query execution cost, where each cost unit spec-
ifies the unit cost of executing a certain type of query
processing operation (such as table scan or join). For
instance, Table 1 presents some of the cost units used by
PostgreSQL’s query optimizer [1]. This paradigm is fol-
lowed by other mainstream query processing engines as
well, such as Microsoft SQL Server [8], IBM DB2 [25],
and Apache Spark [15]. These cost units are tradition-
ally viewed as constants [1], whose values only depend
on the platform configuration (e.g., CPU speed) where
the query processing engine runs on top of and need to
be calibrated against the platform [11,26,34,35,36,38];
however, they are invariant regardless of the queries be-
ing processed by the database system.

In this paper, we challenge this classic view by think-
ing of these cost units as variables instead that can be
changed across queries. We show that, by varying the
cost-unit values one can obtain query plans that signif-
icantly outperform the default query plans returned by
the query optimizer when viewing the cost units as con-
stants. We call this per-query cost-unit tuning process
“query tuning” (QT). At a high-level, query tuning is
similar to the hyper-parameter optimization (HPO) prob-
lem [39] from automated machine learning (a.k.a. Au-
toML), which has received tremendous attention in re-
cent years [13]. While the HPO probem aims to find
appropriate hyper-parameter values, such as the learn-
ing rate and batch size when using stochastic gradient
descent (SGD) to train a deep neural network, that can
improve the quality of the ML model, QT shares the
similar goal of improving the quality of the query plan
by seeking appropriate values of the cost units.
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The similarity between QT and HPO implies that ex-
isting HPO technologies can be directly applied to QT.
However, a straightforward application is less attractive,
as most of the existing HPO technologies are not budget-
aware, namely, they do not constrain themselves to con-
form to a user-specified tuning time budget. There are
so far only a few exceptions, including Hyperband [20],
BOHB [12], CFO [33], and BlendSearch [30], which
allow user to specify a timeout and will exit HPO once
the timeout is reached. However, in practice one often
wants to tune multiple queries (called a workload) alto-
gether instead of tuning just one single query. None of
the above work on HPO can be directly applied to this
multi-query workload tuning (WT) problem.

In this paper, we study the budget-aware QT and WT
problems. We propose solutions to both problems and
evaluate their efficacy using both benchmark and real
workloads. The query plans found by our current so-
lutions can significantly improve over the default query
plans generated by the query optimizer while conform-
ing to the tuning time budget.

The idea of tuning query performance has been ex-
tensively explored in the literature but in different sense
compared to the one proposed in this paper. Lots of re-
cent work has been devoted to the so-called knob tun-
ing (see [40] for a recent survey). Some existing work,
e.g., UDO [31], also views the cost units studied in this
paper as tunable knobs, though we think the cost units
should be separated from other knobs and are worth its
own treatment for the following reasons. First, some
of the knobs are related to the runtime configurations
of the database server, e.g., buffer pool size. Chang-
ing those knobs often requires a server restart that may
not be feasible in many situations (e.g., cloud database
services with stringent SLA’s). In contrast, tuning the
cost units does not require a server restart and there-
fore does not pose significant impact on the runtime
state of the database server. Second, while there are
also other knobs that do not require server restart, e.g.,
max_parallel_workers for PostgreSQL, such knobs only
affect the running time of the query plan that has al-
ready been chosen by the query optimizer. In contrast,
cost units can affect the decision made by the query
optimizer in terms of choosing which query plan for
execution. This is indeed a more fundamental distinc-
tion when viewing cost units as tunable knobs. In this
spirit, the cost units can be thought of as a certain type
of query hint [7]. However, the goal of query hint is
to constrain the search space of the query optimizer to
avoid bad query plans that could have been proposed
by the optimizer without such restrictions; on the other
hand, tuning cost units actually gives the optimizer more
freedom in terms of proposing query plans, and the de-
cision of picking the best plan is deferred to the mo-

ment when actual plan execution time is observed. Due
to their overheads, the query/workload tuning technolo-
gies studied in this paper can perhaps only be applied
to recurring queries/workloads, where one can tune the
queries/workloads in an offline manner and pay it as a
one-time price [14]. Nonetheless, given the strong con-
nection between QT and HPO, we believe that more
progress can be made in the future to enable QT for tun-
ing more adhoc workloads in an online fashion.

