
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014 1447

Towards Multi-Tenant Performance SLOs
Willis Lang, Srinath Shankar, Jignesh M. Patel, and Ajay Kalhan

Abstract—As traditional and mission-critical relational database workloads migrate to the cloud in the form of Database-as-a-Service
(DaaS), there is an increasing motivation to provide performance goals in Service Level Objectives (SLOs). Providing such
performance goals is challenging for DaaS providers as they must balance the performance that they can deliver to tenants and the
data center’s operating costs. In general, aggressively aggregating tenants on each server reduces the operating costs but degrades
performance for the tenants, and vice versa. In this paper, we present a framework that takes as input the tenant workloads, their
performance SLOs, and the server hardware that is available to the DaaS provider, and outputs a cost-effective recipe that specifies
how much hardware to provision and how to schedule the tenants on each hardware resource. We evaluate our method and show
that it produces effective solutions that can reduce the costs for the DaaS provider while meeting performance goals.

Index Terms—Database management, relational databases

1 INTRODUCTION

TRADITIONAL relational database workloads are quickly
moving to the cloud in the form of Database-as-

a-Service (DaaS). Such cloud deployments are projected
to surpass the “on-premises” market by 2014 [33]. As
this move to the cloud accelerates, increasing numbers of
mission-critical workloads will also move to the cloud, and
in turn will demand that the cloud service provider fur-
nish some assurances on meeting certain quality-of-service
metrics. Some of these metrics, such as uptime/availability,
have been widely adopted by DaaS providers as Service
Level Objective (SLOs) [4], [39]. (SLOs are specific objec-
tives that are specified in the encompassing Service Level
Agreement, a.k.a. SLA.) Unfortunately, performance-based
SLOs have still not been widely adopted in DaaS SLAs.
Performance-based SLOs have been proposed in other
(non-DaaS) cloud settings [22], and in the near future it is
likely that DaaS users will demand these SLOs (especially
if they are running mission-critical database applications
that require a certain level of performance). DaaS providers
may also provide performance-based SLOs as a way to
differentiate their services from their competitors.

DaaS providers want to promise high performance to
their tenants, but this goal can often conflict with the goal
of minimizing the overall operating costs. Data centers that
house database services can have high fixed monthly costs
that impact the DaaS providers’ bottom line [15], [21]. For

• W. Lang and J. M. Patel are with Computer Sciences Department,
University of Wisconsin-Madison, Madison, WI 53706 USA.
E-mail: {wlang, jignesh}@cs.wisc.edu.

• S. Shankar is with Microsoft Gray Systems Lab, Madison, WI 53719
USA. E-mail: srinaths@microsoft.com.

• A. Kalhan is with SQL Azure, Microsoft Corp., Redmond, WA 98052
USA. E-mail: ajayk@microsoft.com.

Manuscript received 8 May 2012; revised 26 Apr. 2013; accepted 29
Apr. 2013. Date of publication 2 May 2013; date of current version
29 May 2014.
Recommended for acceptance by J. Gehrke, B.C. Ooi, and E. Pitoura.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.74

a DaaS provider, servicing the same tenants with fewer
servers decreases the amortized monthly costs [37]. Hence,
consolidation via multi-tenancy (where multiple database
tenants are run on the same physical server) is a straight-
forward way to increase the cost-effectiveness of the DaaS
deployment.

In a traditional single tenant database setting, two key
factors that determine performance are: a) The workload
characteristics; and b) The server hardware on which the
database management system (DBMS) is being run. In a
multi-tenant setting, the degree of multi-tenancy becomes
an additional factor that impacts performance, both for
the overall system and the performance that is experi-
enced by each individual tenant. In general, increasing
the degree of multi-tenancy decreases per-tenant perfor-
mance, but reduces the overall operating cost for the DaaS
provider.

Hence, the important question for a DaaS provider is how
to balance multi-tenancy with performance-based SLOs. The
focus of this paper is on posing this question and presenting
an initial answer. We fully acknowledge that there are many
open questions that need to be answered beyond our work
here, which points to a rich direction of future work.

In this paper, we propose a general DaaS provision-
ing and scheduling framework that optimizes for operating
costs while adhering to desired performance-based SLOs.
Developing a framework to optimize DBMS clusters for
performance-based SLOs is challenging because of a num-
ber of specific issues, namely: (a) The DaaS provider may
have a number of different hardware SKUs (Stock Keeping
Units) to choose from, and needs to know how many
machines of each SKU to provision for a given set of ten-
ants – thus the provider needs a hardware provisioning policy;
and (b) The DaaS provider also needs to know an effi-
cient mapping of the tenants to the provisioned SKUs that
meets the SLOs for each tenant while minimizing the over-
all cost of provisioning the SKUs – thus the DaaS provider
needs a tenant scheduling policy. Note that the tenants on the
same server may have different performance requirements,

1041-4347 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1448 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

and the tenants may interfere with each other, making the
mapping of tenants to the SKUs challenging.

Let us consider a concrete example to illustrate these
issues. Assume that a DaaS provider has many tenants that
have workloads that are like TPC-C scale factor 10. The per-
formance metric that is of interest here is transactions per
second (tps). Assume that the DaaS provider has 10,000
tenants split into two classes: ‘H’ and ‘L’. The tenants in
the H class are associated with a high performance SLO of
100 tps, whereas the tenants in the L class are associated
with a lower performance SLO of 10 tps (and presumably
a lower price). Assume that 20% of the tenants (2000 ten-
ants) belong to the class H and the remaining (8000 tenants)
belong to the class L. For this example, imagine that there
is only one SKU, and assume that all the tenants have the
same query workload characteristics (i.e., all tenants have
the same query workload, and issue queries to the server
with the same frequency).

To find a hardware provisioning policy and the associ-
ated tenant scheduling policy, we first need to understand
how the performance of the tenants in class H (and class
L) changes for a workload that consists of a mix of these
tenants. In other words, we need to characterize the per-
formance that each tenant sees for varying mixes of tenants
from the two classes, when these tenants are scheduled on
the same server. We capture this performance trait in a SKU
performance characterizing model.

To produce the SKU performance characterizing model,
we first benchmark the server SKU for a homogeneous mix
of tenants. This benchmark shows that we can accommo-
date around 25 tenants of class H (100 tps). Scheduling
more than 25 tenants results in the tps dropping below
100 tps, and hence breaks the performance SLO. Similarly,
we find that this SKU can accommodate up to 100 tenants
of class L (10 tps). Points A and B in Fig. 1 correspond to
the findings from this homogeneous benchmark. (Below we
describe what Fig. 1 shows in more detail.)

The homogeneous benchmark above defines the bound-
aries of how many tenants of each class we can pack on
a given server. Next, we need to characterize the space to
allow for an arbitrary mix of tenants. We note that while it is
possible that an optimal hardware provisioning policy and
associated tenant scheduling policy could only have SKUs
with homogeneous tenants (i.e., no SKU has a mix of ten-
ants from the two classes), it is also possible that the optimal
policy has a mix of tenants from the two classes on some or
all the SKUs. This may be the case if different tenant work-
loads have different resource utilizations (memory vs. disk
vs. CPU) on a SKU. Thus, the SKU performance characteriz-
ing model must also consider heterogeneous mixes of tenants.

To complete the SKU performance characterizing model,
we need to benchmark the server for varying mixes of ten-
ants from the two performance classes, and measure the
throughput that each tenant in each class sees. Fig. 1 shows
the SKU performance characterizing model for an actual
SSD-based server SKU using experimental results for the
100 tps and the 10 tps TPC-C tenant classes. (See Section 2
for details.)

In Fig. 1, the performance of the class H tenants is shown
in Fig. 1(a), while the performance that the class L tenants
experience is shown in Fig. 1(b).

(a)

(b)

Fig. 1. Average performance seen by tenants in class H (100tps) and
class L (10tps) on TPC-C scale factor 10 database as the tenant mix is
varied. In both figures, circles annotated with the same letter correspond
to the same operating point: (a) Performance (tps) for class H tenants.
(b) Performance (tps) for class L tenants.

First, consider a homogeneous tenant scheduling policy
that uses only the points A (25 100tps tenants), and B (100
10tps tenants). In this case, the DaaS provider needs to pro-
vision 160 SSD-based servers for the 10,000 tenants (80 for
the H class tenants, and 80 for the L class tenants).

But, could we do better than using a homogeneous ten-
ant scheduling policy? To answer this question, we need to
systematically explore the entire space of tenant workload
mixes, and the associated hardware provisioning (to com-
pute the operating cost). Essentially, we need to explore the
entire space shown in Fig. 1. Note that some of the points
in this space are not feasible “solutions”, as they violate the
performance SLOs. For example, at the operating point F in
Fig. 1(a), the H class tenants see a performance level that
is below 100 tps, since the point F is in the yellow zone
that corresponds to 10-100 tps. In Fig. 1(b), at point F, the L
class tenants do not reach a satisfactory performance either.

On the other hand, in Fig. 1, the operating points C, D,
and E are all feasible, but they result in different hardware
provisioning policies, which in turn impacts the overall
operating costs. In this case, the operating point E is the
most cost-effective of these three operating points, because
it only requires 143 SKUs (14 H tenants and 56 L tenants
per SKU). In contrast, the operating point D (10 H and 40
L tenants per SKU) and the operating point C (5 H and
20 L tenants per SKU) require 200 and 400 SKUs respec-
tively. Notice that the policy from point E results in 17 fewer
servers required than the homogeneous policy from point
A and B.

