Budget-aware Index Tuning with Reinforcement Learning

- Wentao Wu (Microsoft Research)
- Chi Wang (Microsoft Research)
- Tarique Siddiqui (Microsoft Research)
- Junxiong Wang (Cornell University)
- Vivek Narasayya (Microsoft Research)
- Surajit Chaudhuri (Microsoft Research)
- Philip A. Bernstein (Microsoft Research)

Cost-based index Tuning

What-if Calls are Expensive

- A what-if call is as expensive as a regular query optimizer call
- What-if calls dominate index tuning time
 - TPC-DS, 99 queries, 20 recommended indexes

Existing Work on Reducing What-if Calls

Reduce the search space of configuration enumeration.

- The configuration enumeration problem is NP-hard.
- There are exponentially many possible configurations and thus what-if calls.
- A classic solution is a greedy search approach that reduces the search space to polynomial size, which remains huge for large/complex workloads.

Other technologies

- Restrict the what-if calls to configurations with certain properties, e.g., atomic configurations.
- Effective reuse of cached what-if calls, which requires further extension/support from the query optimizer.

Budget-aware Index Tuning

- End user of index tuning needs to constrain the tuning time instead of letting it run forever.
 - Microsoft's Database Tuning Advisor (DTA) allows user to specify the maximum tuning time.
- Under constrained tuning time, for large/complex workloads
 - The number of what-if calls will go beyond the tuning time allowed, despite the previous techniques on reducing the number of what-if calls.
- In this work, we study index tuning from a (new) constrained perspective, where
 - The number of what-if calls (e.g., based on the tuning time budget) is given as a constraint.
 - We focus on configuration enumeration under constrained number of what-if calls.

Budget-constrained Configuration Search

C/q	q_1	q_2	<i>q</i> ₃	
$\{I_1\}$	Х			
$\{I_2\}$		Х	Х	
{ <i>I</i> ₃ }		Х		
$\{I_1, I_2\}$	Х			
$\{I_1, I_3\}$			Х	
$\{I_2, I_3\}$			Х	
$\{I_1, I_2, I_3\}$				

• Budget allocation matrix

- Row configuration
- Column query
- Cell "X" if a what-if call is used
- For cells where what-if calls are not used, we use "derived cost."
 - $d(q, C) = \min_{S \subseteq C} \operatorname{cost}(q, C)$
- Problem formulation
 - Input: W, B (and other constraints Γ)
 - Output: Best configuration C*
 - Budget constraint: The number of cells marked "X" = B

Budget-aware Variants of Greedy Search

- Greedy search
 - (Base) Find the best singleton.
 - (Induction) Find the best configuration of size k + 1 by extending the best configuration of size k.
- Budget allocation in greedy search
 - First come first serve (FCFS)
 - Two-phase
 - Atomic configuration

C/q	q_1	q_2	<i>q</i> ₃	
$\{I_1\}$	_ <u>X</u>	<u> </u>	<u> </u>	
$\{I_2\}$	_ X	X	X	
$\{I_3\}$	<u> X </u>			
$\{I_1, I_2\}$				
$\{I_1, I_3\}$				
$\{I_2, I_3\}$				
$\{I_1, I_2, I_3\}$				
(b) FCFS				

Cla				
<i>L/q</i>	q_1	q_2	q_3	
$\{I_1\}$	X	X		
{ I ₂ }	X	‡ X		
{ <i>I</i> ₃ }	X			
$\{I_1, I_2\}$	х			
$\{I_1, I_3\}$				
$\{I_2, I_3\}$	↓ x			
$\{I_1, I_2, I_3\}$				
(c) Two-phase				

Budget-aware Configuration Search using Reinforcement Learning (RL)

An exploration/exploitation trade-off

- <u>Exploration</u>: New configurations that have not yet been visited.
- **Exploitation**: Expand known promising configurations to include more indexes.

Reinforcement learning

• A principled way of dealing with exploration/exploitation trade-off.

