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ABSTRACT

End-to-end AutoML has attracted intensive interests from both
academia and industry, which automatically searches for ML
pipelines in a space induced by feature engineering, algorithm/-
model selection, and hyper-parameter tuning. Existing AutoML
systems, however, suffer from scalability issues when applying to
application domains with large, high-dimensional search spaces.
We present VolcanoML, a scalable and extensible framework that
facilitates systematic exploration of large AutoML search spaces.
VolcanoML introduces and implements basic building blocks that
decompose a large search space into smaller ones, and allows users
to utilize these building blocks to compose an execution plan for the
AutoML problem at hand. VolcanoML further supports a Volcano-
style execution model – akin to the one supported by modern data-
base systems – to execute the plan constructed. Our evaluation
demonstrates that, not only does VolcanoML raise the level of
expressiveness for search space decomposition in AutoML, it also
leads to actual findings of decomposition strategies that are signif-
icantly more efficient than the ones employed by state-of-the-art
AutoML systems such as auto-sklearn.
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1 INTRODUCTION

In recent years, researchers in the database community have
been working on raising the level of abstractions of machine
learning (ML) and integrating such functionality into today’s
data management systems, e.g., SystemML [21], SystemDS [6],
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Snorkel [62], ZeroER [78], TFX [3, 7], “Query 2.0” [79], Kryp-
ton [57], Cerebro [58], ModelDB [74], MLFlow [81], DeepDive [12],
HoloClean [63], ActiveClean [43], and NorthStar [42]. End-to-end
AutoML systems [29, 80, 84] have been an emerging type of sys-
tems that has significantly raised the level of abstractions of build-
ing ML applications. Given an input dataset and a user-defined
utility metric (e.g., validation accuracy), these systems automate
the search of an end-to-end ML pipeline, including feature en-

gineering, algorithm/model selection, and hyper-parameter tuning.
Open-source examples include auto-sklearn [18], TPOT [60], and
hyperopt-sklearn [41], whereas most cloud service providers,
e.g., Google, Microsoft, Amazon, Alibaba, etc., all provide their pro-
prietary services on the cloud. As machine learning has become
an increasingly indispensable functionality integrated in modern
data (management) systems, an efficient and effective end-to-end
AutoML component also becomes increasingly important.

End-to-end AutoML provides a powerful abstraction to auto-
matically navigate and search in a given complex search space.
However, in our experience of applying state-of-the-art AutoML
systems in a range of real-world applications, we find that such
a system running “fully automatically” is rarely enough — often,
developing a successful ML application involves multiple iterations
between a user and an AutoML system to iteratively improve the
resulting ML artifact.

Motivating Practical Challenge One such type of interaction,
which inspires this work, is the enrichment of search space. We ob-
serve that the default search space provided by state-of-the-art
AutoML systems is often not enough in many applications. This
was not obvious to us at all in the beginning and it is not until
we finish building a range of real-world applications that we real-
ize this via a set of concrete examples. For example, in one of our
astronomy applications [65], the feature normalization function
is domain-specific and not supported by most, if not all, AutoML
systems. Similar examples can also be found when searching for
suitable ML models via AutoML. In one of our meteorology applica-
tions, we need to extend the models with meteorology-specific loss
functions. We saw similar problems when we tried to extend exist-
ing AutoML systems with pre-trained feature embeddings coming
from TensorFlow Hub, to include newly arXiv’ed models to enrich
the “Model Base” [48], or to support Cosine annealing as for tuning.

Technical Challenge: Scalability over the Search Space

“Why is it hard to extend the search space, as a user, in an end-to-end
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AutoML system?” The answer to this question is a complex one
that is not completely technical: some aspects are less technical
such as engineering decisions and UX designs, however, there are
also more technically fundamental aspects. An end-to-end AutoML
system contains an optimization algorithm that navigates a joint
search space induced by feature engineering, algorithm selection,
and hyper-parameter tuning. Because of this joint nature, the search
space of end-to-end AutoML is complex and huge while the enrich-
ment is only going to make it even larger. As we will see, handling
such a huge space is already challenging for existing systems, and
further enriching it will make it even harder to scale.

Many existing systems such as auto-sklearn [18] and
TPOT [60] deal with the entire composite search space jointly, which
naturally leads to the scalability bottleneck. Decomposing a joint
space has been explored for some subspaces (e.g., only algorithm
and hyper-parameters as in [49, 54]), however, none of them has
been applied to a search space as large as that of end-to-end Au-
toML. One challenge is that there exist many different ways to
decompose the same space, but only some of them can perform
well. Without a structured, high-level abstraction for search space

decomposition to explore different strategies, it is very hard to scale

up an end-to-end AutoML system to accommodate the search space

that will only get larger in the future.

Summary of Technical Contributions In this paper, we focus
on designing a system, VolcanoML, which is scalable to a large

search space. Our technical contributions are as follows.
C1. System Design: A Structured View on Decomposition. The main

technical contribution of VolcanoML is to provide a flexible and
principled way of decomposing a large search space into multiple
smaller ones. We propose a novel system abstraction: a set of Vol-
canoML building blocks (Section 3), each of which takes charge of
a smaller sub-search space whereas a VolcanoML execution plan

(Section 4) consists of a tree of such building blocks — the root node
corresponds to the original search space and its child nodes corre-
spond to different subspaces. Under this abstraction, optimizing in
the joint space is conducted as optimization problems over different
smaller subspaces. The execution model is similar to the classic
“Volcano” query evaluation model in a relational database [20, 44]
(thus the name VolcanoML): The system asks the root node to take
one iteration in the optimization process, which recursively invokes
one of its child nodes to take one iteration on solving a smaller-
scale optimization problem over its own subspace; this recursive
invocation procedure will continue until a leaf node is reached.
This flexible abstraction allows us to explore different ways that
the same joint space can be decomposed. Together with a range of
additional optimizations (Section 4), VolcanoML can often support
more scalable search process than the existing AutoML systems
such as auto-sklearn and TPOT.

