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ABSTRACT
Many database systems offer index tuning tools that help automati-

cally select appropriate indexes for improving the performance of

an input workload. Index tuning is a resource-intensive and time-

consuming task requiring expensive optimizer calls for estimating

the cost of queries over potential index configurations. In this work,

we develop low-overhead techniques that can be leveraged by index

tuning tools for reducing a large number of optimizer calls without

making changes to the tuning algorithm or to the query optimizer.

First, index tuning tools use rule-based techniques to generate a

large number of syntactically-relevant indexes; however, a large

proportion of such indexes are spurious and do not lead to a sig-

nificant improvement in the performance of queries. We eliminate

such indexes much earlier in the search by leveraging patterns in

the workload, without making optimizer calls. Second, we learn

cost models that exploit the similarity between query and index

configuration pairs in the workload to efficiently estimate the cost

of queries over a large number of index configurations using fewer

optimizer calls. We perform an extensive evaluation over both real-

world and synthetic benchmarks, and show that given the same set

of input queries, indexes, and the search algorithm for exploration,

our proposed techniques can lead to a median reduction in tuning

time of 3× and a maximum of 12× compared to state-of-the-art

tuning tools with similar quality of recommended indexes.
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1 INTRODUCTION
Given a workload and a set of constraints (e.g., a storage budget),

index tuning tools [13, 21, 35] recommend a set of appropriate in-

dexes for improving the performance of the workload. However,

scaling these tools to a large workload remains a challenging task.

While this is already a problem for on-premises databases, the scala-

bility challenge is further amplified today in the cloud environment
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Figure 1: Impact of DISTILL on performance improvement and
tuning time on TPC-DS workload consisting of 910 queries

where the cloud vendors need to tune a large number of databases

(typically on production servers), thereby adding to the resource

and cost overheads [16].

Given an inputworkload, index tuning tools first generate syntact-

ically-relevant indexes for each query and then search for the best

configuration among the generated indexes via configuration enu-

meration. During enumeration, what-if optimizer calls [14] are

used which help estimate the cost of a given (query, index con-

figuration) pair without building the indexes. Each call is at least

as expensive as a regular optimizer call, consuming a significant

(over 70%) fraction of the tuning time. For large workloads, these

calls significantly increase the tuning time as well as the CPU and

memory burden on the DBMS. For scalability, it is therefore crucial

to employ techniques for identifying when what-if calls can be

avoided without affecting the quality of recommended indexes.

While there exist techniques for reducing the search space [6,

12, 13, 33, 37], making what-if calls for every (query, configuration)

pair remains challenging even for such reduced search spaces. For

example, the greedy algorithm [13] used by state-of-the-art tools [6]

requires 𝑂 (𝑚𝑛𝑘) what-if calls, where𝑚 is the number of queries

in the input workload, 𝑛 is the number of candidate indexes, and

𝑘 is the maximum configuration size. In this work, we develop

complementary techniques that further reduce optimizer calls and

can be incorporated into index tuning toolswithout making changes

to the search algorithm or to the query optimizer.

First, we observe that index tuning tools generate indexes based

on syntactic relevance by applying rules on indexable columns (e.g.,

filter, join, group-by, and order-by) [13, 21]. For each syntactically-

relevant index, a what-if call is made to identify whether it can

improve the performance of the query. Unfortunately, a large per-

centage of such indexes (e.g, about 50-70% on our evaluated work-

loads) are spurious, i.e., given a query and an index, the optimizer

either does not use the index or uses it with minimal gain (e.g., < 5%



improvement in cost). To address this, we capture signals for such

spurious indexes using information available in the physical plans

of queries on existing physical design, index structures, and tables.

We pre-train a workload-agnostic filtering model, called Index Fil-

ter, that automatically learns patterns over these signals and can

be used during index tuning for filtering spurious indexes over

any databases. We show that Index Filter can be accurately trained

over a small number of databases (e.g., 3 to 4), and is extremely

efficient to use with multiple orders of magnitude lower inference

time compared to what-if calls.

Despite pruning, the number of optimizer calls during enumer-

ation can still be considerable. We therefore develop techniques

that replace a significant number of optimizer calls (which can be

expensive) for costing (query, configuration) pairs with cheaper

cost models trained for each workload. It is challenging to develop

a general technique for all databases and queries due to large vari-

eties in schema, query structures, and data distributions. However,

many queries in large workloads are typically similar [25, 32], e.g.,

multiple instances of the same query template or stored procedure

parameterized differently. Furthermore, many indexes explored

during tuning are also similar, e.g., having the same prefix of key

columns, or influencing the same set of operators in the plan, result-

ing in similar cost reductions. As a result, we see that the number of

unique costs is often much smaller than the number of index config-

urations explored during tuning (e.g., on average only 6 unique costs

over 81 configurations explored per query for the TPC-H workload).

To leverage these characteristics, we group similar queries and learn

a query template- and index-specific cost model (in short Index

Cost Model) for each group separately. For efficient in-situ train-

ing during the tuning, we develop an iterative training procedure

(with optimality guarantees) and select diverse training instances

(e.g., queries with different selectivities, indexes affecting different

operators in the query) that minimize the number of optimizer calls

for training each model (e.g., < 50 optimizer calls per model on

average across workloads). Like Index Filter, Index Cost Models are

also significantly more efficient than the what-if calls.

There has been related work [8, 9] that instrument the opti-

mizer for encoding a compact representation of the optimization

search space for a query, which is then used to estimate the cost

of multiple indexes. However, these techniques require invasive

changes to the optimizer. There have also been cost-derivation

techniques [13, 22, 28] that make optimizer calls to obtain costs

for a few (query, configuration) pairs, and apply rules on obtained

costs to derive costs of other configurations. For instance, Database

Tuning Advisor (DTA) [6] makes optimizer calls for atomic configu-

rations [12], and derives the costs of larger configurations by taking

the minimum cost across subsets of atomic configurations. We ob-

serve that these techniques may (a) still need a substantial number

of optimizer calls (2× to 5× more than Index Cost Models), (b) re-

quire changes to the search enumeration algorithm, e.g., [12] only

works with the bottom-up greedy algorithm, and c) are less effec-

tive in capturing complex index interactions (i.e., multiple indexes

simultaneously improving the performance), thereby resulting in

lower quality recommendations than Index Cost Models.

We have implemented the Index Filter and the Index Cost Models

in a prototype, called DISTILL, that reuses the candidate index gen-
eration and the greedy search enumeration steps proposed in [13].

Our evaluation shows that DISTILL helps scale the tuning process

to large workloads without sacrificing the quality of recommended

indexes. For instance, as depicted in Figure 1a, for a TPC-DS work-

load of over 900 queries, DISTILL gives similar quality index rec-

ommendations as DTA [6] (with unbounded tuning time budget)

and a variant of [13] that makes optimizer call for every unique

(query, configuration) pair explored during enumeration in 4× and

15× less time respectively. We give an unbounded time-budget to

DTA to ensure that the evaluated space of (query, configuration)

pairs is similar for all techniques as well as to avoid the influence

of other optimizations such as workload compression which are

complementary to the techniques discussed in this work.

Contributions.Our contributions can be summarized as follows:

• We discuss the scalability challenges in index tuning and outline

a number of opportunities for improvement.

• We develop a workload-agnostic index filtering technique that

captures patterns over query structure, statistics, and index struc-

ture to identify indexes that do not lead to a significant improve-

ment in costs. We use this technique to remove a large number

of syntactically-relevant indexes without affecting the quality of

index recommendation significantly.

• We learn index-specific cost models (one for each group of similar

queries) on-the-fly during the tuning process and use them to

predict the costs of other similar (query, configuration) pairs,

thereby avoiding many optimizer calls. We develop an iterative

training procedure for efficiently training of such models using a

small number of optimizer calls.

• We perform a thorough evaluation of DISTILL over multiple

synthetic benchmarks and real workloads. Our results show that

DISTILL results in similar improvement in performance asmaking

all optimizer calls and unbounded DTA, but with a median and

maximum reduction in tuning time of 6× and 20× respectively
when compared to making all optimizer calls, and 3× and 12×
when compared to DTA.

2 BACKGROUND
2.1 Overview of Index Tuning
Figure 2a depicts the typical architecture of an index advisor as

described in [13]. Index advisors take as input the workload on a

specified database, with certain constraints such as the maximum

number of indexes allowed and storage budget. The workload is

parsed to extract relevant columns (called indexable columns), i.e.,

columns that are part of the filter and join predicates, or group-by

and order-by clauses. Index advisors then generate syntactically-

relevant indexes using indexable columns by applying different

rules. Next, for each query, index advisors perform candidate selec-
tion to identify a subset of useful indexes that lead to a significant

improvement in performance of the query given the constraints.

