Industrial Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Toto - Benchmarking the Efficiency of a Cloud Service

Justin Moeller, Zi Ye, Katherine Lin, Willis Lang
Microsoft
{jumoell},{zi.ye},{katlin},{wilang}@microsoft.com

ABSTRACT

Microsoft aims to increase the efficiency of Azure SQL DB by max-
imizing the number of databases that can be hosted in a cluster.
However, resource contention among customers increases when
changing the configurations, policies, and features that control
database co-location on cluster nodes. Tuning and evaluating the
efficiency and customer impact of these variables in a scientific
manner in production, with a dynamic system and customer work-
loads, is difficult or infeasible. Here, we present Toto, a benchmark
framework for evaluating the efficiency of any cloud service that
leverages orchestrators like Service Fabric or Kubernetes. Toto al-
lows for reliable and repeatable specification of a benchmarking
scenario of arbitrary scale, complexity, and time-length. An imple-
mentation of Toto is deployed in all SQL DB staging clusters and is
used to evaluate system efficiency and behaviors. As an example
of Toto’s capabilities, we present a study to explore the balance
between cluster database density and quality of service.

CCS CONCEPTS

« Information systems — Data management systems; « Soft-
ware and its engineering — Cloud computing.

KEYWORDS
Cloud Databases; Benchmarking; Efficiency; Orchestration

ACM Reference Format:

Justin Moeller, Zi Ye, Katherine Lin, Willis Lang. 2021. Toto - Benchmarking
the Efficiency of a Cloud Service. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD °21), June 20-25, 2021, Virtual
Event, China. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3448016.3457555

1 INTRODUCTION

Microsoft Azure SQL DB is engaged in a perpetual effort to increase
the efficiency of running the service by maximizing the number
of customer databases that can be hosted on a fixed-size cluster of
servers. The cost of these clusters is already minimized due to the
purchasing power of one of the dominant public cloud providers.
As such, the ability to place more databases given a fixed capex cost
is paramount. Additionally, the need to get the most mileage out
of the cluster is not always driven from the bottom line, but out

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457555

2543

(Control Nodes)
Service Fabric II’
k.f -
¢mm—) 5Q| DB
RgManager «ﬁ
ﬁﬁ

sQL DB ‘

sQL DB

(Data Plane Node)

Figure 1: SQL DB simple flow/communication architecture.

of practical necessity. For instance, delays from hardware vendors
due to the scale of orders may also force Azure to seek efficiency.

In an ideal system, the operating density of databases in a cloud
database cluster is directly tied to the degree of database under-
utilization. (Consequently, this relationship drives the technology
behind the new SQL DB Serverless offering.) In a complex system
such as SQL DB, there are numerous parameters, policy thresholds,
and improvement features that can impact the number of databases
that can co-exist on a node in a cluster, all the while maintaining
the highest levels of service quality (QoS). The question for a ser-
vice provider is: How can one accurately and reliably evaluate the
effect of different policies and mechanisms on the degree of data-
base density in the cluster and simultaneously measure the effect
on the QoS? Here, we present our answer — Toto — a benchmark
framework to help reveal the impact of changes on a cloud service.

The problem here is twofold: a service provider needs a way
to compare the effects of a change (e.g., a tuning parameter) in a
scientific manner - reliably and repeatably - and representative of
the true production environment. To evaluate a change, we can
either do so on two comparable clusters running side-by-side, or
on a single cluster and compare the before-and-after key perfor-
mance indicators (KPIs) (The granularity of deploying changes in
SQL DB is at a cluster level). For example, to fairly evaluate, we
must replicate the database population ratios, the databases’ prop-
erties (e.g., size), the databases’ workloads, and the system itself
(e.g., deployed features and hotfixes). To control variables like these
without negatively impacting customer experience may be impossi-
ble (or prohibitively costly). Consequently, we introduce Toto as a
cloud service framework whereby we can deploy and evaluate the
code base and avoid negative customer impact. Toto is part of an
active, day-to-day effort to increase efficiency within SQL DB. We
are using Toto to: (a) evaluate production configuration changes
in SQL DB before they deploy (e.g., buffers, placement policies),
(b) quantify the benefits of proposals (e.g., what-if), and (c) debug
(“repro”) problems from the production clusters.

The system framework we describe focuses on benchmarking a
single staging cluster (SQL DB regions are made up of hundreds
of clusters), by focusing on the node-level systems that govern
the resources and performance of the database engines (deemed
“RgManager”) and the cluster orchestration system (e.g., Microsoft

https://doi.org/10.1145/3448016.3457555
https://doi.org/10.1145/3448016.3457555
https://doi.org/10.1145/3448016.3457555

Industrial Track Paper

Service Fabric - SF, or Kubernetes). Figure 1 presents a very simple
diagram of these components and interactions. For our purposes,
benchmarking a database service for efficiency is less focused on the
capabilities of the database query optimizer or processing engine,
but rather, how well systems like RgManager and SF can (i) control
the resources provided to the DB engines, and (ii) effectively col-
locate databases, respectively. Therefore, at its heart, Toto has the
goal to present thousands of SQL “workloads” to these two systems
so that they react to maximize cluster efficiency (see Section 3).

For Toto, the workloads are not SQL query workloads or tradi-
tional RDBMS performance benchmarks. We list three reasons for
this. First, customer databases generally do not exhibit full-bore per-
formance workloads such as TPC-E/H, but are rather low utilization
or bursty, or completely idle (which is where the efficiency oppor-
tunity is derived) — see Section 2. Secondly, we wish to avoid reverse
engineering SQL workloads based on observed utilization traces in the
hopes that they can recreate those utilization traces. (Providers like
Microsoft neither have access to customer queries nor data details.)
Finally, we wish to avoid the complexity and cost of relying on SQL
drivers, coordinated and hosted on sufficient compute power.

Toto was conceived based on existing Azure SQL DB production
debugging mechanisms that force the infrastructure to perceive
“fake” resource load. This existing mitigation mechanism is used be-
cause, through the lens of the service, the job of the database engine
is to transform SQL queries into resource requests to be consumed
by RgManager and Service Fabric (SF). While this mechanism for
“fake” resource load is currently Azure SQL DB and SF specific, the
Toto framework is applicable to any orchestration system that man-
ages customly defined resources (e.g., Kubernetes [4]). The job of
RgManager and SF is to manage the database engine instances and
cluster nodes based on these resource signals. We should note that
this is a distinction between Toto and component simulators — Toto
reveals full-stack impact. Toto utilizes production-derived mod-
els of database resource consumption and customer behavior (i.e.,
DDL) and produces request streams on behalf of the SQL engine in-
stances. Other important models for SQL DB include the service tier
and SLO configuration options of the database population. Given
that Toto aims to benchmark efficiency, the temporal richness of
the modeling matters just as much, if not more, than amplitude
of the signals. For example, business hours and week days must
be treated differently than evenings or weekends. Toto consumes
declaratively specified models and parameters, allowing us to easily
(re)specify a benchmark scenario of arbitrary scale, complexity, and
time-length and target any SQL DB cluster. (At this point, we hope
that experienced cloud practitioners have considered that Toto can
apply to almost any Kubernetes-orchestrated cloud service.)

