Predicting Query Execution Time:
Are Optimizer Cost Models Really Unusable?

Wentao Wul, Yun Chi?, Shenghuo Zhu?, Junichi Tatemura?,
Hakan Hacigumus?, Jeffrey Naughton?

!Dept of Computer Sciences, University of Wisconsin-Madison
’NEC Laboratories America

otivation

» Database as a service (DaaS)

User Service Provider
: Service Level Database
Agreement (SLA)

How to predict the execution time of a query before it runs?

pplications
Admission control
e Run this query or not?

Query scheduling
e |f we decide to run it, when?

Progress monitoring
* How long should we wait if something is wrong?

System sizing
e How much hardware does it require to run in the given time?

/mptimizM

Query optimizers have cost estimates for queries.
e Can we just use them?

Previous work ([Ganapathi ICDE’og], [Akdere ICDE’12])
e Query optimizers’ cost estimates are unusable.

10%f ;
- avg err: 120%
Naive Scaling: | =

Predict the execution time T 8 ol §
by scaling the cost estimate C, » A
e =G g T x X
L% 102; X
o [% X><><
X
Fig. 5 of [Akdere ICDE’12] [o

Optimizer Cost Estimate

»@Does Nai

Cost Unit
Scaling Fail? c;seq page cost |
, c,: rand_page_cost 4.0
PostgreSQL’s cost model ¢ cpu_tuple_cost oon
C =nycs +n,.c,. +n.c; + nic; +ngyc, c;: cpu_index_tuple_cost | 0.005
: : C,: Cpu_operator_cost 0.0025
‘ Naive Scaling
C Ct Ci c
T=a-C=c}|(ns+n,—+n,—+n—+n,—)
| Cs Cs Cs Cs
,‘l’ = Should be
cs=a-cs=a-10=a
correct!

The assumptions required (for naive scaling to work)
e The ratios between the c’s are correct.
e The n’s are correct.

“Beat Naive Scaling
PostgreSQL’s cost model | € = nscs + nyCr + neC + 14C + NG

Unfortunately, both the c’s and the n’s
could be incorrect!

To beat naive scaling

e Use machine learning (|Ganapathi ICDE’0g], [Akdere

ICDE'12])

e Calibrate the ¢’s and the n’s! (our work)

/mif We Use Calibrated ¢’s and n’s?

Query Execution Time (s)

Cost models become much more effective.

1000 ',,-u 1000 v
o
+ E ++*‘:,:e"
100 ¢ + g 100} s
= < F
m) 5 :
2
3
>
w
10 f e 10
=
&)
1 . : 1 . :
10 100 1000 10 100 1000

Predicted Time By Naive Scaling (s)

Prediction by Naive Scaling:

red = a- (€ n)

Predicted Time By Calibration (s)

Prediction by Calibration:
el =26 N

* How can we calibrate the ¢’s and the n’s?

e Calibrate the c’s: use profiling queries.

e Calibrate the n’s: refine cardinality estimates.

calibration offline calibrated
queries profiling cost units

N

Y

uery time —
i qpregictor

A

DB Server
NS
. corrected
final query online o
lan samolin cardinality
P Piing estimation
8

““Contribution of This Work

We proposed a systematic framework to calibrate the
cost models used by the query optimizer.

We showed that the calibrated cost model is much
better than naively scaling the cost estimates.

We further showed that the calibrated cost model is
also much better than the state-of-the-art machine-
learning based approaches.

e e : seq_page_cos
~Calibrating The c’s P

re

c,: cpu_tuple_cost

Basic idea (an example) c;: cpu_index_tuple_cost
e Want to know the true Ct and C, c,: cpu_operator_cost
q,: select * from R Rinmemory |t =¢,-n,

q,: select count(*) from R I t,

Ct Nt T Co * N,

General case
e k cost units (i.e., k unknowns) => k queries (i.e., k equations)

e k = 5in the case of PostgreSQL

10

““How to Pick Profiling Queries?

Completeness
e Each c should be covered by at least one query.

Conciseness
e The set of queries is incomplete if any query is removed.

Simplicity

e Each query should be as simple as possible.

11

A

/Pﬁing Queries For PostgreSQL

Isolate the unknowns and solve them one per equation!

R in memory
q,: select * from R ty :@ 1

l

R in memory
Ly = Ct* Ny No2

l

q,: select count(*) from R

q,: select * from R where R.A| R in memory
L3 = C¢ * Ny3 @niB T Cp " Np3

l

R on disk

< a (R.A with an Index)
q,: select * from R ty :@ns4+ct.nt4

l

qs: select * from R where R.B | Rondisk ts
< b (R.B unclustered Index) = Cg *Ngg + Cp * Ny + Cp * Nys

l

e B M e s) SO

12

Tﬂrati ng The n’s

The n’s are functions of N’s (i.e., input cardinalities).
e Calibrating the n’s => Calibrating the N’s

Example 1 (In-Memory Sort) n,
Yo =@Nt -log N. > ¢, + tc of child
rc = Ct : Nt

Example 2 (Nested-Loop Join)
sc = sc of outer child + sc of inner child

rC =G @1— NP - rc of inner child
>\

n,

sc: start-cost rc:run-cost tc = sc + rc: total-cost
N;: # of input tuples

13

e A A A i
AN A AN A DA A AN A A
Y s

efine Cardinality Estimates

* Cardinality Estimation

of Plans Hundreds/Thousands of

14

~ ASam pIing-Ba\sredﬁEst'rmatei/l

Estimate the selectivity p, of a select-join query q.
|Haas et al., J]. Comput. Syst. Sci. 1996]

R,
g h b, n samples
Partition (w/ replacement) =~
l l i 11 22
l \ | \ /' LB
Bi1 B St Bix | 4| By)
Bi; B»> » - 12"
B mmd e pq foacacs! = L=1pl
Bin, Ban, Sp: Biv, | ™| Bas = n
Rl RZ

The estimator p,is unbiased and strongly consistent!

