
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Hybrid Cost Modeling for Reducing Query
Performance Regression in Index Tuning

Wentao Wu

Abstract—Autonomous index tuning (“auto-indexing” for short) has recently started being supported by cloud database service
providers. Index tuners rely on query optimizer’s cost estimates to recommend indexes that can minimize the execution cost of
an input workload. Such cost estimates can often be erroneous that lead to significant query performance regression. To reduce
the chance of regression, existing work primarily uses machine learning (ML) technologies to build prediction models to improve
query execution cost estimation using actual query execution telemetry as training data. However, training data collection is
typically an expensive process, especially for index tuning due to the significant overhead of creating/dropping indexes. As a
result, the amount of training data can be limited in auto-indexing for cloud databases. In this paper, we propose a new approach
named “hybrid cost modeling” to address this challenge. The key idea is to limit the ML-based modeling effort to the leaf operators
such as table scans, index scans, and index seeks, and then combine the ML-model predicted costs of the leaf operators with
optimizer’s estimated costs of the other operators in the query plan. We conduct theoretical study as well as empirical evaluation
to demonstrate the efficacy of applying hybrid cost modeling to index tuning, using both industrial benchmarks and real workloads.

Index Terms—Query optimization, cost modeling, autonomous index tuning

✦

1 INTRODUCTION

There has been extensive research in the area of index
tuning over the past decades (see [40] for a recent survey).
Major commercial database systems, including Oracle [14],
IBM DB2 [45], and Microsoft SQL Server [11], are all
equipped with index tuning tools. Existing tools adopt a
cost-based approach that selects an index configuration
(i.e., a subset) from a number of candidates that results in
the minimum query optimizer’s estimated cost for a given
workload with multiple queries [11]. A basic yet critical
step involved in this process is therefore to estimate the
cost for a query over a candidate index configuration. While
implementations vary, most existing systems rely on the so-
called “what-if” utility that allows the optimizer to generate
query plans and estimate their costs for a given pair of
query and index configuration by creating the indexes as
“hypothetical indexes” that are not materialized [12].

Figure 1 outlines this cost-based index tuning architec-
ture. The index tuner sends a query Q with the description
of a candidate index configuration C to the query optimizer.
The “what-if” utility of the query optimizer simulates C by
creating the hypothetical indexes contained by C. That is, it
generates all metadata and statistics information about these
indexes and makes them visible to the query optimizer. The
query optimizer utilizes this information to estimate costs
for query plans that use the indexes in C. The best plan
P chosen by the query optimizer under the configuration
C, along with the query optimizer’s cost estimate for P , is
returned to the index tuner.

In recent years, cloud database providers have started

• Wentao Wu is with Microsoft Research, Redmond, WA, USA. E-mail:
wentao.wu@microsoft.com.

Index

Tuning

“What-If”

Utility

Query

Optimizer

(Q, C)

Q: query, C: hypothetical index configuration, P: query plan

(P, cost-est(P))

Fig. 1. Architecture of cost-based index tuning.
offering autonomous index tuning service (“auto-indexing”
for short), during which indexes are recommended and
applied directly to production database servers in a con-
tinuous manner by monitoring the database query work-
loads [15]. Since the indexes are recommended based
on query optimizer’s estimated costs, query performance
regression (QPR) is likely to happen after the recommended
indexes are materialized, due to errors from various sources
such as cardinality estimation and cost modeling [17].
Such QPR can often be significant and, to fix QPR, the
created indexes have to be dropped [15]. Therefore, the
time and resource spent on auto-indexing is often wasted
due to QPR. To reduce the chance of QPR, most existing
solutions (e.g., [17, 37, 54]) rely on building machine
learning (ML) models to improve query execution time pre-
diction by leveraging query execution feedback. Compared
to earlier technologies on improving query optimizer’s
estimated costs, such as calibration of cost model constants
(e.g., [18, 30]), or improving cardinality estimation with
execution feedback (e.g., [9]) or sampling (e.g., [50, 51]),
ML-based cost modeling has the privilege of optimizing
for the cost estimation errors directly (instead of reducing
errors in individual components of cost modeling) and
therefore typically results in better cost estimates.

One major challenge faced when applying these learning-
based cost modeling techniques in practice is the collec-
tion of training data, which is an expensive process in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Index
Tuning

“What-If”
Utility

Query
Optimizer

“What-If”
Utility

Query
Optimizer

(Q, C)

Q: query, C: hypothetical index configuration, P: query plan

(P, cost-est(P))

Hybrid Cost
Modeling

(P, refined-cost-est(P))

Execution
Feedback

Index
Tuning

“What-If”
Utility

Query
Optimizer

(Q, C)

Q: query, C: hypothetical index configuration, P: query plan

(P, cost-est(P))

Hybrid Cost
Modeling

(P, refined-cost-est(P))

Execution
Feedback

Fig. 2. Revised architecture of index tuning using
query execution feedback and hybrid cost modeling.
general [46]. This challenge becomes even more severe
when it comes to index tuning [17], due to the signifi-
cant overhead of creating/dropping indexes. As a result,
in the cloud auto-indexing scenario it is not feasible to
proactively collect training data from the production server,
which would result in dramatic interruption or slowdown
of customer workloads. One proposal in the literature is to
use a B-instance (i.e., a replica) that mirrors the production
database server but does not serve customer workloads at
real time [29]. Nonetheless, the operational cost of using
B-instance is often prohibitive for cloud database service
providers [15]. Therefore, in reality one could only hope
for limited amount of training data to be passively obtained
during auto-indexing by monitoring query execution, which
becomes a bottleneck for training ML-based cost models.

In this paper, we propose “hybrid cost modeling” to
address the challenge of limited execution data for training
ML models, in the context of auto-indexing. Our main idea
is to only train ML models for leaf operators in query
execution plans such as table scans, index scans, and index
seeks. We then develop a simple yet principled approach to
combine the ML model predictions for the execution costs
of the leaf operators and the query optimizer’s estimated
execution costs of the other operators in the query plan.
We conduct both theoretical analysis and experimental
evaluation to demonstrate the efficacy of our proposed
approach in improving index tuning, using both industrial
benchmarks and real workloads.

Figure 2 presents the revised index tuning architecture
that leverages query execution feedback and hybrid cost
modeling. After the query optimizer returns the best plan
P , we refine its cost estimate using hybrid cost modeling on
top of available query execution feedback. We then send the
refined cost estimate, instead of the original cost estimate
from the query optimizer, to the index tuner. Note that our
approach is passive rather than proactive: We do not use
hybrid cost modeling inside query optimizer to affect its
plan choice, which could be another option but also require
surgical change to the query optimizer. As a result, if the
query optimizer ends up with choosing a poor execution
plan because of bad cost estimates, we cannot bail it out.
However, by refining cost estimates afterwards, we increase
the chance of detecting such bad plans during index tun-
ing and therefore avoiding corresponding disastrous index
configurations in future tuning sessions that may lead to
serious query performance regression [17].

O5

O4

O1 O2

O3

R S

T

(Index Scan,

20, 10s)

(Index Seek,

2, 5s)

(Table Scan,

200, 20s)

(Nested-Loop,

500, N/A)

(Hash Join, 300, N/A)

Fig. 3. A running example of hybrid cost modeling.

Cost Unit Default Value
seq page cost 1.0

random page cost 4.0
cpu tuple cost 0.01

cpu index tuple cost 0.005
cpu operator cost 0.0025
parallel tuple cost 0.1

TABLE 1
Cost units used by PostgreSQL’s query optimizer [2].

(Paper Organization) The rest of the paper is organized as
follows. We propose hybrid cost modeling in Section 2 and
present an analysis of its efficacy in Section 3. In Section 4,
we present experimental evaluation results of applying hy-
brid cost modeling in auto-indexing. We summarize related
work in Section 5 and conclude in Section 6.

2 HYBRID COST MODELING

The idea of having ML-model predicted execution costs for
the leaf operators and query optimizer’s estimated costs for
the other operators simultaneously in the same query plan
raises a new challenge of combining two different types of
cost estimates. To understand the issue of hybrid operator-
level cost estimates better, Figure 3 presents an annotated
query execution plan as a running example.