To demonstrate evaluating service efficiency, we present an ex-
ample of a density tuning study of a SQL DB stage cluster using
models of production databases and customer behavior. If a cluster’s
density is tuned high enough, the provider begins to face significant
challenges [34, 35, 56]. Different SQL DB offerings (e.g., Serverless)
and “SLO” configurations have distinct maximum CPU and disk
quotas (ignoring other resources for this example). A node at high
density risks a scenario where if all of the databases on the node
consumed their actual quota limit of a resource like disk, the node
may not have the disk capacity to dispatch a given request. If a
node in the cluster hits its logical capacity limits (also a tunable

2544

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Modeled Relative "Adjusted’ Revenue Increase over 100% Density

110% ®120% » 140%
/ 11%
7

140%

‘\\ 15%

8%

100%

50% 10p% 150% 200% 250%

Rel. Difference in Final CPU Reservation Level

60%
Rel. Difference in Customer Capacity Moved Due To Failovers

Figure 2: Toto result on a SQL DB cluster, circle size reflects
relative “adjusted” revenue over a 100% cluster density.

parameter) due to resource consumption by the databases placed
on it, then one or more of the databases must be moved to another
node (suffering a failover). This may cause a brief moment of un-
availability and varying performance. It is the job of the system to
intelligently manage the likelihood of failovers happening on any
node through placement, resource governance, and balancing.
Figure 2 presents a result from our implementation of Toto show-
ing the balance between database density on the cluster, a quantifica-
tion of failovers, and the modeled “adjusted” revenue. This notion,
adjusted revenue, is a means to normalize density and failovers
(see Section 5.1). Here, we tuned a single parameter in a real SQL
DB gen5 stage cluster (currently the predominant SKU) which en-
ables/controls the degree of allowable DB density (see Section 5)
and using Toto, we evaluate this using a specific benchmark sce-
nario that models clusters in a US region of Azure (see Section 4).
This means more databases can be admitted into the cluster over a
given setting (i.e., 100%). Depending on the density level and the
database demographics (e.g., edition and performance configura-
tion), different resources may become the bottleneck for the cluster.
On the y-axis, we plot the final cluster CPU reservation level that
was achieved during the benchmark (relative to a 100% result). On
the x-axis, we plot the relative amount of customer capacity (in
cores) that had to be moved around in the cluster to adjust for when
high density resulted in a database temporarily needing to wait for
resources it has requested. The size of the circles represent the rela-
tive change in adjusted revenue from the databases in the cluster.
For instance, here we see that at 140% density, CPU reservation
level has increased as expected, however, the amount of failover
movement is higher while the adjusted revenue is lower than seen
at 120% density. The takeaway is, using Toto, we have been able to
quantify the dollar impact of improvements in SQL DB down to the
locale and scenario that may otherwise be infeasible to determine.
Here, we present Toto, which we believe to be the first presenta-
tion of a public-cloud, production-oriented benchmarking frame-
work. Toto allows for declarative benchmark submission defined
by different models of customer and workload behavior to reliably
and repeatably evaluate different service settings and configura-
tions. Toto can be applied to any cloud infrastructure that is built
upon orchestrators like Kubernetes or Service Fabric. Our implementa-
tion of Toto is integrated into the resource governance component
of Azure SQL DB, deployed worldwide, and provides a means to
benchmark the efficiency of SQL DB. Our contributions are:

Industrial Track Paper

(1) A first-of-its-kind benchmarking framework - Toto - to eval-
uate the cost-efficiency of a cloud service that uses orchestrators
like Kubernetes and Service Fabric.

(2) An implementation of Toto deployed within Azure SQL DB.
(3) A description of key service and database utilization models
trained from production environments that can create benchmark
scenarios and employed by Toto.

(4) Presented a density study using our Toto implementation and
scored using “adjusted” revenue that considers actual SQL DB SLAs.

2 BACKGROUND

Rings and SKUs: At the time of this paper’s preparation, Azure
runs 55 regions worldwide with ten more announced. Each region
can be thought of as one or more physical datacenters and each
datacenter housing hundreds to thousands of clusters (or rings) of
nodes. Different Azure services such as SQL DB occupy different
rings (while some may share). SQL DB rings vary in their size but
can be thought of in the range of 50-150 nodes. SQL DB rings can
also be considered homogeneous in their hardware SKU, such as
currently gen4, gen5, and gen6 SKU. Different hardware genera-
tions differ in their compute (CPU), memory, local storage, and
networking power. More importantly, they vary in their different
resource ratios; for instance, the CPU cores to memory ratio, or the
memory to local storage ratio are different from generation to gen-
eration (as the prices of different commodity components change
over time). Resource ratios plays an outsized role in determining
the efficiency of SQL DB clusters as it must be in alignment with
the customer’s database resource demands or unused resources will
be “stranded” and efficiency will suffer.

SQL DB Editions: Categorizing SQL DB databases and their
configurations can first be done according to where the data is
stored. Remote-store databases include editions like “Standard DTU”
and “General Purpose VCore” (GP) and these databases have their
SQL data and log files stored remotely from the compute node.
Local-store databases include editions like “Premium DTU” and
“Business Critical VCore” (BC) and the database files are stored on
the compute node local SSDs [3]. For redundancy, these local-store
databases are also replicated four times on four different compute
nodes. The Service Level Objectives (SLOs) in each edition and
hardware SKU have different configurations such as the amount of
compute units (cores) or the amount of DRAM memory available
to the SQL process. The performance of query processing on local-
store databases outpaces that of similarly configured remote-store
databases, but from a provider perspective, it comes at higher cost
(and revenue) due to local SSD and replication.

Resources: While the SQL engine processes T-SQL queries, the
rest of the SQL DB infrastructure stack (e.g, Figure 1) is only con-
cerned with the resources it is consuming and releasing. In addition
to the core DBMS SQL engine, Azure SQL DB contains components
that manage the resource governance of the SQL engines. The main
resources that are considered are CPU consumption, DRAM mem-
ory consumption, and disk consumption for data storage. While
CPU and memory resources may be straight forward, the disk
resource is a little more nuanced, especially given the SQL DB edi-
tions discussion above. For the SQL DB infrastructure, the local
disk capacity consumption is of utmost importance because it is

2545

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

[
o
o

Local-store Database Percentage
of Clusters

[C)
o

O Region 1 B Region 2

80

20% ~

(-] o
18% °4 o <70
16% 1F3° =
0 &
. s 260

14% =

» 5] =

12% b s 550

3 =
10,

10% 3 b R | el % 40
8% Ik 3 B =
6% iR 30

S [
400 ; 20
2%
0% 10
R R IR S KR
o o o o o o o 0
SS8§588¢8
a O O O O] Average CPU Utilization (%)
(a) (b)

Figure 3: (a) Daily percentage of DBs that are local-store. (b)
CPU and Memory utilization levels of DBs in a region.

not transiently consumed. Further, the local storage configurations
of Premium/BC-VCore databases have a high maximum allowable
capacity which consumes a significant fraction of a single machine.
For local-store databases, the disk consumption includes all data and
log space used as well as tempDB storage capacity (e.g., spilling to
disk during QP), while for remote-store databases, only the tempDB
storage contributes to its local disk resource consumption.