A configuration enumeration module then searches the space of

subsets of candidate indexes (from all queries) and picks a configu-

ration (i.e., subset) that results in the maximum improvement on

the workload. In order to estimate the improvement for a given

(query, configuration) pair during candidate selection and enumera-

tion, index advisors rely on what-if calls [14], which is an extended

functionality of the query optimizer that can estimate the cost of a

query given a configuration without building the indexes.

2.2 Scalability Challenges
The scalability of an index advisor depends on the number and

complexity of queries in the workload, which in turn determine the
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Figure 2: Architecture of index advisors and scalability challenges

number of configurations enumerated, and the number of what-if

optimizer calls made during tuning.

Figure 2b depicts the increase in tuning time for a state-of-the-art

index advisor [2] as we increase the number of queries in the TPC-

DS workload. As we can see, the tuning time grows significantly as

we increase the size of the workload. This is primarily because the

space of configurations to explore increases (Figure 2c), with each

configuration requiring an expensive optimizer call (consuming 70%

to 80% of the overall tuning time). Workloads generated by cloud

applications can be even larger and consist of more complex queries

(e.g., in the order of hundreds of thousands of statements) [16]; and

tuning of such workloads within reasonable amount of time is chal-

lenging. Furthermore, the process of tuning a large workload can

impose significant overhead on the server being tuned since the

physical design tool needs to potentially make many what-if calls to

the query optimizer component. It may also affect the performance

of workload being concurrently served. While one can use a “B-

instance” for index tuning, it comes with a high operational cost and

is not practical at scale for service providers that host millions of

databases [16]. As a result, in practice index tuning is primarily per-

formed on the production server, imposing a significant overhead

in terms of time and resources reserved for production queries.

2.3 Problem Formulation
We consider an input workload𝑊 = {𝑞1, 𝑞2, ..., 𝑞𝑛} consisting of 𝑛

queries that needs to be tuned to select 𝑘 indexes. We assume that

the physical plan for each query that is generated by the optimizer

with the existing physical design (i.e., without adding or removing

indexes) is provided as part of the workload. We observe that most

DBMSs expose functionality to collect historical workload informa-

tion including the physical plan for a query, e.g., Query Store [4]

in Microsoft SQL Server. Such information can be leveraged by

DISTILL for analyzing queries without making optimizer calls. Let

𝐶 (𝑞𝑖 ) be the optimizer-estimated cost of 𝑞𝑖 with existing physical

design, and 𝐶 (𝑊 ) be the optimizer’s estimated cost for the entire

workload𝑊 with 𝐶 (𝑊 ) = ∑𝑛
𝑖=1𝐶 (𝑞𝑖 ) .

Let 𝐼 be a set of 𝑘 indexes selected by an index tuner on tuning

𝑊 , and𝐶𝐼 (𝑞𝑖 ) be the optimizer-estimated cost of 𝑞𝑖 and correspond-

ingly 𝐶𝐼 (𝑊 ) for the workload𝑊 , when using the (hypothetical)

indexes in 𝐼 . The expected performance improvement of𝑊 due to

𝐼 is captured using the notion of “improvement,” as defined below:

Definition 1 (Improvement). Improvement, Δ, is defined as the
decrease in the cost of the workload𝑊 when using the indexes in 𝐼 ,
i.e., Δ = 𝐶 (𝑊 ) −𝐶𝐼 (𝑊 ) .

In this work, we focus on reducing the tuning time with minimal

degradation in the improvement of the workload. As discussed ear-

lier, optimizer calls consume most of the index tuning time, thereby

posing a scalability challenge. Thus, to reduce tuning time, we aim

to replace a large proportion of optimizer calls with significantly

more efficient techniques for estimating (query, configuration) costs.

We do notmake changes to the configuration enumeration (or search)
component of the index tuning process outlined in Figure 2a. While

various implementations have been proposed (e.g., [8, 10, 13]), we

chose the classic greedy search algorithm, which is efficient and

has been used by both AutoAdmin [13] and DTA [6]. Recent work

has also shown that this greedy algorithm yields state-of-the-art

performance [26]. That said, our developed techniques will not

leverage any property of the greedy algorithm and hence can be

used with any other search algorithm. Formally,

Given an input workload𝑊 consisting of the physical plans of the
queries generated by the optimizer with the existing physical design
on the target database, the number of indexes 𝑘 to select, and a search
algorithm for enumerating index configurations, our goal is to reduce
the number of optimizer calls such that we maximize the improvement
and minimize the tuning time.

There are a number of possible solutions. First, as an ideal solu-

tion for maximizing improvement, we can use the greedy algorithm

that makes optimizer calls for every (query, configuration) pair

enumerated during tuning. However, as noted earlier, this is costly,

resulting in high tuning time. Another approach is to use cost-

derivation techniques [13] to reduce optimizer calls for a subset of

(query, configuration) pairs used by state-of-the-art tools such as

DTA [6]. Although such techniques help reduce the tuning time, the

number of optimizer calls may still be large. Furthermore, rules ap-

plied for cost derivation do not effectively capture the interactions

between multiple indexes simultaneously improving the perfor-

mance, thereby degrading the quality of recommended indexes

especially over complex workloads. In this work, our goal is to

explore techniques that reduce optimizer calls such that we achieve

both high improvement and low tuning time simultaneously. More-

over, for simplicity, we use the size of the final index configuration

(𝑘) to be returned as a tuning constraint. However, our techniques

do not depend on tuning constraints and can be used with other

constraints such as storage budget.

3 OVERVIEW OF OUR SOLUTION
To reduce the number of optimizer calls, we develop a two-step

solution depicted in Figure 4. In the first step, we prune out many

(query, index) pairs that have no or small (e.g., < 5%) reduction

in cost using an workload-agnostic model that is trained offline.



Next, we train index-specific cost models for each group of similar

queries in the workload in-situ during the tuning process (using a

small number of optimizer calls), and use them to replace a large

number of optimizer calls for other similar (query, configuration)

pairs. We describe the motivation and details of the steps below.

As discussed earlier, index advisors generate syntactically-relevant

indexes by applying rules on indexable columns. Figure 3 depicts

the improvement in cost for different fractions of (query, syntac-

tically relevant index) pairs for four synthetic and real workloads

(we provide more details on workloads in §6). As we can see, be-

tween 60% to 70% of syntactically-relevant indexes do not result

in significant changes in costs of queries. Thus, the optimizer calls

made on such indexes are unnecessary. To address, we learn offline

a workload-agnostic model that uses structure and statistics in the

input (query, index) to identify when the index may not lead to

a significant improvement in cost. We use this model to remove

a large number of spurious candidates (step 4) online during the

tuning. Our key insight is that we can probe the original physical

plan of query (i.e., the plan generated with existing physical design

structures and without adding or removing indexes) to estimate

the potential for improvement in the cost of the query due to a

given index. For instance, if the join or sort operation is already

efficient due to an extensive filtering from earlier operators, adding

an index that optimizes subsequent operations is less beneficial.

Similarly, if a filter column is not selective, we can easily prune an

index with such column as the leading key column. Furthermore,

in many cases, we can look at the shape of the query plan (e.g., or-

dering of physical operators within the original plan) as well as the

size of table and types of existing indexes on the table to prune in-

dexes which may not further improve the performance. We capture

such signals and automatically learn rules on the signals using a

workload-agnostic regression model, called Index Filter (step 1 and

2 in Figure 4). We show that such a model can be accurately learnt

using (query, configuration) pairs generated from 3 to 4 databases

and workloads. We find that Index Filter can remove over 70% of

the spurious indexes with low (typically < 10%) false negatives.

Despite pruning, the enumerated number of configurations re-

sulting from the unpruned indexes may still be large. For instance,

we observe that Index Filter reduces the number of syntactic in-

dexes from about 11k to 7k for a TPC-DS workload consisting of

about 900 queries. However, the number of resulting configurations

explored during the search is over 33k. Making an optimizer call

for each one of these configurations is expensive. Furthermore, we

find that it is extremely hard to learn an offline model that can

accurately predict the cost of an arbitrary (query, configuration)

pair for a given database, let alone an unseen database. However,

queries in large workloads typically have high degree of similarity

in terms of structure [25], e.g., templatized queries, such as stored

procedures, that differ only in parameter bindings are common in

real-world applications. Similarly, indexes share similarity in terms

of key columns or how they influence plans. These properties allow

us to train an index-specific cost model model, called Index Cost

Model, for each group of similar queries and configurations in-situ

(or online) during the tuning (step 5).

A key challenge in learning Index Cost Models is minimizing

the number of training instances (i.e., optimizer calls) required as

training time adds to the tuning time. To minimize under- or over

training, we develop an iterative training procedure with optimal-

ity guarantees that starts with a small and diverse set of training
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Figure 4: Overview of our solution
instances (sampled from (query, index) pairs selected by Index Fil-

ter), and incrementally increases the training size until the model

error reduces within a small error threshold. For groups, where

the estimation errors of models do not reduce quickly (i.e., within

certain fraction of training instances), we fall back to the optimizer

calls for estimating costs. On average across workloads, we find

that we can train an Index Cost Model using only 30 to 50 (query,

configuration) pairs. Once trained, Index Cost Models are cached

and used for reducing optimizer calls for several hundreds of (query,

configuration) pairs per group during enumeration (step 6).