2. PROBLEM FORMULATION
We assume that a query optimizer uses a cost model

configured with a set of tunable parameters, referred to
as cost units (ref. Table 1 for examples), to estimate the
cost of a candidate query execution plan. The plan with
the lowest estimated cost is returned by the optimizer for
final query execution. Without loss of generality, we use
u⃗ to represent the set of tunable cost units as an ordered
vector. Given a query q, we use P (q, u⃗) to represent
the query plan returned by the query optimizer with the
cost units u⃗. Different values of u⃗ may therefore yield
different query plans. We next formulate the problems
of budget-aware query tuning and workload tuning.

2.1 Budget-aware Query Tuning
Let q be a specific query, and let U be the search

space of u⃗. That is, if u⃗ = (u1, ..., um) where each ui is
within some range/domain Di (e.g., ui ∈ [ai, bi]), then
U =

∏m
i=1 Di. This covers both discrete and continu-

ous cost units, though in practice cost units are typically
continuous (within certain ranges).

Let B be a given budget on the tuning time. Let u⃗1, ...,
u⃗K be the successive trials on the cost units. Let t(q, u⃗j)
be the execution time of the corresponding query plan
P (q, u⃗j), for 1 ≤ j ≤ K. The budget constraint can
then be expressed as

∑K
j=1 t(q, u⃗j) ≤ B. The problem

of budget-aware query tuning is defined as:

Definition 1 (Budget-aware Query Tuning). Find u⃗∗ =
argmin1≤j≤K{t(q, u⃗j)} w.r.t.

∑K
j=1 t(q, u⃗j) ≤ B.

2.2 Budget-aware Workload Tuning
Let W = {q1, ..., qn} be a workload of n queries.

Let fi be the frequency of the query qi being tuned. For
qi, we define its total tuning time ti =

∑fi
j=1 t(qi, u⃗ij),

where u⃗ij represents (the cost units of) the j-th trial of
qi. The budget constraint at workload-level can then be
expressed as

∑n
i=1 ti ≤ B.

Definition 2 (Budget-aware Workload Tuning). Find

u⃗∗
i = argmin1≤j≤fi{t(qi, u⃗ij)}

for 1 ≤ i ≤ n w.r.t. the budget constraint
∑n

i=1 ti ≤ B.

Remark. The above definition automatically minimizes
the workload execution time w.r.t. the budget constraint
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on tuning time, which can be expressed as

t(W, u⃗∗
W ) = t(q1, ..., qn, u⃗

∗
1, ..., u⃗

∗
n) =

∑n

i=1
t(qi, u⃗

∗
i ).

Discussion. An alternative of Definition 2 is to find
one set of cost units for the entire workload, instead of
one set of cost units for each individual query. Specifi-
cally, let u⃗1, ..., u⃗K be the successive trials on the cost
units for the entire workload W , and let t(W, u⃗j) =∑n

i=1 t(q, u⃗j) be the total workload execution time.

Definition 3 (Query-independent Budget-aware Work-
load Tuning). Find u⃗∗ = argmin1≤j≤K{t(W, u⃗j)} w.r.t.
the budget constraint

∑K
j=1 t(W, u⃗j) ≤ B.

When the budget B is sufficient, Definition 2 is more
general than Definition 3, because we should be able to
get the same or a better query plan for each query under
Definition 2. To see this, notice that the best sets of
cost units for individual queries are not necessarily the
same, which, on the other hand, is an implicit constraint
under Definition 3. It remains interesting to empirically
compare Definitions 2 and 3 when budget is limited, and
we leave this as one direction for future work.

