
Wentao Wu1, Yun Chi2, Shenghuo Zhu2, Junichi Tatemura2,
Hakan Hacigumus2, Jeffrey Naughton1

1Dept of Computer Sciences, University of Wisconsin-Madison
2NEC Laboratories America

1

Motivation

 Database as a service (DaaS)

User

Database

Service Provider

Service Level
Agreement (SLA)

How to predict the execution time of a query before it runs?

2

Applications
 Admission control

 Run this query or not?

 Query scheduling
 If we decide to run it, when?

 Progress monitoring
 How long should we wait if something is wrong?

 System sizing
 How much hardware does it require to run in the given time?

3

Use Optimizers’ Cost Estimates?
 Query optimizers have cost estimates for queries.

 Can we just use them?

 Previous work ([Ganapathi ICDE’09], [Akdere ICDE’12])
 Query optimizers’ cost estimates are unusable.

Fig. 5 of [Akdere ICDE’12]

Naïve Scaling:
Predict the execution time T
by scaling the cost estimate C,
i.e., T = a · C

avg err: 120%

4

Why Does Naïve
Scaling Fail?
 PostgreSQL’s cost model

 The assumptions required (for naïve scaling to work)

 The ratios between the c’s are correct.

 The n’s are correct.

𝐶 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜

Cost Unit Value

cs: seq_page_cost 1.0

cr: rand_page_cost 4.0

ct: cpu_tuple_cost 0.01

ci: cpu_index_tuple_cost 0.005

co: cpu_operator_cost 0.0025

𝑇 = 𝑎 ⋅ 𝐶 = 𝑐𝑠
′ ⋅ (𝑛𝑠 + 𝑛𝑟

𝑐𝑟
𝑐𝑠
+ 𝑛𝑡

𝑐𝑡
𝑐𝑠
+ 𝑛𝑖

𝑐𝑖
𝑐𝑠
+ 𝑛𝑜

𝑐𝑜
𝑐𝑠
)

Naïve Scaling

5

𝑐𝑠
′ = 𝑎 ⋅ 𝑐𝑠 = 𝑎 ⋅ 1.0 = 𝑎

Should be
correct!

Beat Naïve Scaling
 PostgreSQL’s cost model

 To beat naïve scaling

 Use machine learning ([Ganapathi ICDE’09], [Akdere
ICDE’12])

 Calibrate the c’s and the n’s! (our work)

6

Unfortunately, both the c’s and the n’s
could be incorrect!

𝐶 = 𝑛𝑠𝑐𝑠 + 𝑛𝑟𝑐𝑟 + 𝑛𝑡𝑐𝑡 + 𝑛𝑖𝑐𝑖 + 𝑛𝑜𝑐𝑜

What if We Use Calibrated c’s and n’s?

 Cost models become much more effective.

Prediction by Naïve Scaling:
𝑇𝑝𝑟𝑒𝑑 = 𝑎 ⋅ (∑𝑐 ⋅ 𝑛)

Prediction by Calibration:
𝑇𝑝𝑟𝑒𝑑 = ∑𝑐′ ⋅ 𝑛′

7

Main Idea
 How can we calibrate the c’s and the n’s?

 Calibrate the c’s: use profiling queries.

 Calibrate the n’s: refine cardinality estimates.

8

Contribution of This Work

 We proposed a systematic framework to calibrate the
cost models used by the query optimizer.

 We showed that the calibrated cost model is much
better than naïvely scaling the cost estimates.

 We further showed that the calibrated cost model is
also much better than the state-of-the-art machine-
learning based approaches.

9

Calibrating The c’s

 Basic idea (an example)

 Want to know the true 𝑐𝑡 and 𝑐𝑜

 General case

 k cost units (i.e., k unknowns) => k queries (i.e., k equations)

 k = 5 in the case of PostgreSQL

q1: select * from R
q2: select count(*) from R

R in memory 𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡
𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡 + 𝑐𝑜 ∙ 𝑛𝑜

Cost Unit

cs: seq_page_cost

cr: rand_page_cost

ct: cpu_tuple_cost

ci: cpu_index_tuple_cost

co: cpu_operator_cost

10

How to Pick Profiling Queries?

 Completeness

 Each c should be covered by at least one query.