Production Environments: Evaluating any efficiency-oriented
changes in production is extremely challenging. In Azure SQL DB,
code and parameter changes are deployed in a cluster-by-cluster
basis. For a change to be evaluated, either we would perform a
before-and-after analysis on a single cluster, or a side-by-side A/B
test on two clusters. A before-and-after analysis on a single cluster
is simply not practical: database population demographics on the
cluster may change over time, and the databases themselves are
largely growing over time as well. In a before-and-after produc-
tion analysis, we cannot “rewind” the production cluster back to a
starting state, though this is what we achieve with Toto.

Identifying two similar clusters for side-by-side evaluation of
a change is non-trivial, if not as impractical as a before-and-after
evaluation. For instance, there are distinct regional differences in
workloads and edition/SLO demographics. Consider Figure 3(a),
which shows the dispersion of the local-store database fraction of
each cluster’s population for two different Azure regions over a
week. The X’s on the box plots shows the average percentage over
all clusters of the regions and clearly, we see that Region 2 has a
significantly larger proportion of local-store databases than Region
1. Still, it may be possible to find two clusters with similar database
“demographics”, but during the evaluation, we would need these
two clusters to exhibit the same workload/growth behavior as well
as have similar database create assignments (and drops). Evaluation
in this way is also practically prohibitive.

Representing Workloads: Most databases in the public cloud
have low utilization levels and do not exhibit the resource consump-
tion behavior of running full-bore TPC-x benchmarks. Figure 3(b)

Industrial Track Paper

shows the average database CPU and memory utilization level in
a single Azure region over a 12 hour daytime period (we have re-
moved all of the completely idle databases - a substantial number).
It is clear that a large proportion of databases have low CPU and
memory utilization and thus we avoid using TPC-x benchmarks
in our benchmarking framework. We have chosen to design an
efficiency benchmarking framework for a database service around
resource consumption, in part, because it allows us to use telemetry
data to produce the most production-representative load to impose
onto the service and cluster infrastructure.

3 BUILDING INTO SQL DB
INFRASTRUCTURE

Our implementation of Toto is composed of two components - an
orchestrator that is built into the heart of the Azure SQL DB’s
resource governance stack (Section 3.3.1) and the Population Man-
ager (Section 3.3.3) that calls public CRUD APIs. Together, these
components are “the man behind the curtain”, instructing when
new databases should be created, when databases are dropped, and
what each database’s resource usage levels currently are. Here we
describe the existing Azure SQL DB infrastructure and how we
implemented Toto inside of it.

3.1 Service Fabric

Azure SQL DB runs on top of an orchestration framework called
Service Fabric (SF). Similar to other container management systems
like Kubernetes [13], Service Fabric is a distributed platform for
deploying microservices and/or containers [30]. Service Fabric is re-
sponsible for management of the microservices in the cluster and it
handles common challenges in cloud deployments such as availabil-
ity, resource management, application lifecycle, and load balancing.
Azure SQL DB regions are broken up into many Service Fabric
clusters, each cluster either hosting control services (aka "control
rings") or data plane services (aka "tenant rings"). When a customer
wishes to create a new database, after a cluster is chosen, the request
is forwarded to the cluster’s Placement and Load Balancer (PLB),
a component of SF that decides the placement and movement of
databases. Depending on the replication factor of the microservice
(see Section 2), the PLB will distribute the replicas across different
nodes in the cluster. The PLB is responsible for maintaining the
availability of single replica databases and multi-replica databases.

Every orchestration framework needs to be informed of applica-
tion load so that it can make smart placement decisions and move
replicas when nodes become heavily loaded. The PLB in Service
Fabric addresses this with the notion of dynamic load metrics [2]. A
metric can be arbitrary and model anything, but usually they model
system resources such as CPU, memory, and disk. Every replica
of the application reports their load metrics to the PLB where it
aggregates a centralized view of the load on each node. For example
in SQL DB, each replica reports the amount of disk space it is using
to the PLB.

The replica’s metrics are dynamic - they can change over time.
Each replica in the cluster is responsible for reporting to the PLB
when its load has changed or at some regular interval. Each resource
metric has a predefined node-level logical capacity, which specifies
the load threshold at which PLB will initiate a failover. A failover

2546

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

means that the replicas’ aggregate resource demands on the node
have exceeded the node’s predefined logical capacity. In order to
ensure that all customer’s resource requirements are met, a replica
must be moved out of the heavily loaded node. PLB will select a
replica on the heavily loaded node and move it to another node
in the cluster. For Premium/BC databases, a replica will need to
be built on a new node which involves physically copying over
the data from another available replica, whereas the data for a
Standard/GP database can be accessed by detaching and reattaching
the remote storage. Furthermore, while a failover to the primary
is occurring, the application may experience a brief moment of
unavailability while a secondary replica is becoming the primary
or a new primary replica is built. For Azure SQL DB, the logical
resource capacities of each node have been set conservatively to
ensure that each replica is getting their share of each resource.
However, as the density in our clusters increases, the probability
that a failover will occur also increases. This may manifest itself
as failed queries, dropped connections, or failed login attempts.
Minimizing failovers in Azure SQL DB clusters is paramount in
ensuring a good customer experience.

3.2 RgManager

In Azure SQL DB, there exists a helper service called RgManager,
which is deployed for managing the resource metrics that each
SQL database instance reports to PLB. There is a single RgManager
instance running on every node in the cluster. RgManager contains
a centralized view of the node and is responsible for governing the
node’s resources and mitigating potential noisy neighbor perfor-
mance issues. However, it is the responsibility of each individual
database to report their own load to the PLB. RgManager provides
an internal API for retrieving the load metrics of a database. The
SQL engines always communicate with the co-located RgManager
instance. As shown in Figure 1, when a replica for a SQL database
needs to report its CPU, memory, and disk usage to PLB, it first
consults RgManager by issuing an RPC. RgManager does the work
to compute and account the database’s resources. These values are
then returned to the SQL replica so they can be reported to the PLB.

3.3 Toto

3.3.1 Orchestrator. We implemented Toto to leverage the existing
Azure SQL DB infrastructure by redirecting the metric request RPCs
in RgManager to sample from defined models instead of returning
the actual resource utilization. These models were trained on Azure
SQL DB telemetry and they capture production resource behavior
(see Section 4). Models can be specified for any resource and any
subset(s) of databases and are provided as input to RgManager via
an XML blob. Figure 4 shows Azure SQL DB’s architecture modified
to include Toto’s orchestrator.