Configuration Search as Markov Decision Process (MDP) • *State s*: Configuration

- Action a: Index (to be included)
- *Transition probability p*: Deterministic
- Reward r: Percentage improvement of the workload W over the state/configuration C

$$\eta(W,C) = \left(1 - \frac{cost(W,C)}{cost(W,\emptyset)}\right) \times 100\%$$

Example MDP with $\{I_1, I_2, I_3\}$

Monte Carlo Tree Search

Action Selection Policy

UCT

• Pick the action a that maximizes the UCB (upper-confidence bound) score:

$$\underset{a}{\operatorname{argmax}} \left[\hat{Q}(s,a) + \lambda \cdot \sqrt{\frac{\ln N(s)}{n(s,a)}} \right]$$

- $\hat{Q}(s, a)$ is the estimated action-value function.
- N(s) is the number of times that s is visited.
- n(s, a) is the number of times that the action a is taken.
- ϵ -greedy
 - Pick the action *a* with respect to the probability: $Pr(a|s) = \frac{\hat{Q}(s,a)}{\sum_{b \in \mathcal{A}(s)} \hat{Q}(s,b)}$

Action Selection Policy (Cont.)

- Address *sparsity* in the estimated action-value function $\hat{Q}(s, a)$.
 - Choose a "prior distribution" for $\hat{Q}(s, a)$.
 - Refine the "prior distribution" after observing rewards.
- For each action/index *a*, estimate its percentage improvement.
 - Independent of the state *s*.
 - Needs to be done in a budget-aware manner.
 - For each budget what-if call, first select a query, and then select one of its index *a* (see the paper for details).

Rollout Policy

- General rollout policy in MCTS
 - Expand the visited configuration *s* by randomly inserting *l* indexes.
- If UCT is used as the action selection policy
 - Insert *l* indexes *uniformly* randomly.
- If ϵ -greedy is used as the action selection policy
 - Insert *l* indexes based on their "prior distribution."

Extraction of the Best Configuration

Best configuration explored (BCE)

- Return the best configuration found during MCTS.
- This includes both the configurations explored by MCTS and the configurations generated by rollout.

Best greedy (BG)

- Use a greedy strategy to traverse the search tree.
- There are various options for the greedy strategy.
- Our current implementation
 - Run the greedy search algorithm again and return the configuration with the minimum derived cost.

Experiment Settings

• Datasets and workloads

Name	Size	#	#	Avg. #	Avg. #	Avg. #
		Queries	Tables	Joins	Filters	Scans
JOB	9.2GB	33	21	7.9	2.5	8.9
ТРС-Н	<i>sf</i> =10	22	8	2.8	0.3	3.7
TPC-DS	<i>sf</i> =10	99	24	7.7	0.5	8.8
Real-D	587GB	32	7,912	15.6	0.2	17
Real-M	26GB	317	474	20.2	1.5	21.7

- Baselines
 - Budget-aware variants of greedy search
 - Existing RL approaches to index tuning

Budget-aware Variants of Greedy Search

Vanilla greedy

Standard greedy + FCFS (first come first serve)

Two-phase greedy

• Two-phase search + FCFS

Auto-admin greedy

• Two-phase greedy + atomic configuration

Comparison with Budget-aware Greedy (Benchmark Workloads)

(a) K = 5

Results on TPC-DS

(b) K = 10

Comparison with Budget-aware Greedy (Real Workloads)

Results on Real-D

Results on Real-M

Existing RL Approaches to Index Tuning

DBA bandits (ICDE 2021)

- Model index selection as a "contextual bandit" problem.
- Customized to make it budget-aware.

No DBA (arXiv 2018)

- Solve the index selection problem using deep RL (e.g., deep Q-learning).
- Customized to make it budget-aware.

Comparison with Existing RL (Benchmark Workloads)

(a) K = 5

(b) K = 10

Results on TPC-DS

Comparison with Existing RL (Real Workloads)

Results on Real-D

(c) K = 20

Results on Real-M

MCTS

5000

Summary of Contributions

- We proposed a problem formulation of budget-aware configuration search.
- We proposed a MCTS-based framework for budget-aware configuration search.
- We demonstrated that our MCTS-based framework outperforms both budget-aware variants of greedy search and existing RL techniques for index tuning, on both industrial benchmarks and real workloads.