3. PROPOSED SOLUTIONS
Below we propose solutions to budget-aware query

tuning (QT) and workload tuning (WT).
3.1 Budget-aware Query Tuning

Since QT is similar to HPO, in theory any HPO algo-
rithm A can be adapted to work for QT. For example,
random search is a simple but competitive algorithm for
HPO [5]. It can be easily customized to a budget-aware
algorithm by monitoring the time spent on each random
trial and terminating once the timeout is reached.
Optimization by Plan Caching. Since different cost
units may result in the same query execution plan, it is
possible that some plan P (q, u⃗j) is a duplicate of an-
other plan P (q, u⃗i) (i < j) in the sequence u⃗1, ..., u⃗K .
One optimization is therefore to maintain a cache for ob-
served plans, if memory is not constrained. The tuning
time of a duplicate plan is set to zero.
Optimization by Early Stopping. Since only the op-
timal u⃗∗ matters, we can safely stop executing a plan
P (q, u⃗j) if t(q, u⃗j) ≥ t(q, u⃗∗

j ), where t(q, u⃗∗
j ) is the

lowest execution time observed up to the j-th trial. In
practice, we usually have a default value u⃗0 for u⃗ (e.g.,
the built-in values such as the ones shown in Table 1 for
PostgreSQL). As a special case of the above “early stop-
ping” idea, we can stop executing P (q, u⃗j) if t(q, u⃗j) ≥
t(q, u⃗0). This is also a worst-case scenario, as we have
t(q, u⃗∗

j ) ≤ t(q, u⃗0), obviously.

3.2 Budget-aware Workload Tuning
WT is more complicated than QT, as one has to de-

cide which query to tune next while conforming to the

total budget on tuning time. We propose the following
four strategies: (1) round robin; (2) cost-based priori-
tization; (3) multi-armed bandit; (4) improvement rate.
Moreover, both the plan-cache based optimization and
the early-stopping optimization can be used for WT.

3.2.1 Round Robin
The round robin strategy simply rotates among the

queries and stops when the tuning time budget is ex-
hausted. Albeit a simple strategy, it has been deemed as
a robust and strong baseline in the literature [21].

3.2.2 Cost-based Prioritization
This strategy is inspired by the idea of using a priority

queue to prioritize query tuning in Microsoft’s Database
Tuning Advisor (DTA) [9]. Specifically, we order the
queries by their best execution time observed so far and
then select the slowest query to tune next.

3.2.3 Multi-armed Bandit
This strategy models workload tuning as a multi-armed

bandit problem. Specifically, we view each query as an
arm, and use the well-known UCB1 score [2, 3] as the
criterion for selecting the next query to tune:

argmax
q

[
r̄(q) + λ ·

√
lnN

fq

]
.

Here, λ is a constant that balances exploration and ex-
ploitation. We choose λ =

√
2 as suggested in the lit-

erature [17]. fq is the number of times (i.e. frequency)
that query q is tuned, and N =

∑
q∈W fq . r̄(q) is the

average reward of q. The reward r(q, u⃗) of tuning q
with cost units u⃗ is defined as its relative improvement
over the query execution time with the default cost units
u⃗0: r(q, u⃗) = max{1 − t(q,u⃗)

t(q,u⃗0)
, 0}. That is, we cap the

reward at 0 if u⃗ is even worse than u⃗0. This should not
occur if the early-stopping optimization is used. The
average reward is therefore r̄(q) = 1

fq

∑fq
j=1 r(q, u⃗j).

Again, we stop when the tuning time budget is exhausted.

3.2.4 Improvement Rate
The improvement Ij(q) of a query q is defined as the

gap between its best execution time found so far and
the default execution time with cost units u⃗0. That is,
Ij(q) = max{t(q, u⃗0) − t(q, u⃗∗

j ), 0}, for 1 ≤ j ≤ fq .
Again, we cap the improvement at 0 if u⃗∗

j is worse than
u⃗0, which should not happen if the early-stopping opti-
mization is used. The improvement rate is then defined
as Rj(q) =

Ij(q)
fq

. This strategy always selects the query
with the highest improvement rate to tune next, which is
inspired by BlendSearch [30]. Again, we stop when the
tuning time budget is exhausted.