Here R, S, and T are tables, whereas O1 to O5 are
physical operators. We annotate each operator with its type
and estimated cost. In this example, the cost estimates
for the three leaf operators O1, O2, and O3 come from
ML-based cost models, which indicate the estimated CPU
execution time of these operators. On the other hand, the
cost estimates for the two internal operators O4 and O5 are
made by the optimizer, which also measure the ‘execution
time’ of these operators but are based on the built-in cost
units of the query optimizer. For the purpose of illustration,
Table 1 presents some examples of such cost units used by
PostgreSQL’s query optimizer [2]. The semantics of these
cost units are optimizer-specific. While their semantics
are consistent (and therefore can be combined) inside the
query optimizer’s own cost modeling system, they may not
be aligned with ML-model predicted costs. Therefore, it
may be invalid to directly combine (e.g., sum up) model
predictions with query optimizer’s estimated costs.

2.1 Combining Mixed Types of Cost Estimates
We propose hybrid cost modeling, a simple yet principled
approach to combining different types of operator-level cost
estimates that coexist in the same query plan, which can be

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Algorithm 1: Hybrid cost modeling.
Input: P , a query plan; O, the set of operators

with sufficient execution feedback; M, the
operator-level ML-based cost models built
with execution feedback of O.

Output: cost(P), estimated cost of P .
1 cost(P)← 0;
2 opivot ← PickP ivot(O); // Find the “pivot”

operator (see Algorithm 2 for details).
3 foreach operator o ∈ P do
4 if there is a model M ∈M for o then
5 ml-cost(o)←M(o);
6 cost(P)←

cost(P) + ml-cost(o)
act-cost(opivot) · opt-cost(o

pivot);
7 else
8 cost(P)← cost(P) + opt-cost(o);
9 end

10 end
11 return cost(P);

Notation Description
o An operator in the query plan
opt-cost(o) The query optimizer’s estimated cost of o
act-cost(o) The actual execution cost of o
ml-cost(o) The cost estimate of o from ML-based cost models
opivot The pivot operator

TABLE 2
Terminology and notation used by Algorithm 1.

viewed as a generalized form of cost-unit calibration [18,
30, 49, 50, 51, 53]. Algorithm 1 presents the details. We
summarize the notation used by Algorithm 1 in Table 2.

Our main idea is the following. We choose one “pivot”
operator opivot from the operators with execution feedback
(line 2). We use the execution cost of opivot as a baseline,
and compute the relative cost

rel-cost(o) =
ml-cost(o)

act-cost(opivot)
(1)

for any operator o in the given plan P where we have
an ML-based operator-level cost model. We then scale the
relative cost back using opt-cost(opivot). For any operator
in P without an ML-based cost model, we simply use the
query optimizer’s cost estimate for it (lines 3 to 10).

Example 1: Continue with the running example in Fig-
ure 3. Given the three operators O1 to O3 with available
execution feedback, suppose that we choose O3 as the pivot
operator. Assume that the ML-based cost models for table
scans, index scans, and index seeks are perfect, i.e., for any
such operator o we would have ml-cost(o) = act-cost(o).
The relative costs of O1, O2, and O3 are then

rel-cost(O1) =
ml-cost(O1)
act-cost(O3)

= act-cost(O1)
act-cost(O3)

= 10
20 = 0.5,

rel-cost(O2) =
ml-cost(O2)
act-cost(O3)

= act-cost(O2)
act-cost(O3)

= 5
20 = 0.25,

and

rel-cost(O3) =
ml-cost(O3)

act-cost(O3)
=

act-cost(O3)

act-cost(O3)
=

20

20
= 1.

Notation Description
L Leaf operators
I Internal operators
P Plan CPU time
L Leaf CPU time
I Internal CPU time
α ρ(L, I), Pearson CC between L and I
σL Standard deviation of L
σI Standard deviation of I
η η = σL

σI

P ′ Estimated plan cost
L′ Estimated leaf cost
I′ Estimated internal cost
σL′ Standard deviation of L′

σI′ Standard deviation of I′

η′ η =
σL′
σI′

β ρ(L, I′), Pearson CC between L and I′

γ ρ(I, I′), Pearson CC between I and I′

ρ ρ(P, P ′), Pearson CC between P and P ′

TABLE 3
Notation used in problem formulation and analysis.

Meanwhile, the scaling factor is opt-cost(O3) = 200. Con-
sequently, the adjusted estimated costs for O1, O2, and O3

are 0.5× 200 = 100, 0.25× 200 = 50, and 1× 200 = 200.
Therefore, the final estimated cost for the example plan P
is cost(P) = 100 + 50 + 200 + 500 + 300 = 1150.

2.2 Application to Index Tuning
Note that Algorithm 1 remains generic as we have not
yet specified the input set of operators O. While O can
be arbitrary in theory, it is typically application-driven. In
the context of index tuning, we propose to focus on leaf
operators, including table scans, index scans, index seeks,
and so on (depending on the operator types supported by
the database system), for the following reasons:

• First, the operators in O should have sufficient amount
of execution feedback (as auto-indexing proceeds).

• Second, the operators should cover significant amount
of work performed by a query plan.

• Third, the operators should reflect the impact of auto-
indexing on a query plan.

In the rest of the paper, we call the operators in O the
backbone operators, with the understanding that they refer
to the leaf operators when applied to auto-indexing. More-
over, while Algorithm 1 assumes that the ML-based cost
models are already built and frozen, this is not necessary
in reality. As we accumulate more and more execution
feedback during auto-indexing, it makes sense to train the
ML models again with the new execution data collected.

2.3 Selection of Pivot Operator
Note that Algorithm 1 does not specify how to select the
pivot operator opivot. In theory, we could pick any operator
with execution feedback. However, it is clear that the choice
of opivot has impact on the estimated cost, because we
use opt-cost(opivot) as the scaling factor when combining
with query optimizer’s cost estimates. To better understand
this impact, we need a quantitative metric to measure the
efficacy of hybrid cost modeling.

Since we primarily target auto-indexing as the applica-
tion scenario, we are not very interested in the accuracy

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

of the estimated costs returned by hybrid cost modeling.
Instead, we care more about whether we can compare
query plans based on the estimated costs. Therefore, we are
satisfied as long as we can distinguish good plans from bad
ones by using the estimated costs. For example, we perhaps
only need to know that one plan is 20% better/cheaper
than the other one, if we use 20% as the threshold of
query performance regression. This suggests that we should
consider the correlation between the estimated costs and
actual execution costs of the plans. Therefore, we use the
well-known Pearson correlation coefficient (Pearson CC) as
our metric to quantify the efficacy of hybrid cost modeling.

Below we start with a problem formulation, followed
by a correlation analysis of hybrid cost modeling. Table 3
summarizes the notation that we will use in our analysis.
We then present a simple mechanism for selecting the pivot
operator by maximizing the correlation.

2.3.1 Problem Formulation
We use P , L, and I to represent the total CPU time
spent on the entire plan, the leaf operators, and the in-
ternal operators, respectively. Clearly, P = L + I , where
L =

∑
o∈L act-cost(o) and I =

∑
o∈I act-cost(o).

Similarly, we can represent the estimated plan cost as
P ′ = L′ + I ′, where, by Algorithm 1,

L′ =
∑

o∈L

ml-cost(o)

act-cost(opivot)
· opt-cost(opivot) (2)

and
I ′ =

∑
o∈I

opt-cost(o). (3)

To simplify our analysis, assume that the ML-based cost
models are perfect, namely, ml-cost(o) = act-cost(o) for
any o ∈ L. The impact of cost modeling errors can be
easily incorporated. Moreover, define a constant

λ =
opt-cost(opivot)

act-cost(opivot)
. (4)

By Equation 2, it follows that

L′ = λ ·
∑

o∈L
act-cost(o) = λ · L. (5)

2.3.2 Correlation Analysis
We are interested in the Pearson correlation coefficient
ρ(P, P ′) between the actual plan execution cost P and the
estimated plan cost P ′ using hybrid cost modeling. Based
on the formulation in Section 2.3.1, we have

ρ = ρ(P, P ′) = ρ(L+I, L′+I ′) = ρ(L+I, λ·L+I ′). (6)

With the notation in Table 3, we have the following lemma.
Lemma 2: ρ only depends on η, η′, α, β, and γ. Specif-

ically, we have the following relationship:

ρ =
ηη′ + αη′ + βη + γ√

η2 + 2αη + 1 ·
√
(η′)2 + 2βη′ + 1

. (7)

Proof: By Equation 6, we have

ρ = ρ(L+ I, λL+ I ′) =
Cov(L+ I, λL+ I ′)

σL+I · σλL+I′
.