C2. Large-scale Empirical Evaluations.We conducted intensive
empirical evaluations, comparing VolcanoMLwith state-of-the-art
AutoML systems including auto-sklearn and TPOT. We show that
(1) under the same search space as auto-sklearn,VolcanoML sig-
nificantly outperforms auto-sklearn and TPOT — over 30 classifi-
cation tasks and 20 regression tasks — VolcanoML outperforms the
best of auto-sklearn and TPOT on a majority of tasks; (2) using an
enriched search spacewith additional feature engineering operators,

VolcanoML performs significantly better than auto-sklearn;
and (3) using an enriched search space with an additional data pro-
cessing stage and functionalities beyond what auto-sklearn and
TPOT currently support (i.e., an additional embedding selection
stage using pre-trained models on TensorFlow Hub), VolcanoML
can deal with input types such as images efficiently.

Moving Forward The VolcanoML abstraction enables a struc-
tured view of optimizing a black-box function via decomposition.
This structured view itself opens up interesting future directions.
For example, one may wish to automatically decompose a search
space given a workload, just like what a classic query optimizer
would do for relational queries. For constrained optimizations, we
also imagine techniques similar to traditional “push-down selection”
could be applied in a similar spirit. We explore the possibility of
automatically searching for the best plan in Section 4 and discuss
the limitations of this simple strategy and the exciting line of future
work that could follow. While the full treatment of these aspects
are beyond the scope of this paper, we hope the VolcanoML ab-
straction can serve as a foundation for these future endeavors.

2 RELATEDWORK

AutoML is a topic that has been intensively studied over the last
decade. We briefly summarize related work in this section and
readers can consult latest surveys [25, 29, 80, 84] for more details.

End-to-End AutoML. End-to-end AutoML aims to automate
the development process of the end-to-end ML pipeline, includ-
ing feature preprocessing, feature engineering, algorithm selec-
tion, hyper-parameter tuning, and model ensembling [9, 82, 83].
Often, this is modeled as a black-box optimization problem [30]
and solved jointly [18, 60, 71]. Apart from grid search and random
search [4], genetic programming [55, 60] and Bayesian optimiza-
tion (BO) [5, 16, 28, 67, 68] has become prevailing frameworks for
this problem. Several meta-learning approaches [11, 18, 27, 72]
can guide ML practitioners to design better search spaces for Au-
toML tasks. Many end-to-end AutoML systems have raised the
abstraction level of ML. auto-weka [71], hyperopt-sklearn [41]
and auto-sklearn [18] are the main representatives of BO-based
AutoML systems. auto-sklearn is one of the most popular open-
source framework. TPOT [60] and ML-Plan [55] use genetic algo-
rithm and hierarchical task networks planning respectively to op-
timize over the pipeline space, and require discretization of the
hyper-parameter space. AlphaD3M [14] integrates reinforcement
learning with Monte Carlo tree search (MCTS) to solve AutoML
problems but without imposing efficient decomposition over hyper-
parameters and algorithm selection. AutoStacker [10] focuses on
ensembling and cascading to generate complex pipelines, and solves
the CASH problem [18] via random search. Furthermore, a grow-
ing number of commercial enterprises also export their AutoML
services to their users, e.g., H2O [45], Microsoft’s Azure Machine
Learning [2], Google’s Prediction API [23], Amazon Machine Learn-
ing [53] and IBM’s Watson Studio AutoAI [31].

Automating Individual Components. Apart from end-to-
end AutoML, many efforts have been devoted to studying sub-
problems in AutoML: (1) feature engineering [36–39, 59], (2) algo-
rithm selection [15, 18, 41, 49, 54, 71], and (3) hyper-parameter tun-
ing [5, 17, 26, 28, 32, 34, 40, 47, 50, 61, 66, 68, 69, 77]. Meta-learning



methods [19, 22, 76] for hyper-parameter tuning can leverage aux-
iliary knowledge acquired from previous tasks to achieve faster
optimization. Several systems offer a subset of functionalities in
the end-to-end process. Microsoft’s NNI [64] helps users to au-
tomate feature engineering, hyper-parameter tuning, and model
compression. Recent work [54] leverages the ADMM optimization
framework to decompose the CASH problem [18], and solves two
easier sub-problems. Berkeley’s Ray [56] and OpenBox [51] provide
the tune module [50, 52] to support scalable hyper-parameter tun-
ing tasks in a distributed environment. Featuretools [35] is a Python
library for automatic feature engineering. Unlike these works, we
focus on deriving an end-to-end solution to the AutoML problem,
where the sub-problems are solved in a joint manner.

3 VOLCANOML AND BUILDING BLOCKS

The goal of VolcanoML is to enable scalability with respect to the
underlying AutoML search space. As a result, its design focuses on
the decomposition of a given search space. In this section, we first
introduce key building blocks in VolcanoML, and in Section 4 we
describe how multiple building blocks are put together to compose
a VolcanoML execution plan in a modular way. Later in Section 5,
we introduce additional optimizations for these building blocks.