The problem illustrated above becomes even more com-
plicated if the DaaS provider has a mix of SKUs to choose
from. In this case, assume that the DaaS provider has
another SKU that is cheaper, but has lower overall perfor-
mance on this workload. In this case, the DaaS provider

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1449

Fig. 2. Work-flow diagram for using our framework.

needs to consider the cost ratio between the two different
SKUs and the relative performance differences, and provi-
sion hardware that reduces the overall operating cost. Note
that the lowest cost feasible operating point could involve
deploying a mix of the two (or, in general, more) SKUs, as
shown by various examples in Section 3. Thus, the over-
all optimization problem involves finding a mix of SKUs
to deploy for a given set of tenants belonging to differ-
ent performance-based SLO classes, along with a tenant
scheduling policy for each deployed SKU. In this paper we
present and evaluate a solution to this problem.

This paper makes the following contributions:

• To the best of our knowledge, our work presented
in [30] and this extended version1 are the first papers
to formulate and explore the problem of how to pro-
vision servers in a DaaS environment with the goal
of providing performance-based SLOs.

• We develop an optimization framework to address
the problem above. This framework outputs an
SLO compliant tenant scheduling strategy and a
cost-minimizing hardware provisioning strategy that
together serve as the recipe for deploying resources
and operating the DaaS for the input workload.

• We evaluate our method and demonstrate the effec-
tiveness of our approach.

The remainder of this paper is organized as follows: We
present our framework in Section 2 and an applications
case-study in Section 3. We study dynamic cloud environ-
ments in Section 4 and a discussion follows in Section 5.
Related work is discussed in Section 6 and our concluding
remarks follow in Section 7.

2 PERFORMANCE SLO FRAMEWORK

In this section, we describe our optimization framework,
which has three steps as shown in Fig. 2. Recall that the
goal of this framework is to provide hardware provision-
ing and tenant scheduling policies that minimize the costs
to DaaS providers while satisfying the performance-related
specifications in tenant SLOs.

In the first step in Fig. 2 (described in Section 2.1), we
benchmark the performance of each server SKU in a homo-
geneous multi-tenant environment. At the end of this step,
we understand the tenant performance for each tenant class
on each hardware SKU, producing Output 1 in Fig. 2. From
this first step, for a specific performance level, we can deter-
mine the maximum number of tenants of a given class
that can be scheduled on a specific server SKU, such that

1. This extended version includes an analysis of the cost to maintain
globally optimal solutions, and the cost of tenant SLO elasticity.

the performance SLOs can be satisfied for each tenant.
Essentially, in this step we find points like A and B in Fig. 1
for every tenant class for every hardware SKU.

The next step, marked as Step 2 in Fig. 2, uses Output
1 to compute the boundaries of the space of mixed class
workloads that should be considered. Then, for each hard-
ware SKU this space is characterized by running actual
benchmarks. In other words, Step 2 computes Fig. 1 for
every hardware SKU as Output 2. Now, we understand the
impact of scheduling a workload with tenants that have dif-
ferent SLO requirements on the same server box. This step
is discussed in more detail in Section 2.2.

The last step in Fig. 2 takes as input the set of SKU
performance characterizing models (i.e., Output 2) and
computes an optimal strategy to deploy the workload. This
step uses an optimization method that takes as input (i) A
set of performance SLOs; (ii) A set of hardware SKUs with
specific costs and performance characteristics; (iii) A set of
tenants with different performance SLOs to be scheduled;
and computes the hardware provisioning and the tenant
scheduling policies that minimize costs while satisfying all
SLOs. This step is discussed in more detail in Section 2.3.

2.1 Characterizing Multi-Tenant Performance
This section discusses the first step in our framework that
is shown in Fig. 2.

2.1.1 Workload and Performance Metric
To make the discussion concrete, in this paper we use TPC-
C as a model workload, which has also been used before
to study DaaS [18].

Each of our TPC-C transactions were implemented as
stored procedures within SQL Server. Our application
driver issued stored procedure calls to SQL Server via .NET
connections from network-attached clients. Like prior stud-
ies [24], we maintained the full transaction mix ratio as
dictated by TPC but eliminated think-time pauses, imple-
mented each tenant with a single remote application driver,
and did not scale the number of clients with warehouses.
As a performance metric, we use the throughput of the
new-order transactions, as is done for reporting TPC-C
results2.

2.1.2 Hardware SKUs
Table 1 shows the two server SKUs, ssdC and diskC, that we
use in this paper. Both servers are identical except for the

2. Disclaimer: While we have used the TPC-C benchmark as a
representative workload in this paper, the results presented are not
audited or official results, and, in fact, were not run in a way that
meets all of the benchmark requirements. Consequently, these results
should not be used as a basis to determine SQL Server’s performance
on this or any other related benchmark.

1450 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

TABLE 1
Two Server Configurations (SKUs)

storage subsystem. Both server SKUs are configured with
low-power Nehalem-based L5630 Intel processors (dual
quad cores), and 32GB DDR3 memory, running Windows
Server 2008R2 and the latest internal version of SQL Server.
The OS and the DBMS are installed on a separate 10K RPM
300GB SAS drive. In the ssdC configuration, all the data files
and log files of the database are stored on three Crucial
C300 256GB SSDs while in the diskC configuration, these
are stored on three 10K RPM 300GB SAS drives.

We note that the storage subsystem has a big impact on
the RDBMS performance in a multi-tenant environment,
since the load imposed on the hardware when serving
independent tenant requests naturally leads to random-
ized data access. This behavior is in contrast to traditional
single-tenant environments where the DBMS schedules
data accesses to be as sequential as possible.

2.1.3 Multi-Tenancy and Performance
There are many ways to deploy a DaaS on a cluster with
multi-tenancy [5], [6], [16], [18], [33]. We list four main
approaches to housing tenants that have emerged recently
in decreasing order of complexity: (1) all tenant data are
stored together within the same database and the same
tables with extra annotation such as ‘TenantID’ to differenti-
ate the records from different tenants [5], [6]; (2) tenants are
housed within a single database, but with separate schemas
to differentiate their tables and provide better schema-level
security; (3) each tenant is housed in a separate database
within the same DBMS instance (for even greater security);
(4) each tenant has a separate Virtual Machine (VM) with
an OS and DBMS, which allows for resource control via
VM management [18].

We use option 3 to implement multi-tenancy, since this
option provides a good trade-off between wasted resources
due to extra OSs in the VM method (option 4), and the
complex manageability and security issues associated with
options 1 and 2 [18]. Looking at the other options is an
interesting direction for future work.

In our experiments, we consider a workload comprised
of 1GB TPC-C tenants with 10 warehouses. We recorded the
average per-tenant TPC-C transactions per second achieved
on both hardware SKUs for varying degrees of multi-
tenancy over a timespan of 100s. These results are shown
in Fig. 3.

There are a few important observations from Fig. 3. First,
on our hardware SKUs, the only way tenants can achieve a
performance of 100tps is if their datasets almost completely
fit in memory. Note the drop-off in tps when the number
of tenants is increased beyond 25 (i.e., after the combined
tenant size crosses 25GB). Second, when the datasets fit

Fig. 3. Performance for the ssdC and diskC SKUs (see Table 1) as we
increase the number of tenants on a single SKU.

completely in memory, the cheaper diskC server can deliver
the same per-tenant performance as the more expensive
ssdC server since the storage subsystem is not the bottle-
neck. Finally, notice that at the lower performance levels,
the ssdC server can support significantly more concurrent
tenants than the diskC server. This behavior is due to the
better random I/O performance of the SSD storage com-
pared to the mechanical disk storage. For instance, in Fig. 3,
the measured log disk utilization at 10 tenants for the ssdC
and diskC SKUs was 39% and 41% respectively. As we
increased the number of tenants to 25, the log disk uti-
lization increased to 50% and 66% for these two SKUs
respectively. Finally, at 50 tenants and beyond, the log disk
utilization is saturated at more than 95% for both SKUs.

The curve shown in Fig. 3 defines the maximum number
of tenants that each SKU can support while maintaining a
specific performance level per tenant. This homogeneous
multi-tenant benchmarking is a necessary first step since it
defines the boundaries of the performance that the DaaS
provider can promise in their SLOs.

Definition 1. Let the set S = {s1, s2, . . . , sk} represent the k
SLOs published by a DaaS provider.

Typically, k > 1 since different tenants may require (and
be willing to pay for) different levels of performance. Given
a set of tenants with different SLOs to schedule on a clus-
ter, a natural scheduling policy is to schedule the tenants
of each class on the type of server that can handle the most
number of tenants of that class. However, this approach
ignores the relative cost of different SKUs, as well as the
possibility of scheduling tenants of different classes on the
same server to reduce the overall provisioning and oper-
ating costs. The next step (Section 2.2) is to determine the
behavior of a single SKU when loaded with tenants that
are associated with different SLOs.

2.2 Characterizing Heterogeneous SLOs
A number of mechanisms can be used to provide different
performance SLOs on the same server. One simple mecha-
nism is resource governance whereby tenants are allocated
specific amounts of critical resources like CPU and DBMS
buffer pages to limit their resource consumption. Another
mechanism is to use an admission control server that throt-
tles incoming tenant requests accordingly. Studying the
different mechanisms to implement performance SLOs is
an interesting topic, but is orthogonal to our optimization
framework, and hence beyond the scope of this paper.