A key design requirement for DISTILL is that pruning spurious

indexes and estimating costs must be much faster than what-if

calls, otherwise the purpose of reducing optimizer calls is negated.

Furthermore, while the Index Filter is trained offline, the training

of Index Cost Model is done during tuning and needs to be efficient

as discussed above. To ensure these requirements, the employed

machine learning techniques must have low-overhead. We find

that tree-based ensemble models with a few tens of trees can rea-

sonably meet these requirements. Furthermore, we apply domain

understanding on how indexes improve the performance of queries

to reduce the number of features. Overall, the models give high

accuracy with extremely fast inference time, i.e., over two orders

of magnitude lower inference time compared to what-if calls.

4 FILTERING SPURIOUS INDEXES
Index tuning tools use syntactic analysis, i.e., rules that combine

indexable columns from operators such as filter, join, group-by and

order-by, to identify a set of indexes for tuning. As depicted in Fig-

ure 3, a large number of syntactically relevant indexes are spurious,

i.e., they do not result in significant improvement in performance

of the queries. In this section, we discuss low-overhead techniques

to prune such spurious indexes without degrading the quality of



indexes. In particular, we capture four types of signals that are in-

dicative of spurious indexes. However, it is challenging to construct

rules that capture interactions between these signals for identi-

fying spurious indexes. To address, we train a workload-agnostic

regression model, called Index Filter, that automatically learns rules

over the signals using a large corpus of (query, configuration) pairs

generated from multiple databases. We first discuss the four signals

and then give an overview of how we learn the model.

4.1 Estimating Potential Improvement
While selecting an index for tuning, index tuners ignore the po-

tential for improvement in cost of the plan due to the index. We

observe that for many syntactically-relevant indexes, the costs of

operators they improve is often significantly smaller compared to

the overall cost of the plan. Thus, the improvement in performance

due to such indexes is small.

To address, we estimate the potential for improvement for each

syntactically-relevant index using the original plan of the query, i.e.,

the most efficient physical plan obtained by making an optimizer

call for the query with the existing physical design of the database.

Since our goal is to identify spurious indexes instead of accurately

estimating the new cost when using the index, we make simplifying

assumptions which help efficiently estimate the potential improve-

ment. Specifically, we avoid exploration of alternative join ordering

or transformations that cause significant changes in the original

plan. An extensive exploration of alternative plans is expensive

(equivalent to making optimizer calls) and negates the purpose of

index filtering. We therefore make the following assumption.

Assumption 1. A index has a high potential for improvement if it
reduces the cost of operators in the original plan that have high costs
relative to the rest of the operators in the plan, and vice-versa.

An index can reduce the cost of an operator if it satisfies one or

both of the following properties:

Property 1 (Filtering). An index satisfies the filtering property
if it helps skip access of one or more tuples during scan, filter, or join
operations.

Property 2 (Interesting Order). An interesting order is a tuple
ordering specified by the columns in a query’s join, group-by, or order-
by clause. An index covers an interesting order if its key columns are
sorted according to that interesting order.

To estimate the potential improvement, we traverse the original

plan in a bottom-up manner, and look for the presence of physical

operators whose cost can be reduced if the index was selected. We

consider the physical operators (called relevant operators) corre-

sponding to the following logical operators: scan, join, group-by,

and sort (or order-by) as depicted in Table 1. The potential for im-

provement is estimated as the sum of the costs that is reduced for

each of the relevant operator in the original plan. We capture this

notion via “utility,” defined as follows:

Definition 2 (Utility of an Index). Utility of an index is the sum
of the estimated reduction in costs of relevant physical operators in
the original plan due to the index, normalized by the total cost of the
original plan.

We normalize to give low importance to indexes that may not

lead to substantial improvement in the cost of query, and vice-versa.

Estimating reduction in cost of operator due to an index. We

estimate the reduction in the cost of operator using its cost (denoted

Table 1: Logical and Physical Operators considered for Utility Com-
putation

Logical Operators Physical Operators
Scan Table Scan, Index Scan, Index Seek, Clus-

tered Index Scan, Clustered Index Seek

Filter Filter, Bitmap

Join Nested-Loop, Hash Match, Merge Join

Group By/Aggregation Hash Match, Stream-aggregate, Sort

Sort Sort

by C) in the original plan and the average selectivity (denoted by

S) of key columns in the index that are used by the operator.

Filtering: If the index satisfies the filtering property, the improve-

ment is computed as (1 − 𝑆) ×𝐶 , i.e., the reduction in cost is pro-

portional to the fraction of tuples filtered using the index. In other

words, the improvement is high if the cost of the operator is high

and the selectivity of key columns is low. The join selectivity can

be estimated as follows: Let 𝑂 be the output cardinality of the join

operator in the original plan, and 𝐿 and 𝑅 be the input cardinalities

to the join. We compute the join selectivity as 𝐽 = 𝑂
𝐿×𝑅 . Assuming

that each of the left and right input contribute equally to the join

output, the selectivity of each of indexable columns is

√
𝐽 . We es-

timate the reduction in cost when adding an index to one of the

inputs as (1 −
√
𝐽 ) × 𝐶 . While this estimation approach may be

inaccurate when the index causes significant transformations in

join ordering or operators, we find it to be effective in identifying

cases when the index does not cause any change (typically when 𝐽

and 𝐶 are already small).

Ordering: When there is a sort operator in the plan that provides

the same ordering of tuples as the index, the improvement is equiv-

alent to the cost of the sort operator. In other words, we assume

that the index can help get rid of the sort operator in the plan.

Hash-aggregate to stream-aggregate transformation. We also con-

sider a simple transformation between hash-aggregate and stream-

aggregate which happens frequently on adding indexes. If the orig-

inal plan chooses a hash-aggregate instead of the stream-aggregate,

it is likely because the sorting required for the stream-aggregate is

more expensive than the hash-aggregate. Thus, if the index already

provides the ordering property, the improvement is equal to the cost

of hash-aggregate assuming that the cost of computing aggregates

in a streaming manner is negligible compared to the cost of sorting.

Examples.Consider a SQL query as depicted in Figure 5a. Figure 5b
depicts the selectivity of predicates in the query, and Figure 5c

depict the original plan of the query. We first consider a clustered

index on column LCol1 on LineItem table (Figure 5d). We traverse

the plan bottom-up, and see that we can replace table scan with

clustered index scan; however there is no opportunity for filtering

and hence the estimated reduction in cost is 0. Next, we can see that

hash-aggregate can be replaced with a stream-aggregate since the

index provides the ordering on the group-by column. Since sorting

is the most dominant operation while using stream-aggregate, we

assume the cost of stream-aggregate is negligible compared to hash-

aggregate. Thus, the reduction in cost is 80. Finally, we see that the

selectivity of the hash join is 0.50, and the index has the join key as

the key column. As discussed above, the reduction in cost of hash

join by adding an index on one of the join columns is computed as

(1−
√
0.50) ×160 = 48. Overall, the total cost reduction is 112 out of

400, with utility as .28. As another example, we consider a clustered

index on OCol2 on the ‘Order’ table (Figure 5e). In this case, the

cost of scan is reduced by a fraction proportional to the selectivity

of the predicates, i.e., 54. Besides scan, the index does not reduce

the cost of other operators. Thus, the utility of this index is 0.23.
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Figure 5: Illustrative examples to show how potential improvement is computed (d and e) over the original plan (a)

While utility is the most influential signals in identifying spuri-

ous indexes (§6), we find utility by itself is not sufficient especially

when the physical plan generated due to the index is significantly

different from the original plan. Thus, we derive three additional

signals to identify spurious indexes, as discussed next.

4.2 Shape of Queries and Indexes
In many cases, optimizers apply transformation rules (e.g., aggre-

gate pushdown) that can impact the effectiveness of an index. More

generally, query optimizers push more selective operations or ones

that reduce intermediate data size down in the plan which help

reduce the cost of operators higher in the plan. Hence, building

an index that can improve the performance of such lower-level

operations is typically more beneficial than ones that affect the

higher-level operators. As an example, we observe that a large ma-

jority (> 70%) of syntactically-relevant indexes with order-by or

group-by columns as leading key columns are spurious. For many

such cases, the downstream (i.e., operators below the group-by

or order-by) operators such as filter or join operators are highly

selective. However, in some cases, when the optimizer pushes an ag-

gregate operation below the join, an index that satisfies the ordering

property required for the aggregate may be more beneficial.

