
Predictive Provisioning: Efficiently Anticipating
Usage in Azure SQL Database

Lalitha Viswanathan
University of Wisconsin-Madison

lviswanathan@wisc.edu

Bikash Chandra∗
IIT Bombay

bikash@cse.iitb.ac.in
*while an intern at Microsoft

Willis Lang
Microsoft Gray Systems Lab

wilang@microsoft.com

Karthik Ramachandra
Microsoft Gray Systems Lab

karam@microsoft.com

Jignesh M. Patel
University of Wisconsin-Madison

jignesh@cs.wisc.edu

Ajay Kalhan
Microsoft

ajayk@microsoft.com

David J. DeWitt+

MIT

david.dewitt@outlook.com
+work done while at Microsoft

Alan Halverson
Microsoft Gray Systems Lab

alanhal@microsoft.com

Abstract—Over-booking cloud resources is an effective way
to increase the cost efficiency of a cluster, and is being studied
within Microsoft for the Azure SQL Database service. A key
challenge is to strike the right balance between the potentially
conflicting goals of optimizing for resource allocation efficiency
and positive user experience. Understanding when cloud database
customers use their database instances and when they are idle
can allow one to successfully balance these two metrics. In our
work, we formulate and evaluate production-feasible methods to
develop idleness profiles for customer databases. Using one of
the largest data center telemetry datasets, namely Azure SQL
Database telemetry across multiple data centers, we show that
our schemes are effective in predicting future patterns of database
usage. Our methods are practical and improve the efficiency of
clusters while managing customer expectations.

I. INTRODUCTION

The cloud services enterprise is a tight-margin business
where single digit percentage swings in cost and/or revenue
mean the difference between an operating profit and an
operating loss. Cloud service providers pay hundreds of millions
of dollars per data center (this is just the initial investment),
and the key to succeeding in the cloud business is to efficiently
manage cluster resources in data centers while maintaining a
positive customer experience. For instance, Microsoft operates
31 data centers1 around the world, which requires investing
billions of dollars in CAPEX costs that must be efficiently
leveraged to generate revenue. Consequently, there is immense
industry and academic interest in studying how to efficiently
deploy and assign resources to cloud customers.

Most prior studies (see Section VI) are based on the premise
that over-booking a cluster’s resources is a simple and effective
way to increasing cluster efficiency. Over-booking improves
cluster productivity by matching the available/provisioned
computing resources (e.g., CPU) to the actual use by customer
workloads, thereby allowing a cloud provider to service the
same workload with fewer resources. However, when over-
booking, there is a danger of under-provisioning, which can
hurt the quality of service. For example, if two workloads are
over-provisioned on a single node that can support only one
active workload, then the service can suffer if both workloads
are simultaneously active.

1At the time we prepared this manuscript.

��������	�
�����
����
�����

��
��

�
��

�
���

��
���

�

��

���
��

��
�

����������
����
���
 !

"����#"���
�������

����������
����������
��	��

�	��
$%&
����
��
'&$%

��������	
�������

(�)
�*���
+��������

������
���
��#

������
�����

,��������-
������	�
���
�*��������

,�
��

��
���

-

��

��

�

���
��

��
��

�
�
�

.�

��

�	
��

�

�� �

�

(!)
�����
"��/0

������

+����� ��������
���

��#������
�����

(1)
�
�����
����
���
��

��
����
���
 !
��-����

()
2�*���
����������

���
.��
����
-���

Fig. 1. Our optimization space for over-booking strategies. Our methods
balance the cost efficiency of the service and user satisfaction/availability. A
quiescing mechanism is used to reclaiming resources from a database, and a
resume mechanism is used to assign back resources to a reclaimed database.

One approach to address this multi-tenant provisioning
problem is to use telemetry data from production operations,
and to develop models that identify patterns in service usage.
Then, these patterns can be used to predict future accesses to
determine when and how to over-book. This paper develops
a variety of such prediction models, and then uses an actual
trace collected from all of Microsoft Azure SQL Database data
centers to evaluate the proposed models. To the best of our
knowledge, this is the first work on this problem of predictive
provisioning that uses such a large and diverse collection of
actual production telemetry data.