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1451

To avoid the additional complexity of an admission con-
trol server, we chose to simulate a buffer pool resource gov-
ernance mechanism on top of SQL Server. In our method,
we start separate SQL Server instances within each physi-
cal server with one instance for each SLO class si (there are
k of these as per Definition 1). All tenants that belong to
the same SLO class si are assigned to the same SQL Server
instance. The performance of each SQL Server instance is
throttled by limiting the amount of main memory that is
allocated to it. The amount of main memory that is allo-
cated to each SQL Server instance (SLO class) is an average
of two factors. The first factor is the fraction of the tps
requirements for that SLO class compared to the aggregate
total tps across all the SLO classes. The second factor is
the ratio of tenants in that SLO class to the total number
of tenants. This memory allocation method provides a bal-
ance between allocating memory purely based on tps and
purely based on the number of tenants. (We experimented
with other methods, but found that this method provided
the best overall behavior allowing us to pack far more ten-
ants per SKU than other simpler methods. In the interest
of space we omit these additional details.)

Recall that Fig. 3 characterizes the performance of the
server SKUs ssdC and diskC when all the tenants on a SKU
have equal access to resources. Given tenants with different
SLOs (Definition 1), we need to characterize the perfor-
mance delivered by each server SKU to each tenant class si.
For this purpose, we use a SKU performance characterizing
function, which is described next.

Definition 2. For a given SKU, let �b = [b1 b2 . . . bk]T where
bi represents the number of tenants of class si scheduled on
the server. For this server, the SKU performance characteriz-
ing function, f (�b), represents the performance delivered over a
specific time interval for different tenant scheduling policies.
Here f (�b) = [φ1 φ2 . . . φk]T where φi is the random variable
representing the performance achieved by the tenants of class
si scheduled on the server.

Using this definition for function f , it is possible to pro-
vide the performance SLOs in the same way as the current
uptime SLAs. For instance, say that for a given SKU with
a load defined by �b, we determine that the distribution of
the measured performance over 100 seconds for the ten-
ants of class si (say, a 100tps class) is normal, with an
average of 130 tps and a standard deviation of 10tps; that
is, φi ∼ N(130, 10). Then, according to the definition of
a normal distribution, for all the 100tps tenants that are
scheduled on this server, we can guarantee the desired
performance 99.6% of the time.

The ability to provide such guarantees makes our formu-
lation of the SKU characterizing function f very powerful
in defining performance SLOs. In practice, fully characteriz-
ing f is likely to be challenging and one has to simplify this
function. In this paper, we consider the following simplifi-
cation of f to a boolean characterizing function (exploring
other options is an interesting direction for future work).

Definition 3. Given a certain server SKU and �b from
Definition 2, a simplified boolean SKU performance charac-
terizing function f̂ (�b) returns true if all the tenants achieve

their respective SLO performance based on a set of summary
statistics of the random variables and false otherwise.

As a simplification for our experiments, we ignored
other statistics such as variance and defined f̂ (�b) in terms of
the average transactions per second over 100s. For example,
consider Fig. 1, we plotted f (�b) = [E[φ1] E[φ2] . . . E[φk]]T

for ssdC (see Table 1) for two SLO classes, S =
{100tps, 10tps}.

Having defined the SKU performance characterizing
function, the next question is to find acceptable operat-
ing zones that deliver the promised performance to each
tenant in each class si. Again, using Fig. 1 as an example,
we wish to compute the area in both sub-figures where
both the 100tps tenants and the 10tps tenants meet their
performance requirements. This area defines the acceptable
“operating zone” for the ssdC SKU, and is distinguished
from the other areas using Definition 3.

To evaluate the function f̂ , a systematic search of the
tenant scheduling space is performed as follows: We first
start by scheduling the maximum number of highest-
performance tenants as determined by the benchmarking
step in Section 2.1. Then, we systematically substitute a
fixed small number of these highest-performance tenants
with low-performance tenants (if there are more than two
tenant classes, in this step, we can iterate through fixed size
combinations of the lower performance tenant classes). For
each sample, we run a benchmark with the current mix of
tenants, and record the observed per-tenant performance.
If the observed performance satisfies all tenant SLOs, then
f̂ returns true for this tenant scheduling policy and for all
other scheduling policies where there are fewer tenants in
any of the classes. If f̂ returns true, we also try adding more
low-performance tenants (iteratively in every low perfor-
mance class) and repeat the experiment. We keep pushing
up the number of the tenants in the low performing ten-
ant class(es) until f̂ returns false, in which case we know
we have reached the boundary of the f̂ function. Thus, we
determine a tenant scheduling “frontier”, so that f̂ is true
on one side of the frontier and false on the other side. (As
part of future work, it would be interesting to consider
obtaining this frontier via other methods such as augment-
ing the query optimizer module to generate/estimate this
frontier [12], [19].)

2.2.1 Frontier for the SLO mix – 10tps and 1tps
Consider the SLO set S = {10tps, 1tps}, and the SKUs ssdC
and diskC (see Table 1). The frontiers for this case are
shown in Fig. 4 as the solid black line. The diamond points
in this figure represent some of the actual benchmark tests
that were run. The points that lie above a frontier line rep-
resent tenant scheduling policies that fail to meet tenant
SLOs (f̂ = false), whereas the points that lie on the frontier
line will satisfy all tenant SLOs. The area below the fron-
tier line contains scheduling policies that will satisfy tenant
SLOs but potentially waste resources (i.e., are potentially
over-provisioned).

An interesting point about the performance characteris-
tics shown in Fig. 4 is that the bottleneck for the points
in the frontier is the log disk. Each database has a log
file and as more tenants are added, the I/Os to the log

1452 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

(a)

(b)

Fig. 4. SKU performance characterizing functions for S = {10tps, 1tps}:
(a) Performance on the diskC SKU. (b) Performance on the ssdC SKU.

disk become more random, and each log I/O becomes rel-
atively more expensive. As a result, if we look at the pure
10tps case (upper left point in the graph) and remove x
of the 10tps tenants, we can add far fewer than 10x 1tps
tenants.

Having a linear frontier as is the case in Fig. 4 implies
that we can add/remove tenants of different classes to a
server according to a constant ratio. For example, consider
again the frontier for the diskC SKU (Fig. 4(a)) and the ssdC
SKU (Fig. 4(b)). The slope of the lines in both graphs is − 1

2 ,
which implies that for any operating point along these two
frontier lines, the DaaS provider can safely swap one 10tps
tenant for two 1tps tenants. Thus, a linear frontier simplifies
the tenant scheduling policies. As we discuss below, we
may not always observe a linear frontier.

2.2.2 Frontier for the SLO mix – 100tps and 1tps
Suppose that a DaaS provider wishes to publish a 100tps
SLO. From Fig. 3, we know that for both SKUs, we
are limited to about 25 100tps tenants on either SKU.
Fig. 5(a) and (b) show the observed frontiers for both the
diskC and ssdC SKUs respectively, for S = {100tps, 1tps}.
The frontiers are no longer linear and show that if we start
from the case of only 100tps tenants (upper left point in
both graphs), the initial curve is convex and then tapers off
into a concave shape. At the “only 100tps tenants” point,
the system is memory bound (see Fig. 3). As we move to
the right along the frontier, the system now becomes log
disk bound.

The initial shape of the frontier is convex since the
log disk saturates a little beyond the proportions dictated
by the line formed by connecting the two end points of
the frontiers. For example, in Fig. 5(a) as we move from
the 25 100tps case to the right, we reach a point where

(a)

(b)

Fig. 5. SKU performance characterizing functions for S = {100tps,

1tps}: (a) Performance on the diskC SKU. (b) Performance on the ssdC
SKU.

there are 20 100tps tenants. If the frontier were linear, then
we should only be able to add 5 × 4 = 20 1 tps ten-
ants, but we can add 25 1tps tenants before the log disk
saturates.

Now consider the concave tail of the frontier in Fig. 5.
Again this has to do with the log disk. Consider the (bot-
tom) right-most point in the frontier. Here we have only 1
tps tenants. At this point, the system is bottlenecked on the
log disk. This behavior is captured in Fig. 6, which plots
the log disk performance (y axis) of an ssdC server with
one 100tps tenant as the number of 1tps tenants is varied
(x axis). The log write wait time is shown as a range by a
vertical bar where the low point denotes the first quartile
and the high point denotes the third quartile. The hori-
zontal (green) bar denotes the average. The performance
achieved by the 100tps tenant (shown on the right vertical
axis) is plotted using round dots.

In Fig. 6, we see that at the 200/0 point, the log disk
writes takes an average of 12 ms (and the log disk is
saturated at this point). If we move to the left from this
point by dropping 25 1 tps tenants and adding one 100
tps tenant, then the 100tps tenant only achieves around
20 tps. As we continuously decrease the number of 1tps
tenants by 25, we observe that the average log write wait
time decreases only after 125 1tps tenants. The perfor-
mance achieved by the 100tps tenant very closely follows
with a jump at 100 1tps tenants. These results show why
scheduling one 100tps tenant onto the server in Fig. 5
requires a substantial drop in 1tps tenants. To summa-
rize, a high performance tenant requires disproportionately
large headroom in log disk provisioning to process transac-
tions with a high throughput. Thus, even though the tenants
are all running the same workload, the sheer increased perfor-
mance requirement of some tenants over others causes resource

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1453

Fig. 6. Average database log write wait time with vertical bars spanning
the 1st to the 3rd quartiles, along with the average tps achievable by a
single 100tps tenant on the ssdC SKU.

requirement disparities similar to tenants running different
workloads.

