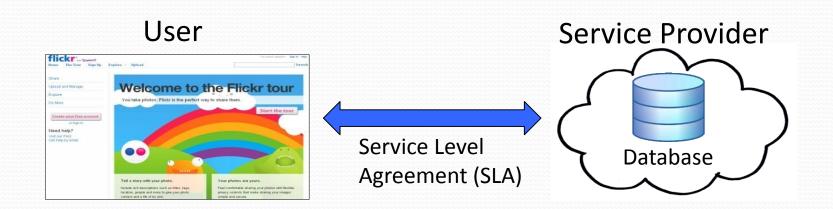
Predicting Query Execution Time: Are Optimizer Cost Models Really Unusable?

Wentao Wu¹, Yun Chi², Shenghuo Zhu², Junichi Tatemura², Hakan Hacigumus², Jeffrey Naughton¹

¹Dept of Computer Sciences, University of Wisconsin-Madison
²NEC Laboratories America

Motivation

Database as a service (DaaS)



How to predict the execution time of a query before it runs?

Applications

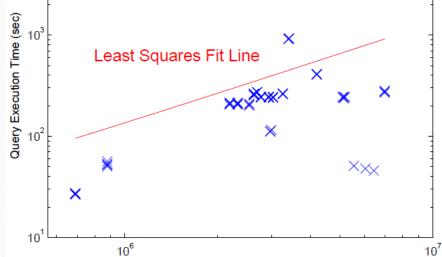
- Admission control
 - Run this query or not?
- Query scheduling
 - If we decide to run it, when?
- Progress monitoring
 - How long should we wait if something is wrong?
- System sizing
 - How much hardware does it require to run in the given time?

Use Optimizers' Cost Estimates?

- Query optimizers have cost estimates for queries.
 - Can we just use them?
- Previous work ([Ganapathi ICDE'09], [Akdere ICDE'12])
 - Query optimizers' cost estimates are *unusable*.

Naïve Scaling:

Predict the execution time T by scaling the cost estimate C, i.e., $T = a \cdot C$



Optimizer Cost Estimate

avg err: 120%

Fig. 5 of [Akdere ICDE'12]

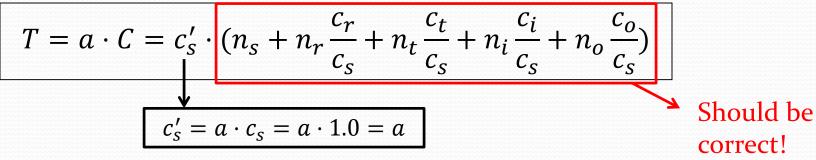
XXX

Why Does Naïve Scaling Fail?

PostgreSQL's cost model

$$C = n_s c_s + n_r c_r + n_t c_t + n_i c_i + n_o c_o$$
Naïve Scaling

Cost Unit	Value	
c_s : seq_page_cost	1.0	
c_r : rand_page_cost	4.0	
c_t : cpu_tuple_cost	0.01	
c_i : cpu_index_tuple_cost	0.005	
c _o : cpu_operator_cost	0.0025	



- The assumptions required (for naïve scaling to work)
 - The *ratios* between the *c*'s are correct.
 - The *n*'s are correct.

Beat Naïve Scaling

PostgreSQL's cost model

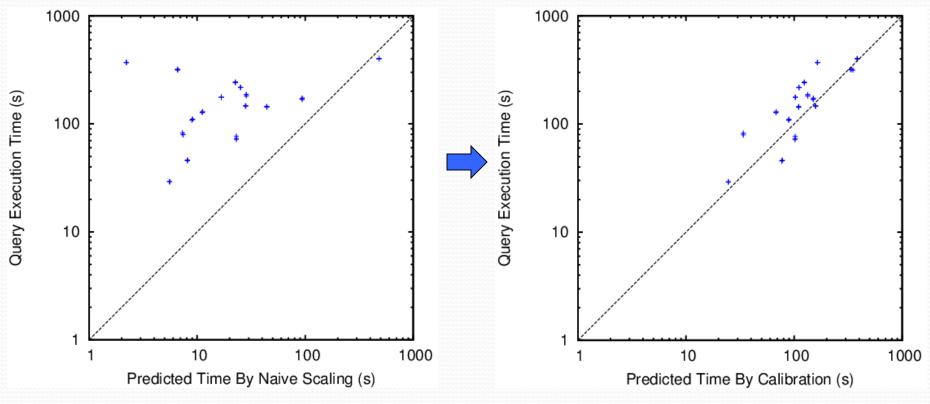
$$C = n_s c_s + n_r c_r + n_t c_t + n_i c_i + n_o c_o$$

Unfortunately, both the c's and the n's could be incorrect!