3.1 Search Space of End-to-End AutoML

We describe the search space of end-to-end AutoML following
auto-sklearn. The input to the system is a dataset𝐷 , containing a
set of training samples. The user also provides a pre-defined metric,
e.g., validation accuracy or cross-validation accuracy, to measure
the utility of a given ML pipeline. The output of an end-to-end
AutoML system is an ML pipeline that achieves good utility.

To find such an ML pipeline, the system searches over a large
search space of possible pipelines and picks one that maximizes
the pre-defined utility. This search space is a composition of (1)
feature engineering operators, (2) ML algorithms/models, and (3)
hyper-parameters.

Feature Engineering. The feature engineering process takes as
input a dataset 𝐷 and outputs a new dataset 𝐷 ′. It achieves this
by transforming the input dataset via a set of data transforma-
tions. In auto-sklearn, it further defines multiple stages of the
feature engineering process: (1) preprocessing, (2) rescaling, (3) bal-
ancing, and (4) feature_transforming. For each stage, the system
chooses a single transformation to apply. For example, for fea-
ture_transforming, the system can choose among no_processing,
kernel_pca, polynomial, select_percentile, etc.

ML Algorithms. Given a transformed dataset 𝐷 ′, the system
then picks an ML algorithm to train. Since different ML algo-
rithms are suitable for different types of tasks, the system needs
to consider a diverse range of possible ML algorithms. Tak-
ing auto-sklearn as an example, the search space for ML al-
gorithms contains Linear_Model, Support_Vector_Machine,
Discriminant_Analysis, Random_Forest, etc.

Hyper-parameters. Each ML algorithm has its own sub-search
space for hyper-parameter tuning — if we choose to use a cer-
tain ML algorithm, we also have to specify the corresponding
hyper-parameters. The hyper-parameters fall into three categories:
continuous (e.g., sub-sample_rate for Random_Forest), discrete

(e.g., maximal_depth for Decision_Tree), and categorical (e.g.,
kernel_type for Lib_SVM).

If the system makes a concrete pick for each of the above deci-
sions, then it can compose a concrete ML pipeline and evaluate its
utility. This is often an expensive process since it involves training
an ML model. To find the optimal ML pipeline, the system evaluates
the utility of different ML pipelines in an iterative manner following
a search strategy, and picks the one that maximizes the utility.

For example, auto-sklearn handles the above search space
jointly and optimizes it with Bayesian optimization (BO) [67]. Given
an initial set of function evaluations, BO proceeds by fitting a surro-
gate model to those observations, specifically a probabilistic Random
Forest in auto-sklearn, and then chooses which ML pipeline to
evaluate from the search space by optimizing an acquisition func-
tion that balances exploration and exploitation.

3.2 Building Blocks

Unlike auto-sklearn, VolcanoML decomposes the above search
space into smaller subspaces. One interesting design decision in
VolcanoML is to introduce a structured abstraction to express dif-
ferent decomposition strategies. A decomposition strategy is akin
to an execution plan in relational database management systems,
which is composed of building blocks akin to relational operators.
A building block itself can be viewed as an atomic decomposition
strategy. We next present the details of the building blocks imple-
mented by VolcanoML, and we will introduce how to use these
blocks to compose VolcanoML execution plans in Section 4.

Goal. The goal of VolcanoML is to solve:

min
𝑥1,...,𝑥𝑛

𝑓 (𝑥1, ..., 𝑥𝑛 ;𝐷),

where 𝑥1, ..., 𝑥𝑛 is a set of 𝑛 variables and each of them has domain
D𝑥𝑖 for 𝑖 ∈ [𝑛]. Together, these 𝑛 variables define a search space
(𝑥1, ..., 𝑥𝑛) ∈

∏
𝑖 D𝑥𝑖 . 𝐷 corresponds to the input dataset, which is

a set of input samples. In our setting, 𝑓 (·) is a black-box function
that we can only evaluate (but not exploiting the derivative). Given
constant 𝒄 in the composite domain 𝒄 ∈ ∏𝑖 D𝑥𝑖 , we use the notation

𝑓 ({(𝑥1, ...𝑥𝑛) = 𝒄};𝐷)

as the value of evaluating 𝑓 by substituting (𝑥1, ...𝑥𝑛) with 𝒄 .
Subgoal. One key decision of VolcanoML is to solve the opti-

mization problem on a search space by decomposing it into multiple
smaller subspaces, each of which will be solved by one building
block. We define optimizing over each of these smaller subspaces as
a subgoal of the original problem. Formally, a subgoal 𝑔 is defined
by two components: 𝒙𝑔 ⊆ {𝑥1, ...𝑥𝑛} as a subset of variables, and
𝒄𝑔 ∈

∏
𝑥𝑖 ∈�̄�𝑔 D𝑥𝑖 as an assignment in the domain of all variables in

𝒙𝑔 . Let 𝒙−𝑔 = {𝑥1, ..., 𝑥𝑛} − 𝒙𝑔 be all variables that are not in 𝒙𝑔 .
Each subgoal defines a function 𝑓𝑔 over a smaller search space,

which is constructed by substituting all variables in 𝒙𝑔 with 𝒄𝑔 :

𝑓𝑔 = 𝑓 [𝒙𝑔/𝒄𝑔] : 𝒛 ∈
∏

𝑥𝑖 ∈�̄�−𝑔
D𝑥𝑖 ↦→ 𝑓 ({𝒙𝑔 = 𝒄𝑔 ; 𝒙−𝑔 = 𝒛};𝐷) .

Building Block. Each subgoal 𝑔 corresponds to one building block
𝐵𝑔,𝐷 , whose goal is to solve

min
�̄�−𝑔

𝑓𝑔 (𝒙−𝑔 ;𝐷) .