By the definition of covariance,

Cov(L+ I, λL+ I ′) = E[(L+ I)− E(L+ I)][(λL+ I ′)− E(λL+ I ′)].

Using simple arithmetic calculation, we can obtain

Cov(L+ I, λL+ I ′) = λσ2
L + λ · Cov(L, I) + Cov(L, I ′) + Cov(I, I ′).

On the other hand, by the definition of variance, we have

σ2
L+I = E[(L+ I)− E(L+ I)]2 = σ2

L + 2 · Cov(L, I) + σ2
I .

Similarly, we have

σ2
λL+I′ = λ2σ2

L + 2λ · Cov(L, I ′) + σ2
I′ .

Using the relationships

Cov(L, I) = ρ(L, I)σLσI = ασLσI ,

Cov(L, I ′) = ρ(L, I ′)σLσI′ = βσLσI′ ,

Cov(I, I ′) = ρ(I, I ′)σIσI′ = γσIσI′ ,

it then follows that

Cov(L+ I, λL+ I ′) = λσ2
L + λασLσI + βσLσI′ + γσIσI′ ,

σ2
L+I = σ2

L + 2ασLσI + σ2
I ,

σ2
λL+I′ = λ2σ2

L + 2λβσLσI′ + σ2
I′ .

As a result, we have

ρ =
λσ2

L + λασLσI + βσLσI′ + γσIσI′√
σ2
L + 2ασLσI + σ2

I ·
√
λ2σ2

L + 2λβσLσI′ + σ2
I′

.

Dividing both the numerator and the denominator by σIσI′ ,

ρ =
λσL

σI

σL

σI′
+ λα σL

σI′
+ β σL

σI
+ γ√(

σL

σI

)2
+ 2ασL

σI
+ 1 ·

√
λ2

(
σL

σI′

)2
+ 2λβ σL

σI′
+ 1

.

Since η = σL

σI
and η′ = σL′

σI′
= λσL

σI′
, it follows that

ρ =
ηη′ + αη′ + βη + γ√

η2 + 2αη + 1 ·
√

(η′)2 + 2βη′ + 1
.

This completes the proof of the lemma.
We have several interesting observations by Lemma 2.

First, we have the following lower bounds for ρ that only
depend on η and η′ (Theorem 3 and Corollary 4).

Theorem 3: Define a function

f(η, η′) =
ηη′ − η′ − η − 1

(η + 1)(η′ + 1)
=

1− 1
η −

1
η′ − 1

ηη′

(1 + 1/η)(1 + 1/η′)
.

For any 0 ≤ η, η′ <∞, we have ρ ≥ f(η, η′).
Proof: We have −1 ≤ α, β, γ ≤ 1. By Equation 7,

ηη′ + αη′ + βη + γ ≥ ηη′ − η′ − η − 1,√
η2 + 2αη + 1 ≤

√
η2 + 2η + 1 = η + 1,√

(η′)2 + 2βη′ + 1 ≤
√
(η′)2 + 2η′ + 1 = η′ + 1.

As a result, it follows that ρ ≥ ηη′−η′−η−1
(η+1)(η′+1) = f(η, η′).

This completes the proof the theorem.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Algorithm 2: Selection of the pivot operator.
Input: O, the set of backbone operators.
Output: opivot, the pivot operator.

1 opivot ← nil; λ← 0;
2 foreach o ∈ O do
3 λo ← opt-cost(o)

act-cost(o) ;
4 if λo > λ then
5 λ← λo;
6 opivot ← o;
7 end
8 end
9 return opivot;

Corollary 4: Define a function

g(η, η′) =
η

η + 1
· η′

η′ + 1
=

1

1 + 1/η
· 1

1 + 1/η′
.

If 0 ≤ α, β, γ ≤ 1, then ρ ≥ g(η, η′).
The proof is very similar to that of Theorem 3 and thus

omitted. Clearly, g(η, η′) > f(η, η′). Intuitively, positive α,
β, and γ suggest positive correlations between L, I , and I ′,
which is the typical case in real workloads (see Section 4.1).
Based on Theorem 3 and Corollary 4, we immediately have
the following important observation:

Observation 5: If η ≫ 1 and η′ ≫ 1, we have
f(η, η′) ≈ 1 and g(η, η′) ≈ 1. As a result, ρ ≈ 1.

That is, when both η and η′ are sufficiently large, we
should expect very strong correlation between the estimated
cost (using Algorithm 1) and the actual cost of a plan.
More generally, both f(η, η′) and g(η, η′) are increasing
functions with respect to η and η′. This implies that we
need to increase both η and η′ to improve ρ.

2.3.3 Maximizing Correlation with Pivot Operator
Recall that η = σL

σI
whereas η′ = λσL

σI′
. σL and σI are the

standard deviations of the actual leaf and internal operator
CPU time, whereas σI′ is the standard deviation of the
query optimizer’s estimated internal cost. All three are
constants for a given workload, so we cannot change η. On
the other hand, η′ depends on λ as well, which depends on
our choice of the pivot operator. Because η′ increases as λ
increases, it suggests that we should pick the pivot operator
that maximizes λ, as defined by Equation 4. Algorithm 2
presents the details of our selection strategy for the pivot
operator based on this observation.

3 THEORETICAL ANALYSIS

In this section, we present an in-depth analysis of hybrid
cost modeling to understand its efficacy. We focus our
analysis on the impact of η and η′ over the correlation
coefficient ρ between estimated cost with hybrid modeling
and true execution cost. By Observation 5, if both η and
η′s are very large, then ρ is close to 1 as well, which would
be the best case for hybrid modeling. Nonetheless, different
workloads have different values of η and η′. Therefore, it
is natural to ask the question of what we should expect in
practice. Based on our empirical study on real workloads
(see Section 4.1), we observe that η′ is typically much

0 20 4010 30 505 15 25 35 45

0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

Fig. 4. Plots of f(η) and g(η) with the growth of η.
larger than η in reality. As Figure 9 shows, the median
value of η′ observed on the real workloads is 6.8 × 103,
whereas the median value of η is 18.8. This motivates us to
organize our analysis into two parts: (1) the case when η′

is very large (Section 3.1), which is typical in practice; and
(2) the case when η′ is not large (Section 3.2), which still
happens in practice and is more challenging to analyze.

3.1 The Case When η′ Is Very Large

We can assume that η′ ≫ 1 and therefore 1
η′ ≈ 0.

3.1.1 Impact on Lower Bounds
We start by revisiting the lower bounds f(η, η′) in The-
orem 3 and g(η, η′) in Corollary 4 of the correlation
coefficient ρ. We have the following approximations:

Observation 6: If η′ ≫ 1, we have 1/η′ ≈ 0. As a result,
f(η, η′) ≈ 1−1/η

1+1/η and g(η, η′) ≈ 1
1+1/η .

Define f(η) = 1−1/η
1+1/η and g(η) = 1

1+1/η . Figure 4
depicts these two functions with η increasing from 1 to
50. We observe that both functions increase quickly when
η grows. For example, when η = 10, f(η) = 0.81 and
g(η) = 0.91. When η = 18.8 (i.e., the median we observed
on our workloads), we have f(η) = 0.90 and g(η) = 0.95.