To capture such optimizations, we extract the sequence of logical

operators (i.e., scan/filter, join, aggregate and sort) for each table in

the original plan in a bottom-to-top order. We call each sequence a

shape. For instance, the shape of the sub-query on Lineitem table in

Figure 5c is scan->aggregate->join where -> depicts the sequence in

which tuples are processed. Similarly, the shape of the subquery on

the Order table is scan->join. If the same operation occurs twice in

a sequence, we only capture the first occurrence to avoid creating

a large number of possible shapes.

We also extract the shape of the index using the ordering of key

columns in the index. Index tuning tools use rules to combine in-

dexable columns to construct indexes. For instance, Table 2 depicts

a set of rules similar to the ones used by DTA [6]. Thus, we capture

the shape of an index via the rule that is used for generating it.

In general, we find that the more similar the index and subquery

shapes, the higher is the impact of an index. Note that an index can

have more than one shape if the ordering of key columns satisfies

different orderings of operations, e.g., when the same column is

used across multiple operations. In the feature vector for learn-

ing regression model (described shortly), each possible shape for a

subquery or a an index is represented via a feature.

4.3 Physical Operators
We also capture the physical operators listed in Table 1. We set the

value to 0 if the index is not relevant to the operator. On the other

Table 2: Different possible rules to combine indexable
columns to generate indexes.

S1 selection

S2 join

S3 selection→ join

S4 join→ selection

S5 order-by→ selection→ join

S6 group-by→ selection→ join

S7 order-by→ join→ selection

S8 group-by→ selection→ join

hand, if relevant, we compute the value using the statistics of the

key columns in the index. Specifically, if the physical operator is a

filter, scan, or join operator, we assign it a value equal to the average

selectivity of the key columns in the index that are used by the

operator. If the physical operator is grouping or sort, we assign it a

value equal to the average density of the key columns in the index.

Density is a function of number of unique values of the column(s),

which impacts the cost of grouping and sort operations [5]. We

observe that physical operator signals interact with shape-based

signals to improve the accuracy of identifying spurious indexes.

4.4 Optimizer Behaviour
We also consider additional properties that help capture the behav-

ior of the query optimizer. For example, we notice that the optimizer

may not select more than a certain number of indexes per table, or

the optimizer may not build an index on smaller tables (E.g., Nation

table in TPC-H) consisting of fewer pages than a specific threshold.

Specifically, the properties that we capture include the number of

pages, whether there is a clustered indexes already present, the

number of non-clustered indexes already present, and whether a

scan or filter operation uses a bitmap.

4.5 Learning Rules for Index Filtering
Given an original plan for a query and an index, we learn a regres-

sion model that predicts how likely the index will lead to a change

in cost of the plan. We find log-transformed labels and using the

mean square error as the loss function to be effective. Since query

optimizers can often have a small variance in estimated costs across

multiple invocations even when the index is not used, we consider

a cost change as significant if it is above a threshold 𝛼 . We use a

small threshold of 5% for a low false negative rate, although prior

work [18] have used an even higher threshold of 20%. Thus, all

indexes with predicted value ≤0.05 are pruned.
An alternative formulation is to learn a classifier that predicts

whether or not the plan or cost will change significantly. While

we find little difference in the results between the two tasks; for a

classifier, a change in the value of 𝛼 requires retraining, which can

be costly. Another issue is less flexibility in controlling the false



positive and false negative rates—a high𝛼 leads to high false-positive

rate and low false-positive rate, and vice-versa.

To generate the features, we probe the original plan of the query

using the index to capture the four types of signals discussed in

the earlier sections. Observe that the our featurization differs from

prior work on plan featurization (e.g., [18]) in that we featurize each

plan using the index as context, since we are only interested in parts

of the plan that may be influenced by the index. This in turn results

in much fewer features, since often only a small set of operators

are affected. Given these features, we experimented with multiple

machine learning (ML) models including linear models, decision

trees, ensembles of trees, and multi-layer perceptron (MLP) neural

networks (see §6). Considering both inference time and model

accuracy, we find that tree-based ensemble models work the best.

In particular, we observe that random forests with 40 trees and a

depth of 10 gives a reasonable performance.

Offline training.We train themodel offline usingmultiple databases

and workloads, capturing a total of about 75 features. On average,

it takes between 80 and 130 hours to generate the labelled training

data (by making optimizer calls) using the databases and workloads

listed in Table 3, consisting of a maximum of 170k (query, configu-

ration) pairs and their optimizer estimated costs. The training takes

less than 5minutes for the tree-based ensemble models while about

20 minutes for neural network models (only using CPU). The in-

ference time for tree-based ensemble models is about 10 ms (about

1.5 to 2 orders of magnitude faster than optimizer calls) while for

MLP-based models, it is in order of 100s of milliseconds.

5 INDEX COST MODELS
Despite pruning, the number of optimizer calls during the tuning

may still be large. In particular, if𝑚 is the number of queries in

the input workload, 𝑛 is the number of candidate indexes, and 𝑘 is

the maximum number of desired indexes, the number of configura-

tions enumerated during the search is𝑂 (𝑚𝑛𝑘). For instance, in our

evaluated workloads, we find that greedy algorithm enumerating

between 5× to 10× times more configurations than the input set of

candidate indexes for 𝑘 = 20.

In order to further reduce the number of optimizer calls, tools

such as DTA apply cost derivation techniques [13] that derive the

costs of large configurations using the cost of smaller atomic config-

urations, e.g., by taking the minimum cost among all atomic config-

urations. While such derivation techniques are partially helpful in

reducing the optimizer calls (almost by half over the workloads we

evaluated in §6), making optimizer calls for the remaining configu-

rations is still time-consuming and resource-intensive. Further, cost

derivation techniques ignore the potential interactions between

indexes and hence suffer from low accuracy on complex workloads.

In this section, we explore ML techniques for costing (query,

configuration) pairs. While a general model for all possible (query,

configuration) pairs is challenging, large workloads typically con-

sist of queries which are similar, e.g., many instances of the same

query template [25, 32]. This allows us to train a specialized cost

model, called Index Cost Model, for each group of query instances

belonging to the same template. We show that we can use a small

number of optimizer calls (typically < 50) in-situ during the tuning

to accurately train such cost models (thereby avoiding the issue

of generalizability across workloads) and use them to estimate the

costs of large numbers of (query, configuration) pairs in two orders

of magnitude less time than what-if optimizer calls. In the follow-

ing, we first discuss how we learn Index Cost Models, and then

give an overview of an iterative training procedure that we use for

efficiently training such models in-situ during the index tuning.

5.1 Learning Index Cost Models
Given a query and an index configuration, we learn an Index Cost

Model that returns the estimated cost of the query when using the

index configuration. We learn one Index Cost Model for each set

of query instances with the same template. Two queries have the

same template if they only differ in the parameter bindings. Since all

query instances for a given Index Cost Model have the same struc-

ture, we use only parameters and configurations for featurization.

Furthermore, we construct features in a schema-agnostic manner

that helps minimize the number of features and captures similarity

across similar indexes. For instance, different indexable columns

with similar selectivity and affecting the same set of operators will

have a similar set of feature values.

Selectivity of parameters. For each parameter in the query in-

stance, we estimate its selectivity. We also considered using pa-

rameter values as features; however, we do not see any significant

improvement in accuracy when using parameter values.

Configuration. A configuration is a set of indexes. Each index can

have multiple columns. We consider each column, and construct

a feature depicting the index type, whether the column is a key

column, the type of operator among {scan, join, order-by, group-by},

the highest column position across any index in the configuration

if it is a key column (this helps avoid combinatorial explosion

in the number of features while still capturing the importance

of a column), and the sort order of the columns. Similar to the

physical operator signals for Index Filter, we set the feature value

to the selectivity if the indexable column influences a filter or join

operation, to the density of the column if it influences group-by,

and to the actual order of column if it is part of order-by. We make

a pass on all query instances of the template to collect all features.

Example. Consider the query in Figure 5a and a configuration

consisting of three indexes {I1, I2, I3} where I1= [unclustered: key =

LCol1:asc], I2= [unclustered: key =OCol3,OCol2:asc], and I3=[unclus

tered: key=OCol2:asc]. We create the following features:

• Selectivity of OCol2 < 10

• for column LCol1, we create the following three features: un-

clustered:key:scan:1:asc, unclustered:key:group-by:1:asc, unclus-

tered:key:join:1:asc. The number 1 indicates that LCol1 is at posi-

tion 1 (i.e., the leading column) among the key columns for atleast

one index in the configuration.

• for column OCol3, unclustered:key:join:1:asc

• for column OCol1, unclustered:key:join:1:asc

To evaluate the accuracy, we use the geometric mean of q-error

as the accuracy metric, measured as𝑚𝑎𝑥 ( 𝑒𝑠𝑡𝑎𝑐𝑡 ,
𝑎𝑐𝑡
𝑒𝑠𝑡 ) which is equiv-

alent to minimizing the mean-squared error of the log-transformed

labels [20]. As with the Index Filter, we find that tree-based ensem-

ble models lead to sufficiently high accuracy. Since we learn one

model for template, we can achieve reasonably good performance

using only 5 trees with depth of 6 each, where each inference call

takes less than 5 milliseconds, including the inter-process commu-

nication. This is significantly faster than an optimizer call, which

can typically take 100s of milliseconds.