First, the models and respective parameters that were trained on
the production telemetry are serialized into XML format and written
into Service Fabric’s Naming Service. Naming Service is a highly
available metastore database in Service Fabric. In production today,
Azure SQL DB uses it to store metadata about the services that are
running in the cluster. In our implementation of Toto, RgManager
reads the model XML every 15 minutes from Naming Service, parses
them, and constructs internal model objects. These model objects

Industrial Track Paper

Write Serialized Model XML

Naming Service

RgManager

\\7} Read every 15 minutes U

@D
L]

RgManager

sQL DB sQL DB

Figure 4: Injection of the models in RgManager.

contain a description of the resource they are modeling, the set
of databases it applies to (e.g., all remote store databases), and the
periodicity of reporting resource load to the PLB.

Next, when a SQL replica needs to report its metric loads to PLB,
it will still issue an RPC call to RgManager, but now RgManager
will consult the models to compute the load it should report. This
is represented in Figure 5. If no model exists for the replica and the
load metric that is being reported, the replica’s actual load usage
will be reported - this is the normal operating behavior. Otherwise,
the supplied models will be used to compute the value to report to
the PLB. Because RgManager is stateless, all of the model objects
are stateless as well. This allows the model objects to be updated
without losing context of how to report the next load metric. The
logic to sample from the models is directly coded into RgManager,
so sampling is fast and efficient. Building the model execution di-
rectly into RgManager allows for declarative and dynamic resource
behavior. The models can be updated by overwriting the XML
in Naming Service. Tweaking the growth behavior of subsets of
databases (e.g., grow disk usage of Premium/BC replicas 2x faster)
is easily configurable simply by changing XML properties. These
models are scalable and can be applied to many databases at once
that exhibit similar resource patterns.

3.3.2 Imitating Production Resource Behaviors. We implemented
Toto to override the resource behavior of specific metrics by consult-
ing the model objects constructed from serialized XML, but for our
purposes this is not sufficient to ensure realistic, production-like
behavior. This is because, as mentioned above, the model objects
are stateless — in our implementation they described how a partic-
ular metric’s load changes, but they do not persistently track the
previously reported metric value. Without persistently storing the
previously reported metric load, on an application failover from
one node to another, the newly promoted primary will not know
what the previously reported metric load was (the new replica
will be communicating with a different RgManager instance). For
some resources (e.g., memory/CPU), this is fine and is the expected
behavior (i.e., for the load to be completely reset upon failover).
For example, in production after a failover the memory load of a
newly promoted primary will be smaller than the memory load of
the previous primary (because the new primary wasn’t servicing
queries before). Consequently, for our implementation of memory
modeling in Toto, it is sufficient to sample from the model object
using a default memory load value that describes a cold buffer pool.
(For accuracy, models for resources like CPU and memory need to

2547

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Naming Service

Models

Report Metric Load

Models

saLos

RgManager RgManager

Figure 5: Toto intercepting metric load requests.

be distinct for the primary and secondary replicas in local-store
Premium/BC databases.)

However, for the disk metric this load reset on failover will lead
to unexpected behavior in Toto. For instance, the production disk
usage behavior of local-store databases and remote-store databases
differs during a failover. Each replica of a local-store database stores
a local copy of the data. This means that the disk usage of the
secondaries will be very close to the disk usage of the primary
(modulo data in transit). Standard/GP databases only have one
replica, store all of the user data in remote storage (which is also
redundantly replicated), and only use the local disk for temporary
data stored in tempDB. On a failover, a new replica will be built,
but the data stored in tempDB will be lost. Because of this, the
disk usage pattern of Standard/GP databases is similar to memory,
where the load is reset after a failover. This is not the case for local-
store databases and we needed to make their disk models stateful
to ensure the correct behavior.

Our implementation of Toto captures these stateless/stateful
nuances by allowing persistence to be a configurable parameter in
the model XML. This allows disk usage for remote-store databases
to be configured as non-persisted whereas disk usage for local-
storage databases can be configured as persisted. When a metric
is defined as non-persisted, RgManager will store the previously
reported value in memory. To durably store the previous reported
value, we leveraged the Service Fabric Naming Service again. After
executing the persisted metric model’s logic, the new metric load
is written back to Naming Service. On the next report interval, the
previous metric load will be read from Naming Service and used
for the computation of the next load. For persisted disk usage, in
order to ensure that only one replica is ever updating the load in
Naming Service, only the primary replica executes the model and
persists the load. Secondary replicas for Premium/BC databases
read the previously reported disk usage from Naming Service, but
they do not execute the model’s logic. Secondaries simply report
the disk usage read from Naming Service. In our implementation
this guarantees that on a failover, the newly promoted primary of a
Premium/BC database will have the same disk usage as the previous
primary replica, which is the same behavior that is exhibited in
production.

3.3.3 Population Manager . The orchestrator component of Toto
allows for declaratively overriding resource utilization via models,
but in order to re-create a cluster environment similar to produc-
tion, there needs to be churn in the number of databases in the
cluster. The database population in an Azure SQL DB cluster is

Number of Databases

[
=]
=1

Industrial Track Paper

Standard/GP Weekday Create Standard/GP Weekend Create

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Premium/BC Weekday Create Premium/BC Weekend Create

160 4

140
120 1

100 4
80 4
B0
bt
20
LA L e e T T T T T T Dl\ll T
012345678 9101112131415161]’181920212223 01234 5 7 B 9]0]1121314]5]61’1‘1519202L1223
Time {Hours) Time {Hours)
(@) (b)

180 180
160 4 160 4
140 q 140 q
120 q 120 q
100 q 100 q
80 80
B0 &0
40 40
20 4 204

o
01234567 891011121314151617181820212223
Time (Hours)

(©

Time (Hours)

()

Figure 6: Dispersion box plots of number of creates/hour of the day: Standard/GP (a, b), Premium/BC (c, d).

constantly changing, databases are created and dropped regularly.
Toto imitates this churn by injecting new databases into the Service
Fabric cluster and dropping existing databases via the Population
Manager. For example, in this study, the Population Manager ex-
ecutes create and drop requests according to weekday/weekend
models trained on production creation/drop rates (see Section 4).
The Population Manager’s models describe how many databases to
create/drop per hour, the service tier/edition and the Service Level
Objective (SLO) of the databases to create, and the initial metric
load for each database. The Population Manager runs as a stateless
daemon - it wakes up at the top of each hour to execute, samples
from the provided models, then schedules create or drop requests
for the next hour. Each create and drop request will then call the
corresponding control plane API with the provided metadata (e.g.,
Create a 4-core local store database at 5:37pm).

