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ABSTRACT
We demonstrate ease.ml/snoopy, a data analytics system that
performs feasibility analysis for machine learning (ML) applica-
tions before they are developed. Given a performance target of
an ML application (e.g., accuracy above 0.95), ease.ml/snoopy
provides a decisive answer to ML developers regarding whether
the target is achievable or not. We formulate the feasibility analy-
sis problem as an instance of Bayes error estimation. That is, for
a data (distribution) on which the ML application should be per-
formed, ease.ml/snoopy provides an estimate of the Bayes error
– the minimum error rate that can be achieved by any classifier. It
is well-known that estimating the Bayes error is a notoriously hard
task. In ease.ml/snoopy we explore and employ estimators based
on the combination of (1) nearest neighbor (NN) classifiers and (2)
pre-trained feature transformations. To the best of our knowledge,
this is the first work on Bayes error estimation that combines (1)
and (2). In today’s cost-driven business world, feasibility of an ML
project is an ideal piece of information for ML application devel-
opers – ease.ml/snoopy plays the role of a reliable “consultant.”
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1. INTRODUCTION
Development of machine learning (ML) applications is similar

to development of regular software: It is an engineering process
that requires principled methodology to manage its lifecycle and
control its quality. Unfortunately, unlike development of regular
software, which is typically guided by modern software engineer-
ing principles that have been developed and refined for decades,
development of ML applications currently lacks such guidelines.
Plenty of work has been devoted to building efficient systems [12,
15], or effective tools [1, 9, 11, 13] to improve productivity of de-
velopers. However, the control over ML application development
itself is still at its beginnings [7, 17, 18].
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Figure 1: User interaction with ease.ml/snoopy

In this paper, we take a step further in narrowing down this gap
by bringing classic software engineering perspectives into the de-
velopment of ML applications. We focus on feasibility analysis, a
crucial step in software engineering that studies the possibility of
building a software system that meets user’s requirements. We de-
velop ease.ml/snoopy, a system that evaluates whether the goal
of a given ML application can be achieved. ease.ml/snoopy of-
fers such a service in an automated manner without training any
model — it snoops at the data solely and therefore runs at a low
cost in terms of computation and time.

More specifically, ease.ml/snoopy provides a decisive answer
to whether there exists a model that, on a given dataset, achieves
a better-than-required target classification accuracy. We formulate
this feasibility analysis problem as an instance of estimating the
Bayes error. It is well known that the Bayes error indicates the error
rate of the Bayes optimal classifier, which is the minimum error rate
achievable by any classifier. Unfortunately, since the underlying
probability distribution is usually unknown for real-world datasets,
one can only estimate the Bayes error. Estimating it accurately is a
notoriously hard task despite decades of research [3, 5, 21, 22].

(Nearest Neighbor Estimator) The nearest neighbor (NN) classi-
fier has been extensively studied in the literature as an estimator for
the Bayes error, due to its analytic tractability equipped with nearly
optimal performance when many samples are available. Roughly
speaking, the NN algorithm classifies a feature vector x by con-
sulting a sample dataset D of n data points, where it first finds the
nearest neighbors of x (among the n points in D), and then sim-
ply assigns x to the label represented by the nearest neighbor. In
ease.ml/snoopy, we adapt the NN estimator originally developed
by Cover and Hart [3], which has been further analyzed by Snapp et
al. [21]. The later work showed that their estimator suffers from the
curse of dimensionality, a well-known difficulty in the ML world
that happens when the inputs are high-dimensional. To surpass this
issue, we piggyback the NN classier with a set of pre-trained em-



beddings and other feature transformations, in order to speed up
the convergence of the NN classifier. This allows us to get a tighter
estimate of the Bayes error.

(Evaluation of the Estimator) Evaluating our Bayes error estima-
tor on realistic datasets is not a trivial task — most, if not all, pre-
vious work on Bayes error estimation works around this problem
by using synthetic datasets with known Bayes errors [3, 5, 22]. To
overcome this restriction, we have developed a novel methodology
for evaluating our Bayes error estimator (Section 2.2).