5.2 In-Situ Training
One of the challenges for Index Cost Models is minimizing the

amount of training instances (i.e., optimizer calls) used for learning.

While a large number of training instances is better for improving

accuracy, it increases the model construction cost and the tuning



time. On the other hand, training with too few examples compro-

mises model accuracy and the quality of recommended indexes.

To address this, we propose two techniques. First, we diversify

the training instances by clustering query instances as well as con-

figurations. Second, we use an iterative approach that incrementally

increases the amount of training instances, until we achieve the

target accuracy. The questions that we need to answer are: (1) how

to sample queries and configurations for training; and (2) how to

ensure that we do not under-train or spend many more samples

than needed for training. Algorithm 1 depicts how we train the cost

model for each query template. We discuss the main steps below.

Clustering. To select dissimilar queries and configurations, we

apply clustering. First, we cluster queries instances using k-means

into

√
𝑛 number of clusters(a threshold typically used in compres-

sion algorithms for SQL workloads [11, 17]) where 𝑛 is the number

of instances using Euclidean distance between the vector of parame-

ter selectivities. Similarly, we cluster indexes based on their shapes.

We compute the shape of the index as discussed earlier in §4.2.

Sampling of a training instance.A training instance corresponds

to a (query, configuration) pair and its optimizer-estimated cost.

We use the following process. We first sample a query cluster and

randomly pick a query instance from the sampled cluster. We then

sample the size of the configuration in a range from 1 to 4. We

observe that a configuration size > 4 has negligible impact on im-

proving the accuracy of the model and hence limit the maximum

size of a configuration to 4. Given the sampled value 𝑠 of configura-

tion size, we sample 𝑠 clusters of candidate indexes and randomly

pick a candidate index from each cluster. We sample clusters with-

out replacement; however, once we have covered all the clusters,

we add the clusters back for re-sampling. We then make a what-if

call to estimate the cost of the sampled (query, configuration) pair.

Iterative Training. We incrementally train the cost model over

multiple iterations. In the first iteration, we start with a size 𝛼 of

training instances, and then in each of the subsequent iterations

we add 𝛽 more training instances. In each iteration, we use 3/4 of

the sampled instances for training the model and 1/4 for validation.

Given an error threshold 𝜖 , if the geometric mean of q-error over

the validation set is less than 𝜖 , we say that a model is trained;
otherwise we proceed to the next iteration. We evaluate the impact

of these parameters in §6. Overall, more than 60% of Index Cost

Models can be trained using less than 20% (query, candidate index)

pairs. We find that setting 𝛼 and 𝛽 in a range of 5% to 15% of (query,

candidate index) pairs results in a reasonable trade-off between

model accuracy and training time (see §6), typically requiring a 2

or 3 iterations. In addition, we also set a hard-stop threshold 𝐻 on

the maximum size of training instance (by default ∼50% of the total

number of (query, candidate index) pairs for a given template) to

avoid further training of cost models that do not converge quickly.

For such templates (< 10% in our evaluated workloads), we fall

back to the what-if calls. Nonetheless, the optimizer calls made for

training such templates are not wasted: they are stored in a cache

and reused during enumeration.

5.2.1 Analysis of Iterative Training. We analyze the optimality of

iterative training following the similar process as discussed in [19].

Let 𝐶1 (𝑠) be the cost of generating 𝑠 training examples, and let

𝐶2 (𝑠) be the cost of training an ML model with the 𝑠 examples.

In our problem, generating a training example requires making a

what-if call to the query optimizer with the given query and index

Algorithm 1: Training Index Cost Model for a given
query template
Input: A set of query instances belonging to the same template: Q; a set of

candidate indexes: I: desired error threshold 𝜖 , training sample size

for the first iteration: 𝛼 , training sample size to add to subsequent

iterations: 𝛽 , hard threshold to stop training: 𝐻 , total (query,

candidate index) pairs for the template:𝑇
Output: A Index Cost Model or NULL (when an accurate Index Cost Model

cannot be trained)

Cluster queries𝑄 based on selectivities ;

Cluster indexes 𝐼 based on shapes ;

𝑆 ← Sample 𝛼 (query, configuration) pairs using the process described

in §5.2;

𝑀 ← Train a regression model using 𝑆 ;

while error of𝑀 ≥ 𝜖 do
if size of 𝑆 > (𝐻 − 𝛽) then

return NULL;
end
𝑁 ← Sample 𝛽 (query,configuration) pairs using the process described

in §5.2;

𝑆 ← Add 𝑁 training samples to previous 𝑆 samples ;

𝑀 ← Re-train𝑀 using 𝑆 samples ;

end
return𝑀 ;

configuration. As a result,𝐶1 (𝑠) = 𝑟 ·𝐶2 (𝑠) where 𝑟 ≫ 1. Moreover,

both 𝐶1 (𝑠) and 𝐶2 (𝑠) are proportional to the sample size 𝑠 .

Let 𝑆∗ be the optimal amount of training examples required to

achieve the same prediction accuracy as that given by our iterative

training algorithm.
1
The optimal cost 𝐶opt is then the cost of gen-

erating these 𝑆∗ examples plus the cost of training an ML model

with these 𝑆∗ examples. That is,

𝐶opt = 𝐶1 (𝑆∗) +𝐶2 (𝑆∗) = (𝑟 + 1) ·𝐶2 (𝑆∗).

Now consider the total cost 𝐶 of the iterative training algorithm.

The amount of training examples used in each iteration is 𝛼 , 𝛼 + 𝛽 ,
𝛼 + 2𝛽 , etc. Let 𝑧 be the smallest integer such that 𝛼 + 𝑧𝛽 ≥ 𝑆∗. By
definition we have 𝛼 + (𝑧 − 1)𝛽 < 𝑆∗ . We have the following result

(see Appendix A for the proof in our full version [34]).

Theorem 1. Assume 𝑧 ≤ 𝑟 . Since 𝜂 =
𝛽
𝛼 , it follows that

𝐶 <

(
2𝑟 + 1
𝑟 + 1

)
·
(
1 + 𝛽

𝛼

)
·𝐶opt < 2 ·

(
1 + 𝛽

𝛼

)
·𝐶opt .

A common case is 𝑟 ≫ 𝑧, i.e., the number of iterations is much

less than 𝑟 given that a what-if call is very expensive compared to

the amortized training cost per example. This gives𝐶 < (1+ 𝛽𝛼 )·𝐶opt,

improving the optimality guarantee by a factor of 2.

5.3 Optimizations
We discuss two optimizations that are not used in DISTILL by

default but can be leveraged in specific scenarios.

Using Index Filter after selecting each index in the greedy
algorithm. While our proposed techniques do not leverage any

properties of the greedy algorithm, and can be used with any arbi-

trary enumeration algorithm, we observe we can further optimize

for the greedy algorithm. Specifically, by default, we use the Index

Filter with the original plan to only filter syntactically-relevant

indexes before performing the enumeration step. However, for an

algorithm (e.g., greedy) that incrementally selects the indexes in a

configuration, we can use the Index Filter to further prune candidate

1
An implicit assumption here is that more training examples will not worsen the

prediction accuracy, which is a general assumption in learning theory.
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Figure 6: End to end evaluation of baselines and variants of DISTILL on improvement and tuning time.

indexes that may not lead to significant improvement in perfor-

mance given the already selected indexes. In our experiments, we

observe that this optimization further reduces the optimizer call

between 10% to 15% across workloads.

Leveraging seed indexes. In some cases, index tuners can create

hypothetical indexes for all relevant indexes and make one opti-

mizer call to get the indexes (called seed indexes) selected in the

most optimal plan for each query. While there may be additional

indexes that may be useful to the query (but may not be selected

in the most optimal plan), the selected indexes in the best plan

can be used as training instances in the first iteration. We observe

that doing so reduces the amount of training instances required for

many templates by about 5% to 8%.

6 EXPERIMENTAL EVALUATION
Workloads. Table 3 summarizes the four workloads we use in

our experiments. We use two standard benchmarks: TPC-H and

TPC-DS; DSB [1], and a real customer workload Real-M. Both DSB

and Real-M are more complex compared to TPC-H and TPC-DS

and have skewed data distributions.

Table 3: Summary of workloads
Name #Queries # Templates #Tables

TPC-H (sf =10) 220 22 8

TPC-DS (sf =10) 910 91 24

DSB [1] (sf =10) 520 52 24

Real-M (26GB) 160 32 474

Compared Methods. We compare the following methods: (1) a

greedy algorithm as proposed in [13] and making optimizer calls for

every (query, configuration) pair explored during enumeration (an

ideal scenario for the maximum performance improvement for our

problem setting), (2) the Database Tuning Advisor (DTA) tool [2, 6],

a state-of-the-art index tuning tool that uses cost derivation using

atomic configurations (described in [12]) for reducing optimizer

calls. We give DTA an unlimited time budget to keep the evaluated

queries and indexes similar for both DTA and DISTILL, and reduce

the influence of other optimizations such as workload compression

which are complementary to the techniques discussed in this paper.