In this paper, we focus on a specific and previously-
proposed coarse-grained over-booking approach for Database-
as-a-Service (DBaaS) clusters [8]. This strategy takes advantage
of SQL Database’s shared-disk architecture that is employed
for certain database tiers. With this strategy, when a database
is idle for a prolonged period, the database is “detached” from
the database engine process (which is a process running an
instance of SQL Server), thereby freeing up resources for other
databases. This operation essentially quiesces the database. In
this paper, we define a resource allocation efficiency metric for
this previously proposed over-booking mechanism as follows:
if a database is quiesced every time that it is idle, then the
resource allocation efficiency for this database is 100%. If

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.155

1111

resources are continuously allocated to the database while it is
idle, then the efficiency for this database is 0%. (This metric
is discussed in more detail in Section III.)

In Figure 1, we show a plot of two optimization metrics.
The first metric, plotted on the y-axis is the resource allocation
efficiency. We will discuss the other metric shortly. On this plot,
the y-intercept represents the normalized resource allocation
efficiency, without over-booking, aggregated over all databases
across all of the worldwide regions that operate the SQL
Database service in a 160 day period in 2016. The absolute
allocation efficiency across the entire service (not shown) is
low, motivating the need for an efficient over-booking method.

In prior work [8], the authors describe a static quiescing
policy that waits for a fixed length of idle time before quiescing
the (database) service. If we consider the extreme case when the
idle time policy parameter asymptotically approaches zero, then
this represents a perfect scheme as no resources are allocated
to any database instance that is idle. We illustrate this scenario
in Figure 1 with the point at the upper left of the plot (point
A). In this previous work, the idle time policy parameter is set
to a non-zero value, such as three hours, and corresponds to
the point B shown in Figure 1. Unfortunately, this previous
approach may cause poor user experience, as when the user
connects to a quiesced database, the user will likely suffer a
brief but noticeable period of unavailability while that database
instance is being resumed. We call this scenario “Resume On-
Demand,” and it can cause negative user experience and lower
the quality of service. We quantify this quality of service metric
on the x-axis, and we describe this metric next.

In this paper, we discuss how to improve the quality of
service in this scenario by preemptively “re-attaching” the
database files, and thus resuming the database instance before
any actual user activity occurs. (Thus, the user will not
experience a degradation in service as the database instance
will be up and running when the user queries are fired.) We use
a measure called the preemptive resume hit rate that is the ratio
of the number of actual preemptive resume events over the
optimal number that is required so that users never encounter
a preempted queisced database when a query is actually fired.
This resume hit rate metric is plotted on the x-axis in Figure 1.

Putting everything together, our problem is that of predictive
provisioning, and can be stated as follows: For a given database
instance, we wish to leverage an idleness model to determine
(a) when we should quiesce a database instance to maximize
the resource allocation efficiency, and (b) when we should
preemptively resume a database instance to maximize our
resume hit rate. In Figure 1, point D indicates the hypothetical
perfect solution that achieves the maximum resource allocation
efficiency and the ideal hit rate.

Solving this problem is a challenging task, especially
at scale. Microsoft has millions of databases hosted on its
SQL Database platform. Fortunately, cloud providers such
as Microsoft have un-ending streams of cloud telemetry that
captures the activity of the databases. With this telemetry data,
we can try to identify “patterns of idleness” in each database
instance to build a predictive resource allocation solution.
However, this vast amount of telemetry data presents many
practical data analysis problems that must be solved to achieve
our desired goal. Thus, we must look for computationally

���������	�
� ��������	 �����
� � �

�

Fig. 2. Database state transition diagram for the quiesce/resume mechanism.

inexpensive analysis methods that can take advantage of the
telemetry data, and can be run continuously on the telemetry
data streams.

In our work, we focus on efficient methods to predict
when we should quiesce an idle database instance, and when
to preemptively resume the database instance before a user
connects to it. In Figure 1, the point C highlights a result from
our methods for a region running our SQL Database service
that hosts hundreds of thousands of database instances. As
illustrated by that summary result, the methods that we propose
in this paper are able to dramatically increase the hit rate while
trading off some efficiency.

To evaluate our methods, we use actual telemetry traces
that cover every single deployed customer database. We show
a number of simple, but highly effective methods that provide
good allocation efficiency along with high resume hit-rates. In
fact, point C in the figure came from a constant time update
and look-up approach with a minimal memory footprint.

The contributions of our work are as follows:

• We formulate an important and practical optimization
problem for over-booking cloud resources based on two
metrics: resource allocation efficiency and preemptive
resume hit rate.