A building block 𝐵𝑔,𝐷 imposes several assumptions on 𝑔 and 𝐷 .
First, given an assignment 𝒄−𝑔 to 𝒙−𝑔 , it is able to evaluate the value
of the function 𝑓𝑔 (𝒄−𝑔, 𝐷). Note that such an evaluation can often
be expensive and VolcanoML tries to minimize the number of
times that such a function is evaluated. Second, given a dataset
𝐷 , a building block has the knowledge about how to subsample
a smaller dataset �̃� ⊆ 𝐷 and then conduct evaluations on such a
subset 𝒙 ↦→ 𝑓𝑔 (𝒙 ; �̃�). Third, we assume that the building block has
access to a cost model about the cost of an evaluation at 𝒙 , 𝐶𝑔,𝐷,𝒙 .

Interfaces. All implementations of a building block follow an
interactive optimization process. A building block exposes several
interfaces. First, one can initialize a building block via

𝐵𝑔,𝐷 ← init(𝑓 , 𝒙𝑔, 𝒄𝑔, 𝐷),
which creates a building block. Second, one can query the current
best solution found in 𝐵𝑔,𝐷 by

�̂� ← get_current_best(𝐵𝑔,𝐷 ) .
Furthermore, one can ask 𝐵𝑔,𝐷 to iterate once via

do_next!(𝐵𝑔,𝐷 ),
where ‘!’ indicates potential change on the state of the input 𝐵𝑔,𝐷 .

Last but not least, one can query a building block about its ex-
pected utility (EU) if given 𝐾 more budget units (e.g., seconds) via

[𝑙, 𝑢] ← get_eu(𝐵𝑔,𝐷 , 𝐾).
By adopting a similar design principle used in the existing AutoML
systems [18, 54, 60], inVolcanoMLwe estimate EU by extrapolation
into the “future” with more available budget. Given the inherent
uncertainty in our estimationmethod, rather than returning a single
point estimate, we instead return a lower bound 𝑙 and an upper
bound𝑢.We refer readers to [49] for the details of how the lower and
upper bounds are established. Moreover, one can query a building
block about its expected utility improvement (EUI) via

𝛿 ← get_eui(𝐵𝑔,𝐷 ).
Note that, different from EU, EUI is the expected improvement

over the current observed utility if given 𝐾 more budget units. In
VolcanoML, we estimate EUI by taking the mean of the observed
improvements from history, following Levine et al [46].

3.3 Three Types of Building Blocks

Decomposition is the cornerstone of VolcanoML’s design. Given a
search space, apart from exploring it jointly, there are two classical
ways of decomposition — to partition the search space via condi-
tioning on different values of a certain variable (in a similar spirit
of variable elimination [13]), or to decompose the problem into mul-
tiple smaller ones by introducing equality constraints (in a similar
spirit of dual decomposition [8]). This inspires VolcanoML’s design,
which supports three types of building blocks: (1) joint block that
simply optimizes the input subspace using Bayesian optimization;
(2) conditioning block that further divides the input subspace into
smaller ones by conditioning on one particular input variable; and
(3) alternating block that partitions the input subspace into two and
optimizes each one alternately. Note that both conditioning block

and alternating block would generate new building blocks with
smaller subgoals. We next present the implementation details for
each type of building block.

Algorithm 1: The do_next! of conditioning block
Input: A conditioning block 𝐵𝑔,𝐷 , budget 𝐾 .

1 Let 𝐵1 , ..., 𝐵𝑚 be all active (have not been eliminated) child blocks;
2 for 1 ≤ 𝑖 ≤ 𝐿 do

3 for 1 ≤ 𝑗 ≤𝑚 do

4 do_next!(𝐵 𝑗 ) ;
5 for 1 ≤ 𝑗 ≤𝑚 do

6 [𝑙 𝑗 ,𝑢 𝑗 ] ← get_eu(𝐵 𝑗 , 𝐾) ;
7 Eliminate child blocks that are dominated by others, using [𝑙 𝑗 ,𝑢 𝑗 ] for 1 ≤ 𝑗 ≤𝑚;

3.3.1 Joint Block. A joint block directly optimizes its subgoal via
Bayesian optimization (BO) [67]. Specifically, BO based method -
SMAC [28] has been used by many applications where evaluating
the objective function is computationally expensive. It constructs a
probabilistic surrogate model𝑀 to capture the relationship between
the input variables 𝒙 and the objective function value𝜓 , and refines
𝑀 iteratively using past observations (𝒙,𝜓 )s.

The implementation of do_next! for a joint block consists of
the following three steps: 1) Use the surrogate model 𝑀 to select
𝒙 that maximizes an acquisition function. In our implementation,
we use expected improvement (EI) [33] as the acquisition function,
which has been widely used in BO community. 2) Evaluate the
selected 𝒙 and obtain its value about the objective function (i.e., the
subgoal)𝜓 = 𝑓𝑔 (𝒙) + 𝜖 with 𝜖 ∼ N(0, 𝜎2), where N is the normal
distribution. 3) Refit the surrogate model𝑀 on the observed (𝒙,𝜓 )s.

Early-Stopping based Optimization. For large datasets, early-
stopping based methods, e.g., Successive Halving [32], Hyper-
band [47], BOHB [17], MFES-HB [50], etc, can terminate the evalua-
tions of poorly-performed configurations in advance, thus speeding
up the evaluations. VolcanoML supports MFES-HB [50], which
combines the benefits of Hyperband and Multi-fidelity BO [70, 77],
to optimize a joint block, in addition to vanilla BO.