We consider three variants of DISTILL: (3) Index Filter for filter-

ing syntactically-relevant indexes as discussed in §4 but making

optimizer calls during enumeration as in 1), (4) Index Cost Model

trained in-situ during tuning using optimizer calls and then used

for costing (query, configuration) pairs during enumeration( §5), (5)

DISTILL, using both (3) and (4). Unless otherwise specified, we use

Random Forest (RF) with 40 trees having a maximum depth of 10

for Index Filter. To demonstrate the generalizability of Index Filter,

we exclude the workload that we test from training, using only the

other three workloads for training. We use a Random Forest (RF)

model with 5 trees with a maximum depth of 6 for learning Index

Cost Models. We provide more details on training and overhead as

well as the performance of other potential ML algorithms in §6.3.

The default max configuration size (𝑘) is set to 20.

Evaluation Metrics. We use the following two metrics: (1) Im-

provement (%): If 𝐶 (𝑊 ) is the original optimizer estimated cost

of the workload without indexes and 𝐶𝑘 (𝑊 ) is the optimizer esti-

mated cost of the workload (when using recommended indexes), we

measure improvement (%) of𝑊 as
𝐶 (𝑊 )−𝐶𝑘 (𝑊 )

𝐶 (𝑊 ) × 100%. (2) Time

(in minutes) for tuning the workload.

6.1 End-to-End Evaluation
Figures 6a and 6b depict the impact of the compared methods on

the improvement and efficiency of index tuning. The tuning times

for DISTILL and Index Cost Models includes the training time of

Index Cost Models. Table 4 provides more details on the number of

configurations explored, the reduction in optimizer calls, as well

the inference overhead. We observe that DISTILL can return recom-

mended indexes with similar quality to those of all optimizer calls

(i.e., the ideal scenario) as well as DTA in 5× to 15× less time than

all optimizer calls and 2× to 12× less time than DTA. Index Filter

achieves the highest improvement among our proposed techniques

but takes significantly longer time compared to Index Cost Models.

This is because Index Filter only removes the syntactic indexes

that do not result in significant (> 5%) improvement while using

optimizer calls for all explored configurations during enumeration.

Index Cost Models significantly improve the tuning time by making

15× to 20× fewer optimizer calls compared to all optimizer calls.

Furthermore, we observe that while there is a drop in improve-

ment due to error in estimates, the difference is significantly small

compared to DTA or all optimizer calls. When using both Index

Filter and Index Cost Model, the improvement increases and the

tuning time decreases, indicating the benefit of using them together.

The Index Filter helps remove the spurious indexes, which in turn

improves the quality of training samples for the Index Cost Models,

making them converge faster with fewer training samples. Further-

more, the Index Filter also decreases the number of configurations

to be evaluated by the Index Cost Models.

6.2 Impact of Number of Instances Per Template
We evaluate the impact of increasing the number of instances (while

keeping the number of templates fixed). Due to space constraints,

we depict the results using improvement per unit time. As the

number of instances increases, the performance of Index CostModel

and the DISTILL improves, while for the baselines and the Index

Filter, the relative performance is less variant to the number of

instances. When the number of instance is 1, i.e., each query with

a different query template, training Index Cost Models consumes

a substantial fraction of the tuning time, and hence the difference

between Index Cost Models and DTA is not significant. However,

by only increasing the number of query instances to only 3, we see

that Index Cost Models perform much better.



1 5 10
Instances per Template

0
5

10
15
20

Im
pr

ov
m

en
t p

er
 

 u
ni

t t
un

in
g 

tim
e

a) TPC-H

1 5 10
Instances per Template

0.0
0.2
0.4
0.6
0.8

b) TPC-DS

1 5 10
Instances per Template

0.0
0.5
1.0
1.5
2.0

c) DSB

1 3 5
Instances per Template

0.0
0.5
1.0
1.5
2.0

d) Real-M

All Optimizer Calls DTA Index Filter Index Cost Model DISTILL

Figure 7: Impact of number of instances per template

Table 4: Analysis of Index Filter and Index Cost Models

TPC-H TPC-DS DSB Real-M

Total (query, syntactic index) pairs 3284 11351 8832 7350

Total configurations explored by all optimizer

calls

18534 87334 45294 23568

Total (query, syntactic index) pairs after Index

Filter

1832 6842 4042 3562

Total configurations explored by DISTILL 8231 34204 20565 9445

Total optimizer calls made by DISTILL 964 4021 2459 1754

Total Index Cost Models 20 86 49 29

Average training instance size for each Index

Cost Models

18 25 32 41

Average training time for each Index Cost

Models (excluding optimizer calls)

4s 5s 7s 8s

Average inference time for Index Filters 8 ms 10ms 10ms 10ms

Average inference time for Index Cost Models 5ms 5ms 5m 5ms

6.3 Effectiveness of ML algorithms
6.3.1 Index Filter. We first compare the effectiveness of ML algo-

rithms as Index Filter. We test the model over one workload at a

time, while using the other three workloads for training. We consid-

ered the following regression models: Logistic regression (LR), three

tree-based ensemble models: Light GBM (LGBM), XGBoost, and

Random Forest (RF) with hyperparameters tuned using FLAML [36].

The optimal number of trees varies between 30 and 60 with depth

of trees between 5 to 20. In general, we observe that RF with 40

trees and a depth of 10 results in best performance for most of the

workloads. We also consider a feed-forward fully-connected neu-

ral network implemented using MLPRegressor [3]. We manually

tuned the parameters and found that 3 hidden layers with ReLU

as the activation function, adam as optimizer using a maximum of

300 epochs results in the best performance. For all models, we use

log-transformed labels and mean square error as the loss function.

We use 0.05 as the threshold for identifying spurious indexes, and

the F1 score for evaluation which captures both the precision and

recall of identifying spurious indexes.

As depicted in Figure 8a, we observe that most of the tree-based

ensemble models perform significantly better than the default ap-

proach of generating syntactically-relevant indexes as in DTA. On

the other hand, we find that LR performs worse among all the ML

techniques. On average, we observe that tree-based models have a

precision of about 0.75 and a recall of 0.85 across all the workloads.

Furthermore, the worst precision and recall occur over the DSB

benchmark (a more complex workload), with the highest values

among all models as 0.71 and 0.79, whereas the best precision and

recall happen for the TPC-H workload with the values of 0.78 and

0.95 respectively. On average, we see that we are able to reduce the

false positive rate by 70% with a low false negative rate between

4% and 14%, and an overall reduction of about 42% of the syntactic

indexes from enumeration using the tree-based ensemble models.

Regression vs. Classification. We also consider learning Index

Filter as a classification task where we label all training instances

where improvement fraction > .05 as 1 and those with improvement

fraction < .05 as 0.We depict only the RF- andMLP-based classifiers

in Figure 8a as performance of other classifiers are worse. We find

Table 5: Sensitivity of features for Index Filter measured using F-1
score while turning off each category of features

Workload w/o utility w/o shape w/o operators w/o optimizer behaviour

TPC-H .60 .69 .68 .78

TPC-DS .30 .50 .53 .74

DSB .35 .40 .59 .71

Real-M .49 .65 .57 .77

learning the model as classifier results in lower F1 score compared

to the regression models. This is because the regression model is

able to better model how changes in feature values impact the cost,

while with the binary labeling, we lose this information.

Overhead. On average, it takes between 80 and 130 hours to gen-

erate the labelled training data (requiring optimizer calls) using the

databases and workloads listed in Table 3, consisting of a maximum

of 170k (query, configuration) pairs and their optimizer estimated

costs. The training takes less than 5 minutes for the tree-based

ensemble models and about 20 minutes for neural network models

using CPU. The inference time for tree-based ensemble models is

about 10 ms (significantly faster than optimizer calls) while for

MLP-based models it is in order of 100 of milliseconds.

6.3.2 Index Cost Model. We considered the same ML algorithms

as above. For the neural network model, we use the same setting as

for the Index Filter except that we use only 100 epochs for training

and 2 hidden layers instead of 3 as adding more epochs and lay-

ers results in a significant increase in tuning time without much

improvement in accuracy. For this experiment, we perform a 5-

fold cross-validation with a training size set to 25% of the (query,

candidate index) pairs. Again, we observe that tree-based models

perform significantly better than the LR model. On average, we see

that the median q-error of tree-based models across all workloads

is around 1.18. For tree-based models, we can achieve reasonably

good performance using between 4 to 10 trees with depth of trees

ranging between 3 to 8.

Overhead. The training of Index Cost Models varies between 20

seconds to 100 seconds depending on the number of optimizer calls.