• We describe and identify a number of operationally
scalable and effective methods that leverage past
database activity to tackle our optimization problem.

• We evaluate our methods over a 160 day production
trace (to the best of our knowledge, the largest cloud
production trace studied in the literature) over all of
Microsoft Azure SQL Database regions, and find that
our light-weight approaches are promising, and they
provide a strong baseline for even more sophisticated
approaches in the future.

II. BACKGROUND

Microsoft Azure SQL Database: Microsoft Azure SQL
Database [1], [2] is a public database service that is deployed
using a Platform-as-a-Service (PaaS) model. The current version
of this service is built on a split storage architecture with
different database tiers: Premium or Standard/Basic. The
premium tier databases store their data on SSD storage that is
attached to the compute nodes, and target high-performance
workloads. On the other hand, the Standard/Basic tier databases
store their data files in a remote Azure Storage service. Since
Standard/Basic tier databases are substantially cheaper than
Premium tier databases, they constitute the vast majority of
Azure SQL Databases. As such, efficient management of these
databases is of critical interest to Microsoft.

Quiescing and over-booking: Our work focuses on the over-
booking mechanism described in [8]. In that prior work, there
are four basic states for an Azure SQL Database instance:
active, quiescent, quiesce, and resume (see Figure 2). The latter

1112

two states (quiesce and resume) represent the mechanism’s tran-
sitioning states corresponding to the database being “detached”
and “attached”, respectively. During the quiescent state, the
database is unavailable to the user, and the cloud provider is
able to recoup/repurpose the allocated resources. On the other
hand, in the active state, the database is available to the user,
and resources are allocated regardless of whether the database
is actually serving any active queries.

Prior work [8] used a simple policy that is based on the
length of the idle period to make transition 1 in Figure 2. For
example, a database may be queisced if it is observed to be
idle for 12 hours. In this previous work, transition 4 was only
made “on-demand”, when a connection was attempted to a
quiescent database. Thus, every transition 4 event could lead
to a negative user experience. We improve upon this previous
work by using Azure SQL Database telemetry to determine the
transition triggers for each step in Figure 2 more intelligently.

Azure SQL Database telemetry: The analysis and evaluation
that we perform in this paper uses Azure SQL Database
telemetry that is emitted from each unique database (instance)
from the time that the database is created to the time that it is
dropped. For each database, telemetry streams capture events
such as the attempts to establish connections, and database
utilization levels (e.g., CPU, I/O, log, etc.) These utilization
levels are captured at a subminute granularity. Prior work has
described this telemetry dataset in more detail [7], [15].

Within Microsoft, we use this telemetry data to simulate
different mechanisms and policies to evaluate their effectiveness
on actual workload patterns at production scale. In this work,
we follow the same approach and leverage this production
telemetry to evaluate models for predictive provisioning.

III. PROBLEM FORMULATION

Previous work [8] has shown that with an idleness-based
quiescence policy, it is possible to reclaim substantial capacity
even after accounting for the associated costs of enforcing
the policy. The authors concluded that the costs associated
with unavailability (due to resuming the database on-demand)
start to dominate as we decrease the idleness policy parameter.
Unavailability leads to SLA violations and subscription refunds
that may nullify any efficiency gains from over-booking.

Furthermore, the static idleness policy (e.g., watching 12
idle hours go by to make a decision) itself is wasteful, but
employed because of its simplicity. Reasoning about these costs,
it is straightforward to observe that the cause of both these
costs is the uncertainty in predicting the future activity (or
idleness) of individual database instances.

Based on these observations, a natural question to ask is
whether we can use telemetry data to identify patterns of
idleness that can then be leveraged to preemptively resume
databases before actual activity occurs. In other words, we
pose the following ambitious problem: Given the fine-grained
telemetry data for each database, can we anticipate its activity
patterns with sufficiently high accuracy so that we could
dynamically quiesce and resume individual databases based
on their activity patterns?

As an approach, in this paper, we deliberately resist the
urge to follow the fashionable trend of throwing an ensemble

idle

active

2hr

2hr4hr

7hr

3.5hr

6.5hr

Fig. 3. Binary activity pattern for a database

of machine learning methods at the problem. Rather, in this
initial approach, we search for simple (but effective) models
that are cheap to compute and intuitive to understand (and
debug) when put into actual operation.

Overall, our goal is to dynamically quiesce and resume
databases using predictive strategies based on an activity-
idleness model that is backed by telemetry data. We now define
two metrics to make this formulation more concrete.