4 BUILDING MODELS OF BEHAVIOR

To imitate production resource behaviors, we built two modeling
frameworks:

e Create DB and Drop DB model: We attempted to capture
the create and drop patterns of Azure SQL DB by modeling
them as events that occur with a probability that belongs
to a distribution. Based on empirical observations that cre-
ate database events exhibited different patterns than drop
events, we modeled them separately. (Note that the Create DB
model incorporates the SLO which implicitly captures “CPU
reservation” for provisioned SQL DB, which is an input for all
placement decisions.)

o Disk usage model: Since all databases persistently store data
(even idle databases), disk usage is the most important re-
source to model in our clusters. Other resource usage models
such as memory and CPU usage are left as future work (see
Section 5.5). In this paper, we modeled various types of disk
usage patterns separately.

In our implementation, the Create DB and Drop DB models needed
to be executed by the Population Manager and the disk usage model
needed to be executed by RgManager. As such, we preferred a model
execution framework that was scalable, easy to implement in C++,
computationally inexpensive and fast, did not rely on external li-
braries, and could still capture the production patterns accurately.

0. 0.8 4

m

=

=
o
o

p-values
=
=
pvalues
=
=

02 0.2+

WD EreateWE. Clreata WD. IDrop WE. II:lrop WD. (‘reateWE. C:reate WD. IDrop WE. II:lrop
(@) (b)
Figure 7: Dispersion of p-values from K-S test: Standard/GP

(a), Premium/BC (b). The blue straight line is the significance
level at & = 0.05. WD = Weekday, WE = Weekend.

0o —_— 0.0 4

We explored various machine learning (ML) and statistical modeling
approaches [12, 23, 26, 32, 38, 44, 50, 54, 59]. Our initial exploratory
work on ML approaches, including random forest [12], linear regres-
sion [23] and ARIMA [54], suggested that the ML model accuracy
was comparable with statistical approaches. The choice of a mod-
eling approach was not only determined by its accuracy, but also
by other factors such as scalability, as described above. For exam-
ple, ARIMA is computationally intensive since the model needs
to search the optimal values of several parameters and that can
make the model fitting process very time consuming. Due to the
complexity of integrating external libraries into RgManager and
the Population Manager as well as other practical considerations,
we decided to use simple statistical models as the building blocks
for our modeling frameworks.

4.1 Create DB and Drop DB Model

4.1.1 Overview. The Create DB and Drop DB models aim to im-
itate the number of net creates of databases within a fixed time
interval. When creating a database, the customer can select the
Azure region where the database is going to be hosted, but it is the
responsibility of the control plane to select the specific tenant ring.
For this analysis, modeling the tenant ring selection logic of the
control plane was out of scope. Because of this, we built the Create
DB and Drop DB models using the create and drop events at the
region level. We made a simplifying assumption that each tenant

2548

o
01234567 891011121314151617181920212223

Industrial Track Paper

Total Created

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Total Dropped

Net Created

Model run {100 times)
m— Mean of 100 model runs
= Production

10000

20000
8000
15000
6000

10000

Number of Databases

5000

Model runs (100 times)
m— Mean of 100 model runs
= Production

14000

Model run (100 times)
m— Mean of 100 model runs
= Production

12000

10000

150 200 250 300 350 o 50 100

Time (Hours)

(a)

100

8000
G000
4000
2000
o
150 200 250 300 350 o 50 100 150 200 250 300 350
Time (Hours) Time (Hours)
(b) (©)

Figure 8: Region-level results of Create DB and Drop DB models: net creates (a), number of creates (b), number of drops (c).

ring in a region had equal probability of being selected and scaled
the values of the model parameters by the total number of tenant
rings within that region.

4.1.2 Data Analysis. When modeling creation/drop probabilities,
if the analysis was performed on the granularity of seconds or a
minute, there would be a low probability of a create or drop event
occurring. Therefore, we expanded the aggregation time interval
to one hour for both the Standard/GP and Premium/BC databases.
The number of creates and drops were modeled separately based on
a set of features derived from hourly aggregated production data
(Figure 6). Due to space constraints, the figures of drop events were
omitted but the patterns were similar to the create events. Below is
a summary of the key features:

(1) The number of creates and drops exhibited hourly patterns
for both Standard/GP or Premium/BC databases.

(2) In general, there were more creates and drops during the
weekdays compared with the weekends for both Standard/GP
or Premium/BC databases.

(3) Premium/BC databases had significantly fewer creates and
drops than Standard/GP databases across all hours.

Table 1: Features used for create and drop models

Features Values
Temporal Weekend vs. Weekday
Temporal Hours

Database Edition Standard/GP v.s Premium/BC

4.1.3 Model Formulations. Based on the above findings and illus-
trated in Table 1, three features were used to formulate the model:
weekday vs weekend, hour of the day, and service tier of the data-
base. In total we built 96 (2 X 24 x 2) different Create DB models and
another 96 different Drop DB models. For each hour, either on week-
day or weekend and for each database edition, we first assumed that
the number of creates or drops within the training period belonged
to a well-defined probability distribution. Then, we fitted the hourly
training dataset via various probability distributions including nor-
mal, uniform, Poisson and negative binomial [38, 59]. Normal was

2549

preferred over the other distributions for mainly two reasons: 1) its
simulation results were most representative of our training dataset
for database creates and drops; 2) it was found to be the best fitted
distribution for the Steady State Growth of disk usage as well (see
Section 4.2.2). The non-parametric Kolmogorov-Smirnov (K-S) test
[1], a popular statistical test that helps determine whether a dataset
follows a normal distribution, was then performed across all the
hourly training datasets for both the Standard/GP and Premium/BC
databases. For each of the box plots in Figure 7, there were 24 data
points which corresponded to p-values for each of the 24 hours. All
the p-values (except a few of them for the Premium/BC weekday
drop) were greater than 0.05, hence we could not reject the null
hypothesis that the training dataset followed a normal distribution.
Based on the K-S test outcomes, we decided to model each hour as
a separate normal distribution for the Create DB models and Drop
DB models.

4.1.4 Simulation Results. To validate the trained models, they were
executed in a simulated environment 100 times and the results
were illustrated in Figure 8. Our "hourly normal" model was able to
imitate the create and drop production trace closely. The modeled
creates and drops (in gray) were very close to the production curves
(in red). The mean (in black) of the 100 modeled curves nearly
overlapped with the production curve.

4.2 Disk Usage Model

4.2.1 Overview. The disk usage model aims to imitate the disk
usage growth patterns of databases within the cluster over a fixed
time interval. We modeled this by discretizing the disk usage for
each database into 20 minute time periods and computing the Delta
Disk Usage. The Delta Disk Usage is the disk space usage differ-
ence between adjacent 20 minute time periods. After computing
the Delta Disk Usage, we observed that around 99.8% of the time
across databases and time stamps the disk usage showed a steady-
state growth pattern (see Section 4.2.2). For the remaining 0.2%, it
was dominated by initial creation growth (see Section 4.2.3) and
predictable rapid growth patterns (see Section 4.2.4).