3.3.2 Conditioning Block. A conditioning block decomposes its
input 𝒙 into 𝒙 = {𝑥𝑐 }∪𝒚, where 𝑥𝑐 is a single variable with domain
D𝑥𝑐 . It then creates one new building block for each possible value
𝑑 ∈ D𝑥𝑐 of 𝑥𝑐 :

min
�̄�
𝑔𝑑 (𝒚;𝐷) ≡ 𝑓 ({𝑥𝑐 = 𝑑,𝒚};𝐷) .

As a result, |D𝑥𝑐 | new (child) building blocks are created.
The conditioning block aims to identify optimal value for 𝑥𝑐 , and

many previous AutoML researches have used Bandit algorithms for
this purpose [32, 49, 50, 54]. In VolcanoML, we follow these pre-
vious work and model it as a multi-armed bandit (MAB) problem,
while our framework is flexible enough to incorporate other algo-
rithms when they are available. There are |D𝑥𝑐 | arms, where each
arm corresponds to a child block. Playing an arm means invoking
the do_next! primitive of the corresponding child block.

Algorithm 1 illustrates the implementation of do_next! for a
conditioning block. It starts by playing each arm 𝐿 times in a Round-
Robin fashion (lines 2 to 4). Here, 𝐿 is a user-specified configuration
parameter of VolcanoML. In our current implementation, we set
𝐿 = 5. We then obtain the lower and upper bounds of the expected
utility of each child block by invoking its get_eu primitive (lines 5
to 6), and eliminate child blocks that are dominated by others (line
7). The elimination works as follows. Consider two blocks 𝐵𝑖 and
𝐵 𝑗 : if the upper bound 𝑢𝑖 of 𝐵𝑖 is less than the lower bound 𝑙 𝑗 of
𝐵 𝑗 , then the block 𝐵𝑖 is eliminated. An eliminated arm/block will
not be played in future invocations of do_next!.



Algorithm 2: The init of alternating block
Input: An alternating block 𝐵𝑔,𝐷 with search space �̄� = �̄� ∪ �̄�.

1 Initialize �̄� and �̄� with default values �̄�0 and �̄�0 ;
2 𝐵1 ← init(𝑓 , �̄�, �̄�0, 𝐷) ;
3 𝐵2 ← init(𝑓 , �̄�, �̄�0, 𝐷) ;
4 for 1 ≤ 𝑖 ≤ 𝐿 do

5 do_next(𝐵1) ;
6 �̄�𝑖 ← get_current_best(𝐵1) ;
7 set_var(𝐵2, �̄�, �̄�𝑖 ) ;
8 do_next(𝐵2) ;
9 �̄�𝑖 ← get_current_best(𝐵2) ;

10 set_var(𝐵1, �̄�, �̄�𝑖 );

Algorithm 3: The do_next! of alternating block
Input: An alternating block 𝐵𝑔,𝐷 with budget 𝐾 .

1 𝛿1 ← get_eui(𝐵1) ;
2 𝛿2 ← get_eui(𝐵2) ;
3 if 𝛿1 ≥ 𝛿2 then

4 �̄�best ← get_current_best(𝐵2) ;
5 set_var(𝐵1, �̄�, �̄�best) ;
6 do_next(𝐵1) ;
7 else

8 �̄�best ← get_current_best(𝐵1) ;
9 set_var(𝐵2, �̄�, �̄�best) ;

10 do_next(𝐵2) ;

Remark: We have simplified the above elimination criterion by
using the lower and upper bounds calculated given 𝐾 budget units
for each arm. In fact, these𝐾 budget units are shared by all the arms,
and as a result, each arm actually has fewer budget units than 𝐾 .
Our assumption is that, 𝐾 is sufficiently large so that one can play
all arms until (the observed distribution of rewards of) each arm

converges. Otherwise, the lower and upper bounds obtained may be
over-optimistic, and as a result, may lead to incorrect eliminations.
Fortunately, our assumption usually holds in practice, where arms
converge relatively fast.

3.3.3 Alternating Block. An alternating block decomposes its input
search space into 𝒙 = 𝒚 ∪ 𝒛, and explores 𝒚 and 𝒛 in an alternating

way. Similarly, we also model the optimization in alternating block
as an MAB problem. Algorithm 2 illustrates how its init primitive
works. It first creates two child blocks 𝐵1 and 𝐵2, which will focus
on optimizing for 𝒚 and 𝒛 respectively (lines 1 to 3). It then (again)
views 𝐵1 and 𝐵2 as two arms and plays them using Round-Robin
(lines 4 to 10). Note that, when 𝐵1 optimizes 𝒚 (resp. when 𝐵2
optimizes 𝒛), it uses the current best 𝒛 found by 𝐵2 (resp. the current
best𝒚 found by 𝐵1). This is done by the set_var primitive (invoked
at line 7 for 𝐵2 and line 10 for 𝐵1).

One problem of our alternating MAB formulation is that the
utility improvements of the two building blocks often vary dramat-
ically in practice. For example, some applications are very sensitive
to the features being used (e.g., normalized vs. non-normalized
features) while hyper-parameter tuning will offer little or even
no improvement. In this case, we should spend more resources
on looking for good features instead of tuning hyper-parameters.
Our key observation is that, the expected utility improvement (EUI)
decays as optimization proceeds. As a result, we propose to use
EUI as an indicator that measures the potential of pulling an arm
further. Algorithm 3 illustrates the details of this idea when used
to implement the do_next! primitive.

