
Wentao Wu1, Yun Chi2, Shenghuo Zhu2, Junichi Tatemura2, 
Hakan Hacigumus2, Jeffrey Naughton1

1Dept of Computer Sciences, University of Wisconsin-Madison
2NEC Laboratories America

1



Motivation

 Database as a service (DaaS)

User

Database

Service Provider

Service Level 
Agreement (SLA)

How to predict the execution time of a query before it runs?
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Applications
 Admission control

 Run this query or not?

 Query scheduling
 If we decide to run it, when?

 Progress monitoring
 How long should we wait if something is wrong?

 System sizing
 How much hardware does it require to run in the given time?
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Use Optimizers’ Cost Estimates? 
 Query optimizers have cost estimates for queries.

 Can we just use them?

 Previous work ([Ganapathi ICDE’09], [Akdere ICDE’12])
 Query optimizers’ cost estimates are unusable.

Fig. 5 of [Akdere ICDE’12]

Naïve Scaling: 
Predict the execution time T 
by scaling the cost estimate C,
i.e., T = a · C

avg err: 120%
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Why Does Naïve 
Scaling Fail?
 PostgreSQL’s cost model

 The assumptions required (for naïve scaling to work)

 The ratios between the c’s are correct.

 The n’s are correct.

𝐶 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜

Cost Unit Value

cs: seq_page_cost 1.0

cr: rand_page_cost 4.0

ct: cpu_tuple_cost 0.01

ci: cpu_index_tuple_cost 0.005

co: cpu_operator_cost 0.0025

𝑇 = 𝑎 ⋅ 𝐶 = 𝑐𝑠
′ ⋅ (𝑛𝑠 + 𝑛𝑟

𝑐𝑟
𝑐𝑠
+ 𝑛𝑡

𝑐𝑡
𝑐𝑠
+ 𝑛𝑖

𝑐𝑖
𝑐𝑠
+ 𝑛𝑜

𝑐𝑜
𝑐𝑠
)

Naïve Scaling
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𝑐𝑠
′ = 𝑎 ⋅ 𝑐𝑠 = 𝑎 ⋅ 1.0 = 𝑎

Should be 
correct!



Beat Naïve Scaling 
 PostgreSQL’s cost model

 To beat naïve scaling

 Use machine learning ([Ganapathi ICDE’09], [Akdere
ICDE’12])

 Calibrate the c’s and the n’s! (our work)
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Unfortunately, both the c’s and the n’s 
could be incorrect!

𝐶 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜



What if We Use Calibrated c’s and n’s?

 Cost models become much more effective.

Prediction by Naïve Scaling:
𝑇𝑝𝑟𝑒𝑑 = 𝑎 ⋅ (∑𝑐 ⋅ 𝑛)

Prediction by Calibration:
𝑇𝑝𝑟𝑒𝑑 = ∑𝑐′ ⋅ 𝑛′
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Main Idea
 How can we calibrate the c’s and the n’s?

 Calibrate the c’s: use profiling queries.

 Calibrate the n’s: refine cardinality estimates.
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Contribution of This Work

 We proposed a systematic framework to calibrate the 
cost models used by the query optimizer.

 We showed that the calibrated cost model is much 
better than naïvely scaling the cost estimates.

 We further showed that the calibrated cost model is  
also much better than the state-of-the-art machine-
learning based approaches.
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Calibrating The c’s

 Basic idea (an example)

 Want to know the true 𝑐𝑡 and 𝑐𝑜

 General case

 k cost units (i.e., k unknowns) => k queries (i.e., k equations)

 k = 5 in the case of PostgreSQL

q1: select * from R
q2: select count(*) from R

R in memory 𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡
𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡 + 𝑐𝑜 ∙ 𝑛𝑜

Cost Unit

cs: seq_page_cost

cr: rand_page_cost

ct: cpu_tuple_cost

ci: cpu_index_tuple_cost

co: cpu_operator_cost
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How to Pick Profiling Queries?

 Completeness

 Each c should be covered by at least one query.

 Conciseness

 The set of queries is incomplete if any query is removed.