3.1.2 Impact of η on Correlation Coefficient ρ
We next present a more detailed analysis regarding the
impact of η on ρ, which makes one step further than the
analysis in Section 3.1.1 that targets the lower bounds of
ρ. Dividing the numerator and denominator in Equation 7
by η′ and using 1

η′ ≈ 0, we obtain the following:

ρ ≈ η + α√
η2 + 2αη + 1

=
1 + α/η√

1 + 2α/η + (1/η)2
. (8)

Again, if η is sufficiently large, then 1/η ≈ 0 and thus
ρ ≈ 1. We next view ρ as a function of η and α.

Lemma 7: Assume that Equation 8 holds and η+α > 0.
For a given 0 < ϵ < 1, there exists some η0 s.t. if η > η0
then ρ > 1− ϵ. Specifically,

η0 =

√
1− α2

1/(1− ϵ)2 − 1
− α. (9)

Proof: Using Equation 8, ρ > 1− ϵ implies

η + α > (1− ϵ) ·
√

η2 + 2αη + 1.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

0−1 1−0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

0

2

4

6

8

−1

1

3

5

7

Fig. 5. Plots of η0 as a function of α.
Given that η + α > 0, it follows that

(η + α)2 > (1− ϵ)2 ·
(
(η + α)2 + (1− α2)

)
.

Since 0 < 1− ϵ < 1, we have 1/(1− ϵ)2 > 1. As a result,

(η + α)2 >
1− α2

1/(1− ϵ)2 − 1
.

Since η + α > 0, taking the square root of both sides of
the above inequality completes the proof.

Lemma 7 suggests that there is a minimum η0 such that
ρ can be sufficiently high as long as η > η0. We present
two concrete examples below:

• Set ϵ = 0.05, i.e., we want to have ρ > 1− ϵ = 0.95.
As a result, η0 =

√
(1− α2)/0.108− α.

• Set ϵ = 0.01, i.e., we want to have ρ > 1− ϵ = 0.99.
As a result, η0 =

√
(1− α2)/0.0203− α.

Figure 5 plots the η0 as a function of −1 ≤ α ≤ 1 in the
above two examples. We observe that η0 has a maximum
ηmax
0 within −1 ≤ α ≤ 1. As long as η > ηmax

0 , we have
ρ > 1−ϵ regardless of α. In fact, this is easy to prove using
Equation 9. Specifically we have the following theorem.

Theorem 8: η0 achieves its maximum ηmax
0 when α =

−
√
1− (1− ϵ)2. In more detail, we have

ηmax
0 =

1√
1− (1− ϵ)2

. (10)

Proof: We can view η0 as a function of α, i.e., η0 =
η0(α). Define a constant C = 1√

1/(1−ϵ)2−1
. By Equation 9,

η0(α) = C
√
1− α2 − α. Taking derivatives of η0(α),

η′0(α) = −
Cα√
1− α2

− 1 and η′′0 (α) = −
C

(1− α2)3/2
.

Since C > 0 and |α| ≤ 1, we have η′′0 (α) < 0. Therefore,
η0(α) is a concave function that achieves its maximum
when η′0(α) = 0. Setting η′0(α) = 0 yields

α = − 1√
C2 + 1

= −
√
1− (1− ϵ)2. (11)

Substituting Equation 11 into Equation 9 gives

ηmax
0 =

√
1− (1− ϵ)2 + (1−ϵ)2√

1−(1−ϵ)2
= 1√

1−(1−ϵ)2
.

This completes the proof of the theorem.
Continuing with the previous two concrete examples, by

Theorem 8 we have

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

2

4

1

3

5

0.5

1.5

2.5

3.5

4.5

Fig. 6. Plots of ηmax
0 as a function of ϵ.

• For ϵ = 0.05, ηmax
0 = 3.2 when α = −0.31;

• For ϵ = 0.01, ηmax
0 = 7.1 when α = −0.14.

These results can be easily verified in Figure 5. Moreover,
by Equation 11, we have α → 0 as ϵ → 0. Meanwhile,
ηmax
0 increases as ϵ decreases. In particular, ηmax

0 →∞ as
ϵ→ 0. Figure 6 further plots ηmax

0 with respect to ϵ.
3.1.2.1 The Case of Positive α: So far we have

focused on the general case where −1 ≤ α ≤ 1. In practice,
it is reasonable to assume a positive α, i.e., 0 ≤ α ≤ 1. For
the workloads that we studied in Section 4.1, we observed
only one workload with a negative α = −0.09. Therefore,
similar to Corollary 4, we can further improve the result
given by Theorem 8 for the case when 0 ≤ α ≤ 1.

Corollary 9: If 0 ≤ α ≤ 1, η0 achieves its maximum
ηmax,p
0 when α = 0 (the superscript p means a positive α):

ηmax,p
0 =

1− ϵ√
1− (1− ϵ)2

. (12)

Proof: By the proof of Theorem 8, we have

η′0(α) = −
Cα√
1− α2

− 1, where C > 0.

If α ≥ 0, we have η′0(α) < 0. Hence, η0(α) is a decreasing
function of α. As a result, η0 achieves its maximum when
α = 0. Setting α = 0 in Equation 9 gives Equation 12.

Comparing Equation 12 with Equation 10 suggests that
ηmax,p
0 < ηmax

0 . This means that in the (practically com-
mon) case of a positive α, one only needs a smaller value
of η to expect a high ρ. Figure 6 illustrates this difference.
When ϵ→ 0, however, we have ηmax,p

0 → ηmax
0 .

3.1.2.2 Analysis of η When η ≤ η0: We now study
the case of η ≤ η0. By Equation 8, for a given fixed α, we
can further view ρ as a function of η, namely, ρ = ρ(η).
We have the following simple result.

Lemma 10: Assume that Equation 8 holds. For a given
−1 ≤ α ≤ 1, ρ is a non-decreasing function of η.

Proof: Taking the derivative for ρ (Equation 8) gives

ρ′(η) =
1− α2

w3
, where w =

√
η2 + 2αη + 1.

Since |α| ≤ 1 and w > 0, ρ′(η) ≥ 0. Therefore ρ is a
non-decreasing function of η.

Theorem 11: If Equation 8 holds, then α ≤ ρ ≤ 1.
Proof: By Lemma 10, ρ(η) is a non-decreasing func-

tion of η. Given that 0 ≤ η <∞, we have ρ(0) ≤ ρ(η) ≤

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

0 20102 4 6 8 12 14 16 18

0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

Fig. 7. Plots of ρ as a function of η for a fixed α.

Fig. 8. Summary of the analysis when 1
η′ ≈ 0.

ρ(∞). By Equation 8, ρ(0) = α whereas ρ(∞) = 1. This
completes the proof of the theorem.

In particular, when |α| < 1, ρ is a strictly increasing
function of η. When α = 1, ρ = 1; when α = −1, ρ = 1
if η ≥ 1, otherwise ρ = −1. Theorem 11 holds in all
these cases. Figure 7 further plots the two functions ρ(η) =

η√
η2+1

when α = 0 and ρ(η) = η+0.5√
η2+η+1

when α = 0.5.

It is clear that ρ ≥ α in both cases.
3.1.2.3 Summary: Figure 8 summarizes our analysis.

In the presence of a very large η′, ρ only depends on η
and α. Given a desired threshold 0 < ϵ < 1, for a given
−1 ≤ α ≤ 1−ϵ, along the spectrum 0 ≤ η <∞ there exists
some η0 such that ρ ≥ 1 − ϵ when η > η0. On the other
hand, if η ≤ η0, then a weaker bound for ρ is α ≤ ρ ≤ 1−ϵ.
Note that the condition α ≤ 1 − ϵ is necessary for η0 ≥
0 (see Equation 9). We have two remarks in order. First,
it is straightforward to extend the analysis to the general
case of backbone operators (not just leaf operators) versus
the rest. Second, so far we have assumed that there are
no cost modeling errors for backbone operators, which is
unlikely the case in practice. It is straightforward to extend
the analysis to incorporate cost modeling errors, though the
analytic formulas will become more complicated.

3.2 The Case When η′ Is Not Large

So far we have focused ourselves on the case when η′

is very large (more precisely, 1
η′ ≈ 0), which is typical

in practice. One may be also interested in the case when
this does not hold. In the following, we study this case in
more detail. The techniques used in our analysis are similar
to those used in Section 3.1, though the analytic results
obtained are more complicated.