Resource allocation efficiency (E): Let Ti be the total time
that a given database (instance) is idle during the entire time
period under consideration. Let Tq be the total time it spent
in the quiescent state, due to some strategy. Then the resource
allocation efficiency E of a strategy with respect to this database
is defined as the ratio of Tq over Ti. Aggregating over an entire
Azure SQL Database region R, we get,

E =

∑

R

Tq

∑

R

Ti
(1)

A solution that gives 100% efficiency is one that quiesces the
database perfectly, so that there is no idle time. This operating
point is not attainable in practice. However, we aim to get as
close to the optimal allocation as possible.

Preemptive resume hit rate (H): Sometimes the strategy
in question may mis-predict the resume time; i.e., a user
connection might appear prior to the anticipated resume time
(when the database is queisced). The preemptive resume hit rate
captures how often a strategy can successfully preemptively
resume a quiesced database before actual user activity is
encountered. It is simply the ratio of the number of successful
preemptive resumptions to the number of quiescing events.

A solution that has a 100% preemptive resume hit rate never
mis-predicts (which would force an on-demand resume.) This
characteristic is hard to attain while maintaining our efficiency
metric (E) above; again, in practice, we aim to maximize the
resume hit rate.

Figure 3 shows a sample of the discretized binary activity
pattern for a database with alternating active and idle periods.
The metrics for the given period of time using a 3-hour
idleness based quiescence policy with on demand resume can
be computed as follows:

Ti = 2hr + 7hr + 6.5hr = 15.5hr

Tq = 4hr + 3.5hr = 7.5hr

E = 7.5/15.5 = 0.48

The resume hit rate would be 0 since we use on-demand resume.

These two metrics quantify the tradeoffs involved in
dynamic quiescence and preemptive resumption and hence
are both necessary to evaluate and compare different methods.
For instance, observe that preemptively resuming a database
in a conservative manner will clearly increase the resume hit

1113

rate (H). If allocation efficiency is not considered, a strategy
that always resumes immediately after quiescence would win.
Similarly, if we do not attempt any preemptive resumptions
at all, the allocation efficiency would be very high since we
remain quiescent until user activity occurs. The resume hit rate
prevents such a strategy from winning. Therefore, any method
that we consider, must attempt to maximize both metrics.

IV. METHODS

With the metrics as described above, we now describe three
methods that address the optimization problem. At the outset,
we re-emphasize that operational efficiency is a key factor in
identifying these methods. In other words, our goal is to be able
to deploy these methods on millions of databases and make
decisions based on the identified patterns. The methods that
we present here are constant time update and look-up methods,
with minimal memory requirement.

To begin, we first describe techniques for preemptive
resumption, while fixing a static quiescence policy as described
in [8]. Then, we propose a dynamic approach that preemptively
resumes databases and also aggressively quiesce databases
based on past database activity patterns. The idea is that static
approaches leave significant low-hanging fruit on the table by
always waiting a fixed amount of time to make a decision.

As a strawman baseline approach, we have also considered
a randomized decision maker that picks times to resume
databases based on a coin flip (our version still uses a static
quiesce policy). We define a parameter wait time as the time
interval at which we make decisions on when to resume. For
every database in the quiescent state, the algorithm chooses
a (weighted) random number at every wait time interval to
decide if it should be resumed. Note that this approach is used
only as a baseline to evaluate other approaches.

A. Idle Time Averaging

This simple approach is based on the hypothesis that for a
given database, the duration of its prior idle periods is a strong
predictor for future idle periods. Based on this hypothesis, we
consider the mean duration of prior idle periods in the history
of each database. However, the duration of past idle periods can
vary significantly, and so we apply a conservative correction
by subtracting the standard deviation of the prior idle periods
from the mean.

We continue to use an idleness-based policy for quiescing
databases and the approach proposed above is used only for
preemptive resumption. The predicted resume time for a given
database is given by μ− σ, where μ is the mean of prior idle
period durations and σ is their standard deviation. The number
of prior idle periods that is used is decided by a parameter Np.