2.2.3 Frontier for the SLO mix – 100tps and 10tps
Now let us consider a mix of 100tps and 10tps tenants, i.e.,
S = {100tps, 10tps}. The results for this case are shown in
Fig. 7(a) and (b) for the diskC and the ssdC SKUs respec-
tively. For the same reasons as discussed in Section 2.2.2,
we observe a knee near the lower right corner of the fron-
tier line, and a convex shape near the upper left corner of
the frontier line.

2.3 Step 3: Putting It All Together
The previous section described how to compute the SKU
performance characterizing function for each SKU. We
can now use these functions to formulate and solve
the optimization problem for provisioning hardware and
scheduling tenants that satisfy different performance SLOs
(namely Step 3 in Fig. 2).

Definition 4. M is a multiset {m1, m2, . . . , mp} where each
mj represents a server SKU defined by a pair mj = (f̂j, cj)

where function f̂j is the simplified SKU characterizing func-
tion (defined in Definition 3) and cj represents the amortized
monthly operating cost for a server.

Note that since M is a multiset, mj need not be unique.
This allows a single server SKU to be scheduled with
tenants in different ways.

Recall that we have the set of published SLOs as defined
in Definition 1. We must now associate each tenant with its
corresponding SLO.

Definition 5. Let ti represent the set of tenants that subscribe
to SLO si as defined in Definition 1. We represent all tenants
by the set T = ∪k

i=1ti.

Using Definitions 1 to 5, the following definition
describes the main optimization (minimization) problem.

Problem Definition 1. Given the sets S, T, and multiset M,
compute a = [α1 α2 . . . αp] and B = [�b1 �b2 . . . �bp]T ,
where αi is the needed number of servers of type mi, and �bi is

(a)

(b)

Fig. 7. SKU performance characterizing functions for S =
{100tps, 10tps}: (a) Performance on the diskC SKU. (b) performance
on the ssdC SKU.

a vector of length k indicating how many tenants of each of
the k SLO classes should be scheduled on an individual server
of type mi. The objective function C = �

p
i=1αici satisfies the

following constraints:
Constraint 1 : aB = [|t1| |t2| . . . |tk|] (cover all the tenants)
Constraint 2 : f̂i(�bi) returns true for 1 ≤ i ≤ p (all SLOs are
satisfied)

Problem Definition 1 is a non-linear programming prob-
lem in the general case.3 Here, we need to compute the
following variables:

1) a – the number of servers used for each SKU. This
vector determines the total cost for provisioning the
servers.

2) B – the tenant scheduling policy.
The entire space of solutions does not need to be fully

explored since the feasible regions are defined by the f̂ char-
acterizing functions and the curves defined by Constraint
1 of Problem Statement 1. Since our solution space is
relatively small, a brute-force solver that explores the non-
negative integer space bounded by these curves sufficed for
our purposes.4 Exploring other approaches is part of future
work.

With this brute-force solver and the experimental results
from Section 2.2, we now have the tools that we need to
evaluate our framework.

3. In simple cases, we can parameterize the problem into a lin-
ear programming problem, but this is increasingly onerous when
faced with non-linear piecewise frontier functions that characterize
the server SKUs. The approach we take to solving the non-linear
programming problem is much more straight-forward.

4. For a 5000 100tps tenant and 5000 10tps tenant problem, our 1
thread, brute-force solver finds a solution within 80s. on a 2.67Ghz
Intel i7 CPU.

1454 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

(a) (b) (c)

Fig. 8. Solutions for (a) SC1 - $7,500; (b) SC2 - $9,375; (c) SC3 - $11,250 (see Table 2 for details). Circle positions indicate tenant scheduling
policy and circle size/annotation indicate hardware SKU provisioning policy.

3 APPLICATIONS OF THE FRAMEWORK

In this section we apply the framework described in
Section 2 to hypothetical DaaS scenarios to illustrate the
merits of the hardware provisioning and tenant scheduling
policies described above.

In our evaluation, we assume that the DaaS provider
must accommodate a total of 10,000 tenants running TPC-
C scale 10 workloads, with two available SKUs – ssdC and
diskC – as described in Section 2.1.2. We varied the follow-
ing three parameters to arrive at the 18 scenarios listed in
Table 2.

1) Published set of SLOs: We limited ourselves to
three sets of SLOs discussed in Section 2.2, namely
S1 = {10tps, 1tps}, S2 = {100tps, 1tps}, and S3 =
{100tps, 10tps}. We used average tps over 100s as
the metric to determine if an SLO is satisfied
or not.

2) Tenant ratios: For each SLO set Si, we varied the
relative proportion of tenants belonging to one SLO
versus the other. We used three ratios in our sce-
narios – 20:80, 50:50 and 80:20. For instance, a 20:80
ratio for the SLO set {100tps, 1tps} means that 2000

TABLE 2
Experimental Parameters for Evaluating Various Scenarios

Tenant ratios divide 10,000 tenants across two SLOs for each scenario. The ssdC
SKU amortized cost over 36 months is $125.

tenants are associated with the 100tps SLO while
8000 tenants are associated with the 1tps SLO.

3) Relative costs between server SKUs: The true pur-
chase costs of a single ssdC and diskC server are
$4,500 and $4,000 respectively. Amortized over 36
months [21], we arrived at monthly costs of $125
and $111 respectively. Although in reality the diskC
server is 10% cheaper than ssdC, we also considered
a hypothetical diskC price point of $3,150 ($88 amor-
tized, 30% less than ssdC) to consider what happens
if the relative costs of the hard disks were lower
(e.g., if we had used cheaper SATA3 disks). We note
that this method of running our framework with
different scenarios can potentially be used by a DaaS
provider as a way of “scoping out” the impact of
varying SKUs when making a purchasing decision.

3.1 Solutions Using The Framework
Hardware provisioning and tenant scheduling policies are
depicted using bubble plots in a 2-dimensional space. Each
bubble represents a single hardware SKU with a specific
tenant schedule as determined by the coordinates of the
center of the bubble. The size of the bubble denotes the
number of servers provisioned from that SKU (i.e., αi in
Problem Definition 1). The position of the bubble corre-
sponds to the the tenant scheduling policy represented by
vector �bi in the problem definition. That is, the y coordi-
nate is the number of high-performance tenants scheduled
on that SKU, and the x coordinate is the number of
low-performance tenants. Recall that Definition 4 allows a
single hardware SKU to be used multiple ways with differ-
ent tenant scheduling policies. Thus, even though we have
only two types of servers, ssdC and diskC, a single plot may
contain more than two bubbles.

Next, we discuss the hardware provisioning and tenant
scheduling policies obtained for each set of SLOs in turn.

3.1.1 SLO Set 1 – 10tps and 1tps
As shown in Figs 4(a),(b), this set of SLOs results in linear
SKU performance characterizing functions for both the ssdC
and diskC SKUs. Since the ssdC SKU can serve twice the
number of 10tps and 1tps tenants as the diskC SKU, we
expect the optimal hardware provisioning policy to favor
ssdC servers, given that the price of an ssdC server is less
than twice the price of a diskC server.

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1455

(a) (b) (c)

Fig. 9. Solutions for (a) SC7 - $13,861; (b) SC8 - $25,264; (c) SC9 - $36,667 (see Table 2 for details). Circle positions indicate tenant scheduling
policy and circle size/annotation indicate hardware SKU provisioning policy.

Fig. 8(a)–(c) shows the optimal solutions for scenarios
SC1, SC2 and SC3 (diskC costs 10% less than ssdC). As
expected, the optimal provisioning policy uses only ssdC
SKUs. Note that since exactly one SKU is used, the ratio of
tenants scheduled on each server (determined by the y and
the x coordinates) corresponds exactly to the total tenant
ratio (20:80, 50:50 and 80:20 in Fig. 8(a), (b) and (c) respec-
tively). The total costs of the optimal solutions in each case
are indicated at the bottom of figure. We can see that as the
proportion of 10tps tenants increases from (a) to (c), more
servers are required, which increases the total solution cost.

Next, we evaluated the scenarios SC4-SC6 (i.e., the diskC
SKU is 30% cheaper than the ssdC SKU). The optimal poli-
cies obtained in this case are identical to those of scenarios
SC1-SC3 shown in Fig. 8 (and hence the figures are omit-
ted). Since the solutions only used ssdC SKUs, the change
in the diskC SKU cost does not affect the optimal solu-
tion cost. Again, this is expected given the much higher
performance delivered by the ssdC servers for this set of
SLOs.

These results suggests that since the diskC SKU used in
our evaluation delivers roughly half the performance of the
ssdC SKU, it must cost less than half the ssdC SKU to be
considered cost-effective. As this experiment (and recent
studies [29]) show, the considerable performance benefits
obtained by the SSDs may in some cases compensate for
the price premium.

3.1.2 SLO Set 2 – 100tps and 1tps
Fig. 9(a)–(c) show the optimal hardware provisioning and
the tenant scheduling policies for scenarios SC7, SC8,
and SC9 respectively (diskC costs 10% less than ssdC). As

expected, the cheaper diskC SKU plays a large role in
the optimal solution. In fact, when the tenant mix con-
tains a large proportion of 100tps tenants (Fig. 9(c)), the
ssdC SKU is not used at all! Furthermore, note that even
when the ssdC servers are used (Fig. 9(a) and (b)), only the
1tps tenants are scheduled on these servers. These results
are somewhat counter-intuitive, since the high-end SKU is
scheduled only with the low-end tenants.