By Equation 7, we can also view ρ as a function of η′:

ρ = ρ(η′) =
A(Bη′ + C)√
(η′)2 + 2βη′ + 1

, (13)

where A = 1√
η2+2αη+1

, B = η + α, and C = βη + γ.

As was in Lemma 7, we assume η+ α ≥ 0. Note that this
automatically holds if η ≥ 1. Taking the derivative gives

ρ′(η′) =
ABv2 − u(η′ + β)

v3
, (14)

where u = A(Bη′+C), v =
√

(η′)2 + 2βη′ + 1. Note that
the derivative of v satisfies v′(η′) = η′+β

v .
Now let ρ′(η′) = 0. We obtain

η′0 =
βC −B

βB − C
=

1− β2

γ − αβ
η +

α− βγ

γ − αβ
. (15)

Using the relation ABv2|η′=η′
0
= u|η′=η′

0
(η′0 + β) gives

Bv2|η′=η′
0
= (Bη′0 + C)(η′0 + β),

it then follows that

ρ(η′0) =
A(Bη′0 + C)

v|η′=η′
0

=

√√√√ (η + α)2 + (γ−αβ)2

1−β2

(η + α)2 + (1− α2)
. (16)

Furthermore, we have

ρ′′(η′) =
AB(β − C)v3 − 3v(η′ + β)[ABv2 − u(η′ + β)]

v6
.

Again, using the relation

ABv2|η′=η′
0
= u|η′=η′

0
(η′0 + β),

it follows that

ρ′′(η′0) =
AB(β − C)

v3|η′=η′
0

=
AB[(1− η)β − γ]

v3|η′=η′
0

. (17)

Assume β > 0 where β = ρ(L, I ′) (see Table 3). Therefore,
if η > 1 − γ

β , we have ρ′′(η′0) < 0 and thus ρ(η′) attains
its maximum at η′0. On the other hand, if η < 1 − γ

β ,
ρ′′(η′0) > 0 and thus ρ(η′) attains its minimum at η′0.

Moreover, if γ > β where γ = ρ(I, I ′) (see Table 3),
then 1 − γ

β < 0. Thus η > 1 − γ
β always holds and ρ(η′)

attains its maximum at η′0. On the other hand, if 0 < γ ≤ β,
then 0 ≤ 1 − γ

β < 1. If η ≥ 1 then ρ(η′) still attains its
maximum at η′0. Otherwise we need to compare η and 1− γ

β .
Hence, we have proved the following result:

Theorem 12: If η ≥ 1 and 0 < β, γ < 1, then ρ(η′)
attains its maximum ρmax = ρ(η′0) (Equation 16) at η′0,
and ρ(η′) attains its minimum ρmin at either

ρ(0) = AC =
βη + γ√

η2 + 2αη + 1

or
ρ(∞) = AB =

η + α√
η2 + 2αη + 1

.

We have ρmin ≤ ρ ≤ ρmax.

4 EXPERIMENTAL EVALUATION

We start by an empirical study of the two quantities η
and η′ that play crucial roles in our correlation analysis
(see Section 2.3.2) using real workloads. Following that,
we further present empirical evaluation results by applying
hybrid cost modeling (Algorithm 1) to index tuning.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

0

5
6

8

1 1 1
0

2

0 0 0

12

0

5

10

15

1 5 10 20 30 40 50 60 70 80 90 100 More

F
re
q
u
e
n
c
y

(a) Distribution of η: mean = 369.4, median = 18.8.

0

1

9

10

6

4 4

0

2

0

2

4

6

8

10

12

10 100 1000 10000 100000 1000000 10000000 100000000 More

F
re
q
u
e
n
c
y

(b) Distribution of η′: mean = 1.2× 107, median = 6.8× 103.

Fig. 9. The distributions of η and η′ on real workloads.
4.1 Empirical Study of η and η′ on Real Workloads
While Section 3 provides an in-depth analysis that char-
acterizes the connection between ρ, η, and η′, it remains
unclear what we should expect in practice. We thus studied
36 real workloads in the context of index tuning with
various physical design (e.g., both row store and column
store with necessary indexes) and with at least 10 queries.
Figure 9 presents the distributions of η and η′ over these
workloads. We computed η′ by using Algorithm 2 to pick
the pivot operator and therefore λ. We observe that η′

is much larger than η, which has motivated us to focus
our theoretical analysis on the case when η′ is very large
(Section 3.1). There remains one workload with relatively
small η′, i.e., η′ < 100 as shown in Figure 9(b), and we
have also analyzed this case in Section 3.2.

As was shown in Figure 9, there is huge variance in the
distribution of η on the real workloads that we studied.
Although 25 out of the 36 workloads have η ≥ 10, there
are still 11 workloads with relatively small η. So a natural
question is that how large ρ is over these real workloads.
In Figure 10, we present the distributions of both Pearson
CC and Spearman CC on the 36 real workloads. Spearman
CC is the rank-based version of Pearson CC. Compared
to Pearson CC, Spearman CC is more robust when there
are outliers, but it ignores the relative differences between
costs. Compared with the optimizer’s cost estimates, the
hybrid cost estimates returned by Algorithm 1 improve the
correlation coefficients from 0.55 to 0.80 on average.

4.2 Evaluation of End-to-end Index Tuning
We now evaluate the efficacy of hybrid cost modeling
(Algorithm 1) when applied to end-to-end index tuning.

4.2.1 Experimental Settings
The effectiveness of Algorithm 1 relies on the following
factors: (1) the backbone operators O; (2) the operator-level
cost modelsM; and (3) the execution feedback F . For (1),
as we have discussed in Section 2.2, we use leaf operators
as backbone operators; For (2), we use the operator-level
modeling approach presented in [28], as it represents the
state of the art to the best of our knowledge; For (3), we
assume sufficient amount of execution feedback is available
for leaf operators (see Sections 4.2.2 and 4.2.3).

We present some implementation details of the operator-
level cost models. For each physical operator that appears in
the query plans collected as execution feedback, we train

1

0

2 2

8

4

2

3

6

5

3

0

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 More

F
re
q
u
e
n
c
y

(a) Distribution of Pearson CC using query optimizer’s estimates:
mean = 0.54, median = 0.56.

0 0 0
1

0
1

3

5 5

8

13

0

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 More

F
re
q
u
e
n
c
y

(b) Distribution of Pearson CC using hybrid cost modeling in
Algorithm 1 (i.e., ρ): mean = 0.81, median = 0.82.

1

0

2

3

8

3

0

7 7

4

1

0

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 More

F
re
q
u
e
n
c
y

(c) Distribution of Spearman CC using query optimizer’s estimates:
mean = 0.53, median = 0.62.

0 0 0

1

0 0

4

5

8

9 9

0

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 More

F
re
q
u
e
n
c
y

(d) Distribution of Spearman CC using hybrid cost modeling in
Algorithm 1: mean = 0.78, median = 0.80.

Fig. 10. The distributions of Pearson CC and Spear-
man CC on real workloads using query optimizer’s
estimates vs. hybrid cost modeling in Algorithm 1..

Name Description
C_OUT Number of output tuples
S_OUT_AVG Average width of output tuples
S_OUT_TOT Total number of output bytes
C_IN Number of input tuples (per child)
S_IN_AVG Average width of input tuples (per child)
S_IN_TOT Total number of input bytes (per child)
OUT_USAGE Type of parent operator
DEG_PARALLEL Degree of parallelism
EST_CPU_COST Optimizer estimated CPU cost
EST_IO_COST Optimizer estimated I/O cost
EST_OP_COST Optimizer estimated operator cost

TABLE 4
“Global” features that are used by all operators.

an ML model based on the features extracted from each
operator. Table 4 summarizes the “global” features that are
shared by all operators, whereas Table 5 further summarizes
the “local” features that are opreator-specific. We then train
a boosted regression tree (BRT) model for each operator.