3.2.5 Summary and Discussion
The strategies discussed above are by no means per-

fect or exhaustive. We briefly discuss potential improve-

3



Name DB Size Queries Tables Joins Scans
JOB 9.2GB 33 21 7.9 8.9

TPC-DS sf =10 99 24 7.7 8.8
Real-A 100GB 25 20 6.5 7.2
Real-B 60GB 16 7 1.9 2.9

Table 2: Database and workload statistics.
ments, extensions, and other alternatives. First, it is not
necessary to always start running these strategies from
scratch. As we mentioned, there has been prior work on
calibrating cost units (e.g., [11,26,35]) by viewing them
as constants. These refined cost constants can be used
as starting points of the above strategies for further fine-
tuning. Second, the cost-unit calibration technologies
could themselves serve as solutions to the WT problem,
especially for its query-independent variant (see Defi-
nition 3), though in a budget-unaware sense. However,
these technologies typically come with additional im-
plementation overhead as well as subtleties that the WT
strategies proposed in this paper do not have. For exam-
ple, one technique used in [35] is to design a set of inde-
pendent “calibration queries” that can target individual
cost units. This is relatively easy for some database sys-
tems such as PostgreSQL but becomes more challenging
for others such as Microsoft SQL Server. Not only does
Microsoft SQL Server have many more cost units com-
pared to PostgreSQL, but some of its cost units are also
correlated. Since no calibration query can separate two
correlated cost units, the technique from [35] needs to
be extended, which requires further research.

4. EXPERIMENTAL EVALUATION
We report experimental results on evaluating the per-

formance of our proposed budget-aware query and work-
load tuning technologies.
Datasets and Workloads. We used various benchmark
and real workloads in our evaluation. For benchmark
workloads, we use the join order benchmark (JOB) [18],
as well as the TPC-DS benchmark with scaling factor
10. JOB contains 113 query instances in total, which
are grouped into 33 templates, and we pick one query in-
stance from each template. We use the same protocol for
TPC-DS. We choose these two benchmark workloads
due to the diversity and complexity in their queries that
offer more opportunities for finding better query plans
via query tuning. We also use two real workloads, de-
noted by Real-A and Real-B. Table 2 summarizes the
key statistics of these workloads. The last two columns
represent the average number of joins and table scans
contained by a query in the workload.
Experimental Settings. We perform all experiments
using Microsoft SQL Server 2017 under Windows Server
2022, running on a workstation equipped with 2.3 GHz
AMD CPUs and 256 GB main memory. We focus on
tuning eight cost units that are critical to the costs of
workhorse operators such as table scan, index seek, sort,

Name Default
Plan
(minutes)

Best Plan
(minutes)

Percentage
Improve-
ment (%)

Tuning
Time
(minutes)

JOB 3.72 1.33 64.2% 130
TPC-DS 4.74 3.24 31.6% 580
Real-A 13.96 7.36 47.3% 675
Real-B 13.21 8.38 36.5% 160

Table 3: Summary of query tuning results
hash join, and nested-loop join. For each cost unit c, we
set its range/domain as [0.1×cd, 10×cd] for exploration
(ref. Section 2.1), where cd is the default value of c.

4.1 Query Tuning Results
We use percentage improvement as the performance

metric, defined as 1 − t(Pbest)
t(Pdefault)

. t(Pbest) and t(Pdefault)
represent the execution time of the best plan found by
QT and that of the default plan chosen by the query op-
timizer (using the built-in values of the cost units).

For each query, we give the HPO algorithm A 100
trials, and report the best plan found. For the HPO al-
gorithm A, we evaluated both random search [5] and
SMAC [16], but we found that their performances were
similar. As a result, we only report results by using ran-
dom search, due to its simplicity and lower overhead.