In Fig. 10(a)–(c), we show the optimal solutions for sce-
narios SC10, SC11 and SC12 (diskC costs 30% less than ssdC).
Now, compared to the results shown in Fig. 9, we observe
that the hardware provisioning policy uses even fewer ssdC
servers due to their higher relative cost.

An interesting observation from these results is that in
the recommended hardware provisioning policy, the ratio
of the number of servers of one SKU over the number of
servers of the other SKU is very large. Examples of this can
be found for SC8 and SC11, Figs. 9(b), 10(b) respectively,
where the number of ssdC servers is an order magnitude
less than the number of diskC servers. An alternative (albeit
suboptimal) SKU provisioning strategy is to simply use
only diskC servers, and ignore ssdC altogether (or vice
versa). The advantage of this strategy is that it produces a
homogeneous cluster that is easier to manage and admin-
ister. In Section 3.2, we discuss this and other suboptimal
(from the initial hardware provisioning cost perspective)
alternatives and their costs.

3.1.3 SLO Set 3 – 100tps and 10tps
Here we consider SLO Set S3 corresponding to scenar-
ios SC13-15 and SC16-18 in Table 2. Fig. 11 plots SC13-15
where the diskC SKU costs 10% less than the ssdC SKU, and

(a) (b) (c)

Fig. 10. Solutions for (a) SC10 - $11,900; (b) SC11 - $20,338; (c) SC12 - $28,875 (see Table 2 for details). Circle positions indicate tenant scheduling
policy and circle size/annotation indicate hardware SKU provisioning policy.

1456 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

(a) (b) (c)

Fig. 11. Solutions for (a) SC13 - $17,681; (b) SC14 - $26,486; (c) SC15 - $37,264 (see Table 2 for details). Circle positions indicate tenant scheduling
policy and circle size/annotation indicate hardware SKU provisioning policy.

Fig. 12 plots SC16-18 for the case where the diskC SKU costs
30% less.

Interestingly, for this set of SLOs, in some scenarios, the
optimal solution uses the ssdC SKU with two different ten-
ant scheduling policies. As seen in Figs. 11(a), 12(a), there
are two blue bubbles representing ssdC servers – one bub-
ble represents servers that are scheduled with only 10tps
tenants and the other represents servers that are scheduled
with a mix of tenants.

Since we have a 100tps SLO in S3, the diskC servers pro-
vide better value because they can handle the same number
of 100tps tenants at a lower price. This is why we pre-
dominantly see diskC servers in the solutions as the tenant
ratio shifts toward the high-performance tenants. Similar to
Fig. 10, as we decrease the cost of the diskC SKU (Fig. 12),
or increase the number of 100tps tenants (SC15 in Fig. 11
and SC18 in Fig. 12), the optimal solution provisions mostly
cheaper diskC servers.

Note that in Fig. 11(c), the diskC servers (red bubble) are
scheduled with just one 10tps tenant per server. A simpler
solution (with a possibly higher cost) might be to sim-
ply schedule no 10tps tenants on the diskC servers. Such
solutions are discussed in the following section.

3.2 Suboptimal Solutions – Simplicity vs Cost
In this section, we discuss issues related to the simplicity
and manageability of the hardware provisioning and ten-
ant scheduling policies dictated by our framework. At the
outset, note that our notion of “total cost” is simplistic as it
is only defined in terms of the costs of individual servers.
In cloud deployments, issues such as cluster manageability
also carry a cost and play an important role in provisioning

decisions. In particular, heterogeneous clusters comprised
of multiple SKUs can be harder to maintain, manage, and
administer compared to homogeneous clusters comprised
of a single SKU. A related issue is the complexity of
scheduling policies. A straightforward scheduling policy
(e.g., assign all tenants with SLO s1 on SKU 1, s2 on SKU
2, etc.) may simplify hardware provisioning decisions as
well as tenant pricing policies. For instance, if tenants of a
given SLO class are tied to a certain SKU, then they can
be charged at a rate determined by the price of that SKU.
In this paper, we do not attempt to quantify the notion of
cluster “complexity”, but leave that as part of future work.
Nevertheless, the additional server costs imposed by sim-
pler hardware provisioning and tenant scheduling policies
can be determined.

Table 3 lists four alternative methods to our optimizing
framework. In method ssdC-only, we use a homogeneous
cluster comprised only of the ssdC SKU. Note that this
method allows a heterogeneous mix of tenants with dif-
ferent SLOs on a server and also allows for different tenant
scheduling policies on different ssdC servers. Method diskC-
only is similar, but with diskC servers taking the place of the
ssdC servers. In method ssdC-hightps, all of the high-end ten-
ants are scheduled on the ssdC servers, and all of the low-
end tenants on the diskC servers. In method ssdC-lowtps,
this assignment is reversed. Thus, in the latter two poli-
cies, the SLOs are tied to SKUs. Note that another possible
method is to provision a homogeneous cluster and maintain
a homogeneous tenant scheduling policy each server. We
omit this method since it is subsumed by the ssdC-only and
the diskC-only methods that allow for both homogeneous
and heterogeneous tenant scheduling policies.

(a) (b) (c)

Fig. 12. Solutions for (a) SC16 - $16,250; (b) SC17 - $21,000; (c) SC18 - $29,400 (see Table 2 for details). Circle positions indicate tenant scheduling
policy and circle size/annotation indicate hardware SKU provisioning policy.

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1457

TABLE 3
Comparing Tenant Scheduling on Two Hardware SKUs

In Figs. 13–15, we plot the total costs obtained by
the five methods outlined in Table 3 for the 18 scenarios
described Table 2. All solutions are plotted relative to the
cost-optimal solution (shown as the left-most bar) discussed
in Section 3.1. At a high-level, while in each case there are
some solutions that are identical or very close to the opti-
mal solution, there is no single method that consistently gives
a solution that is close to the optimal solution in all scenarios.
For example, while ssdC-lowtps seems to match optimal cost
in the S = {100tps, 1tps} cases, this is not the trend when
S = {10tps, 1tps}. In another case, while the ssdC-only solu-
tion is optimal for the scenarios depicted in Fig. 13, it is not
optimal for the scenarios shown in Fig. 14.

Let us examine a few solutions in more detail. In
Fig. 13(a) and (b), which correspond to the {10tps, 1tps}
SLO scenarios SC1-3 (diskC SKU cost 10% less than the
ssdC SKU) and SC4-6 (diskC SKU cost 30% less than the
ssdC SKU) in Table 2 respectively, the diskC-only solu-
tion is significantly worse than the optimal solution
while the ssdC-only solution is optimal. The ssdC-hightps
method appears increasingly attractive as the proportion
of 10tps tenants (high-perf. tenants) grows. The costli-
est solutions are the diskC-only and ssdC-lowtps methods.
In Fig. 14 (the S = {100tps, 1tps} case), the ssdC-only
and the ssdC-hightps methods are expensive solutions in

(a)

(b)

Fig. 13. Relative costs corresponding to solutions for {10tps, 1tps} sce-
narios: (a) SC1-3; (b) SC4-6 (see Table 2) using our framework and 4
simple methods (see Table 3).

(a)

(b)

Fig. 14. Relative costs corresponding to solutions for {100tps, 1tps} sce-
narios: (a) SC7-9. (b) SC10-12 (see Table 2) using our framework and
4 simple methods (see Table 3).

Fig. 14(b) and (a) respectively, since the ssdC and the diskC
SKUs can both handle only 25 100 tps tenants, but the
ssdC server is more expensive. Also, a homogeneous diskC
cluster is generally more expensive when the tenants skew
towards the 1tps SLO. This is because the ssdC SKU can
schedule many per 1tps tenants than diskC SKU (Fig. 3).
The trends shown in Fig. 15 (for S = {100tps, 10tps}) are
similar to those of Fig. 14 for the same reason.

(a)

(b)

Fig. 15. Relative costs corresponding to solutions for {100tps, 10tps}
scenarios (a) SC13-15. (b) SC16-18 (see Table 2) using our framework
and 4 simple methods (see Table 3).

1458 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

This analysis shows that simpler provisioning methods
may come close to the optimal solution provided by our
framework, but no single method produces consistently
good solutions. Moreover, these simpler heuristics still
require SKU performance characterization in order to schedule
tenants while adhering to tenant SLOs. Our framework pro-
duces low-cost hardware provisioning and tenant schedul-
ing policies for multi-tenant database clusters that are up to
33% less costly than simpler provisioning methods. Thus,
the cost benefit of an optimal solution over a suboptimal
solution must be weighed against cluster manageability
and simplicity.

4 THE COST OF DYNAMIC ENVIRONMENTS

Throughout our previous analysis and discussion, we
assumed that the DaaS provider only needs to optimize
once for a static number of tenants. In this section, we will
relax this assumption and consider what happens when the
tenant population changes in size and/or SLO make-up
(the ratio of high-performance tenants to low-performance
tenants).

Specifically, we consider the following problem: first, the
DaaS provider has an active set of tenants, T1, that have
been optimally scheduled to a set of provisioned servers
according to our optimization framework. In addition, the
provider has another set of tenants, T2, that potentially
has a different ratio of high-performance tenants to low-
performance tenants. The set T2 is intermittently active and
is also optimally scheduled to provisioned servers using
our framework. The problem we consider is: Given that the
provider has monitored and profiled the T2 tenant set, and
knows that they will soon become active for time length
w, should the provider (i) keep the two tenant populations
independently locally-optimized; or, (ii) globally-optimize
all T1 ∪ T2 tenants? (Note that if w = ∞, this is the case
where the T2 tenants will remain active indefinitely.)