Specifically, Algorithm 3 starts by polling the EUI of both child
blocks (lines 1 and 2). Recall that the EUI is estimated by taking the

Joint

(x, y, z, w)

Cond on x

(x, y, z, w)

Joint

(y, z, w)

Joint Joint

(y, z, w) (y, z, w)

min
(",$,%,&)

𝑓(𝑥, 𝑦, 𝑧, 𝑤; 𝐷)

Plan 1

Plan 2

Figure 1: Two different execution plans for the same opti-

mization problem. Each plan corresponds to a different way

to decompose the same search space (𝑥,𝑦, 𝑧,𝑤).
mean of historic observations. It then compares the EUIs and picks
the arm/block with larger EUI to play next (lines 3 to 10). Before
pulling the winner arm, again it will use the current best settings
found by the other arm/block (lines 4 to 6, lines 8 to 10).

3.3.4 Discussion: Pros and Cons of Building Blocks. While the joint
block is the most straightforward way to solve the optimization
problem associated, it is difficult to scale Bayesian optimization to
a large search space [49, 75]. The alternating block addresses this
scalability issue by decomposing the search space into two smaller
subspaces, though with the assumption that the improvements
of the two subspaces are conditionally independent of each other.
As a result, the alternating block is a better choice when such an
assumption approximately holds. The conditioning block is capable
of pruning the search space as optimization proceeds, when bad
arms are pulled less often or will not be played anymore, with
the limitation that it can only work for conditional variables that
are categorical. For non-categorical variables, one possible way to
use conditioning blocks is to split the value range of variables. For
example, given a numerical variable that ranges from 1 to 3, we
split it into two ranges, which are [1, 2) and [2, 3). During the
optimization iteration, we first choose one sub-range and then
optimize the splitted space along with its corresponding subspace.

In addition, VolcanoML uses bandit-based algorithms from the
existing literature [46, 49] as default in both the alternating and
conditioning block, and other bandit-based algorithms, such as
successive halving [32], Hyperband [47], BOHB [17] and MFES-
HB [50], can also be used in these blocks. In Section 4, we explore
the possibility of automatically choosing building blocks to use by
maximizing the empirical accuracy of different execution plans.

4 VOLCANOML EXECUTION PLAN

Given a pre-defined search space, the input of VolcanoML is (1) a
dataset 𝐷 , (2) a utility metric (e.g, cross-validation accuracy) which
defines the objective function 𝑓 , and (3) a time budget. VolcanoML
then decomposes a large search space into an execution plan, fol-
lowing some specific decomposition strategy.

VolcanoML Execution Plan. Due to space limitation, we omit
the formal definition of a VolcanoML execution plan. Intuitively,
a VolcanoML execution plan is a tree of building blocks. The root
node corresponds to a building block solving the problem 𝑓 with
the entire search space, which can be further decomposed into
multiple building blocks if necessary, as previously described. As
an example, Figure 1 illustrates two possible execution plans for
𝑓 (𝑥,𝑦, 𝑧,𝑤 ;𝐷). Plan 1 contains only a single root building block as
a joint block, whereas Plan 2 first introduces a conditioning block



Alter. (𝐴!)

(Feature, HP)

Alter. (𝐴")

(Feature, HP)

Joint (HP fixed)

(𝐴".Feature)

Joint (FE fixed)

(𝐴".HP)

Cond. on Alg={𝐴!,…, 𝐴"}

(Alg, Feature, HP)

Joint (HP fixed)

(𝐴!.Feature)

Joint (FE fixed)

(𝐴!.HP)

Alter. (𝐴#)

(Feature, HP)

...

Plan

(Algorithm, Feature, HP)Search Space:

...
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Figure 2: VolcanoML’s execution plan for the same search

space as explored by auto-sklearn. Here ‘Alg’ and ‘HP’ cor-

respond to Algorithm and hyper-parameters respectively.

on 𝑥 , and then creates one lower level of building blocks for each
possible value of 𝑥 (in Figure 1, we assume that |D𝑥 | = 3).

VolcanoML Execution Model. To execute a VolcanoML execu-
tion plan, we follow a Volcano-style execution that is similar to
a relational database [24] — the system invokes the do_next! of
the root node, which then invokes the do_next! of one of its child
nodes, propagating until the leaf node. At any time, one can in-
voke the get_current_best of the root node, which returns the
current best solution for the entire search space.

VolcanoML Plan for auto-sklearn. Figure 2 presents a Vol-
canoML execution plan for the same search space explored by
auto-sklearn, which consists of the joint search of algorithms,
features, and hyper-parameters. Instead of conducting the search
process in a single joint block, as was done by auto-sklearn, Vol-
canoML first decomposes the search space via a conditioning block
on algorithms — this introduces a MAB problem in which each arm
corresponds to one particular algorithm. It then further decomposes
each of the conditioned subspaces via an alternating block between
feature engineering and hyper-parameter tuning. The whole sub-
space of feature engineering (resp. that of hyper-parameter tuning)
is optimized by a joint block.

Concretely, Figure 2 shows a search space for AutoML with 𝐾
choices of ML algorithms. During each iteration, starting from the
root node, VolcanoML selects the child node to optimize until it
reaches a leaf node, and then optimizes over the subspace in the leaf
node. As shown by the red lines in Figure 2, in this iteration, Vol-
canoML only tunes the feature engineering pipeline of algorithm
𝐴1 while fixing its algorithm hyper-parameters.