 Conciseness

 The set of queries is incomplete if any query is removed.

 Simplicity

 Each query should be as simple as possible.

11

Profiling Queries For PostgreSQL

q1: select * from R
R in memory

𝑡1 = 𝑐𝑡 ∙ 𝑛𝑡1

q2: select count(*) from R
R in memory

𝑡2 = 𝑐𝑡 ∙ 𝑛𝑡2 + 𝑐𝑜 ∙ 𝑛𝑜2

q3: select * from R where R.A
< a (R.A with an Index)

R in memory
𝑡3 = 𝑐𝑡 ∙ 𝑛𝑡3 + 𝑐𝑖 ∙ 𝑛𝑖3 + 𝑐𝑜 ∙ 𝑛𝑜3

q4: select * from R
R on disk

𝑡4 = 𝑐𝑠 ∙ 𝑛𝑠4 + 𝑐𝑡 ∙ 𝑛𝑡4

q5: select * from R where R.B
< b (R.B unclustered Index)

R on disk 𝑡5
= 𝑐𝑠 ∙ 𝑛𝑠5 + 𝑐𝑟 ∙ 𝑛𝑟5 + 𝑐𝑡 ∙ 𝑛𝑡5
+ 𝑐𝑖 ∙ 𝑛𝑖5 + 𝑐𝑜 ∙ 𝑛𝑜5

12

Isolate the unknowns and solve them one per equation!

Calibrating The n’s

 The n’s are functions of N’s (i.e., input cardinalities).

 Calibrating the n’s => Calibrating the N’s

Example 2 (Nested-Loop Join)
𝑠𝑐 = 𝑠𝑐 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑐ℎ𝑖𝑙𝑑 + 𝑠𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡
𝑜 ⋅ 𝑁𝑡

𝑖 + 𝑁𝑡
𝑜 ⋅ 𝑟𝑐 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑐ℎ𝑖𝑙𝑑

𝑠𝑐: start-cost 𝑟𝑐: run-cost 𝑡𝑐 = 𝑠𝑐 + 𝑟𝑐: total-cost
𝑁𝑡: # of input tuples

Example 1 (In-Memory Sort)
𝑠𝑐 = [2 ∙ 𝑁𝑡 ∙ log𝑁𝑡] ∙ 𝑐𝑜 + 𝑡𝑐 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑

𝑟𝑐 = 𝑐𝑡 ⋅ 𝑁𝑡

no

nt

13

Refine Cardinality Estimates

 Cardinality Estimation

Traditional Role
(Query Optimization)

Our Case (Execution
Time Prediction)

14

of Plans Hundreds/Thousands of 1

Time per Plan Must be very short Can be a bit longer

Precision Important Critical

Approach Histograms (dominant) Sampling (one option)

A Sampling-Based Estimator
 Estimate the selectivity 𝜌𝑞 of a select-join query 𝑞.

[Haas et al., J. Comput. Syst. Sci. 1996]

15

𝐵11

𝐵12

…

𝐵1𝑁1

𝐵21

𝐵22

…

𝐵2𝑁2

q : R1 ⋈ R2

Partition

R1 R2

The estimator ො𝜌𝑞is unbiased and strongly consistent!

𝐵11 ⋈ 𝐵22s1:

𝐵1𝑁1 ⋈ 𝐵21sn:

………..

n samples
(w/ replacement)

ො𝜌𝑞 =
1

𝑛

𝑖=1

𝑛

𝜌𝑖………..

𝜌1

𝜌𝑛

𝜌1 =
|𝐵11 ⋈ 𝐵22|

𝐵11 × |𝐵22|

The Cardinality Refinement Algorithm

 Design the algorithm based on the previous estimator.

Problem Our Solution

16

1. The estimator needs random
I/Os at runtime to take samples.

1. Take samples offline and store
them as tables in the database.

2. Query plans usually contain
more than one operators.

2. Estimate multiple operators in a
single run, by reusing partial results.

3. The estimator only works for
select/join operators.

3. Rely on PostgreSQL’s cost
models for aggregates.

Future work: Add estimators for
aggregates ([Charikar PODS’00]).