When faced with these two options, we must account for
the cost of the global optimization over different sets of ten-
ants. When considering a global optimization across T1∪T2,
we must consider what happens when a T2 tenant that was
scheduled on a particular server is re-scheduled to a dif-
ferent server. Here, we must migrate the tenant’s database
from one server to another.5 Since tenant migration con-
sumes resources, this action is not free and so we associate
a cost function g(dest, source), in dollars, with migrating a
tenant from server source to server dest. (For simplicity, we
assume fixed sized tenants.)

Formally, we define an extension to Problem Statement 1
that compares the cost of keeping tenant populations
locally-optimized or globally-optimizing all the tenants.
Recall that the solution to Problem Statement 1 is a pair of
variables (a, B) where a represents the number of machines

5. In environments with high availability (HA) SLAs, tenant
databases are replicated across multiple servers and we may only need
to re-direct user requests to a replica. This “swap” approach is gener-
ally not as expensive as migrating tenant data. However, considering
HA SLAs is beyond the scope of this paper and is the focus of future
work. For our discussion, we will simply consider a single replication
environment, or one with a fixed primary copy, which in turn requires
tenant data migration.

of each hardware SKU to buy and B represents the schedul-
ing policy of tenants onto each of the hardware SKUs.

Problem Definition 2. We are given SLO set S, server SKU
multiset M, and two tenant sets T1 and T2. Using our
framework to solve Problem Statement 1 independently for
T1 and T2, we get the locally-optimized solutions (a1, B1)
and (a2, B2) respectively. Over a time length w, the amor-
tized server cost of the T1 solution (a1, B1) will be Cw

1 and
the amortized server cost of the T2 solution (a2, B2) will be
Cw

2 . Alternatively, the provider can globally-optimize the
combined tenant set T1 ∪ T2 using our framework and get a
scheduling and provisioning solution (a1∪2, B1∪2) with a cost
of Cw

1∪2. However, execution this solution requires migrating
the set of tenants π ⊆ T1 ∪T2. This migration incurs the cost
�∀τi∈π g(to(τi), from(τi)), where from(τi) and to(τi) provide
the source and destination servers for migrating τi respec-
tively. The provider should only globally-optimize all T1 ∪ T2
tenants for the upcoming w timespan if:

Cw
1 + Cw

2 > Cw
1∪2 + �∀τi∈π g(to(τi), from(τi)) (1)

In the following section, we first analyze the difference
between the sum of the costs of the locally-optimized solu-
tions, C∞

1 + C∞
2 , and the cost of the globally-optimized

solution, C∞
1∪2. Then, we consider the cost of migration

when globally optimizing the entire tenant population.

4.1 The Cost of Locally-optimal and
Globally-optimal solutions

From Equation 1, it is intuitive to see that C∞
1 + C∞

2 − C∞
1∪2

bounds the migration cost if the provider wishes to globally
optimize T1 ∪ T2. If the cost difference between the locally-
optimal solution and the globally-optimal solution is small,
then it means that the cost per tenant migration must be
very low to make global re-optimization viable. We now
present some results that show how big the cost differences
can be.

In Fig. 16, we plot (C∞
1 +C∞

2)/C∞
1∪2 for various sets of T1

and T2 tenants where S = {H, L}, and H corresponds to the
100tps SLO and L corresponds to the 10tps SLO. In all of
the sub-figures, we considered a variety of T2 populations
from 1,000 to 20,000 (x-axis) and the new ratios that we
considered are 1H:6L, 1H:4L, 1H:2L, 1H:1L, 2H:1L, 4H:1L,
and 6H:1L (the various data series). The three sub-figures
(a)–(c) correspond to 10,000 T1 tenants with tenant ratios
1H:4L, 1H:1L, and 4H:1L respectively.

In Fig. 16(a), we see that if the T2 population has
a SLO ratio skewed toward the 100tps (i.e., ‘H’) objec-
tive, the global re-optimization solution is significantly
cheaper (over 5%). Since the T1 tenants are skewed in a
1H:4L ratio, the 2H:1L, 4H:1L, and 6H:1L are oppositely
skewed. Intuitively, separately optimizing for two oppo-
sitely skewed populations should result in a higher cost
than a solution that has optimized for the combined pop-
ulations. Furthermore, we notice that as the T2 population
increases in size, dwarfing T1, the cost differences begin
to shrink since a dominating percentage of (T1 ∪ T2) is T2,
which was optimally scheduled with an optimal server pro-
visioning. We also notice that if the set T2 has a similar
tenant ratio (1H:2L, 1H:4L, 1H:6L – the dashed curves in

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1459

(a) (b) (c)

Fig. 16. Relative cost difference between the two locally-optimized solutions, (C1 + C2), and a single globally-optimized solution, C1∪2. The
tenants have either “H” (100tps) or “L” (10tps) SLOs. There are 10,000 T1 tenants. We varied the size of the T2 tenant set and also the ratio of “H”
and “L” tenants in each sub-figure. The diskC server SKU is 10% cheaper than the ssdC server SKU: (a) T1 tenants with 1H:4L SLO ratio. (b) T1
tenants with 1H:1L SLO ratio. (c) T1 tenants with 4H:1L SLO ratio.

Fig. 16(a)) as T1, then there is a negligible cost difference
between the locally-optimized and the globally-optimized
solutions.

So from the results shown in Fig. 16(a), we observe
that for dealing with Problem Definition 2, the globally-
optimized solution is preferred when the T1 and T2 tenant
sets have opposing SLO ratios. For example, in Fig. 16(a),
when T1 has a 1H:4L SLO ratio and T2 has a 4H:1L SLO
ratio, optimizing the tenant sets separately is very costly.

This observation is also supported by the results shown
in Fig. 16(c), where the T1 population has an SLO ratio
of 4H:1L. The analysis shows that the 1H:2L, 1H:4L, and
1H:6L T2 population curves have higher cost (over 6%).
If T2 has an H-oriented skew (the solid curves), we see
that there is a negligible cost difference between the two
solutions. In Fig. 16(b), where the T1 population is bal-
anced at 1H:1L, we see the cost differences when the T2
tenants are skewed toward the 10tps (L) SLO. However,
in this case, the cost difference between the local and the
globally-optimized solutions is never over 3%.

4.2 Bounding the Cost of Migration for
Global-optimization

Now that we have seen that there can be significant cost
differences between having two locally-optimized solutions
versus one globally-optimized solution, we can analyze the
bounds on the migration costs.

Recall Equation 1 (the cost comparison model
from Problem Statement 2): Cw

1 + Cw
2 > Cw

1∪2 +
�∀τi∈π g(to(τi), from(τi)), where Cw

i is the cost of the
optimized solution for tenant set Ti over the timespan w,
and π is the set of tenants that is migrated as a result of
global-optimization. For this discussion, let us simplify
our model so that all the tenant migrations cost the same
amount γ , i.e. g(to(τi), from(τi)) = γ,∀τi ∈ π . Therefore,
we can simplify our migration cost in Equation 1 to the
number of migrations, |π |, multiplied by the migration
cost, γ , and bound the re-optimization migration cost as
follows:

(Cw
1 + Cw

2 − Cw
1∪2 > |π |γ) (2)

We can apply this equation to the results in Fig. 16(a)–(c).
First, let us consider Fig. 16(a), which corresponds to T1
tenants from the scenario SC13 (10,000 tenants, 1H:4L, see
Table 2). Now, consider the case when |T2| = 5000 with

a ratio of 4H:1L (in Fig. 16(a)). In this case, the locally-
optimized solutions are around 5% more expensive than
the globally-optimized solution. If we consider w = ∞, then
Cw

1 + Cw
2 − Cw

1∪2 = 66528.
Now, to consider migration, we have to construct the

set π . To compute the set π , we first identified server SKUs
from the T1 solution where more tenants of a given SLO
class were scheduled onto the SKU than the T1∪2 solu-
tion. Then, we count the tenants that need to be migrated
away from this server SKU so that its tenant scheduling
policy matches the globally-optimized solution. For exam-
ple, if the T1 solution requires 94 ssdC servers with a (20H,
38L) scheduling policy, while the T1∪2 solution requires 274
ssdC servers with a (22H, 33L) scheduling policy, then we
calculate that 94 × (38L − 33L) = 470L tenants must be
moved/migrated. We only count the tenants that need to
be migrated away from the server and ignore tenants that
need to migrate to a server to avoid double counting. After
we count the migrating tenants from the T1 solution, we
do the same for the T2 solution.6

Following the step above, we find that |π | = 8285, thus
γ must be less than $8.03 (since 66528 > 8285γ). Thus, if the
cost of migration is greater than or equal to $8.03, then it is
more expensive to globally-optimize all the tenants. Since
$8.03 is the bounding cost of migrating the 1GB tenant, this
suggests that it may be advantageous to re-optimize all the
tenants if we are faced with this decision only once (i.e.
w = ∞).

On the other hand, consider the case when T2 is active
for 12hrs and then inactive for the subsequent 12hrs every
day (e.g., a diurnal pattern). Thus, w = 12hrs, and Cw

1 +
Cw

2 − Cw
1∪2 = 1.28. Now, if |π | = 8285, then γ < $0.0001

for migration to be cost effective (1.28/8285 = 0.0001) This
means that globally-optimizing every 12hrs is only feasible
when migration can be done at a very low cost.