All databases in our implementation of Toto use the Steady-State
Growth pattern (with different parameters for Standard/GP and
Premium/GP databases) to determine what load should be reported

Industrial Track Paper

B450 1
6400 4
[=a]
2 &350 -
L
on
& 6300 A
i
5 62501
£200 - Model run (100 times)
— Production
G150 T T : : : : r
o 50 00 150 200 250 300 350
Time (Hours)

Figure 9: Results of Steady State Disk Usage Pattern.

to the PLB. A subset of databases use the Initial Creation Growth
pattern immediately upon creation. This pattern attempts to cap-
ture a common customer behavior of restoring a database from an
existing mdf file (the primary data file) [6]. Similarly, only a subset
of databases use the Predictable Rapid Growth pattern. This growth
pattern captures specific instances of temporal customer behavior
(for example, a customer might do a batch import every day at mid-
night). The Initial Creation and Predictable Rapid Growth patterns
model large increases in disk usage that the Steady State pattern
cannot capture. For all of the growth patterns above, Standard/GP
and Premium/BC databases were modeled separately.

4.2.2 Steady State Growth. The Steady State Growth Pattern was
generated by training over the Delta Disk Usage values. We explored
several statistical approaches including non-parametric kernel den-
sity estimations (KDE) [44] and a customized binning model in
which the training set was divided into bins, each with a probabil-
ity. However, similar to the Create DB/Drop DB model, we decided
to imitate the Delta Disk Usage by using a "hourly normal" model
for the following reasons:

(1) Unlike customized binning, it could capture temporal disk
usage patterns.

(2) It had comparable or smaller dynamic time warping (DTW)
[7, 52, 53] and root mean squared errors (RMSE) than KDE
and the customized binning model.

(3) It was computationally efficient. Sampling from the model
was just sampling from a normal distribution.

(4) Unlike KDE, the hourly normal model was easy to implement
and did not rely on an external C++ library.

The hourly normal model was trained using the 99.8% of the
data that corresponded to the steady-state growth pattern. The
modeling results are illustrated in Figure 9. The time series of disk
usage production data (in black) exhibited temporal patterns and
our "hourly normal” models were able to capture those patterns.
We primarily aimed to have the resulting cumulative disk usage
from our models to be as close to production as possible over the
two week training period while also achieving the modeled disk
growth (in gray) to be similar to the production curve.

4.2.3 Initial Creation Growth. A common customer workload pat-
tern is to have rapid growth upon the creation of the database,
either to restore from an existing mdf file or to bulk load new

2550

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

data into the database. We attempted to capture these customer
behaviors by generating a separate model for rapid growth during
the first 30 minutes of a database’s existence. This model assumes
that the high growth period will last for 30 minutes, modeling the
length of the initial growth is left as future work. Using the Delta
Disk Usage values computed previously, we labeled databases in
our training set as "High Initial Growth" if they had growth more
than 12GB within the first five minutes of the database’s lifetime.
Using this subset of the training data that is "High Initial Growth”,
we computed a probability distribution describing how much the
database should grow in the first 30 minutes and a probability that
a database should exhibit "High Initial Growth” behavior. Normal
and uniform distributions were used to fit the dataset and uniform
was chosen because it performed better during model fitting. The
probability distribution was then created by partitioning the "High
Initial Growth” Delta Disk Usage values into five uniform bins, each
with equal probability of being selected. When creating a database,
Toto uses this probability and probability distribution to determine
if the new database should have high initial growth. The simulation
result from our model aligned well with the production data.

4.2.4 Predictable Rapid Growth Patterns. Upon empirical exami-
nation of the Delta Disk Usage values, we noticed that a subset of
databases have a clear temporal pattern to their disk usage. This pat-
tern can be characterized as a large rapid spike in their disk usage,
followed by a rapid decrease in disk usage (perhaps this database
is being used as part of an ETL pipeline, where new data is loaded
in and old data is aged out). To capture this customer behavior, we
manually partitioned the training set by selecting databases that
exhibited this pattern by observing their Delta Disk Usage values
over time. We then computed a probability that a database should
exhibit Predictable Rapid Growth using the counts in each partition.
The Predictable Rapid Growth Pattern was implemented as a state
machine inside of Toto, where each state is described by the growth
magnitude and the amount of time until moving to the next state.
Below are the states and the order in which they are executed:

o Steady State Growth
e Rapid Disk Increase
o Steady State Growth Between Spikes
e Rapid Disk Decrease

Similar to the Initial Creation Growth, the growth magnitude
parameter for the rapid growth states was computed by binning
the Delta Disk Usage values into five buckets of equal probability
and using a uniform distribution within each bucket. The time
parameter for each state was computed by taking the average time
in each state for every database in our Rapid Growth training set.

5 EXPERIMENTAL RESULTS AND
DISCUSSION

To evaluate the efficiency and QoS of Azure SQL DB, we conducted
a series of experiments using our implementation of Toto to or-
chestrate the disk usage load and the population of databases in
the cluster (i.e., CPU reservations). At four different density levels,
we collected telemetry on the cores reserved for databases, the disk
utilization, and the failovers that occurred. In this context, increased
density (e.g., 110%) refers to reserving more cores for databases than

Industrial Track Paper

the predefined logical capacity of the node. (Recall that in Azure
SQL DB the logical capacities are set conservatively with respect
to the physical capabilities of the node). As the density in a cluster
increases, it is possible that more failovers will occur to relieve the
resource pressure. The following experiments were conducted to
find the optimal density while still ensuring a positive customer
experience. Below is a description of the modeled adjusted revenue
calculation used to evaluate efficiency, the experimental setup, the
results, and a discussion on the experiments.

5.1 Modeled Adjusted Revenue Calculation

In production, Azure SQL DB customers are charged based on the
SLOs and the lifetime of their databases. For our experiments, we
modeled adjusted revenue based on the following two factors.

(1) Revenue. The modeled revenue of each database (the price the
customer paid) was determined by its SLO [9]. For a single
database, the compute revenue was calculated by multiplying
the price of database instance by the lifetime of the database.
The storage revenue was calculated by multiplying the size
of the data by the price of storage and the lifetime of the
database. The aggregate revenue is the sum of the compute
revenue and storage revenue.

Penalty cost. The service-level agreement (SLA) for Azure
SQL DB [55] is 99.99%. To compute modeled adjusted rev-
enue, we assumed that if a database was down 0.01% or more
of its lifetime, service credits based on the SLA would be
paid back to the customer and subtracted from the revenue.

@

5.2

After implementing Toto, we benchmarked the efficiency of a sin-
gle Azure SQL DB cluster. To do this, we used a smaller 14 node,
gen5, stage cluster. Stage clusters in Azure SQL DB are used for
testing and validating new features before they are deployed into
production — they are identical to production clusters in all other re-
spects. Each experiment was executed in real time and observed by
collecting telemetry from the cluster. The goal of the experiments
was to measure the efficiency of the SQL DB service at different
density levels by observing how many databases can be packed
into the stage cluster, the corresponding modeled adjusted revenue
generated from these databases, and the customer experience ap-
proximated by the number of failovers that occurred. We ran four
experiments back-to-back, with each experiment running for 6 days.
Each experiment had a different density level: 100%, 110%, 120%,
and 140%. Here, even 100% may be beyond the comfortable limit in
production.

