Budget-aware Index Tuning with Reinforcement Learning

• Wentao Wu (Microsoft Research)
• Chi Wang (Microsoft Research)
• Tarique Siddiqui (Microsoft Research)
• Junxiong Wang (Cornell University)
• Vivek Narasayya (Microsoft Research)
• Surajit Chaudhuri (Microsoft Research)
• Philip A. Bernstein (Microsoft Research)
Cost-based index Tuning

Index Tuner
- Workload Parsing/Analysis
- Candidate Index Generation
- Configuration Enumeration

Best \(C \subseteq \{l_i\} \)
with respect to \(W, \Gamma \)

Database Server
- Query Optimizer (Extended)

What-If Calls
\((q_i, C) \)

Cost \((q_i, C) \)
What-if Calls are Expensive

- A what-if call is as expensive as a regular query optimizer call
- What-if calls dominate index tuning time
 - TPC-DS, 99 queries, 20 recommended indexes
Existing Work on Reducing What-if Calls

Reduce the search space of configuration enumeration.

- The configuration enumeration problem is NP-hard.
- There are exponentially many possible configurations and thus what-if calls.
- A classic solution is a greedy search approach that reduces the search space to polynomial size, which remains huge for large/complex workloads.

Other technologies

- Restrict the what-if calls to configurations with certain properties, e.g., atomic configurations.
- Effective reuse of cached what-if calls, which requires further extension/support from the query optimizer.
End user of index tuning needs to constrain the tuning time instead of letting it run forever.
- Microsoft’s Database Tuning Advisor (DTA) allows user to specify the maximum tuning time.

Under constrained tuning time, for large/complex workloads
- The number of what-if calls will go beyond the tuning time allowed, despite the previous techniques on reducing the number of what-if calls.

In this work, we study index tuning from a (new) constrained perspective, where
- The number of what-if calls (e.g., based on the tuning time budget) is given as a constraint.
- We focus on configuration enumeration under constrained number of what-if calls.
Budget-constrained Configuration Search

Budget allocation matrix
- Row – configuration
- Column – query
- Cell – “X” if a what-if call is used

For cells where what-if calls are not used, we use “derived cost.”
- \(d(q, C) = \min_{S \subseteq C} \text{cost}(q, C) \)

Problem formulation
- Input: \(W, B \) (and other constraints \(\Gamma' \))
- Output: Best configuration \(C^* \)
- Budget constraint: The number of cells marked “X” = \(B \)

Example Configuration Table

<table>
<thead>
<tr>
<th>(C/q)</th>
<th>(q_1)</th>
<th>(q_2)</th>
<th>(q_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({I_1})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I_2})</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>({I_3})</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>({I_1, I_2})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I_1, I_3})</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>({I_2, I_3})</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>({I_1, I_2, I_3})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Budget-aware Variants of Greedy Search

- **Greedy search**
 - (Base) Find the best singleton.
 - (Induction) Find the best configuration of size \(k + 1 \) by extending the best configuration of size \(k \).

- **Budget allocation in greedy search**
 - First come first serve (FCFS)
 - Two-phase
 - Atomic configuration

![Diagram of Greedy Search](image1)

- **(a) Greedy search**

<table>
<thead>
<tr>
<th>C/q</th>
<th>q₁</th>
<th>q₂</th>
<th>q₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>({I₁})</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>({I₂})</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>({I₃})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I₁, I₂})</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>({I₁, I₃})</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>({I₂, I₃})</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>({I₁, I₂, I₃})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **(b) FCFS**

- **(c) Two-phase**

<table>
<thead>
<tr>
<th>C/q</th>
<th>q₁</th>
<th>q₂</th>
<th>q₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>({I₁})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I₂})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I₃})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I₁, I₂})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I₁, I₃})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({I₂, I₃})</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>({I₁, I₂, I₃})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **(d) Atomic configuration**
Budget-aware Configuration Search using Reinforcement Learning (RL)

An exploration/exploitation trade-off

- **Exploration**: New configurations that have not yet been visited.
- **Exploitation**: Expand known promising configurations to include more indexes.