(Demonstration Scenarios) We will focus on the following sce-
narios in our demonstration:

1. A demonstration of how manual feasibility study on a variety
of real-world dataset would look like, in order to motivate the
need for automatic feasibility analysis;

2. A demonstration on why existing AutoML systems are not
well suited to perform feasibility study;

3. A demonstration of the functionality of ease.ml/snoopy

and its evaluation methodology on the real world datasets;
4. Interactions with the audience to test the system with user’s

data and non-public pre-trained embeddings.

2. SYSTEM OVERVIEW
Building ease.ml/snoopy, and in particular its evaluation com-

ponent, is a challenging task. In this section we give an overview
of the technicalities involved in building such a novel system. Fig-
ure 2 illustrates the interface for ease.ml/snoopy. The user in-
teractions for running the evaluation using ease.ml/snoopy are
minimal, in the following sense: After uploading the dataset (fea-
tures and labels for the test and training samples), one simply has to
specify the desired target accuracy, and, if available, the best state-
of-the-art. To speed up the evaluation process, one can manually
filter the available feature transformations.

2.1 Functionality
ease.ml/snoopy performs a feasibility analysis for ML appli-

cations automatically. A user of ease.ml/snoopy only needs to
provide the system with the dataset D that she wants to use for her
ML application, as well as its target performance (e.g., the accuracy
of a classification task). The system will decide whether this target
is meaningful, i.e., whether the best classifier trained using D can
meet the target. As we have discussed so far, ease.ml/snoopy
achieves this goal by providing an estimated Bayes error of the
given ML application on D.

Formally, let X be the feature space and Y be the label space,
with C= |Y|. Let X,Y be random variables on Ω taking values in
X and Y . We denote their joint distributions byD = p(X,Y ). The
Bayes optimal classifier is the classifier that achieves the lowest
error rate among all possible classifiers from X to Y . Its error rate
R∗X,Y is then the Bayes error rate, and can be calculated as

R∗X,Y = EX
[
1−max

Y ∈Y
p(Y |X)

]
.

The NN classifier exhibits nice analytic properties in relation to
the Bayes error. Let hn be an NN classifier with n data points in a
set D sampled i.i.d from a fixed distribution D, in short D ∼ D.
We use the following simplified notation hereafter:

• Ln = LD(hn): The error of the NN classifier with n sample
points in D ∼ D;
• L∞ = LD(h∞): The error of the NN classifier with infinite

sample points in D ∼ D.

Figure 2: User interface for ease.ml/snoopy
The following observation by Cover and Hart [3] (under very mild
assumptions on continuity of probability distributions) is the cru-
cial motivation behind our estimator:

THEOREM 2.1. For any given D ∼ D with n points,
limn→∞ Ln = L∞.

Moreover, L∞ is bounded by

R∗X,Y ≤ L∞ ≤ R∗X,Y ·
(

2− C

C − 1
R∗X,Y

)
≤ 2R∗X,Y . (2.1)

Intuitively, (1) the error rate of the NN classifier converges as we
increase the sample size; and (2) the Bayes error can be bounded
from below by half of the error of the NN classifier error with in-
finite samples. Of course, accurate computation of L∞ is unfea-
sible in practice, since it requires infinite number of samples from
D. Nonetheless, the convergence property of the NN classifier en-
sures that we can estimate L∞ reasonably well in the large-sample
regime. The accuracy of the estimator we use in ease.ml/snoopy

has been empirically validated in the literature on a range of syn-
thetic low-dimensional datasets [3, 21]. A major drawback of the
NN classifier lies in its slow convergence when dealing with high
dimensional input [21]. To bypass this in ease.ml/snoopy, we
run the classifier not directly on the raw input features, but on fea-
tures produced by a deterministic feature transformation f . We
remark that such a transformation cannot reduce the Bayes error,
and hence will never give a too optimistic Bayes error estimator.
Making use of this property, together with the previous theorem,
we define our estimator as follows:

R̂X,Y := min
f∈F

Lf,n

1 +
√

1− C
C−1

Lf,n
,



Figure 3: Evaluation Methodology
where F is a set of feature transformations, and Lf,n is the error
of the NN classifier with n samples after applying the transforma-
tion f ∈ F to all the samples. Notice that taking the mininum of
Lf,n/2 would give a looser bound.