Table 3 summarizes the QT results for the workloads
evaluated. We observe percentage improvement ranging
from 31.6% to 64.2% at workload level (i.e., the total ex-
ecution time of all queries). Figure 1 further showcases
the percentage improvement for each query in the JOB
workload, whereas Figure 2 presents the corresponding
execution time (in seconds) of the default plan and the
best plan found by QT. Note that we did not test the
budget-aware version of QT, as it is a special case of
budget-aware WT that will be covered in Section 4.2.
Case Study. We further present a case study of the JOB
query #5, which shows significant improvement in Fig-
ure 2. We observe that the most significant parameter
changes when tuning this query happen in cost units re-
lated to random reads and index seeks: the values of
these cost units are significantly decreased (by 5×) for
the best plan found by QT. Since the JOB database size
(ref. Table 2) is much smaller than the server’s memory
size (i.e., 256 GB), most of the database can be cached
in the main memory. As a result, random reads and in-
dex seeks are much faster compared to the case when
the database resides on disk. This sheds some light on
the significant improvement observed for this query.
Discussion. From Table 3, the improvements across
workloads vary. Clearly, the improvement is determined
by the gap between t(Pdefault) and t(Pbest). One impor-
tant factor that contributes to this gap is query complex-
ity: for a simple query with no joins, the gap is likely
small; for a complex query with many joins, the gap is
likely large. Meanwhile, the degree of cardinality es-
timation (CE) errors also matters, as it is well-known
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Figure 2: Execution time of default plan vs. best plan found by QT for each query of the JOB workload.
that query optimizers are likely to choose poor execu-
tion plans in the presence of CE errors [24]. Hence, we
would expect larger improvements for workloads with
complex queries and significant CE errors. From the re-
sults reported in Table 3, we observe the largest percent-
age improvement on the JOB workload. This does not
seem like a coincident, as JOB is intentionally designed
to challenge the cardinality estimators of query optimiz-
ers with complex join queries (ref. Table 2) [19].

4.2 Workload Tuning Results
We vary the budget on the time given to the work-

load tuning algorithms and test the percentage improve-
ment at workload-level. Figure 3 presents the results
on the workloads tested. The x-axis represents the tun-
ing time given to the algorithms, whereas the y-axis re-
ports the percentage improvement observed. To avoid
clutter, Figure 3 only includes the two best-performing
algorithms, round robin and multi-armed bandit, which
significantly outperform the other two algorithms, cost-
based prioritization and improvement rate (see Figure 4
for a comparison on TPC-DS). Moreover, the dashed
line in each chart represents the percentage improve-
ment observed in the QT experiment with 100 trials of
random search for each query, whereas the correspond-
ing tuning time has been reported in the last column of
Table 3. We observe that we can obtain similar per-
centage improvement with much less tuning time. For
example, on JOB it took only 80 minutes for both al-
gorithms to achieve the same percentage improvement,
compared to the 130 minutes in QT (i.e., 38.5% reduc-

tion); on Real-A, it took only 98 minutes for round robin
to achieve the same percentage improvement, in contrast
to the 675 minutes taken in QT (i.e., 85.5% reduction).
Comparison of Workload Tuning Algorithms. Fig-
ure 4 compares the four workload tuning algorithms with
varying tuning time budget, using the TPC-DS work-
load. We observe that round robin and multi-armed ban-
dit perform similarly, and they significantly outperform
the other two algorithms, cost-based prioritization and
improvement rate. The cost-based prioritization strat-
egy often does not perform well in a budget-aware set-
ting, because it can often get stuck on some very expen-
sive query that is also hard to improve. The improvement
rate strategy bypasses this issue by focusing on tuning
queries that can improve quickly. As a result, it im-
proves over the cost-based prioritization strategy. How-
ever, it remains less effective compared to round robin
and multi-armed bandit. On the other hand, it is some-
what surprising to see round-robin performs closely to
the best-performing multi-armed bandit strategy in most
of the cases. One reason could be that, for the workloads
that we tested, all queries are worth tuning and there is
little need to prioritize. However, we do not expect that
this property holds in general, and we expect that the
multi-armed bandit strategy should outperform round-
robin for workloads with more heterogeneous queries.
The question of designing a better strategy for budget-
aware workload tuning (other than the ones studied in
this paper, which are somewhat standard) remains open
and we intend to leave it for future work.
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Figure 3: Percentage improvement resulted from workload tuning when varying the budget on tuning time.
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Figure 4: Comparison of WT algorithms on TPC-DS