Based on our evaluation of this approach, we observed
that while the results were better than the random strawman
approach, there was still considerable room for improvement.
We refer the reader to Section V for more details regarding our
evaluation. A deeper analysis of the data revealed two main
observations. The first observation is that some databases do not
have a repeating pattern of idle periods (these databases may be
used for ad hoc applications). The second, and more interesting,
observation is the existence of bimodal and trimodal (and

(current)
week

(-3)
week

(-2)
week

(-1)
week

T

(11AM Tue)(11AM Tue)(11AM Tue)(11AM Tue)

Time

peek_window

Fig. 4. Example illustrating N-Week Lookback

beyond) patterns in some databases. Below are two actual Azure
SQL Database examples of idle time patterns in minutes (colors
added to help identify the bimodal and trimodal patterns):

• 2170, 127, 125, 126, 125, 3005, 124, 127, 126, 123, 3008,
128, 123, 128, 126, 3003, 124, 124, 125, 124, 3004, 127,

• 3121,420, 295, 419, 299, 420, 300, 415, 298, 420, 3180, 416,
298, 420, 296, 418, 301, 432, 296, 400, 3180, 422, 299, 413,
300, 420, 296, 419, 299, 416, 3178,

With these types of patterns, the naive averaging-based
approach will never be able to make accurate predictions.

B. N-Week Lookback (Business Rhythm)

The above observation led us to a different approach that
does not attempt to aggregate consecutive idle periods, but
instead relied on the regular work-week business rhythm in
order to make predictive decisions. For example, we hypothesize
that if a database was active from 11am-12pm local time on
Tuesday last week and the week before, then it is likely that it
will be active again at around the same time this week. Figure 4
illustrates how the decision to resume is made at 11am on
Tuesday. In that example, we show a key parameter called
peek window, which is defined as the length of a constructed
time window that we examine for activity when we look back
at activity profiles across past weeks.

This strategy works as follows. Just as before, we use an
idleness-based policy for quiescing databases. At a regular
interval, for every database in quiescent state, we do the
following: Let the current time of day be T , as illustrated
in Figure 4. We look back to the last Nw weeks of data for
this database (Nw = 3 in Figure 4). We examine a span of
time (parameterized as the peek window) starting from T for
activity in each of the Nw weeks. If m out of the Nw prior
weeks had activity during the peek window, then we compute
m/Nw as a score. (In our work, we also considered a number
of linear and non-linear decay schemes to calculate the score.
In this paper, we only present the uniform scoring model.)

Then, with a threshold parameter (which we call re-
sume threshold, denoted as Hr), we examine if the score
is greater than the threshold parameter value, and if so, we
preemptively resume the database at T . For the rest of our
discussions and evaluations, we use Nw = 5.

C. N-Week Lookback with Dynamic Quiescence

In the two methods described above, we have used telemetry
data to resume databases preemptively instead of doing it on-
demand. We now go a step further to identify patterns that
allow us to aggressively quiesce databases as well.

The intuition behind this method is similar to the N-Week
Lookback approach, but applied to quiescence as well. In other
words, we rely on the business rhythm property of the data.

1114

�

���

���

���

���

�

� ��� ��� ��� ��� �

	

��
�
�

�
���
��
��
��
�

��
���
�

��
�

��

�����

	
��

���
	��

	����� ��� !" !"#$%

	
��
����

����
&���

'��
�
��
(

��

�
�)��
�����
�
��

Fig. 5. Four methods evaluated over the telemetry trace. ITA - Idle Time
Averaging; NWL - N-Week Lookback; NWL DQ - N-Week Lookback with
Dynamic Quiescence

For example, we hypothesize that if a database was idle from
9pm-10pm local time on Thursday last week and the week
before, then it is likely that it will be idle again at around the
same time this week. In essence, the quiescence policy that we
use here is a dual of the resumption policy with some changes
as we describe below.

This strategy works as follows. Whenever a database
exhibits idleness for a relatively short duration (say 30 minutes
or one hour), our quiescence mechanism is kicked off. We define
a parameter initial wait (denoted by ε) as the short duration of
idleness signalling that quiescence can be considered. Let the
current time of the day be T , and suppose the idle duration of
ε has been observed for a database. We then take the following
steps for such a database:

• Examine the last Nw weeks of data for this database.

• Examine a span of time (the peek window) starting
from T in each of the Nw weeks.

• If a significant portion of this time has been idle in
the Nw prior weeks, compute the fraction of idle time
as a score.

Then, with a threshold parameter for quiescence (denoted
as Hq), we decide to quiesce the database at time T if the
score is greater than the threshold. Once quiesced, we fall
back to the N-Week Lookback resume method described in
Section IV-B. As we can see, this approach employs a more
aggressive quiescence policy while retaining the benefits of
preemptive resume as before.