(Pre-Trained Feature Transformations) In order to have a good
estimator using the previously described approach, we need to build
a set of feature transformations F that speeds up the convergence
of the NN classifier accuracy, whilst only slightly increasing the
underlying Bayes error. In ease.ml/snoopy we follow a common
approach in transfer learning [16], by making use of pretrained em-
beddings available in public repositories such as Tensorflow Hub1

or PyTorch-Hub2. In order to unify the use of embeddings from
both the deep learning frameworks and additional arbitrary feature
transformations, we specify a simple interface using Numpy arrays:

new_features, new_labels <- apply(features, labels)

2.2 Evaluation Methodology
The goal of the evaluation is to assess the quality of our estimator

on realistic datasets, without access to prior knowledge of the true
Bayes error. We start by introducing some simple notation in order
to describe our methodology.

Consider a dataset D with n i.i.d. samples from D, for which
we know the state-of-the-art (SOTA) classification performance sD
(see Table 1). Note that the latter is an upper bound of the Bayes
error R∗X,Y . Now assume that for a proportion of ρ samples we
randomly change the label. Clearly, this would increase the Bayes
error, and the following result quantifies it.

THEOREM 2.2. Let Yρ be a random variable defined on Y by
setting Yρ = Z ·U(Y)+(1−Z) ·Y, where U is a uniform variable
taking values in Y , and Z is a Bernoulli variable with probability
0 ≤ ρ ≤ 1, both independent ofX and Y . ThenR∗X,Yρ

= R∗X,Y +

ρ(1− 1/C −R∗X,Y ).

The random variable Yρ takes values in Y , while ρ corresponds
to the probability of randomly assigning the label from the original
label to a random value in Y . Theorem 2.2 implies that 1− 1/C ≥
R∗X,Yρ

≥ R∗X,Y , with equality when ρ = 1 or ρ = 0.
As a direct consequence of Theorem 2.2, using the SOTA as an

upper bound for R∗X,Y , and R∗X,Y ≥ 0 as the trivial lower bound,
we can define the valid bounds on R∗X,Yρ

∈ [`D(ρ), uD(ρ)], with
uD(ρ) = sD + ρ(1− 1/C − sD) and `D(ρ) = ρ(1− 1/C). For
a fixed method m, we can estimate the lower bound `Dρ,m(ρ) on
a manipulated dataset Dρ obtained by taking ρ · n samples out of
D, and randomly changing their labels, whilst keeping the other
(1− ρ) ·n samples intact. To define the error of a given method m
on the modified dataset Dρ, we can estimate two areas: (i) the area
where m is clearly underestimating the Bayes error lower bound,
and (ii) the area where m is overestimating it. We illustrate these
1
https://tfhub.dev/

2
https://pytorch.org/hub

Table 1: Datasets and the performance of SOTA classifiers.

NAME Classes TRAIN / TEST SOTA %

MNIST 10 60K / 10K 0.17 [2]
CIFAR10 10 50K / 10K 0.7 [10]
CIFAR100 100 50K / 10K 6.4 [10]

IMDB 2 25K / 25K 3.79 [24]
CoLa 2 8.5K / 1K 22.8 [23]

quantities in Figure 3. Notice that for every method m it holds that
the area is equal to zero if and only if for all ρ ∈ [0, 1], the lower-
bound estimate lies between uD(ρ) and `D(ρ), in which case the
method m is an optimal lower-bound estimate.

3. DEMONSTRATION SCENARIOS
We present the details of the scenarios that we plan to demon-

strate with ease.ml/snoopy. We will use two data modalities that
are ubiquotous in modern machine learning. The first group con-
sists of visual classification tasks, including CIFAR10, CIFAR100,
and MNIST. The second group consists of standard text classifica-
tion tasks, where we focus on IMDB and CoLa. Table 1 presents
the details. The chosen tasks are well studied with many years
of research. Hence, it is possible that its state-of-the-art models
achieve accuracies that are close to the true unknown Bayes error.
We note that for the visual classification tasks the raw features are
the pixel intensities, whereas for the text classification we apply the
standard bag-of-words preprocessing with term-frequency/inverse-
document-frequency weighting [8].