Alternative Execution Plans. Note that the execution plan in Fig-
ure 2 is not the only possible one. Our flexible and scalable frame-
work in VolcanoML allows us to explore different execution plans
before reaching the proposed one. We enumerate five possible plans
in a coarse-grained level, and the results show that the proposed
plan performs best. The reason why we choose this plan is due to
the fundamental property of the AutoML search space —we observe
that, the optimal choices of features are different across algorithms,
which implies that we can first decompose the search space along
ML algorithms. The improvements introduced by feature engineer-
ing and hyper-parameter tuning are largely complementary, and
thus we can optimize them alternately. For feature engineering
(resp. hyper-parameter tuning), the subspace is small enough to be
handled by a single joint block efficiently.

Cond. on Alg

(Alg, Feature, HP)

Alter.

(Feature, HP)

Joint

(Embedding
, Feature)

Joint

(HP)

Alter.

(Feature, HP)

Alter.

(Feature, HP)

Joint

(Embedding
, Feature)

Joint

(HP)
...

(Embedding, Algorithm, Feature, HP)Search Space: 

Plan

Figure 3: VolcanoML’s execution plan for a larger search

space enriched by an additional embedding selection stage.

VolcanoML Plan for Enriched Search Space. We can easily ex-
tend VolcanoML and enable functionalities that are not supported
by most AutoML systems. For example, Figure 3 illustrates an exe-
cution plan for a search space with an additional stage — embedding

selection. Given an input, e.g., image or text, we first choose embed-
dings based on a collection of TensorFlow Hub pre-trained models,
and then conduct algorithm selection, feature engineering, and
hyper-parameter tuning. We use an execution plan as illustrated
in Figure 3, having the embedding selection step jointly optimized
together with the feature engineering.
Discussion: Automatic PlanGeneration. In principle, the design
of VolcanoML opens up the opportunity for “automatic plan gen-
eration” — given a collection of benchmark datasets, one could au-
tomatically search for the best decomposition strategy of the search
space and come up with a physical plan automatically. While the
full treatment of this problem is beyond the scope of this paper, we
illustrate the possibility with a very simple strategy. We automat-
ically enumerate all possible execution plans in a coarse-grained
level, and find that our manually specified execution plan in Fig-
ure 2 outperforms the alternatives. There is still an open question
that whether we can support finer-grained partition of the search
space (e.g., different plans for different subspace of features), and
moreover, whether we can conduct efficient automatic plan opti-
mization without enumerating all possible plans. These are exciting
future directions and we expect the endeavor to be non-trivial. We
hope that this paper sets the ground for this line of research in the
future (e.g., rule-based heuristics or reinforcement learning).
Further Optimization with Meta-learning. VolcanoML sup-
ports meta-learning based techniques — given previous runs of
the system over similar workloads, to transfer the knowledge and
better help the workload at hand — to accelerate the optimization
process of building blocks.

5 EXPERIMENTAL EVALUATION

We compare VolcanoML with state-of-the-art AutoML systems
and commercial AutoML platforms. In our evaluation, we focus on
three perspectives: (1) the performance of VolcanoML given the
same search space explored by existing systems, (2) the scalability
of VolcanoML given larger search spaces, and (3) the extensibity
of VolcanoML to integrate new components into the search space
of AutoML pipelines.
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Figure 4: End-to-End results on 30 OpenML classification (CLS) datasets and 20 OpenML regression (REG) datasets.
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Figure 5: Average test errors on four large datasets with different time budgets.
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Figure 6: Test errors on 6 Kaggle competitions compared

with four commercial platforms.

5.1 Experimental Setup

AutoML Systems. We evaluate VolcanoML as well as two open
source AutoML systems: auto-sklearn [18] and TPOT [60]. In ad-
dition, we also compareVolcanoMLwith four commercial AutoML
platforms from Google, Amazon AWS, Microsoft Azure, and Ora-
cle. Both VolcanoML and auto-sklearn support meta-learning,
while TPOT does not. For fair comparison with TPOT, we also use
VolcanoML− and AUSK− to denote the versions of VolcanoML
and auto-sklearnwhenmeta-learning is disabled. Our implemen-
tation of VolcanoML is available at https://github.com/VolcanoML.
Datasets. We use 60 real-world ML datasets from the OpenML
repository [73], including 40 for classification (CLS) tasks and 20

for regression (REG) tasks. 10 of the 40 classification datasets are
relatively large, each with 20k to 110k data samples; the other 30 are
of medium size, each with 1k to 12k samples. In addition, we also
use datasets from six Kaggle competitions to compare VolcanoML
with four commercial platforms.
AutoMLTasks. We define three kinds of real-world AutoML tasks,
including (1) a general classification task on 30 medium datasets,
(2) a general regression task on 20 medium datasets, and (3) a large-
scale classification task on 10 large datasets.

To test the scalability of the participating systems, we design
three search spaces that include 20, 29, and 100 hyper-parameters,
where the smaller search space is a subset of the larger one. We run
VolcanoML and the baseline AutoML systems against each of the
three search spaces. The time budget is 900 seconds for the smallest
search space and 1,800 seconds for the other two, when performing
the general classification task (1); the time budget is increased to
5,400 and 86,400 seconds respectively, when performing the general
regression task (2) and the large-scale classification task (3).
Utility Metrics. Following [18], we adopt the metric balanced
accuracy for all classification tasks — compared with standard (clas-
sification) accuracy, it assigns equal weights to classes and takes
the average of class-wise accuracy. For regression tasks, we use the
mean squared error (MSE) as the metric.