- To beat naïve scaling
 - Use machine learning ([Ganapathi ICDE'09], [Akdere ICDE'12])
 - *Calibrate* the *c*'s and the *n*'s! (our work)

What if We Use Calibrated c's and n's?

Cost models become much more effective.



Prediction by Naïve Scaling:

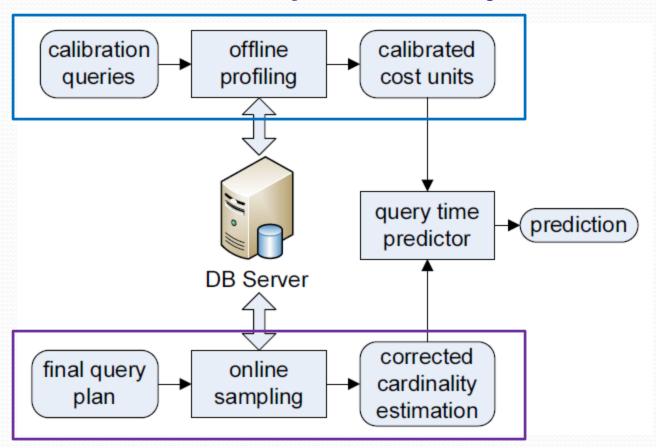
$$T_{pred} = a \cdot (\sum c \cdot n)$$

Prediction by Calibration:

$$T_{pred} = \sum c' \cdot n'$$

Main Idea

- How can we calibrate the *c*'s and the *n*'s?
 - Calibrate the *c*'s: *use profiling queries*.
 - Calibrate the n's: refine cardinality estimates.



Contribution of This Work

- We proposed a systematic framework to calibrate the cost models used by the query optimizer.
- We showed that the calibrated cost model is much better than naïvely scaling the cost estimates.
- We further showed that the calibrated cost model is also much better than the state-of-the-art machinelearning based approaches.

Calibrating The c's

- Basic idea (an example)
 - Want to know the true c_t and c_o

q₁: select * from R

q₂: select count(*) from R

R in memory

Cost Unit

c_s: seq_page_cost

*c*_r: rand_page_cost

*c*_t: cpu_tuple_cost

*c*_i: cpu_index_tuple_cost

*c*_o: cpu_operator_cost

$$t_1 = c_t \cdot n_t$$

$$t_2 = c_t \cdot n_t + c_o \cdot n_o$$

- General case
 - k cost units (i.e., k unknowns) => k queries (i.e., k equations)
 - k = 5 in the case of PostgreSQL

How to Pick Profiling Queries?

- Completeness
 - Each *c* should be covered by at least one query.
- Conciseness
 - The set of queries is *incomplete* if any query is removed.
- Simplicity
 - Each query should be as *simple* as possible.

Profiling Queries For PostgreSQL

Isolate the unknowns and solve them *one per equation*!

q₁: select * from R

R in memory

 $t_1 = c_t n_{t1}$

q₂: select count(*) from R

R in memory

 $t_2 = c_t \cdot n_{t2} + c_o \cdot n_{o2}$

q₃: select * from R where R.A
< a (R.A with an Index)</pre>

R in memory

 $t_3 = c_t \cdot n_{t3} + c_i \cdot n_{i3} + c_o \cdot n_{o3}$

q₄: select * from R

R on disk

 $t_4 = (c_s) \cdot n_{s4} + c_t \cdot n_{t4}$

q₅: select * from R where R.B
< b (R.B unclustered Index)</pre>

R on disk

 $t_{5} = c_{s} \cdot n_{s5} + c_{r} \cdot n_{r5} + c_{t} \cdot n_{t5} + c_{i} \cdot n_{i5} + c_{o} \cdot n_{o5}$

Calibrating The n's

- The *n*'s are *functions* of *N*'s (i.e., input cardinalities).
 - Calibrating the *n*'s => Calibrating the *N*'s

```
Example 1 (In-Memory Sort)
sc = \underbrace{(2 \cdot N_t \cdot \log N_t) \cdot c_o + tc \text{ of child}}_{rc = c_t \cdot N_t}
```

```
Example 2 (Nested-Loop Join) sc = sc \ of \ outer \ child + sc \ of \ inner \ child rc = c_t \ (N_t^o \cdot N_t^l) + N_t^o \cdot rc \ of \ inner \ child n_t
```