3.1 Scenario 1: Missing Automation
We will start by highlighting the importance of automation in

feasibility study. We will increasingly add small fractions of la-
bel noise to the datasets. By making use of Theorem 2.2 and the
SOTA values, we are able to tell in what range the Bayes error
falls. Especially in the regime of little label noise, we will show-
case that it is very hard and time-consuming to distinguish different
fractions of noisy labels, by simply looking at handpicked samples
or conducting manual statistical analysis without any structured ap-
proach. This will hopefully convince the audience of the motivation
of automatic feasibility analysis.

3.2 Scenario 2: AutoML Systems
We will then proceed by making use of available AutoML sys-

tems to automatically train a model on a given dataset, and empha-
size why such systems are not well suited to perform a thorough
feasibility study. Following the same approach described in Sce-
nario 1, we will show that the idea of running multiple instances
with different manipulated datasets (corrupted with a known frac-
tion of label noise) on AutoML systems has two major drawbacks.
First, it may cost a lot of money and time for an AutoML system
to output the best model and its accuracy. Second, if the model
accuracy is below the desired target, the user either needs to guess
whether there exists a better model not covered by the search space
of the AutoML system, or trust the model without knowing the
Bayes error. We hope that this will convince the audience that Au-
toML systems are not sufficient for automatic feasibility study, as
they do not produce a lower bound on the Bayes error.

3.3 Scenario 3: Ease.ml/snoopy
We then showcase the functionalities of ease.ml/snoopy by

making use of all the datasets in Table 1 with their respective SOTA
values and a set of feature transformations. When selecting poten-
tial pre-trained embeddings, we look at multiple available public

https://tfhub.dev/
https://pytorch.org/hub


(a) CIFAR100 (b) IMDB
Figure 4: (a) NN estimation on CIFAR100. (b) NN estimation on IMDB.

sources, such as TensorFlow Hub or PyTorch-Hub, as well as sim-
ple transformations such as PCA and NCA [6], with various tar-
get dimensions. Notice that particularly in the image domain, pre-
trained embeddings often assume a fixed-sized resolution, which
might differ from the target image size. The adjustment in those
cases is done using default resizing methods of either TensorFlow
or PyTorch. Finally, including the identity transformation in our set
of feature transformations allows us to quantify the difference be-
tween raw data representations and other transformations. In Fig-
ure 4 we highlight the difference in terms of convergence rates, for
a fixed set of transformations and one dataset from each modality,
with respect to our evaluation methodology.

3.4 Scenario 4: Interaction with Audience
In this final part, we would like to invite our audience to inter-

act with the system, possibly using their own data and optionally
known SOTA values. The input format of the data needs to be
standardized to the previously described Numpy arrays. In order
to support our audience, we plan to provide simple tools to either
check the input format, or convert other formats such as Tensor-
flow Dataset3, images stored in folders following the Torchvision
conventions4, or text files containing one sample per line. Finally,
we plan to extend the list of feature transformations by specifying
REST URLs following simple specifications given in advance.

4. RELATED WORK
We focused on a simple nearest neighbor classifier in order to

estimate the Bayes error. There are various different approaches
though. Given any density estimator based on finite data, one can
explore two alternatives: (1) estimating the class posterior density
for every single class [4], or (2) estimating the class prior and likeli-
hood density for every class [5, 19], followed by deriving the max-
imum class posterior by applying the Bayes Theorem. Typically,
these methods are not practical in the sense that there is no strategy
to tune the hyper-parameters. More recent works aim to estimate
the class posterior divergence in order to estimate the Bayes er-
ror [14, 20]. These methods are either only defined for binary clas-
sification problems, or are computationally not tractable for large
sample size as they need to compute the minimum spanning tree
(MST) over the fully connected graph of samples.

5. CONCLUSION
We have demonstrated ease.ml/snoopy, a new genre of data

analytics system that provides automatic, a priori feasibility anal-
ysis for ML applications. ease.ml/snoopy helps ML develop-
ers understand how realistic their desired performance goals are,
by providing an estimate over the Bayes error of ML applications
on available datasets. ease.ml/snoopy fits into the broad view

3
https://www.tensorflow.org/datasets/

4
https://pytorch.org/docs/stable/torchvision/datasets.html

of controlling and managing lifecycles of ML application develop-
ment, and we hope that our work provides interesting scenarios that
could inspire future research in this fertile ground.
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