 Simplicity

 Each query should be as simple as possible.
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Profiling Queries For PostgreSQL

q1: select * from R
R in memory

𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡1

q2: select count(*) from R
R in memory

𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡2 + 𝑐𝑜 ∙ 𝑛𝑜2

q3: select * from R where R.A 
< a (R.A with an Index)

R in memory
𝑡3 = 𝑐𝑡 ∙ 𝑛𝑡3 + 𝑐𝑖 ∙ 𝑛𝑖3 + 𝑐𝑜 ∙ 𝑛𝑜3

q4: select * from R
R on disk

𝑡4 = 𝑐𝑠 ∙ 𝑛𝑠4 + 𝑐𝑡 ∙ 𝑛𝑡4

q5: select * from R where R.B 
< b (R.B unclustered Index)

R on disk 𝑡5
= 𝑐𝑠 ∙ 𝑛𝑠5 + 𝑐𝑟 ∙ 𝑛𝑟5 + 𝑐𝑡 ∙ 𝑛𝑡5
+ 𝑐𝑖 ∙ 𝑛𝑖5 + 𝑐𝑜 ∙ 𝑛𝑜5
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Isolate the unknowns and solve them one per equation!



Calibrating The n’s

 The n’s are functions of N’s (i.e., input cardinalities).

 Calibrating the n’s => Calibrating the N’s

Example 2 (Nested-Loop Join)
𝑠𝑐 = 𝑠𝑐 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑐ℎ𝑖𝑙𝑑 + 𝑠𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡
𝑜 ⋅ 𝑁𝑡

𝑖 + 𝑁𝑡
𝑜 ⋅ 𝑟𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

𝑠𝑐: start-cost     𝑟𝑐: run-cost    𝑡𝑐 = 𝑠𝑐 + 𝑟𝑐: total-cost    
𝑁𝑡: # of input tuples  

Example 1 (In-Memory Sort)
𝑠𝑐 = [2 ∙ 𝑁𝑡 ∙ log𝑁𝑡] ∙ 𝑐𝑜 + 𝑡𝑐 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡

no

nt
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Refine Cardinality Estimates

 Cardinality Estimation

Traditional Role 
(Query Optimization)

Our Case (Execution 
Time Prediction)
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# of Plans Hundreds/Thousands of 1

Time per Plan Must be very short Can be a bit longer

Precision Important Critical

Approach Histograms (dominant) Sampling (one option)



A Sampling-Based Estimator
 Estimate the selectivity 𝜌𝑞 of a select-join query 𝑞.

[Haas et al., J. Comput. Syst. Sci. 1996]
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𝐵11

𝐵12

…

𝐵1𝑁1

𝐵21

𝐵22

…

𝐵2𝑁2

q : R1 ⋈ R2

Partition

R1 R2

The estimator ො𝜌𝑞is unbiased and strongly consistent! 

𝐵11 ⋈ 𝐵22s1:

𝐵1𝑁1 ⋈ 𝐵21sn:

………..

n samples
(w/ replacement)

ො𝜌𝑞 =
1

𝑛
෍

𝑖=1

𝑛

𝜌𝑖………..

𝜌1

𝜌𝑛

𝜌1 =
|𝐵11 ⋈ 𝐵22|

𝐵11 × |𝐵22|



The Cardinality Refinement Algorithm

 Design the algorithm based on the previous estimator.

Problem Our Solution
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1. The estimator needs random
I/Os at runtime to take samples.

1. Take samples offline and store
them as tables in the database.

2. Query plans usually contain 
more than one operators.

2. Estimate multiple operators in a 
single run, by reusing partial results.

3. The estimator only works for 
select/join operators.

3. Rely on PostgreSQL’s cost 
models for aggregates.

Future work: Add estimators for 
aggregates ([Charikar PODS’00]).



The Cardinality Refinement Algorithm (Example)

𝑅2

𝑅3

𝑅1

⋈

⋈

agg

Plan for q:

For agg, use PostgreSQL’s estimates based on 
the refined input estimates from q2.