sc: start-cost rc: run-cost tc = sc + rc: total-cost N_t : # of input tuples

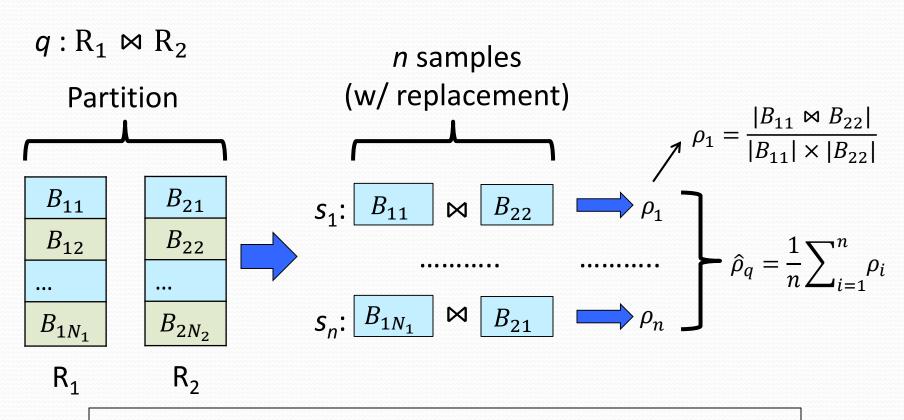
Refine Cardinality Estimates

Cardinality Estimation

	Traditional Role (Query Optimization)	Our Case (Execution Time Prediction)
# of Plans	Hundreds/Thousands of	1
Time per Plan	Must be very short	Can be a bit <i>longer</i>
Precision	Important	Critical
Approach	Histograms (dominant)	Sampling (one option)

A Sampling-Based Estimator

• Estimate the *selectivity* ρ_q of a select-join query q. [Haas et al., J. Comput. Syst. Sci. 1996]



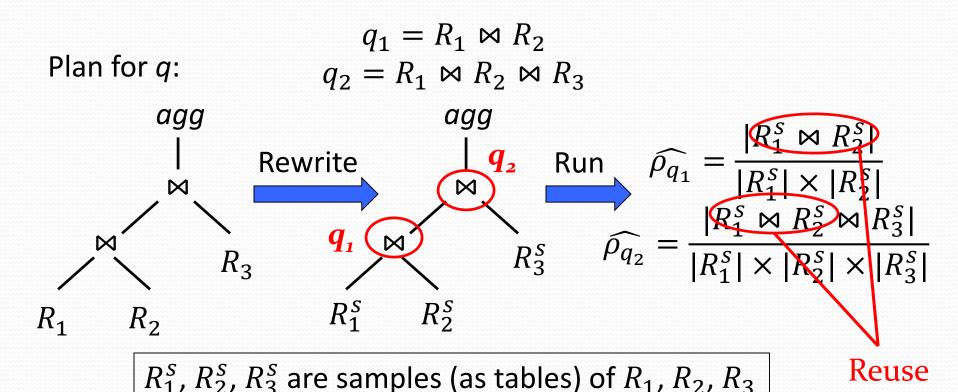
The estimator $\hat{\rho}_a$ is *unbiased* and *strongly consistent*!

The Cardinality Refinement Algorithm

Design the algorithm based on the previous estimator.

Problem	Our Solution
1. The estimator needs <i>random</i> I/Os at <i>runtime</i> to take samples.	1. Take samples <i>offline</i> and store them as tables in the database.
2. Query plans usually contain more than one operators.	2. Estimate multiple operators in a single run, by reusing partial results.
3. The estimator only works for <i>select/join</i> operators.	3. Rely on PostgreSQL's cost models for <i>aggregates</i> . Future work: Add estimators for
	aggregates ([Charikar PODS'00]).

The Cardinality Refinement Algorithm (Example)



For agg, use PostgreSQL's estimates based on the *refined* input estimates from q_2 .

Experimental Settings

- PostgreSQL 9.o.4, Linux 2.6.18
- TPC-H 1GB and 10GB databases
 - Both uniform and skewed data distribution
- Two different hardware configurations
 - PC1: 1-core 2.27 GHz Intel CPU, 2GB memory
 - PC2: 8-core 2.40 GHz Intel CPU, 16GB memory

Calibrating Cost Units

PC1:

Cost Unit	Calibrated (ms)	Calibrated (normalized to c_s)	Default
c_s : seq_page_cost	5.53e-2	1.0	1.0
c_r : rand_page_cost	6.50e-2	1.2	4.0
c_t : cpu_tuple_cost	1.67e-4 <	0.003	0.01
c_i : cpu_index_tuple_cost	3.41e-5	0.0006	0.005
c _o : cpu_operator_cost	1.12e-4	0.002	0.0025

PC2:

Cost Unit	Calibrated (ms)	Calibrated (normalized to c_s)	Default
c _s : seq_page_cost	5.03e-2	1.0	1.0
c_r : rand_page_cost	4.89e-1	9.7	4.0
c_t : cpu_tuple_cost	1.41e-4	0.0028	0.01
<i>c</i> _i : cpu_index_tuple_cost	3.34e-5	0.00066	0.005
c _o : cpu_operator_cost	7.10e-5	0.0014	0.0025

19

Prediction Precision

- Metric of precision
 - Mean Relative Error (MRE)

$$\frac{1}{M} \sum_{i=1}^{M} \frac{|T_i^{pred} - T_i^{act}|}{T_i^{act}}$$

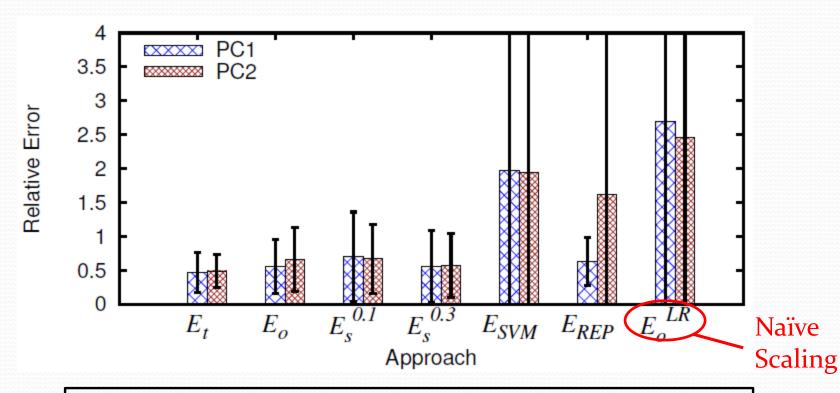
- Dynamic database workloads
 - Unseen queries frequently occur.
- Compare with existing approaches
 - Naive scaling
 - More complex machine learning approaches

Existing Machine-Learning Methods

- The idea
 - Represent a query as a feature vector
 - Train a regression model
- SVM [Akdere ICDE'12]
- REP trees [Xiong SoCC'11]
- KCCA [Ganapathi ICDE'09]
 - Did not compare since [Akdere ICDE'12] is better.

Precision on TPC-H 1GB DB

Uniform data:



 E_t : c's (calibrated) + n's (true cardinalities)

 E_o : c's (calibrated) + n's (cardinalities by optimizer)

 E_s : c's (calibrated) + n's (cardinalities by sampling)

Precision on TPC-H 1GB DB (Cont.)

Skewed data:



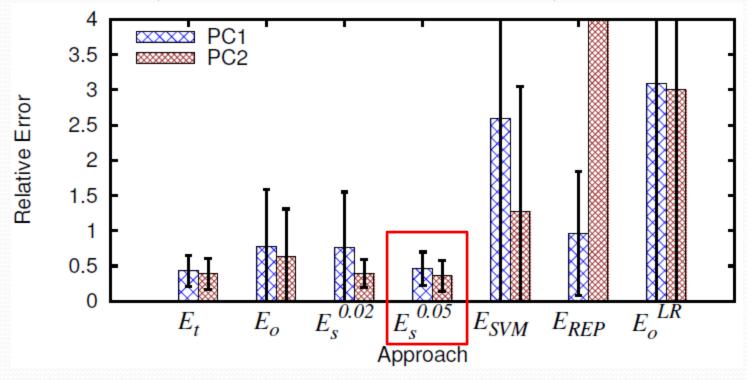
 E_t : c's (calibrated) + n's (true cardinalities)

 E_o : c's (calibrated) + n's (cardinalities by optimizer)

 E_s : c's (calibrated) + n's (cardinalities by sampling)

Precision on TPC-H 10GB DB

Uniform data (similar results on skewed data):



 E_t : c's (calibrated) + n's (true cardinalities)

 E_o : c's (calibrated) + n's (cardinalities by optimizer)

 E_s : c's (calibrated) + n's (cardinalities by sampling)

Overhead of Sampling

- Additional overhead is measured as $\frac{t_{sampling}}{t_{query}}$
- More samples mean higher additional overhead
- For close-to-ideal prediction on 1GB DB
 - 30% samples (0.3GB) => 20% additional overhead
- For close-to-ideal prediction on 10GB DB
 - 5% samples (0.5GB) => 4% additional overhead

Conclusion

- We presented a systematic framework to calibrate the cost units and refine the cardinality estimates used by current cost models.
- We showed that current cost models are much more *effective* in query execution time prediction after *proper calibration*, and the *additional* overhead is *affordable* in practice.