To summarize, in this section, we have discussed how
(i) tenant populations that vary in size, and (ii) tenant pop-
ulations that vary in SLO make-up can change the way we
apply our optimization framework. Intuitively, optimizing
two independent sets of tenants results in a solution that
is more costly than optimizing across the combined set of
tenants. A globally optimal solution may be cheaper (than
the independent optimized solutions), but to dynamically

6. We acknowledge this approach may not be optimal and is a
complex problem in its own right. It is the focus of future work.

1460 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

(a)

(b)

Fig. 17. Buffer-band SKU performance characterizing functions for S =
{100tps, 1tps} in dashed blue. Original benchmarked functions in green:
(a) Performance on the diskC SKU. (b) Performance on the ssdC SKU.

switch to the global optimal solution requires consider ten-
ant migration costs. Using the method described in this
section, we can incorporate the migration cost to determine
when to switch to the globally-optimal solution.

4.3 The Cost of Tenant SLO Elasticity
Our discussion so far on the dynamicity in the cluster has
been limited to changes in the new subscription ratios of H
tenants to L tenants. In this section we present an analysis of
two different approaches in handling tenant SLO elasticity.
The scenario we consider is when the L tenants wish to
upgrade their SLO from 10tps to 100tps. For instance, such
an upgrade may be necessary if a DaaS customer has found
that their online e-commerce business has started to take off
and they now need a higher transactional throughput.

Let us consider scenario SC13 in Table 2 where we
have 2000 100tps tenants and 8000 10tps tenants. An
“Aggressive” approach to provisioning the hardware for
this scenario is to use Fig. 7 as input into our optimization
framework and to produce the solution shown in Fig. 11(a).
However, in this case, if some of the 10tps tenants wish
to upgrade their SLO to 100tps, the DaaS provider has no
choice but to provision new servers and physically move
the tenant’s data. The DaaS provider cannot upgrade the
tenant SLO “in-place” on the server because, as we showed
in Fig. 6, the substitution ratio of low performance tenants
to high performance tenants is typically r:s where r > s.
Thus, an Aggressive approach is very sensitive to any per-
turbations caused by the tenants changing their SLOs, as
more servers may need to be provisioned.

On the other hand, consider a “Buffer-band” approach
whereby we consciously scale back the characterizing fron-
tier functions that we use in our optimization framework.

TABLE 4
Tenant SLO Upgrade Costs When Using an Aggressive

Packing Approach Versus a Buffer-Band Approach
(See SC13 Table 2)

10% of the 10tps tenants upgrade to 100tps. If more servers are needed, we can
choose to buy ssdC or diskC SKUs.

In Fig. 17, we show the Buffer-band characterizing function
(dashed blue line) where we scale back our benchmark
results by 10% in both axes. Feeding the blue character-
izing functions into our optimization framework for SC13
results in solutions that are significantly more expensive
than the Aggressive approach. In Table 4, we show that the
Buffer-band solution is almost 20% more expensive (this is
not surprising as our band is scaled back by 10% in two
axes). However, if the DaaS provider finds that 10% of the
10tps tenants upgrade their SLO subscriptions to 100tps,
the Aggressive approach will require (8000 × 10%)/25 = 32
(25 is the maximum 100tps limit for both ssdC and diskC)
more machines, and this added cost surpasses the cost
of the Buffer-band approach. In this specific example, the
Buffer-band approach can handle 10% of the 10tps tenants
upgrading “in-place” without requiring new servers or data
movement. In Table 4, we show two different upgrade costs
for the “Aggressive” approach since the provider has the
choice of buying either more ssdC or diskC SKUs to accom-
modate the upgrading tenants. Furthermore, in our analysis
here, we have not included data movement costs incurred
by the Aggressive approach when upgraded tenants are
moved to the new servers.

In the scenario above, if less than 10% of the 10tps
tenants are upgraded, then Table 4 suggests that the
Aggressive approach is still cheaper (i.e., if the buffer is
never fully utilized). Therefore, the efficacy of the Buffer-
band approach is tied to the accuracy of the provider’s
estimates of the tenant elasticity. In general, the cloud
provider could use a combination of the Buffer-band
approach and provision machines on the fly (the Aggressive
method) based not only on their costs but also busi-
ness decisions, such as how reactive they need to be to
upgrade/downgrade requests, and what penalties they are
willing to incur to deal with (temporary) SLO violations.

5 DISCUSSION

While the focus of this paper is on performance SLOs in a
DaaS, we have not discussed the impact of tenant replica-
tion (a common mechanism that is used to support uptime
SLAs) on our performance models. While data replica-
tion may improve performance for read-mostly workloads,
maintaining replica consistency under update-heavy work-
loads places additional demands on the resources of DaaS
providers. A careful study of how to deal with replica con-
sistency and availability while providing performance SLOs
is beyond the scope of this paper, but we sketch an initial
method to deal with this issue.

For our framework to handle replica updates, we can
modify the benchmarking method that is used to determine

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1461

the SKU performance characterizing function (Section 2)
to account for the extra work that is needed to maintain
replica consistency. For example, instead of measuring ten-
ant performance on a single server as we have done, we
would measure the tps observed by a tenant whose replicas
are placed on r servers and maintained via eager or lazy
updates. The functions obtained from such a benchmark
can be used as constraints to the optimization problem
defined in Section 2.3.

Using our framework, we can pose another interest-
ing question: given a cluster with a specific composition
of hardware SKUs, what performance SLOs can the DaaS
provider agree to so that it maximizes the number of ten-
ants that can fit on this cluster? For this question, we need
to formulate a new objective function that optimizes for
max(|T|) in Problem Definition 1 where T is the set of all
tenants. The remaining constraints specified in Problem
Definition 1 remain the same.

We note that in calculating the amortized monthly costs,
we have not accounted for run time energy costs or amor-
tized infrastructure cost. However, these can be accommo-
dated in our framework (provided that there is an accurate
model to compute these costs for each SKU) by simply
adding these costs to the amortized monthly cost that we
use in this paper.

Finally, in this paper we have used an explicit
benchmarking-based approach to understand the effects of
mixing SLO classes and tenants. However, our framework
is modular in that it is possible to leverage other analytic
approaches that predict the impact of mixing tenants with
different workloads and SLOs [12], [19].

6 RELATED WORK

DBMSs have traditionally been engineered for a single-
tenant “on-premises” environment. However, emerging
trends indicate that DBMS workloads are moving towards
the cloud. In recent literature [1], [3], [32], several systems
for providing databases in the cloud have been proposed
and discussed.

In [10], issues such as performance, scalability, secu-
rity, availability and maintenance must be reconsidered in
a multi-tenant cloud environment. Furthermore, as shown
in [21], cloud infrastructure is a costly investment for DaaS
providers. Thus, an important goal in such an environment
is to maximize server utilization [13], [15], [29], [33].

As outlined in Section 2.1.3, there are several methods
to consolidate multiple tenants on a single server [5], [6],
[9], [16], [18], [33], [38]. In particular, methods based on the
use of Virtual Machines (VMs) have been studied in [2].
However, the performance overhead caused by VMs (pag-
ing [23], contention [31], OS redundancy [18]) may be too
expensive for the more data-intensive workloads consid-
ered in this paper. Thus, a number of frameworks for
building native multi-tenant applications have also been
proposed [7], [14], [35].

The first step in providing performance-based SLOs for
customers is to model system performance under a realis-
tic multi-tenant workload (Section 2.2). To this end, recent
work has focused on formulating and evaluating perfor-
mance benchmarks in a cloud environment [17], [25], [36].

Complicating factors such as unpredictable load spikes [11],
interference between tenants [19], [27] have also been ana-
lyzed. Load balancing may require tenant migration [20] or
alternatively, reassignment of a tenant’s “master” replica.
Other work has studied how to benchmark production sys-
tems and train performance and resource utilization models
without breaking performance SLOs [8], [12]. This paper is
different from these prior complementary works because
the focus is on developing a framework for using SKU
performance characterizing models to come up with cost-
effective hardware provisioning policies and tenant schedul-
ing policies for various performance SLOs. However, such
complementary efforts will help formulate a more rigorous
and realistic definition for performance SLAs.

SLAs for cloud-based services are usually formulated in
terms of uptime/availability guarantees [4]. Other work
in this field has considered allowing tenants to choose
between SLAs that guarantee different levels of con-
sistency [26] and response times in in-memory column
databases [34]. It is likely that SLAs published by DaaS
providers in the future will involve a combination of several
factors to satisfy customer requirements.

7 CONCLUSION AND FUTURE WORK

This paper presents an extended study of the cost-
optimization framework for multi-tenant performance
SLOs in a DaaS environment first presented in [30]. Our
framework requires as input, a set of performance SLOs and
the number of tenants in each of these SLOs classes, along
with the server hardware SKUs that are available to the
DaaS provider. With these inputs, we produce server char-
acterizing models that can be used to provide constraints
into an optimization module. By solving this optimization
problem, the framework provides a hardware provision-
ing policy as well as a tenant scheduling policy for the
selected server SKUs. We have evaluated our framework,
and shown that in many cases a mixed hardware cluster
is optimal. We have also explored the impact of simpler
hardware provisioning and tenant scheduling policies. In
addition, we have also shown how our framework can be
extended to deal with dynamic changes in the workload
mix and tenant elasticity.