The Cardinality Refinement Algorithm (Example)

𝑅2

𝑅3

𝑅1

⋈

⋈

agg

Plan for q:

For agg, use PostgreSQL’s estimates based on
the refined input estimates from q2.

Run ෞ𝜌𝑞1 =
|𝑅1

𝑠 ⋈ 𝑅2
𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠|

ෞ𝜌𝑞2 =
|𝑅1

𝑠 ⋈ 𝑅2
𝑠 ⋈ 𝑅3

𝑠|

|𝑅1
𝑠| × |𝑅2

𝑠| × |𝑅3
𝑠|

Reuse

17

𝑅2
𝑠

𝑅3
𝑠

𝑅1
𝑠

⋈

⋈

agg

Rewrite

𝑅1
𝑠, 𝑅2

𝑠, 𝑅3
𝑠 are samples (as tables) of 𝑅1, 𝑅2, 𝑅3

q1

q2

𝑞1 = 𝑅1 ⋈ 𝑅2
𝑞2 = 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3

Experimental Settings

 PostgreSQL 9.0.4, Linux 2.6.18

 TPC-H 1GB and 10GB databases

 Both uniform and skewed data distribution

 Two different hardware configurations

 PC1: 1-core 2.27 GHz Intel CPU, 2GB memory

 PC2: 8-core 2.40 GHz Intel CPU, 16GB memory

18

Cost Unit Calibrated
(ms)

Calibrated
(normalized to cs)

Default

cs: seq_page_cost 5.03e-2 1.0 1.0

cr: rand_page_cost 4.89e-1 9.7 4.0

ct: cpu_tuple_cost 1.41e-4 0.0028 0.01

ci: cpu_index_tuple_cost 3.34e-5 0.00066 0.005

co: cpu_operator_cost 7.10e-5 0.0014 0.0025

Cost Unit Calibrated
(ms)

Calibrated
(normalized to cs)

Default

cs: seq_page_cost 5.53e-2 1.0 1.0

cr: rand_page_cost 6.50e-2 1.2 4.0

ct: cpu_tuple_cost 1.67e-4 0.003 0.01

ci: cpu_index_tuple_cost 3.41e-5 0.0006 0.005

co: cpu_operator_cost 1.12e-4 0.002 0.0025

Calibrating Cost Units
PC1:

PC2:

19

Prediction Precision
 Metric of precision

 Mean Relative Error (MRE)

 Dynamic database workloads

 Unseen queries frequently occur.

 Compare with existing approaches

 Naive scaling

 More complex machine learning approaches

20

Existing Machine-Learning Methods

 The idea
 Represent a query as a feature vector

 Train a regression model

 SVM [Akdere ICDE’12]

 REP trees [Xiong SoCC’11]

 KCCA [Ganapathi ICDE’09]
 Did not compare since [Akdere ICDE’12] is better.

21

Precision on TPC-H 1GB DB
Uniform data:

22

Et: c’s (calibrated) + n’s (true cardinalities)
Eo: c’s (calibrated) + n’s (cardinalities by optimizer)
Es: c’s (calibrated) + n’s (cardinalities by sampling)

Naïve
Scaling

Precision on TPC-H 1GB DB (Cont.)
Skewed data:

23

Et: c’s (calibrated) + n’s (true cardinalities)
Eo: c’s (calibrated) + n’s (cardinalities by optimizer)
Es: c’s (calibrated) + n’s (cardinalities by sampling)

Precision on TPC-H 10GB DB
Uniform data (similar results on skewed data):

24

Et: c’s (calibrated) + n’s (true cardinalities)
Eo: c’s (calibrated) + n’s (cardinalities by optimizer)
Es: c’s (calibrated) + n’s (cardinalities by sampling)

Overhead of Sampling

 Additional overhead is measured as

 More samples mean higher additional overhead

 For close-to-ideal prediction on 1GB DB

 30% samples (0.3GB) => 20% additional overhead

 For close-to-ideal prediction on 10GB DB

 5% samples (0.5GB) => 4% additional overhead

25

𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑡𝑞𝑢𝑒𝑟𝑦

Conclusion

 We presented a systematic framework to calibrate
the cost units and refine the cardinality estimates
used by current cost models.

 We showed that current cost models are much
more effective in query execution time prediction
after proper calibration, and the additional
overhead is affordable in practice.

26