We used both synthetic and real database workloads in
our evaluation. For synthetic data, we used both TPC-
H and TPC-DS benchmarks with scaling factor of 10;
for real data, we used three customer workloads Real-1,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Name Description Operator
T_SIZE Size of input table in tuples Scan/Seek
PAGES Size of input table in pages Scan/Seek
T_COL Number of columns in a tuple Scan/Seek
IDX_LVL Levels of index in access path Seek
C_S_COL Number of sort columns Sort
MIN_COMP # tuples×# sort columns Sort
HAGG_AVG # hashing operations per tuple Hash Agg.
HAGG_TOT HASH_AVG×# tuples Hash Agg.
HJ_AVG_B # hashing op. per tuple (build) Hash Join
HJ_TOT_B HASH_AVG_B×# tuples (build) Hash Join
HJ_AVG_P # hashing op. per tuple (probe) Hash Join
HJ_TOT_P HASH_AVG_P×# tuples (probe) Hash Join
C_I_TBL # tuples in the inner table Nested Loop
S_IN_SUM # input bytes from all children Merge Join

TABLE 5
“Local” features that are operator-specific.
Name DB Size #Queries η η′

TPC-DS 10GB 99 56.6 3.1× 104

TPC-H 10GB 22 51.2 4.8× 103

Real-1 40GB 12 1.7 4.5× 103

Real-2 60GB 20 429.9 5.5× 105

Real-3 100GB 40 217.9 2.4× 106

TABLE 6
Workloads used in end-to-end index tuning evaluation.

Real-2, and Real-3. Table 6 presents the details of the
workloads that we used and their characteristics. η′ is
very large over all of these workloads. We implemented
the AutoAdmin index tuner [11] that has demonstrated
state-of-the-art performance in recent benchmark study [25]
and has been integrated into Microsoft’s Database Tuning
Advisor [10]. We focused on tuning single-query work-
loads (i.e., the index tuner was invoked for each query
in a given workload), which is common in cloud auto-
indexing practice [15], and we conducted experiments using
a workstation configured with Intel 2.6GHz CPUs and
192GB main memory. We used Microsoft SQL Server 2017
running on top of Windows Server 2019. It remains future
work to investigate the efficacy of hybrid cost modeling
on top of other database systems and index tuners (e.g.,
Dexter [23, 24] for PostgreSQL).

4.2.2 Initial Index Configuration
Since index tuning needs to start from an initial configu-
ration, we generated various initial configurations for our
experiments in the following way. For each query q in the
workload, we generated different index configurations by
limiting the number of indexes recommended by the index
tuner (without using execution feedback). Specifically, we
keep asking the index tuner to return the next best index
until it runs out of recommendations. Suppose that the
indexes recommended subsequently are i1, ..., in. We then
have n configurations I1 = {i1}, I2 = {i1, i2}, ..., and
In = {i1, i2, ..., in}. We used each of these n configura-
tions as a different initial configuration.

4.2.3 Execution Feedback
We generate execution feedback in the following manner.
For each initial configuration, we run the query and col-
lect its execution time. For this purpose, we enable the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TPC-DS TPC-H Real-1 Real-2 Real-3

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
e

n
t

Pearson (Optimizer) Pearson (Algorithm 1)

Spearman (Optimizer) Spearman (Algorithm 1)

Fig. 11. Comparison of correlation coefficients using
hybrid cost estimates from Algorithm 1 over using
query optimizer’s default cost estimates.
“statistics XML” utility [1] provided by Microsoft SQL
Server to track operator-level execution information. We
then randomly pick one query plan from each query into
the execution feedback repository F .

4.2.4 Performance Metrics
We evaluate both the effectiveness of Algorithm 1 and
the overall improvement of index tuning when execution
feedback is utilized, with the following metrics:
(Effectiveness of Algorithm 1) We use both the Pearson
and Spearman correlation coefficients.
(Overall Improvement) We measure the relative improve-
ment of the index configuration Inew returned by index
tuning over the original index configuration Iold, defined as
follows. Let c(q, I) and a(q, I) be the estimated and actual
execution costs of q over a configuration I , respectively.
We define the estimated improvement of Inew over Iold as

c(Iold, Inew) =
(
c(q, Iold)− c(q, Inew)

)
/c(q, Iold)

= 1− c(q, Inew)/c(q, Iold).

We also define the actual improvement of Inew over Iold:

a(Iold, Inew) =
(
a(q, Iold)− a(q, Inew)

)
/a(q, Iold)

= 1− a(q, Inew)/a(q, Iold).

We use the actual improvement as our metric, whereas
the estimated improvement is useful for controlling the
recommendation from the index tuner, as we will see.

4.2.5 Evaluation Results
Figure 11 presents the correlation coefficients between
estimated costs and actual CPU times. We compare the
correlation coefficients using hybrid cost estimates pro-
duced by Algorithm 1 against ones using query optimizer’s
default cost estimates. We observe significant improvement
over four of the five workloads. This implies that hybrid
cost modeling is considerably better than using optimizer’s
default cost estimates for all operators in the query plan.

In Figures 12, 13, and 14, we present the distributions of
the actual improvement (over all tested configurations) for
TPC-DS queries by using execution feedback and hybrid

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

−100 −80 −60 −40 −20 0 20 40 60 80 100

F
re

q
u
e
n
c
y

CPU Time Improvement (%)

Optimizer Hybrid Full

Fig. 12. The distributions of CPU time improvement
over TPC-DS queries (improvement threshold τ = 0).

 0

 50

 100

 150

 200

 250

 300

 350

−100 −80 −60 −40 −20 0 20 40 60 80 100

F
re

q
u
e
n
c
y

CPU Time Improvement (%)

Optimizer Hybrid Full

Fig. 13. The distributions of CPU time improvement
over TPC-DS queries (improvement threshold τ = 0.1).
cost modeling (denoted as ‘Hybrid’ in the plots) compared
with index tuning without feedback (i.e., by using query
optimizer’s cost estimates, denoted as ‘Optimizer’ in the
plots). In index tuning, there is usually a threshold τ
for estimated improvement and an index configuration is
recommended only if its estimated improvement is above
the threshold. In our experiments, we varied τ from 0
to 0.2 (i.e., 20% estimated improvement). We have the
following observations. First, using hybrid cost modeling
in index tuning significantly reduces the chance of query
performance regression. The number of cases with 20%
regression (i.e., -20% actual improvement) is reduced from
24 to 8 (66.7% reduction) when τ = 0, is reduced from 22
to 6 (72.7% reduction) with τ = 0.1, and is reduced from
22 to 4 (81.8% reduction) with τ = 0.2.

Second, when increasing τ , the chance of performance
regression decreases for both index tuning with query opti-
mizer’s cost estimates and hybrid cost modeling. However,
the chance reduces much faster for index tuning with hybrid
cost modeling. This implies that, while using hybrid cost
modeling can still estimate the performance improvement
incorrectly, the estimation error is much smaller compared
to using query optimizer’s default cost estimates.

Third, by comparing index tuning with query optimizer’s
cost estimates and hybrid cost modeling, we also observe
that actual improvement is diminished in more cases when
using hybrid cost modeling—notice that there are more
cases in the bin with less than 20% actual improvement.
However, cases with more significant improvement (≥40%)
are less impacted. In other words, cases falling into the
bins with 0% to 40% improvement tend to be moved
into the bins with 0% to 20% improvement. Therefore,
if performance improvement is indeed significant, index
tuning with hybrid cost modeling is unlikely to dismiss
it. To shed some light on this phenomenon, in Table 7
we further compare the overall query execution CPU time
by using query optimizer’s cost estimates and hybrid cost

 0

 50

 100

 150

 200

 250

 300

 350

 400

−100 −80 −60 −40 −20 0 20 40 60 80 100

F
re

q
u
e
n
c
y

CPU Time Improvement (%)

Optimizer Hybrid Full

Fig. 14. The distributions of CPU time improvement
over TPC-DS queries (improvement threshold τ = 0.2).
modeling. We observe that, compared to the CPU time
spent on the initial configuration, which is 320 seconds
with τ = 0, hybrid cost modeling brings it down to 28
seconds (i.e., 91.3% improvement) whereas using query
optimizer’s cost estimates requires 54 seconds instead (i.e.,
83%). Comparing the CPU time given by hybrid cost
modeling over using query optimizer’s cost estimates, i.e.,
28 seconds vs. 54 seconds, we see a relative improvement
of 48.1%. This reinforces our observation that hybrid cost
modeling does not miss significant improvement; moreover,
by performing much better in terms of reducing QPR, it
can significantly outperform using query optimizer’s cost
estimates in terms of overall improvement.