To limit the scope of our study, we have made some
simplifying assumptions on aspects such as performance
metrics, tenant workload, and multi-tenancy control mech-
anism. Relaxing these assumptions provides a rich direction
for future work. One direction for future work is to include
the impact of replication and load-balancing in our frame-
work, perhaps building on the ideas presented in [28].
Additionally, while our experimental evaluation uses aver-
age performance as an SLO metric, it could be extended to
include variance as well (as implied by the use of random
variables in Definition 2). Imbalanced load or flash-crowd
effects could be modeled in our framework as additional
tenant classes with high performance requirements – this
would produce a hardware “over-provisioning” policy to
deal with these effects. If workload spikes are detected
in practice, tenants could be dynamically re-scheduled on
these extra machines to maintain performance objectives. In
addition, while the tenant classes used in this paper have

1462 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 6, JUNE 2014

different memory and disk requirements, other workloads
should be considered as well. Finally, in our framework
we have taken an approach of explicitly benchmarking the
tenant workload classes and mixes, but our framework
could be extended to take a more analytical approach that
predicts the impact on performance of different workload
mixes, perhaps by using multi-query optimization-based
approach to estimate the impact on performance [12], [19].
Optimization of tenant and hardware profiling is another
challenging and important direction of future work.

ACKNOWLEDGMENTS

The authors would like to thank David DeWitt, Alan
Halverson, and Eric Robinson for valuable discussions and
feedback on this project. This research was supported in
part by a grant from the Microsoft Jim Gray Systems Lab,
and in part by the US National Science Foundation under
grant IIS-0963993.

REFERENCES

[1] D. J. Abadi, “Data management in the cloud: Limitations and
opportunities,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3–12, Mar.
2009.

[2] A. Aboulnaga, K. Salem, A. A. Soror, U. F. Minhas, P. Kokosielis,
and S. Kamath, “Deploying database appliances in the cloud,”
IEEE Data Eng. Bull., vol. 32, no. 1, pp. 13–20, Mar. 2009.

[3] D. Agrawal, A. E. Abbadi, S. Antony, and S. Das, “Data manage-
ment challenges in cloud computing infrastructures,” in Proc. Int.
Conf. 6th DNIS, Aizuwakamatsu, Japan, 2010.

[4] Amazon [Online]. Available: http://aws.amazon.com/ec2-sla/
[5] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger,

“Multi-Tenant databases for software as a service: Schema-
mapping techniques,” in Proc. SIGMOD, Vancouver, BC,
Canada, 2008.

[6] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold, “A comparison
of flexible schemas for software as a service,” in Proc. SIGMOD,
Providence, RI, USA, 2009.

[7] S. Aulbach, M. Seibold, D. Jacobs, and A. Kemper, “Extensibility
and data sharing in evolving multi-tenant databases,” in Proc.
IEEE 27th ICDE, Hannover, Germany, 2011.

[8] S. Babu, N. Borisov, S. Duan, H. Herodotou, and V. Thummala,
“Automated experiment-driven management of database sys-
tems,” in Proc. 12th Conf. HotOS, Berkeley, CA, USA, 2009.

[9] P. Bernstein et al., “Adapting microsoft SQL server for cloud
computing,” in Proc. IEEE 27th ICDE, Hannover, Germany, 2011.

[10] C.-P. Bezemer and A. Zaidman, “Multi-tenant SaaS applica-
tions: Maintenance dream or nightmare?” in Proc. IWPSE-EVOL,
Antwerp, Belgium, 2010.

[11] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.
Patterson, “Characterizing, modeling, and generating workload
spikes for stateful services,” in Proc. 1st SoCC, Indianapolis, IN,
USA, 2010.

[12] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A.
Patterson, “Automatic exploration of datacenter performance
regimes,” in Proc. ACDC, Barcelona, Spain, 2009.

[13] H. Cai, B. Reinwald, N. Wang, and C. J. Guo, “SaaS multi-tenancy:
Framework, technology, and case study,” Int. J. Cloud Applicat.
Comput., vol. 1, no. 1, pp. 62–77, 2011.

[14] Y. Cao et al., “ES2: A cloud data storage system for support-
ing both OLTP and OLAP,” in Proc. IEEE 27th ICDE, Hannover,
Germany, 2011.

[15] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahdat,
“Managing energy and server resources in hosting centers,” in
Proc. 18th SOSP, New York, NY, USA, 2001.

[16] F. Chong, G. Carraro, and R. Wolter. (2006). Multi-tenant Data
Architecture [Online]. Available:
http://msdn.microsoft.com/en-us/library/aa749086.aspx

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,” in
Proc. 1st SoCC, Indianapolis, IN, USA, 2010.

[18] C. Curino et al., “Relational cloud: A database-as-a-service for the
cloud,” in Proc. CIDR, Pacific Grove, CA, USA, 2011.

[19] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal,
“Performance prediction for concurrent database workloads,” in
Proc. SIGMOD, Athens, Greece, 2011.

[20] A. J. Elmore, S. Das, D. Agrawal, and A. E. Abbadi, “Zephyr:
Live migration in shared nothing databases for elastic cloud
platforms,” in Proc. SIGMOD, Athens, Greece, 2011.

[21] J. Hamilton, “Cooperative expendable micro-slice servers
(CEMS): Low cost, low power servers for internet-scale services,”
in Proc. 4th Biennial CIDR, Pacific Grove, CA, USA, 2009.

[22] D. Hastorun et al., “Dynamo: Amazons highly available key-value
store,” in Proc. 21st SOSP, Washington, DC, USA, 2007.

[23] G. Hoang, C. Bae, J. Lange, L. Zhang, P. Dinda, and R. Joseph,
“A case for alternative nested paging models for virtualized
systems,” Comput. Archit. Lett., vol. 9, no. 1, pp. 17–20, Jan.
2010.

[24] E. P. C. Jones, D. J. Abadi, and S. Madden, “Low overhead concur-
rency control for partitioned main memory databases,” in Proc.
SIGMOD, Indianapolis, IN, USA, 2010.

[25] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation of alter-
native architectures for transaction processing in the cloud,” in
Proc. SIGMOD, Indianapolis, IN, USA, 2010.

[26] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann,
“Consistency rationing in the cloud: Pay only when it matters,”
in Proc. VLDB, Lyon, France, 2009.

[27] T. Kwok and A. Mohindra, “Resource calculations with con-
straints, and placement of tenants and instances for multi-
tenant SaaS applications,” in Proc. 6th ICSOC, Sydney, NSW,
Australia, 2008.

[28] W. Lang, J. M. Patel, and J. F. Naughton, “On energy management,
load balancing and replication,” in Proc. SIGMOD Rec., New York,
NY, USA, 2009.

[29] W. Lang, J. M. Patel, and S. Shankar, “Wimpy node clusters: What
about non-wimpy workloads?” in Proc. 6th Int. Workshop DaMoN,
Indianapolis, IN, USA, 2010.

[30] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan, “Toward multi-
tenant performance SLOs,” in Proc. IEEE 28th ICDE, Washington,
DC, USA, 2012.

[31] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the xen
virtual machine environment,” in Proc. VEE, Chicago, IL, USA,
2005.

[32] R. Ramakrishnan, B. Cooper, A. Silberstein, and U. Srivastava,
“Data serving in the cloud,” in Proc. LADIS, 2009.

[33] B. Reinwald. (2010). Multitenancy [Online]. Available:
http://www.cs.washington.edu/mssi/2010/BertholdReinwald.pdf

[34] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner,
and A. Zeier, “Predicting in-memory database performance for
automating cluster management tasks,” in Proc. IEEE 27th ICDE,
Hannover, Germany, 2011.

[35] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang, “Native sup-
port of multi-tenancy in RDBMS for software as a service,” in
Proc. 14th EDBT, Uppsala, Sweden, 2011.

[36] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S. Babu,
“Cutting corners: Workbench automation for server benchmark-
ing,” in Proc. ATC USENIX, Berkeley, CA, USA, 2008.

[37] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy-aware consolida-
tion for cloud computing,” in Proc. HotPower, Berkeley, CA, USA,
2009.

[38] C. D. Weissman and S. Bobrowski, “The design of the force.com
multitenant internet application development platform,” in Proc.
SIGMOD, Providence, RI, USA, 2009.

[39] L. Zhou and W. D. Grover, “A theory for setting the “safety
margin” on availability guarantees in an SLA,” in Proc. 5th Int.
Workshop DRCN, Ischia, Italy, 2005.

LANG ET AL.: TOWARDS MULTI-TENANT PERFORMANCE SLOS 1463

Willis Lang is a Research SDE with Microsoft
Corporation at the Jim Gray Systems Lab in
Madison, WI. He received the B.Math. degree
from the University of Waterloo, the M.Sc.
degree from the University of Michigan, and the
Ph.D. degree from the University of Wisconsin-
Madison. His current research interests include
data management, cost-effective computing, and
computer systems.

Srinath Shankar works as a Research SDE
with Microsoft Corporation at the Jim Gray
Systems Lab in Madison, WI, USA. He received
the B.Tech. degree from the Indian Institute of
Technology, Madras and the M.S. and Ph.D.
degrees in computer science from the University
of Wisconsin-Madison.

Jignesh M. Patel received the Ph.D. degree
from the University of Wisconsin-Madison, where
he is currently a Professor in Computer Science.
He is an ACM Distinguished Scientist, and also a
member of ACM and IEEE. His current research
interests include high performance and scalable
big data management.

Ajay Kalhan is a Principal Development Lead for
SQL Azure at Microsoft Corporation.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