Run ෞ𝜌𝑞1 =
|𝑅1

𝑠 ⋈ 𝑅2
𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠|

ෞ𝜌𝑞2 =
|𝑅1

𝑠 ⋈ 𝑅2
𝑠 ⋈ 𝑅3

𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠| × |𝑅3
𝑠|

Reuse 
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𝑅2
𝑠

𝑅3
𝑠

𝑅1
𝑠

⋈

⋈

agg

Rewrite

𝑅1
𝑠, 𝑅2

𝑠, 𝑅3
𝑠 are samples (as tables) of 𝑅1, 𝑅2, 𝑅3

q1

q2

𝑞1 = 𝑅1 ⋈ 𝑅2
𝑞2 = 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3



Experimental Settings

 PostgreSQL 9.0.4, Linux 2.6.18

 TPC-H 1GB and 10GB databases

 Both uniform and skewed data distribution

 Two different hardware configurations

 PC1: 1-core 2.27 GHz Intel CPU, 2GB memory

 PC2: 8-core 2.40 GHz Intel CPU, 16GB memory
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Cost Unit Calibrated
(ms)

Calibrated 
(normalized to cs) 

Default

cs: seq_page_cost 5.03e-2 1.0 1.0

cr: rand_page_cost 4.89e-1 9.7 4.0

ct: cpu_tuple_cost 1.41e-4 0.0028 0.01

ci: cpu_index_tuple_cost 3.34e-5 0.00066 0.005

co: cpu_operator_cost 7.10e-5 0.0014 0.0025

Cost Unit Calibrated
(ms)

Calibrated 
(normalized to cs) 

Default

cs: seq_page_cost 5.53e-2 1.0 1.0

cr: rand_page_cost 6.50e-2 1.2 4.0

ct: cpu_tuple_cost 1.67e-4 0.003 0.01

ci: cpu_index_tuple_cost 3.41e-5 0.0006 0.005

co: cpu_operator_cost 1.12e-4 0.002 0.0025

Calibrating Cost Units
PC1:

PC2:

19



Prediction Precision
 Metric of precision

 Mean Relative Error (MRE)

 Dynamic database workloads

 Unseen queries frequently occur.

 Compare with existing approaches

 Naive scaling

 More complex machine learning approaches
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Existing Machine-Learning Methods

 The idea
 Represent a query as a feature vector

 Train a regression model

 SVM [Akdere ICDE’12]

 REP trees [Xiong SoCC’11]

 KCCA [Ganapathi ICDE’09]
 Did not compare since [Akdere ICDE’12] is better.
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Precision on TPC-H 1GB DB
Uniform data:
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Et: c’s (calibrated) + n’s (true cardinalities)
Eo: c’s (calibrated) + n’s (cardinalities by optimizer)
Es: c’s (calibrated) + n’s (cardinalities by sampling)

Naïve 
Scaling 



Precision on TPC-H 1GB DB (Cont.)
Skewed data:
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Et: c’s (calibrated) + n’s (true cardinalities)
Eo: c’s (calibrated) + n’s (cardinalities by optimizer)
Es: c’s (calibrated) + n’s (cardinalities by sampling)



Precision on TPC-H 10GB DB
Uniform data (similar results on skewed data):
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Et: c’s (calibrated) + n’s (true cardinalities)
Eo: c’s (calibrated) + n’s (cardinalities by optimizer)
Es: c’s (calibrated) + n’s (cardinalities by sampling)



Overhead of Sampling

 Additional overhead is measured as

 More samples mean higher additional overhead

 For close-to-ideal prediction on 1GB DB

 30% samples (0.3GB) => 20% additional overhead

 For close-to-ideal prediction on 10GB DB

 5% samples (0.5GB) => 4% additional overhead
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𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑡𝑞𝑢𝑒𝑟𝑦



Conclusion

 We presented a systematic framework to calibrate
the cost units and refine the cardinality estimates 
used by current cost models.

 We showed that current cost models are much 
more effective in query execution time prediction 
after proper calibration, and the additional 
overhead is affordable in practice.
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