V. EVALUATION AND DISCUSSION

Our evaluations are on data from a 160-day telemetry trace
(late spring to early fall 2016) covering all worldwide clusters
that run the Microsoft Azure SQL Database service. There are
over 1.5M databases included in this telemetry trace, and the
raw telemetry data size is many hundreds of terabytes.

��
�����	

��
�!�

��
�����	

�
�!�

��
����	
�
�����
�!�

��
����	
�
�����
�!�

�

���

���

���

���

�

� ��� ��� ��� ��� �

��
�
�	
��

�
���
��
���

�

��
���
��
��
�

 	��!"����
���!�
#��
����

Fig. 6. The N-Week Lookback with Dynamic Quiescence results broken
down per region (e.g., R1, R2, etc.) of Azure SQL Database. Regions that are
lightly populated may be new, and do not have regular workloads yet.

A. Evaluation space and Parameters

In this short paper, we present four computationally scalable
methods that progressively get higher allocation efficiencies and
resume hit rates. Of course, other machine learning algorithms
exist that balance simplicity with effectiveness, but they incur
a higher computational cost (exploring this issue further is
part of future work). While we have examined a number of
different combination of parameter settings and algorithms,
in the interest of space, we focus on the following four key
methods.

[Random]: This baseline method uses a 3 hour idleness-based
policy, a 2 hour wait time, and a binary random variable
weighted between 0.1–0.9.

[ITA]: This method uses the approach of Idle Time Averaging
with static quiescence, using a 3 hour idleness-based policy
and Np = 5.

[NWL]: This method is the N-Week Lookback (static qui-
escence) approach, with a 3 hour idleness-based policy, a
peek window of 60 minutes, a threshold of Hr = 0.4, and
Nw = 5.

[NWL DQ]: This method uses the N-Week Lookback with
Dynamic Quiescence approach. The parameters settings are:
ε = 30min , the peek window parameter is set to 60 minutes,
Hr = 0.4, Hq = 0.2, and Nw = 5.

B. Results and Discussion

In Figure 5, shows the results using the four methods over
the entire 160-day period. The x-axis shows the preemptive
resume hit rate metric and the y-axis shows the resource
allocation efficiency. Remember from Figure 1 that our goal is
to maximize both metrics, and hence we aim to move closer
to the top-right corner of the space.

1115

The randomized predictor (Random) results in an almost
linear pattern as we vary the random binary variable’s weighting.
As expected, this linear pattern forms a baseline, and we are
only interested in methods that can do better than this method.
For the other three methods, we show trade-off regions in
Figure 5 that indicate the space achievable by varying the
parameters of that individual method. (To make the figure
easier to understand, we omit the other data points.)

The Idle Time Averaging method (ITA) is able to perform
better than the Random method on both metrics, as it can
capture cases where the idle duration is a strong predictor of
future idleness. The N-Week Lookback with a static quiescence
policy (NWL) is able to preemptively resume databases in many
more cases, which indicates that the weekly business rhythm is
indeed a stronger predictor of future activity patterns. Therefore,
compared to ITA, NWL is able to achieve up to 80% hit rate
while not compromising on the allocation efficiency metric.
The N-Week Lookback with Dynamic Quiescence (NWL DQ)
method improves upon NWL on both metrics as shown by the
black region in Figure 5. An aggressive dynamic quiescence
policy coupled with a robust preemptive resume strategy results
in overall better performance on both metrics.

Next, we dig deeper into the NWL DQ method, and present
the results for each region of the Azure SQL Database service.
Figure 6 shows this drilled down result, where each point
represents a region. We observe that NWL DQ is able to
perform very well in certain regions (see region R1), and there
are regions where it is unable to achieve acceptable efficiencies
and hit rates (i.e. below the baseline Random performance).
By analyzing these results further, we discovered that regions
that are either new, or sparsely populated are often the ones
where we are unable to predict activity with sufficient accuracy.
Densely populated regions generally have many more databases
with regular predictable workloads than the sparsely populated
ones. Comparing the performance of the NWL DQ method
across the global (Figure 5) and region-level (Figure 6) data
sets shows that it is able to achieve good values for both of
our metrics globally, despite the new and sparse regions.