Reinforcement learning

- A principled way of dealing with exploration/exploitation trade-off.
Configuration Search as Markov Decision Process (MDP)

- **State** s: Configuration
- **Action** a: Index (to be included)
- **Transition probability** p: Deterministic
- **Reward** r: Percentage improvement of the workload W over the state/configuration C

$$
\eta(W, C) = \left(1 - \frac{\text{cost}(W, C)}{\text{cost}(W, \emptyset)}\right) \times 100\%
$$
Monte Carlo Tree Search
Action Selection Policy

• **UCT**
 • Pick the action a that maximizes the UCB (upper-confidence bound) score:
 \[
 \text{argmax}_a \left[\hat{Q}(s, a) + \lambda \cdot \sqrt{\frac{\ln N(s)}{n(s, a)}} \right]
 \]
 • $\hat{Q}(s, a)$ is the estimated action-value function.
 • $N(s)$ is the number of times that s is visited.
 • $n(s, a)$ is the number of times that the action a is taken.

• **ϵ-greedy**
 • Pick the action a with respect to the probability:
 \[
 \text{Pr}(a|s) = \frac{\hat{Q}(s, a)}{\sum_{b \in \mathcal{A}(s)} \hat{Q}(s, b)}
 \]
Action Selection Policy (Cont.)

• Address *sparsity* in the estimated action-value function $\hat{Q}(s, a)$.
 • Choose a “prior distribution” for $\hat{Q}(s, a)$.
 • Refine the “prior distribution” after observing rewards.

• For each action/index a, estimate its percentage improvement.
 • Independent of the state s.
 • Needs to be done in a budget-aware manner.
 • For each budget what-if call, first select a query, and then select one of its index a (see the paper for details).
• General rollout policy in MCTS
 • Expand the visited configuration s by randomly inserting l indexes.

• If UCT is used as the action selection policy
 • Insert l indexes uniformly randomly.

• If ϵ-greedy is used as the action selection policy
 • Insert l indexes based on their “prior distribution.”
Extraction of the Best Configuration

Best configuration explored (BCE)
- Return the best configuration found during MCTS.
- This includes both the configurations explored by MCTS and the configurations generated by rollout.

Best greedy (BG)
- Use a greedy strategy to traverse the search tree.
- There are various options for the greedy strategy.
- Our current implementation
 - Run the greedy search algorithm again and return the configuration with the minimum derived cost.
Experiment Settings

• Datasets and workloads

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th># Queries</th>
<th># Tables</th>
<th>Avg. # Joins</th>
<th>Avg. # Filters</th>
<th>Avg. # Scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOB</td>
<td>9.2GB</td>
<td>33</td>
<td>21</td>
<td>7.9</td>
<td>2.5</td>
<td>8.9</td>
</tr>
<tr>
<td>TPC-H</td>
<td>9.2GB</td>
<td>33</td>
<td>21</td>
<td>7.9</td>
<td>2.5</td>
<td>8.9</td>
</tr>
<tr>
<td>TPC-DS</td>
<td>9.2GB</td>
<td>33</td>
<td>21</td>
<td>7.9</td>
<td>2.5</td>
<td>8.9</td>
</tr>
<tr>
<td>Real-D</td>
<td>587GB</td>
<td>32</td>
<td>7,912</td>
<td>15.6</td>
<td>0.2</td>
<td>17</td>
</tr>
<tr>
<td>Real-M</td>
<td>26GB</td>
<td>317</td>
<td>474</td>
<td>20.2</td>
<td>1.5</td>
<td>21.7</td>
</tr>
</tbody>
</table>

• Baselines
 • Budget-aware variants of greedy search
 • Existing RL approaches to index tuning
Budget-aware Variants of Greedy Search

- **Vanilla greedy**
 - Standard greedy + FCFS (first come first serve)

- **Two-phase greedy**
 - Two-phase search + FCFS

- **Auto-admin greedy**
 - Two-phase greedy + atomic configuration
Comparison with Budget-aware Greedy (Benchmark Workloads)

Results on TPC-H

Results on TPC-DS
Comparison with Budget-aware Greedy (Real Workloads)

Results on Real-D

Results on Real-M
Existing RL Approaches to Index Tuning

DBA bandits (ICDE 2021)
- Model index selection as a “contextual bandit” problem.
- Customized to make it budget-aware.

No DBA (arXiv 2018)
- Solve the index selection problem using deep RL (e.g., deep Q-learning).
- Customized to make it budget-aware.
Comparison with Existing RL (Benchmark Workloads)

Results on TPC-H

Results on TPC-DS
Comparison with Existing RL (Real Workloads)

Results on Real-D

Results on Real-M
Summary of Contributions

• We proposed a problem formulation of budget-aware configuration search.

• We proposed a MCTS-based framework for budget-aware configuration search.

• We demonstrated that our MCTS-based framework outperforms both budget-aware variants of greedy search and existing RL techniques for index tuning, on both industrial benchmarks and real workloads.