On average, about 35 optimizer calls are required to train a model

for each template. Training ofMLmodel given the labelled instances

typically takes less than 5 seconds. Each inference call takes less

than 5 milliseconds, including the inter-process communication.

This is significantly faster than an optimizer call, which take several

100s of milliseconds.

6.4 Sensitivity of Features in Index Filter
The Index Filter uses four types of signals as features: (1) utility, (2)

shape, (3) operators, and (4) optimizer behaviour captured via table

and index details. We turned off each feature one at a time, and

tested the F1 score of the Index Filter. For this experiment, we use

RF as our choice of ML model. Table 5 depicts the results. We see

that utility has the maximum influence on the F1 score, the removal

of which results in the maximum decrease in the F1 score. This

is followed by shape-based and operator-based features. Finally,

we see that the optimizer behaviour captured via table and index

details have the minimum impact on the F1 score.

6.5 Index Cost Model vs Alternative Techniques
6.5.1 Index Cost Model vs cost derivation using atomic configura-
tions [12]. We compare the two approaches using the same set

of candidate input indexes. Table 6 depicts the results for cost-

derivation. Note that cost derivation works only with the greedy al-

gorithm while the Index Cost Model is agnostic of the enumeration
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Table 6: Cost derivation using atomic configurations
Name #Optimizer Calls Improvement Tuning Time (mins)

TPC-H 1739 75% 31

TPC-DS 1324 63% 748

DSB [1] 8394 63% 395

Real-M 5272 54% 184

algorithm. Despite this, we find cost derivation making between

2× to 6× more optimizer calls and taking proportionally more time

compared to Index Cost Models (see Figure 6a and Figure 6b) while

giving significantly worse improvement over complex workloads

such a Real-M. One might see that cost derivation takes much more

time than DTA. This is because DTA in addition to cost derivation

also leverages other optimizations such as index merging, table-

subset selections [6] which reduces the search space.

6.5.2 Using Index Filter regression model for costing. To under-

stand whether we can use the Index Filter regression model for

costing, we grouped (query, configuration) pairs into four groups

based on their actual improvements. As depicted in Figure 8c, Index

Filter is effective at identifying configurations with small improve-

ments in performance (e.g., < 5% improvement) as depicted via a

low q-error. However, for configurations which result in signifi-

cant improvement, Index Filter suffers with large q-errors than the

workload-specific Index Cost Models.

6.6 Evaluation of Training of Index Cost Model
6.6.1 Impact of training size. Figure 9a depicts the % of query

templates for whichwe use learn cost models as we vary the fraction

of the total (query, candidate index) pairs for training. A model is

trained when the geometric mean of q-error on the validation set is

< 1.20. On average, with training size around 0.20 fraction, we are

able to train about 65% of the models across all workloads. With

an additional 20% of training instances, we are able to train over

85% of the models, after which we see that adding more training

samples has marginal impact on reducing the error of the models.

6.6.2 Impact of clustering. Figures 9a and 9b depict the impact of

clustering of queries as well as indexes on the training size required

to train models. As in the above experiment, a model is trained

if the geometric mean of q-error over the validation set is below

1.20. As depicted, we are able to train a large number of models

with fewer training instances by clustering. For instances, with .20

training fraction, we are able to train about 65% models (on average

across workloads) with clustering; on the the other hand, we can

train only 40% of models without clustering.

6.6.3 Varying threshold on maximum error (𝜖). Figure 9c depicts
the impact of error threshold (measured using geometric mean of q-

error) used for training the cost model on the improvement and the

end-to-end tuning time captured via improvement per unit tuning

time. We observe that when we set the error threshold to close to

1.0, the improvement is very close to making all optimizer calls;

however, the tuning time is also high — about 2×-3×more than the

tuning time it takes for the default value 1.20. As we increase the

error threshold from 1.05 to 1.50, we see a drastic reduction (3×-5×)
in tuning time with an average reduction of 8% in the improvement

across all workloads. On further relaxing the error threshold, we

see a faster reduction in improvement due to less accurate cost

models. Overall, a threshold between 1.20 and 1.50 results in much

faster tuning with small reduction in quality of indexes, compared

to making all optimizer calls.

6.6.4 Varying 𝛼, 𝛽 . Figure 9d and 9e depict the impact on tuning

time as we vary the threshold 𝛼 (initial training size) and 𝛽 (addi-

tional training size) added per iteration for incrementally training

cost models. On average, as depicted in Figure 9a, we see that train-

ing size ranging between 30% to 50% of the total (query-candidate

index) pairs is sufficient in training most of the cost models. The

choices of 𝛼 and 𝛽 determine the number of times we need to train

the models. Overall, we see that different values of 𝛼 and 𝛽 in a

range of 5% to 15% give similar results in tuning time with the

number of iterations ranging between 2 to 5.

6.7 Impact of Optimizations
Figure 10 depicts the impact of optimizations proposed in §5.3.

Pruning after selecting each index during greedy selection.
After selecting each index during greed enumeration, we use the

Index Filter to prune out candidate indexes that are less likely to

result in improvement of cost. We find that doing so results in

between 10% and 15% decrease in tuning time across workloads

with a small reduction (< 3%) in quality.

Using seed indexes for training. During the first iteration while

training Index Cost Models, we add the seed indexes as training

samples. As depicted in Figure 10b, we observe that doing so results

in faster convergence of cost models as compared to Figure 9a. For

instance, we observe that we can learn about about 18% of Index

Cost Models on TPC-DS workload when using seed indexes com-

pared to 10% of model with the same fraction of training samples

but not using seed indexes.

7 RELATEDWORK
Prior work have proposed techniques [12, 22, 28] that cache physi-

cal plans across optimizer calls and reason about the reuse of costs

of sub-expressions across queries using rules or external cost mod-

els. We observe that these techniques require many more optimizer

calls than used for training Index Cost Models (see §6.5). Further-

more, unlike DISTILL, these techniques cannot prune spurious

indexes, and require at least one optimizer call to identify such
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Figure 10: Impact of Optimizations

indexes. Finally, the reuse of costs heavily depends on the order of

enumeration of indexes, thereby requiring changes to the tuning

algorithm to be effective. There have also been techniques that

extend the traditional candidate selection through merging candi-

date indexes [15], thereby reducing the number of configurations

to explore. [8, 9] compute the bounds on costs of queries based on

query optimization of past configurations, which can be used for

pruning optimizer calls. Unlike our work, these techniques require

changes either to the index tuning algorithm or to the optimizer.

Workload compression techniques [12, 17] have been proposed

for reducing the size of the input workload that are complementary

to the techniques discussed in this work. These techniques typically

operate independent of the index tuning tool and are therefore

unaware of index tuning constraints, such as storage budget and

size of configurations that play an important factor in selecting

indexes. Furthermore, these techniques either select or discard a

query completely; however, parts of the query may still be useful.

There has been work on applying reinforcement learning tech-

niques for index tuning [7, 27, 29–31] that primarily focus on search

enumeration and target online tuning scenarios where queries ar-

rive in a sequence. In contrast, we focus on the classical offline index

tuning problem where we can access the entire workload at once.

Ding et al. [18] have proposed learning a classifier for reducing

query performance regressions due to erroneous optimizer cost

models. Specifically, the proposed featurization and ML techniques

focus on a different setting, i.e., comparing two physical plans (by

making optimizer calls) to predict regression and hence cannot be

adapted for estimating costs for (query, configuration) pairs.

Finally, the work on parametric query optimization (PQO) [22–

24] studies the change in the optimal plan for a query under chang-

ing parameters, such as predicate selectivity. The Index Cost Models

in our work have the same goal except that we consider both param-

eters and index configurations, and develop optimizations based

on how indexes are used within a query plan to reduce the number

of training instances.

8 DISCUSSION
In this work, we assume that the physical plan for each query in the

workload is provided as input. We observe that most DBMSs expose

functionality to collect historical workload information including

query execution plans, e.g., Query Store [4] in Microsoft SQL Server.

Such information can be leveraged byDISTILL for analyzing queries

without making optimizer calls. However, in cases where such logs

are not available, DISTILL needs to make an optimizer call for each

query in the workload to get its execution plan. For large input

workloads, the overheads of making such calls may be significant.

Additionally, index advisors (e.g., see DTA [6]) support tuning

with a time-budget, where queries from the input workload are

consumed and tuned incrementally. While the Index Filter can

seamlessly operate in such a setting, the accuracy of the Index

Cost Models may suffer when a small (e.g., < 3 over our evaluated

workloads) subset of instances for a query template are available

for in-situ training. One option to address this could be to select

all instances of a query template together when consuming the

workload incrementally.

There have been complementary techniques on workload com-

pression [33] that identify a subset of queries (thereby reducing the

search space) which when tuned result in indexes that improve the

performance of the entire workload. In contrast, in this work, we

use efficient techniques for estimating the cost of (query, configura-

tion) pairs without reducing the search space. An interesting next

step could be to combine both the techniques to further reduce the

tuning time without affecting the performance of the workload.