We have observed similar results on the other workloads
that we tested, though query performance regression is not
as significant as we see on the TPC-DS workload.

(Comparison with Full-fledged ML Models) As a demon-
stration of the motivation of this work, we further compare
hybrid cost modeling with using ML models for all oper-
ators (instead of just for backbone/leaf operators). Again,
Figures 12, 13, and 14 present the distributions of the actual
improvement (over all tested configurations) for TPC-DS
queries (denoted as ‘Full’ in the plots). Compared with hy-
brid cost modeling, using full-fledged ML models performs
similarly in terms of the number of regressions avoided.
However, it also dismisses more improved cases, especially
those significant ones. For example, with τ = 0.1, the
number of most significantly improved cases (i.e., with
actual improvement between 80% and 100%) is reduced
from 64 by using hybrid cost modeling to 52 by using full-
fledged ML models. As a result, the improvement on overall
CPU time drops from 91.2% to only 36.5% w.r.t. to the
initial configuration, as shown in Table 7. With insufficient
execution feedback on the internal operators (e.g., joins),
the trained ML models are more likely to overfit and thus
result in higher generalization errors. Last but not least, one
extra benefit of hybrid cost modeling compared to using
full-fledged ML models is the significantly reduced training
time. For example, for TPC-DS, the time spent on model
training 74 seconds for the full-fledged approach vs. 24
seconds for hybrid cost modeling (i.e., a 67.6% reduction).

5 RELATED WORK

(Index Tuning and Query Performance Regression) The
problem of autonomous index tuning (a.k.a., auto-indexing)
has been studied for decades, e.g., [6, 8, 10, 11, 16,
24, 26, 35, 36, 39, 41, 45, 47, 48, 52]. Cloud database

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

τ Time Initial (s) Time Optimizer (s) Time Hybrid (s) Time Full (s) Impr. Optimizer (%) Impr. Hybrid (%) Impr. Full (%)
0 320 54 28 202 83.0 91.3 36.8

0.1 320 52 28 203 83.9 91.2 36.5
0.2 320 52 27 204 83.9 91.5 36.4

TABLE 7
Comparison of overall CPU time improvement of query execution on TPC-DS.

providers recently started offering auto-indexing as a ser-
vice to customers [15]. The problem of query performance
regression becomes a challenge in this context, and there
has been work on using ML technologies to address this
challenge [17, 37, 54]. The success of these approaches
requires collection of substantial amount of training data,
which is typically infeasible on cloud database servers run-
ning production workloads due to the significant overhead
and disruption caused by creating/dropping indexes.

(Query Execution Cost Modeling) In recent years, there
has been substantial effort that aims to provide more
accurate estimate for query execution cost [4, 5, 19, 20,
21, 28, 32, 34, 38, 43, 49, 50, 53, 54]. Unlike early work
that mainly focuses on improving cost estimates inside the
optimizer (prominently, via improved cardinality estimates),
this line of work constructs cost models by using machine
learning (ML) technologies and actual query execution data
collected at runtime. The effectiveness of these learned
cost models has been demonstrated in various applications
such as admission control [44], query scheduling [3], query
optimization [31, 51], and index tuning [17, 37, 40].

(Query Execution Feedback) The usage of execution
feedback goes beyond the scope of building query execution
cost models using ML technologies. Another area that has
been extensively explored in the literature is to improve
query optimization by using exact cardinality observed in
query execution (e.g., [22, 33]), statistics built on top of
observed cardinality (e.g. [7]), or sampling (e.g., [27, 51]).
While this line of work also improves query plan cost
estimates as a by-product (by leveraging more accurate
cardinality estimates), its ultimate goal is to impact the
decision made by the query optimizer so that it may return
a different, perhaps better execution plan. This is different
from our goal of using execution feedback in this work to
improve index tuning, where we do not want to modify
the query optimizer. Rather, the execution feedback is
consumed by the index tuner to avoid proposing bad index
configurations (and therefore bad query plans generated by
the query optimizer using the “what-if” utility).

(Inconsistent Cost Estimates) One noticeable problem
when leveraging execution feedback, as documented in the
literature [5, 13, 42], is that partial execution feedback
may result in inconsistent cost estimates that mislead the
query optimizer. That is, if some plans receive improved
cost estimates whereas the others do not, then the plan
returned by the optimizer might be even worse. One reason
is that, although the query optimizer can estimate costs
appropriately for query plans with execution feedback,
it may underestimate costs for plans without execution
feedback. Again, we avoid this inconsistency problem by
not using hybrid cost modeling inside the query optimizer.

6 CONCLUSION
In this paper, we proposed hybrid cost modeling to ad-
dress the challenge of limited amount of training data in
the context of cloud database auto-indexing, which is a
simple yet principled approach that combines ML-based
model predictions for execution costs of leaf operators and
query optimizer’s default cost estimates for other internal
operators. We presented both theoretical analysis and ex-
perimental evaluation of hybrid cost modeling, using both
industrial benchmarks and real workloads. Our theoretical
analysis reveals that cost estimates made by hybrid cost
modeling can result in much higher correlation with actual
query execution time, compared to that of using query op-
timizer’s default cost estimates. Moreover, empirical results
demonstrate not only the validity of the theoretical analysis
but also the efficacy of applying hybrid cost modeling in
index tuning, which significantly reduces the chance of
query performance regression while retaining significant
query performance improvement at the same time.

Acknowledgement: We thank the anonymous reviewers,
Sudipto Das, Bailu Ding, Surajit Chaudhuri, and Vivek
Narasayya for their valuable feedback on this work.

REFERENCES
[1] The “statistics xml” utility of microsoft sql server.

https://learn.microsoft.com/en-us/sql/t-sql/statements/set-
statistics-xml-transact-sql?view=sql-server-ver16, 2023.

[2] Cost constants used by postgresql’s query planner/optimizer.
https://www.postgresql.org/docs/current/runtime-config-
query.html, 2024.

[3] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala.
Interaction-aware scheduling of report-generation work-
loads. The VLDB Journal, 20:589–615, 2011.

[4] M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu. Pre-
dicting completion times of batch query workloads using
interaction-aware models and simulation. In EDBT, 2011.

[5] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B.
Zdonik. Learning-based query performance modeling and
prediction. In ICDE, pages 390–401, 2012.

[6] M. Brucato, T. Siddiqui, W. Wu, V. R. Narasayya, and
S. Chaudhuri. Wred: Workload reduction for scalable index
tuning. Proc. ACM Manag. Data, 2(1):50:1–50:26, 2024.

[7] N. Bruno and S. Chaudhuri. Exploiting statistics on query
expressions for optimization. In SIGMOD, 2002.

[8] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: A relaxation-based approach. In SIGMOD, pages
227–238, 2005.

[9] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: A
multidimensional workload-aware histogram. In SIGMOD,
pages 211–222, 2001.

[10] S. Chaudhuri and V. Narasayya. Anytime algorithm of
database tuning advisor for microsoft sql server, June 2020.

[11] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven
index selection tool for microsoft SQL server. In VLDB,
pages 146–155, 1997.

[12] S. Chaudhuri and V. R. Narasayya. Autoadmin ’what-if’
index analysis utility. In SIGMOD, pages 367–378, 1998.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

[13] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. A pay-
as-you-go framework for query execution feedback. PVLDB,
1(1):1141–1152, 2008.

[14] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaı̈t, and
M. Ziauddin. Automatic SQL tuning in oracle 10g. In VLDB,
pages 1098–1109, 2004.

[15] S. Das, M. Grbic, I. Ilic, I. Jovandic, A. Jovanovic, V. R.
Narasayya, M. Radulovic, M. Stikic, G. Xu, and S. Chaud-
huri. Automatically indexing millions of databases in mi-
crosoft azure SQL database. In SIGMOD, 2019.