At the beginning of each experiment, we bootstrapped the cluster
to contain an initial population of databases. Using the production
telemetry, we generated an initial population that had a represen-
tative mix of Premium/BC databases vs Standard/GP databases, a
representative mix of SLOs within each service tier, and a represen-
tative mix of initial disk usage loads. The number of reserved cores
in the cluster is determined by the modeled SLO sizes of the initial
population. Table 2 contains a breakdown of the initial population.

Upon creation of each database in the initial population, the disk
usage was initialized and the growth was fixed to 0. During boot-
strap, the disk usage growth was fixed to 0 to prevent the databases

Experimental Setup

2551

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Table 2: Initial Population

Total
220

Standard/GP Databases
187

Premium/BC Databases
33

from growing before the experiment had begun. This also allows
the PLB to properly place and balance the databases throughout the
cluster before the experiment. Once this was finished, each experi-
ment officially began by modifying the model XML to specify the
growth patterns for each database and instructing the Population
Manager to begin creating and dropping databases.

Table 3 presents the resource usage breakdown of our initial
population for each experiment. While the number of databases
and disk utilization levels are held constant, the free remaining
logical cores increases as the density level increases, as more logical
cores are available at higher density levels.

Table 3: Experiment Parameters

Density Level % Free Remaining Disk Usage %

Logical Cores

100 65 77
110 158 77
120 224 77
140 326 77

The determinism of each experiment was fixed as much as pos-
sible by explicitly setting the seeds of all the random objects used
within the code. The Population Manager used a single seed which
fixed the order and the SLO of the databases that were created. The
random seeds used in Toto’s orchestrator are specified through the
XML and are constructed when the model objects are built. Every
node in the cluster contains an RgManager modified with Toto, so
a unique seed was provided to every node.

However, because we conducted these experiments on a real
Azure SQL DB stage tenant ring, there is some inherent random-
ness in the cluster that is difficult to control. For example, this
cluster was still subject to internal code upgrades to components
other than Toto and intermittent failures that also happen in pro-
duction. Additionally, the PLB in Service Fabric uses the Simulated
Annealing algorithm to decide where to place replicas [30]. Simu-
lated Annealing uses randomness to prevent getting stuck in locally
optimal solutions when searching for placements. Similar to how
production is configured, we were not able to use the same PLB
random seed for each experiment. So while the initial population of
databases is the same in each experiment, they are not guaranteed
to be placed on the same node.

5.3 Experimental Results

5.3.1 Creation Redirects. Each experiment officially began after
the Population Manager was instructed to begin creating and drop-
ping databases. Because each experiment began with a different
number of remaining free cores, the time at which the cluster can
no longer accommodate new creation requests occurs earlier in
the experiments with lower density levels. A creation redirect will

Industrial Track Paper

—
w0 100
110
= 120
-ch 140
k] 30
[
=
hel
[}
o
v 20
[«
V]
©
Qa
1]
o
N 104
-
Of m—— n — —— o e E—— -
(I) Zb 4‘0 6‘0 Sb 160 lZIO lliO

Time (Hours)

Figure 10: Creation attempts redirected due to the cluster
being exhausted in a resource.

400001

38000 -

o %>+

36000

34000 -

w
N
=]
o
=]

30000

Disk Usage (GB)

Upgrades
120% Core Cap

28000 -

26000

110% Core Cap
24000 A

IDbD llbD lZIOD leD

Reserved Cores

900

Figure 11: Reserved Cores vs Disk Usage on the cluster over
the six day experimental time period for four different den-
sity levels (each data point representing an hour).

occur when the cluster does not have enough cores to satisfy the
creation request. Instead of being placed in this tenant ring, the
database will be redirected to another tenant ring that has enough
capacity. Figure 10 shows that a creation redirect request first oc-
curs at hour 23 in the 100% density experiment, which indicates
that the cluster is running low on cores that can be reserved for
new databases. At 110% density, the first creation redirect doesn’t
occur until hour 28, and at 120% density it doesn’t occur until hour
55. The 140% experiment did not experience any creation redirects
throughout the duration of the experiment. Interestingly, the 110%
experiment crossed the 100% experiment in number of creation
redirects around hour 40 and continued to have more creation
redirects than the 100% experiment for the duration of the 6 days.
This is because the 110% experiment was able to create a large 24
core Premium/BC database (replicated x4, 96 cores total) that the
100% experiment redirected to another tenant ring. This caused the
remaining free cores of the cluster with 110% density to actually

2552

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

500
. 100 B Premium/BC Cores

110 W Standard/GP Cores
- 120 400
. 140

=

N
w
S
3

Number of Cores
~
S
S

Relative Utilization
[
o -

o

©
=
S
3

o
©
o

Disk Reserved Cores

Density Level %

(@) (b)
Figure 12: (a) Relative Disk and Reserved Core Utilization
and (b) Total failed-over CPU cores over the six days.

be smaller than 100%. This had a cascading effect on the number
creation redirects, because the remaining free cores was smaller,
more small core databases ended up being redirected in 110% than
in 100%. For the duration of the 6 days, the 110% experiment had
less remaining free cores than the 100% experiment, which is why
110% ended up with more creation redirects.

5.3.2 Reserved Cores and Disk Usage. As more databases are in-
jected into the cluster, the number of reserved cores and disk usage
begins to rise. Figure 11 shows the relationship between the re-
served cores and the disk usage in the cluster for each density level.
As the density level is increased, more cores are able to be reserved
for databases (the outliers at each density level are when a cluster
maintenance upgrade was occurring). The 140% experiment is able
to reserve the most amount of cores, whereas the lower density
levels eventually hit a cap and cannot reserve any more cores.

Figure 12 (a) shows the disk utilization and reserved core uti-
lization relative to 100% density at the end of each experiment. As
expected, as the density level increases, the reserved core utilization
also increases. The 140% experiment is able to accommodate almost
30% more cores than the 100% density experiment.

As an affect of creating more databases, the disk usage and uti-
lization in the cluster also increases. Figure 11 shows that there is a
clear gap between the disk usage of the 120% and 140% experiments
from the 110% and 100% experiments. This is because the 110% and
100% experiments redirected a 6 core Business Critical database
that had high disk usage. This database had high initial growth
(see Section 4.2.3), it grew about 1.3TB within the first 30 minutes
of being created. This growth explains the gap in disk usage be-
tween the 120%, 140% experiments and the 110%, 100% experiments.
This highlights the impact that a single Premium/BC database can
have on the overall cluster state. A few Premium/GP databases
contribute a disproportional amount of disk usage in the cluster
and also reserve more cores than the Standard/GP databases. When
the PLB needs to move a database to another node, it is important
to minimize failovers of Premium/BC databases, as moving these
databases is much more costly due to the higher disk usage.