15

N, i

/Tg/Cardinality Refinement Algorithm

Design the algorithm based on the previous estimator.

Problem Our Solution

1. The estimator needs random | 1. Take samples offline and store
[/Os at runtime to take samples. |them as tables in the database.

2. Query plans usually contain | 2. Estimate multiple operators in a
more than one operators. single run, by reusing partial results.

3. The estimator only works for | 3. Rely on PostgreSQL'’s cost
select/join operators. models for aggregates.

Future work: Add estimators for
aggregates ([Charikar PODS 00]).

16

- The Cardinality Rmnﬁé\lgema

q1 = Ry ™ R,
Plan for g: g, = R{ XM R, X R,

|

R;, R, R3 are samples (as tables) of Ry, R,, R; Reuse

For agg, use PostgreSQL’s estimates based on
the refined input estimates from q,.

17

“Experimental Settings

PostgreSQL 9.0.4, Linux 2.6.18

TPC-H 1GB and 10GB databases

e Both uniform and skewed data distribution
Two different hardware configurations

e PC1: 1-core 2.27 GHz Intel CPU, 2GB memory
e PC2: 8-core 2.40 GHz Intel CPU, 16GB memory

18

B

““Calibrating Cost Units

PC1: Cost Unit Calibrated Calibrated Default
(ms) (normalized to c,)
c,: seq_page_cost 5.53€-2 1.0 1.0
c,: rand_page_cost 6.50€e-2 1.2 4.0
c,: cpu_tuple_cost 1.67e-4 <] 0.003 |00 >
c;: cpu_index_tuple_cost | 3.41e-5 0.0006 0.005
c,: cpu_operator_cost 1.12e-4 0.002 0.0025
PC2: Cost Unit Calibrated Calibrated Default
(ms) (normalized to c,)
c,: seq_page_cost 5.03€e-2 1.0 1.0
c,: rand_page_cost 4.89e-1 9.7 4.0
c,: cpu_tuple_cost 1.41€-4 0.0028 0.01
c;: cpu_index_tuple_cost | 3.34e-5 0.00066 0.005
c,: Cpu_operator_cost 7.10€-5 0.0014 0.0025

3

rediction Precision
Metric of precision b S
V] Tact

e Mean Relative Error (MRE) * i=1

Dynamic database workloads
e Unseen queries frequently occur.

Compare with existing approaches
e Naive scaling
e More complex machine learning approaches

20

S—

i e
*“Existing Machine-Learning Methods
The idea

e Represent a query as a feature vector
e Train a regression model

SVM [Akdere ICDE’12]
REP trees [Xiong SoCC’11]

KCCA [Ganapathi ICDFE’09]
e Did not compare since [Akdere ICDE’12] is better.

Precision on TPC-H 1GB'DB st

Uniform data:

4
3.5
3 o
25
2 5
15 F
1 o
05 F
0

xx=x1 PCH1
e PC2

Relative Error

ST |

T

| T R R T T T AT AR TR
Il g g g g g s
e e e e e e]

Egﬂ'j Esym ERep Naive
Approach Scaling

E,: c’s (calibrated) + n’s (true cardinalities)
E_: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: C’s (calibrated) + n’s (cardinalities by sampling)

22

~ Precision on

Skewed data:

Relative Error

4
3.5
3
2.5
2
1.5
1
0.5
0

=z PC1
e PC2

T T T]

Approach

E.: c’s (calibrated) + n’s (true cardinalities)
E_: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: C’s (calibrated) + n’s (cardinalities by sampling)

23

 Precision on TPC-H 10GB DB

Uniform data (similar results on skewed data):
4

3.5
3 »

25 F
2 F

1.5 F
1 »

0.5 F m
0

E

XXX PCA1
EmEm PC2

Relative Error

FTETATE S e S e |
O S S e
D T T T T

¢ Esym Erep E,

pproach

E.: c’s (calibrated) + n’s (true cardinalities)
E_: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: C’s (calibrated) + n’s (cardinalities by sampling)

24

“Overhead of Sampling

i ; tsanz lin
Additional overhead is measured as =

tquery

More samples mean higher additional overhead

For close-to-ideal prediction on 1GB DB

 30% samples (0.3GB) => 20% additional overhead

For close-to-ideal prediction on 10GB DB
* 5% samples (0.5GB) => 4% additional overhead

25

i : \\ /
“Conclusion

We presented a systematic framework to calibrate
the cost units and refine the cardinality estimates
used by current cost models.

We showed that current cost models are much
more effective in query execution time prediction
after proper calibration, and the additional
overhead is affordable in practice.

26