We are actively considering a number of computationally
efficient statistical and machine-learning approaches that go
beyond or complement our existing methods. As we have noted
however, operationally, our main goals are two-fold: maximize
resume hit rate (quality of service is the priority) and develop
the least intrusive methods to run in production. We have shown
that our methods, which have constant time update and look-up
properties, and require only a modest amount of memory to
run, can provide almost 90% hit rates with 80% allocation
efficiency in certain regions.

VI. RELATED WORK

There has been significant interest in studying cloud
database service efficiency through multi-tenancy and over-
booking [3], [4], [6], [9]–[11], [13]–[15]. While the prior
works tackle important problems related to scheduling, resource
management, and data placement, none of them have validated
cloud user behavioral models with actual traces of production
telemetry. Prior work has also developed machine learning [5],
[16] or statistical [12] models to predict cluster and user
behavior changes, but they do not discuss our over-booking
context and the need for computationally scalable methods.

VII. CONCLUSIONS

In this paper, we have considered a practical challenge
that is faced by cloud service providers, which is to balance
the conflicting objectives of resource allocation efficiency
and maintaining a high quality of service. We formulate this
problem, and define metrics that enable us to quantify these
objectives and evaluate solutions. We also propose efficient,
computationally scalable methods that are able to predict user
activity by leveraging past database activity patterns. Our
evaluation is done over a large trace of real production telemetry
data from Microsoft Azure SQL Database, and to the best of
our knowledge represents the first study that uses data at this
scale. Our present work is only an initial step towards a more
intelligent cloud database service, and there is a huge potential
for future work in this area that uses even more sophisticated
techniques to move us closer to the optimal operating point
(point D in Figure 1).

REFERENCES

[1] Microsoft corporation. http://azure.microsoft.com, 2016.

[2] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya,
D. B. Lomet, R. Manner, L. Novik, and T. Talius. Adapting Microsoft
SQL Server for Cloud Computing. In ICDE, pages 1255–1263, 2011.

[3] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan. Workload-aware
Database Monitoring and Consolidation. In SIGMOD, 2011.

[4] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a Workload-
Driven Approach to Database Replication and Partitioning. PVLDB,
pages 48–57, 2010.

[5] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. Performance
Prediction for Concurrent Database Workloads. In SIGMOD, 2011.

[6] A. J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi, and X. Yan.
Characterizing Tenant Behavior for Placement and Crisis Mitigation in
Multitenant DBMSs. In SIGMOD, pages 517–528, 2013.

[7] W. Lang, F. Bertsch, D. J. DeWitt, and N. Ellis. Microsoft Azure SQL
Database Telemetry. SoCC, pages 189–194, 2015.

[8] W. Lang, K. Ramachandra, D. J. DeWitt, S. Xu, Q. Guo, A. Kalhan, and
P. Carlin. Not for the Timid: On the Impact of Aggressive Over-booking
in the Cloud. PVLDB, 2016.

[9] W. Lang, S. Shankar, J. Patel, and A. Kalhan. Towards Multi-Tenant
Performance SLOs. In ICDE, pages 702–713, 2012.

[10] Z. Liu, H. Hacigümüş, H. J. Moon, Y. Chi, and W.-P. Hsiung. PMAX:
Tenant Placement in Multitenant Databases for Profit Maximization.
EDBT, pages 442–453, 2013.

[11] H. J. Moon, H. Hacigümüş, Y. Chi, and W.-P. Hsiung. SWAT: A
Lightweight Load Balancing Method for Multitenant Databases. In
EDBT, pages 65–76, 2013.

[12] B. Mozafari, C. Curino, A. Jindal, and S. Madden. Performance and
Resource Modeling in Highly-concurrent OLTP Workloads. In SIGMOD,
pages 301–312, 2013.

[13] B. Mozafari, C. Curino, and S. Madden. DBSeer: Resource and
Performance Prediction for Building a Next Generation Database Cloud.
In CIDR, 2013.

[14] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska, H. Plattner, M. J.
Franklin, and D. Jacobs. RTP: Robust Tenant Placement for Elastic
In-memory Database Clusters. SIGMOD, pages 773–784, 2013.

[15] R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker, and D. J.
DeWitt. STeP: Scalable Tenant Placement for Managing Database-as-a-
Service Deployments. SoCC, 2016.

[16] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacigümüş. Ac-
tiveSLA: A Profit-oriented Admission Control Framework for Database-
as-a-service Providers. SoCC, 2011.

1116