5. RELATED WORK
Autonomous Knob Tuning. The problem of knob tun-
ing for database systems has attracted intensive research
interest (see [40] for a recent survey on this topic). Some
existing work, such as UDO [31], also views the query
optimizer cost units as tunable knobs. Our view is that
the cost units are different from other runtime configu-
ration knobs that change the database server’s runtime
state. The main impact of the cost units is to influence
the query optimizer to generate different query plans.
Autonomous Index Tuning. While some existing work
also considers index tuning as part of knob tuning (e.g.,
UDO [31]), we do think that it falls into another spe-
cial category of database tuning, just like tuning the cost
units, which is worth its own treatment. The reason
is similar—index tuning has a different impact on the
database system compared to knobs that can change the
database server’s runtime state. Specifically, index tun-
ing will change the physical data layout of the database,
which in some sense is more dramatic as it has broader
impact on various database system components, such as
metadata management, query optimizer’s plan choice,
statistics (such as histograms) maintenance, and so on.
We refer the readers to [28] for a recent survey on index
tuning. The idea of budget-aware index tuning has also
been explored recently [32,37], with the similar motiva-
tion of constraining the tuning time in practice.
Hyper-parameter Optimization. The HPO problem
has been extensively studied in the literature (see [39]
for a survey). In addition to simple strategies such as
random search [5] and bandit-based strategies such as
Hyperband [20], many HPO strategies rely on classic
Bayesian Optimization (BO), such as Hyperopt [4, 6],
SMAC [16,23], Spearmint [29], BOHB [12], and Open-

Box [22]. These BO-style HPO strategies view the func-
tion from the hyper-parameter values to the ML model
quality metric (e.g., accuracy) as a black box without uti-
lizing workload properties. While in this paper we use
these off-the-shelf HPO strategies without modification,
an interesting future direction to explore is to leverage
the similarity among the workload queries [10, 27] and
use that information to improve BO-style strategies.

6. CONCLUSION
In this paper, we proposed the budget-aware query

tuning and workload tuning problems. We highlighted
the connection between the query tuning problem and
the hyper-parameter optimization (HPO) problem in Au-
toML, and we proposed solutions based on adapting ex-
isting HPO algorithms such as random search and SMAC.
Experimental evaluation shows that (1) query tuning can
result in much faster query plans compared to the ones
generated by the query optimizer based on the default
values of the cost units; and (2) budget-aware workload
tuning using simple strategies such as round robin or
multi-armed bandit can significantly reduce the amount
of tuning time at workload-level.

We note that the query and workload tuning technolo-
gies proposed in this paper are rudimentary as they are
simple applications of existing well-known technologies.
As a result, they should serve as baseline approaches
that future research can reference and compare against.
One promising direction for future work, as we briefly
mentioned, is to further leverage the similarities among
workload queries to improve the BO-style approaches.
For instance, a particular set of cost-unit values may be
optimal for multiple queries if they share common SQL
expressions. As a result, one may want to perform a
clustering on the queries and tune each group/cluster of
queries as an independent, smaller workload. This can
further reduce the tuning time on a large workload, or
can have more potential of finding better query plans
within a given tuning time budget. Nonetheless, it also
raises new challenges such as how to cluster the queries
and how to prioritize among the query clusters during
workload tuning, which requires further investigation.
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