[16] D. Dash, N. Polyzotis, and A. Ailamaki. Cophy: A scalable,
portable, and interactive index advisor for large workloads.
Proc. VLDB Endow., 4(6):362–372, 2011.

[17] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R.
Narasayya. AI meets AI: leveraging query executions to
improve index recommendations. In SIGMOD, 2019.

[18] W. Du, R. Krishnamurthy, and M.-C. Shan. Query optimiza-
tion in a heterogeneous dbms. In VLDB, 1992.

[19] J. Duggan, U. Çetintemel, O. Papaemmanouil, and E. Upfal.
Performance prediction for concurrent database workloads.
In SIGMOD, 2011.

[20] A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener, A. Fox,
M. I. Jordan, and D. A. Patterson. Predicting multiple
metrics for queries: Better decisions enabled by machine
learning. In ICDE, 2009.

[21] B. Hilprecht and C. Binnig. Zero-shot cost models for out-
of-the-box learned cost prediction. Proc. VLDB Endow.,
15(11):2361–2374, 2022.

[22] N. Kabra and D. J. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In
SIGMOD, pages 106–117, 1998.

[23] A. Kane. The automatic indexer for postgres.
https://github.com/ankane/dexter, June 2017.

[24] A. Kane. Introducing dexter, the automatic indexer for post-
gres. https://medium.com/@ankane/introducing-dexter-the-
automatic-indexer-for-postgres-5f8fa8b28f27, June 2017.

[25] J. Kossmann, S. Halfpap, M. Jankrift, and R. Schlosser.
Magic mirror in my hand, which is the best in the land? an
experimental evaluation of index selection algorithms. Proc.
VLDB Endow., 13(11):2382–2395, 2020.

[26] J. Kossmann, A. Kastius, and R. Schlosser. SWIRL:
selection of workload-aware indexes using reinforcement
learning. In EDBT, pages 2:155–2:168, 2022.

[27] P. Larson, W. Lehner, J. Zhou, and P. Zabback. Cardinality
estimation using sample views with quality assurance. In
SIGMOD, pages 175–186, 2007.

[28] J. Li, A. C. König, V. R. Narasayya, and S. Chaudhuri. Ro-
bust estimation of resource consumption for sql queries using
statistical techniques. PVLDB, 5(11):1555–1566, 2012.

[29] L. Ma, B. Ding, S. Das, and A. Swaminathan. Active
learning for ml enhanced database systems. In SIGMOD,
pages 175–191, 2020.

[30] L. F. Mackert and G. M. Lohman. R* optimizer validation
and performance evaluation for distributed queries. In VLDB,
pages 149–159, 1986.

[31] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh,
T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: A learned
query optimizer. Proc. VLDB Endow., 12(11), 2019.

[32] R. C. Marcus and O. Papaemmanouil. Plan-structured deep
neural network models for query performance prediction.
Proc. VLDB Endow., 12(11):1733–1746, 2019.

[33] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and
H. Pirahesh. Robust query processing through progressive
optimization. In SIGMOD, pages 659–670, 2004.

[34] D. Paul, J. Cao, F. Li, and V. Srikumar. Database workload
characterization with query plan encoders. Proc. VLDB
Endow., 15(4):923–935, 2021.

[35] R. M. Perera, B. Oetomo, B. I. P. Rubinstein, and
R. Borovica-Gajic. DBA bandits: Self-driving index tuning

under ad-hoc, analytical workloads with safety guarantees.
In ICDE, pages 600–611. IEEE, 2021.

[36] R. Schlosser, J. Kossmann, and M. Boissier. Efficient scal-
able multi-attribute index selection using recursive strategies.
In ICDE, pages 1238–1249, 2019.

[37] J. Shi, G. Cong, and X. Li. Learned index benefits: Machine
learning based index performance estimation. Proc. VLDB
Endow., 15(13):3950–3962, 2022.

[38] T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and W. Le. Cost
models for big data query processing: Learning, retrofitting,
and our findings. In SIGMOD, pages 99–113. ACM, 2020.

[39] T. Siddiqui, S. Jo, W. Wu, C. Wang, V. Narasayya, and
S. Chaudhuri. Isum: Efficiently compressing large and
complex workloads for scalable index tuning. In SIGMOD,
pages 660–673, 2022.

[40] T. Siddiqui and W. Wu. Ml-powered index tuning: An
overview of recent progress and open challenges. SIGMOD
Rec., 52(4):19–30, 2023.

[41] T. Siddiqui, W. Wu, V. R. Narasayya, and S. Chaudhuri.
DISTILL: low-overhead data-driven techniques for filtering
and costing indexes for scalable index tuning. Proc. VLDB
Endow., 15(10):2019–2031, 2022.

[42] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M.
Tran. ISOMER: consistent histogram construction using
query feedback. In ICDE, page 39, 2006.

[43] J. Sun and G. Li. An end-to-end learning-based cost
estimator. Proc. VLDB Endow., 13(3):307–319, 2019.

[44] S. Tozer, T. Brecht, and A. Aboulnaga. Q-Cop: Avoiding
bad query mixes to minimize client timeouts under heavy
loads. In ICDE, 2010.

[45] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman, and
A. Skelley. DB2 advisor: An optimizer smart enough to
recommend its own indexes. In ICDE, pages 101–110, 2000.

[46] F. Ventura, Z. Kaoudi, J. Quiané-Ruiz, and V. Markl. Expand
your training limits! generating training data for ml-based
data management. In SIGMOD, pages 1865–1878, 2021.

[47] X. Wang, W. Wu, C. Wang, V. R. Narasayya, and S. Chaud-
huri. Wii: Dynamic budget reallocation in index tuning.
Proc. ACM Manag. Data, 2(3):182, 2024.

[48] K. Whang. Index selection in relational databases. In
Foundations of Data Organization, pages 487–500, 1985.

[49] W. Wu, Y. Chi, H. Hacigümüs, and J. F. Naughton. Towards
predicting query execution time for concurrent and dynamic
database workloads. PVLDB, 6(10):925–936, 2013.

[50] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F.
Naughton. Predicting query execution time: Are optimizer
cost models really unusable? In ICDE, 2013.

[51] W. Wu, J. F. Naughton, and H. Singh. Sampling-based query
re-optimization. In SIGMOD, pages 1721–1736, 2016.

[52] W. Wu, C. Wang, T. Siddiqui, J. Wang, V. Narasayya,
S. Chaudhuri, and P. A. Bernstein. Budget-aware index
tuning with reinforcement learning. In SIGMOD, 2022.

[53] W. Wu, X. Wu, H. Hacigümüs, and J. F. Naughton. Un-
certainty aware query execution time prediction. PVLDB,
7(14):1857–1868, 2014.

[54] Y. Zhao, G. Cong, J. Shi, and C. Miao. Queryformer: A
tree transformer model for query plan representation. Proc.
VLDB Endow., 15(8):1658–1670, 2022.

Wentao Wu received the B.S. and M.S.
degrees in computer science from Fudan
University in 2007 and 2010, respectively,
and the Ph.D. degree from the Univer-
sity of Wisconsin-Madison in 2015. He is
currently a principal researcher with the
Data Systems group, Microsoft Research,
Redmond. His research interest includes
database management systems, machine
learning systems, big data processing and
analytics, data mining, and etc.

	Introduction
	Hybrid Cost Modeling
	Combining Mixed Types of Cost Estimates
	Application to Index Tuning
	Selection of Pivot Operator
	Problem Formulation
	Correlation Analysis
	Maximizing Correlation with Pivot Operator

	Theoretical Analysis
	The Case When ' Is Very Large
	Impact on Lower Bounds
	Impact of on Correlation Coefficient

	The Case When ' Is Not Large

	Experimental Evaluation
	Empirical Study of and ' on Real Workloads
	Evaluation of End-to-end Index Tuning
	Experimental Settings
	Initial Index Configuration
	Execution Feedback
	Performance Metrics
	Evaluation Results

	Related Work
	Conclusion
	Biographies
	Wentao Wu