9 CONCLUSION
In this paper, we described the scalability challenges with index tun-

ing tools and discuss a number of opportunities for improvement.

We discussed how we can leverage machine learning techniques to

reduce the amount of optimizer calls without making any changes

to the index tuning algorithm or to the query optimizer. First, we

presented how we can learn a workload-agnostic model that cap-

tures patterns over query structure, statistics, and index structure

to identify indexes that do not lead to plan changes. This model

can be used to remove a large number of syntactically-relevant but

spurious index candidates. Next, we showed how we can learn an

index-specific cost models on-the-fly during the tuning process and

use them to predict the costs of many (query, configuration) pairs

during enumeration, thereby avoiding optimizer calls. Our results

show that our proposed techniques result in significant improve-

ment in tuning time while recommending indexes with similar

quality as state-of-the-art approaches.
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A ANALYSIS OF ITERATIVE TRAINING
Let 𝐶1 (𝑠) be the cost of generating 𝑠 training examples, and let

𝐶2 (𝑠) be the cost of training an ML model with the 𝑠 examples.

In our problem, generating a training example requires making a

what-if call to the query optimizer with the given query and index

configuration. As a result,𝐶1 (𝑠) = 𝑟 ·𝐶2 (𝑠) where 𝑟 ≫ 1. Moreover,

both 𝐶1 (𝑠) and 𝐶2 (𝑠) are proportional to the sample size 𝑠 .

Let 𝑆∗ be the optimal amount of training examples required to

achieve the same prediction accuracy as that given by our iterative

training algorithm.
2
The optimal cost 𝐶opt is then the cost of gen-

erating these 𝑆∗ examples plus the cost of training an ML model

with these 𝑆∗ examples. That is,

𝐶opt = 𝐶1 (𝑆∗) +𝐶2 (𝑆∗) = (𝑟 + 1) ·𝐶2 (𝑆∗) .
Now consider the total cost 𝐶 of the iterative training algorithm.

The amount of training examples used in each iteration is 𝐴, 𝐴 + 𝐵,
𝐴 + 2𝐵, etc. Let 𝑧 be the smallest integer such that 𝐴 + 𝑧𝐵 ≥ 𝑆∗. By
definition we have

𝐴 + (𝑧 − 1)𝐵 < 𝑆∗ . (1)

For ease of exposition, we introduce 𝜂 = 𝐵
𝐴
and thus 𝐵 = 𝜂𝐴. As a

result, we have (
1 + (𝑧 − 1)𝜂

)
· 𝐴 < 𝑆∗,

which yields

𝐴 <
𝑆∗

1 + (𝑧 − 1)𝜂 . (2)

We can express 𝐶 as follows:

𝐶 = 𝐶1 (𝐴 + 𝑧𝐵) +
∑︁𝑧

𝑖=0
𝐶2 (𝐴 + 𝑖𝐵) . (3)

Let 𝑐1 = 𝐶1 (𝐴 + 𝑧𝐵) and 𝑐2 =
∑𝑧
𝑖=0𝐶2 (𝐴 + 𝑖𝐵). By Equation 1,

𝑐1 = 𝐶1

(
𝐴 + (𝑧 − 1)𝐵

)
+𝐶1 (𝐵)

< 𝐶1 (𝑆∗) +𝐶1 (𝜂𝐴) .
By Equation 2, it follows that

𝑐1 < 𝐶1 (𝑆∗) +
𝜂

1 + (𝑧 − 1)𝜂 ·𝐶1 (𝑆∗) (4)

=
1 + 𝑧𝜂

1 + (𝑧 − 1)𝜂 ·𝐶1 (𝑆∗).

On the other hand, we have

𝑐2 = 𝐶2

(∑︁𝑧

𝑖=0
(𝐴 + 𝑖𝐵)

)
= 𝐶2

(
(𝑧 + 1)𝐴 + 𝑧 (𝑧 + 1)

2

· 𝐵
)

= (𝑧 + 1) ·𝐶2 (𝐴 +
𝑧

2

· 𝐵)

= (𝑧 + 1) ·𝐶2

(
(1 + 𝜂 · 𝑧

2

) · 𝐴
)
.

Again, by Equation 2, it follows that

𝑐2 < (𝑧 + 1) ·
(

1 + 𝜂 · 𝑧
2

1 + (𝑧 − 1)𝜂

)
·𝐶2 (𝑆∗) . (5)

Combining Equations 3, 4, and 5, we have

𝐶 = 𝑐1 + 𝑐2 <

(1 + 𝑧𝜂) ·𝐶1 (𝑆∗) + (𝑧 + 1) ·
(
1 + 𝜂 · 𝑧

2

)
·𝐶2 (𝑆∗)

1 + (𝑧 − 1)𝜂 .

2
An implicit assumption here is that more training examples will not worsen the

prediction accuracy, which is a general assumption in learning theory.

Since𝐶1 (𝑆∗) = 𝑟 ·𝐶2 (𝑆∗) and𝐶opt = (𝑟 + 1) ·𝐶2 (𝑆∗), it follows that

𝐶 <

𝑟 ·
(
1 + 𝑧𝜂

)
+ (𝑧 + 1) ·

(
1 + 𝜂 · 𝑧

2

)
1 + (𝑧 − 1)𝜂 ·𝐶2 (𝑆∗) (6)

=

𝑟 ·
(
1 + 𝑧𝜂

)
+ (𝑧 + 1) ·

(
1 + 𝜂 · 𝑧

2

)
(𝑟 + 1) ·

(
1 + (𝑧 − 1)𝜂

) ·𝐶opt .

Since 𝜂 · 𝑧
2
< 𝜂 · 𝑧, we have

1 + 𝜂 · 𝑧
2

< 1 + 𝜂 · 𝑧 = 1 + (𝑧 − 1)𝜂 + 𝜂.

By Equation 6, it follows that

𝐶 <

𝑟 ·
(
1 + 𝑧𝜂

)
+ (𝑧 + 1) ·

(
1 + (𝑧 − 1)𝜂 + 𝜂

)
(𝑟 + 1) ·

(
1 + (𝑧 − 1)𝜂

) ·𝐶opt

=

𝑟 ·
(
1 + 𝑧𝜂

)
+ (𝑧 + 1) · 𝜂 + (𝑧 + 1) ·

(
1 + (𝑧 − 1)𝜂

)
(𝑟 + 1) ·

(
1 + (𝑧 − 1)𝜂

) ·𝐶opt

=

(
𝑟 ·

(
1 + 𝑧𝜂

)
+ (𝑧 + 1) · 𝜂

(𝑟 + 1) ·
(
1 + (𝑧 − 1)𝜂

) + 𝑧 + 1
𝑟 + 1

)
·𝐶opt .

Applying 1 + 𝜂 · 𝑧 = 1 + (𝑧 − 1)𝜂 + 𝜂 again, we obtain

𝐶 <

(
𝑟 ·

(
1 + (𝑧 − 1)𝜂

)
+ (𝑟 + 𝑧 + 1) · 𝜂

(𝑟 + 1) ·
(
1 + (𝑧 − 1)𝜂

) + 𝑧 + 1
𝑟 + 1

)
·𝐶opt

=

(
𝑟

𝑟 + 1 +
(𝑟 + 𝑧 + 1) · 𝜂

(𝑟 + 1) ·
(
1 + (𝑧 − 1)𝜂

) + 𝑧 + 1
𝑟 + 1

)
·𝐶opt

=

(
𝑟 + 𝑧 + 1
𝑟 + 1 + (𝑟 + 𝑧 + 1) · 𝜂

(𝑟 + 1) ·
(
1 + (𝑧 − 1)𝜂

) )
·𝐶opt

=

(
𝑟 + 𝑧 + 1
𝑟 + 1

)
·
(
1 + 𝜂

1 + (𝑧 − 1)𝜂

)
·𝐶opt .

Assuming 𝑧 ≥ 1 (i.e., we need at least one iteration), it follows that

𝐶 <

(
𝑟 + 𝑧 + 1
𝑟 + 1

)
· (1 + 𝜂) ·𝐶opt . (7)

Based on Equation 7, we have the following observations.

Theorem 2. Assume 𝑧 ≤ 𝑟 . Since 𝜂 = 𝐵
𝐴
=

𝛽
𝛼 , it follows that

𝐶 <

(
2𝑟 + 1
𝑟 + 1

)
·
(
1 + 𝛽

𝛼

)
·𝐶opt < 2 ·

(
1 + 𝛽

𝛼

)
·𝐶opt .

On the other hand, if 𝑟 ≫ 𝑧, which is the common case in practice

(i.e., the number of iterations is much less than 𝑟 given that a what-

if call is very expensive compared to the amortized training cost

per example), then we have𝐶 < (1 + 𝛽
𝛼 ) ·𝐶opt, which improves the

optimality guarantee by a factor of 2.