In our evaluation, we repeat each experiment 10 times and report
the average utility metric. In each experiment, we use four fifths of
the data samples in each dataset to search for the best ML pipeline
and report the utility metric on the remaining fifth.
Methodology for Comparing AutoML Systems. To compare
the overall test result of each AutoML system on a wide range of
datasets, we use the average rank as the metric following [1]. For
each dataset, we rank all participant systems based on the result

https://github.com/VolcanoML


Table 1: Average ranks on 30 classification (CLS) datasets

and 20 regression (REG) datasets with three different search

spaces. (The lower is the better)

Search Space - Task TPOT AUSK− AUSK VolcanoML− VolcanoML
Small - CLS 3.09 3.07 3.01 2.94 2.89

Medium - CLS 3.2 3.32 3.27 2.78 2.43

Large - CLS 3.29 3.77 3.57 2.72 1.65

Small - REG 2.98 3.02 3.0 3.02 2.98

Medium - REG 2.95 3.3 3.12 2.75 2.88
Large - REG 3.1 3.85 3.82 2.15 2.08

of the best ML pipeline they have found so far; we then take the
average of their ranks across different datasets.

5.2 End-to-End Comparison

We first evaluate the participant AutoML systems given the search
space explored by auto-sklearn. Figure 4 presents the results
of VolcanoML compared to auto-sklearn (AUSK) and TPOT
on the 30 classification tasks and the 20 regression tasks, respec-
tively. For classification tasks, we plot the classification accuracy
improvement (%); for regression tasks, we plot the relative MSE

improvement Δ, which is defined as Δ(𝑚1,𝑚2) = 𝑠 (𝑚2)−𝑠 (𝑚1)
max(𝑠 (𝑚2),𝑠 (𝑚1)) ,

where 𝑠 (·) is MSE on the test set. Overall, VolcanoML outperforms
auto-sklearn and TPOT on 25 and 23 of the 30 classification tasks,
and on 17 and 15 of the 20 regression tasks, respectively.

We also conduct experiments to evaluate VolcanoML with dif-
ferent time budgets. Figure 5 presents the results on four large classi-
fication datasets. VolcanoML exhibits consistent performance over
different time budgets. Notably, on Higgs, VolcanoML achieves
27.2% test error within 4 hours, which is better than the perfor-
mance of the other two systems given 24 hours.

We further study the scalability of the participant systems on
the three aforementioned search spaces. Table 1 summarizes the
results in terms of the average ranks. We have two observations:
First, without meta-learning,VolcanoML achieves the best average
rank for both the classification and regression tasks — on the small
search space (with 20 hyper-parameters), VolcanoML performs
slightly better than auto-sklearn and TPOT, and it performs sig-
nificantly better on the medium (with 29 hyper-parameters) and
large (with 100 hyper-parameters) search spaces. Second, withmeta-
learning, the average rank of VolcanoML is dramatically improved
compared with auto-sklearn. Overall, VolcanoML with meta-
learning achieves the best result over large search space.

5.3 Search Space Enrichment

We now focus on evaluating the extensibility of VolcanoML.
Adding Data_Balancing Operator. In the first experiment, we

implement “smote_balancer” – a new feature engineering oper-
ator, and incorporate it into the aforementioned balancing stage
of feature engineering (FE) (Section 3.1). Note that auto-sklearn
cannot support this fine-grained enrichment of the search space. Ta-
ble 2 presents the results of auto-sklearn, VolcanoML without
enrichment, and VolcanoML with enrichment, on five imbalanced
datasets. We observe that enriching the search space brings fur-
ther improvement, e.g., VolcanoML with enrichment outperforms
auto-sklearn by 3.57% (balanced accuracy) on the dataset pc2.

Supporting Embedding Selection. In the second experiment, we
add a new stage “embedding selection” into the FE pipeline, with

Table 2: Test accuracy (%) of VolcanoML with and without

the enrichment of “smote_balancer” operator.

Dataset AUSK VolcanoML− VolcanoML

sick 97.29 97.31 97.34

pc2 86.70 86.91 90.27

abalone 66.86 65.97 67.32

page-blocks(2) 94.70 95.29 96.69

hypothyroid(2) 99.62 99.64 99.64

two candidate embedding-extraction operators (i.e., two pre-trained
models). This allows VolcanoML to deal with images, which are
not easily supported by both auto-sklearn and TPOT. We imple-
ment two pre-trained models to generate embeddings for images,
and we evaluate VolcanoML with the enriched search space on
the Kaggle dataset dogs-vs-cats. We observe that VolcanoML
achieves 96.5% test accuracy, which is significantly better than 69.7%
obtained by auto-sklearn without considering embeddings.

5.4 Comparison with 4 Industrial Platforms

In addition, we run additional experiments on six Kaggle datasets to
compare VolcanoML with four commercial AutoML platforms: 1)
Google Cloud AutoML, 2) Microsoft Azure AutomatedML, 3) Oracle
data science, and 4) Amazon AWS Sagemaker AutoPilot. Here, we
anonymously refer to these platforms as Platform 1-4. Figure 6
show the results, and the Appendix contains the experiment details.
We observe that, given the same time budget (i.e., fix the x-axis to
some time budget), VolcanoML is at least comparable with, often
outperforms, the considered commercial platforms.

6 CONCLUSION

In this paper, we have presentedVolcanoML, a scalable and extensi-
ble framework that allows users to design decomposition strategies
for large AutoML search spaces in an expressive and flexible manner.
VolcanoML introduces novel building blocks that enable express-
ing search space decomposition strategies in a structured fashion.
Moreover, VolcanoML introduces a Volcano-style execution model
to execute the decomposition strategies it yields. Experimental eval-
uation demonstrates that VolcanoML can generate more efficient
decomposition strategies that also lead to performance-wise better
ML pipelines, compared to state-of-the-art AutoML systems.
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