5.3.3 Failed-Over Cores. Increasing the reserved core utilization
and disk usage is desirable from a COGS perspective, but it can
potentially have a negative effect on the quality of service of the
system. With increased disk usage, depending on how the replicas
are placed throughout the cluster, there is an increased probabil-
ity that the disk capacity of a node will be breached. Figure 12(b)

Industrial Track Paper

2
g

&
3

== -

3000

2000

Disk Usage (GB)
Number of Cores

1000

1 2 3 1 2 3
Experiment Experiment

(@) (b)
Figure 13: Dispersion of mean (in 10min) node-level re-
source usage of: Disk Usage (GB) (a), Number of Cores (b)
for three repeated, 18 hour experiments.

shows the number of cores that were failed-over during the course
of the 6 days. Notably, 140% had the highest number of failed-over
cores and failed-over more Premium/BC cores than the total of the
other experiments. The 120% experiment had the lowest number
of failed-over cores, but only slightly lower than 100% and 110%.
When the disk usage becomes high enough, the PLB will need to
fix the disk capacity violation by moving a Premium/BC database.
Poor placement decisions can potentially disproportionately pun-
ish the number of failed-over cores later on by needing to move a
Premium/BC database to fix a disk capacity violation. From a cus-
tomer experience perspective, this is not desirable, as Premium/BC
databases are more expensive (and generate more revenue than
Standard/GP databases).

5.3.4 Non-determinism of placements. We wish to also present
results quantifying the impact of the non-deterministic decision-
making of the PLB within SF. To make the experiment of repeated
runs manageable, and to avoid the impact of must-have, critical
system changes deployed to our cluster, we evaluated the variance
of different metrics observed within three identical 18 hour ex-
periments. Figure 13(a) and (b) show the dispersion of node-level
readings of disk usage (in GB) and the number of reserved CPU
cores across the three runs, respectively. To appropriately test for
significance, we used the Wilcoxon signed-rank test and quantified
the significance of the differences between all pair-wise experiments
for both metrics (e.g., six null hypothesis of “same distribution”) and
found that all but one (exp 2 versus 3 - reserved cores) of the signifi-
cance tests (@ = 0.05) were insignificantly different. Unsurprisingly,
following the insignificant differences in node-level distributions
of these metrics due to non-deterministic variables, our database
failover counts for experiments 1-3 were one, zero, and one respec-
tively. With this, we have bolstered confidence in the results of our
primary QoS KPI of database failovers in Figure 12(b).

5.3.5 Modeled Adjusted Revenue. The negative QoS (of failovers) is
reflected in Figure 14. Figure 14 plots the modeled adjusted revenue
generated from each 6 day long experiment, where the modeled
adjusted revenue is computed according to the calculation described
in Section 5.1. The modeled adjusted revenue for every experiment
increases until 140%, where there is a noticeable decrease. The
penalty applied to the 140% experiment is more than 60x larger
than the other experiments. It is clear that increasing the density
level in the cluster has a direct impact on the modeled adjusted

2553

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

29000

28000

27000

26000

25000

Modeled Adjusted Revenue in Dollars

24000
Density Level %

Figure 14: Total modeled adjusted revenue generated over
the six days.

revenue generated because the cluster can hold more databases,
but at higher density levels the impact of the number of failovers
becomes harmful to the service.

5.4 Discussion

Through our experimental evaluation of different density levels,
it is evident that there is a trade-off between the density of the
cluster and the rate of failovers that occur within the cluster. There
are many components of the service that can influence the rate
of failovers in a cluster. Most notably are: the tenant ring admis-
sion controller (in the control plane), the control exerted by the
RgManager, and the PLB within Service Fabric. Here we focus on
the evaluation post-admission - the RgManager and the PLB - but
neither of these can ensure a good QoS for the customer if they
are presented with a poor density scenario due to a “bad database
population”. We described in our experiment that even the admis-
sion of a single database exhibiting an innocuous behavior, can
dramatically alter the rate of failovers for the population of a highly
dense cluster. Ultimately, the different layers of the service need
to have some sort of communication and coordination in order to
achieve high efficiency and QoS.

Irrespective of the admission policy into the cluster, Toto can
be used to find an optimal density level, given an initial popula-
tion of databases at a specific resource utilization. In the above
experimental evaluation, the disk utilization began at 77% of the
logical capacity, but not all production clusters have such high disk
utilization. The optimal density for a cluster is driven by the work-
load behavior of each database and overall resource utilization of
the cluster. Clusters with lower disk utilization would be primary
candidates for increased density (assuming they are not constrained
by other resources).

There are also efficiency opportunities at the individual database
level. Mechanisms for resource governance (and performance con-
trol) exposed by a database engine are available to the RgManager to
facilitate efficient resource usage and minimize failovers. The details
are out of scope for this paper, but smart performance/efficiency
trade-off mechanisms and policies can be employed on each SQL
database to further increase the cost-effectiveness of the system.
Toto can also be used to evaluate the impact of these features by
overriding the resource metrics used to inform these decisions.

Additionally, there are other ways to measure a cloud service’s
efficiency, other than from the service provider’s perspective. There

Industrial Track Paper

are different notions of efficiency, such as how quickly an individ-
ual database can scale up to full resource utilization or the amount
of time it takes to provision a new database. Exploring the inter-
sections of different efficiency notions could help highlight the
inherent tradeoffs that exist when providing a cloud service.

5.5 Future Work

Toto is currently being used inside Azure SQL DB to evaluate the
impact on cluster wide feature improvements and configuration
changes. We plan to improve Toto in various ways going forward
to capture a wider variety of cluster states.

On modeling, we plan on adding models for memory and CPU
usage (including distinct models for HA primary and secondary
replicas). We also plan on more accurately mimicking the popula-
tion of databases in our production clusters. For our experiments
the population of databases was restricted to SQL DB singletons,
but other offerings such as Elastic Pools [5] (which allow for multi-
tenancy inside a single SQL DB instance) will add to environment
accuracy. We will also be exploring how to use Toto to measure
RgManager’s effectiveness at mitigating potential performance is-
sues. The models for the management of the database population
can also be improved. Currently the Create/Drop DB models only
aim to imitate the aggregate level of databases in the cluster, but
future iterations will model an individual database’s lifetime.

While Toto is currently built into RgManager of Azure SQL DB,
the framework can be more broadly applied than just to a cloud
database offering. The presented implementation modified a propri-
etary component the SQL DB stack to present fabricated resource
loads to Service Fabric (SF), but alternative implementations can be
implemented to be compatible with other orchestration frameworks.
Any cloud service that needs to manage the resources allocated to
applications using an orchestration system like SF or Kubernetes
can benefit from implementing Toto by extending the resource man-
agement APIs (like those of Kubernetes [4]) and employing accurate
and encompassing models to reflect their own production system.
We will explore implementing Toto directly into the orchestration
framework so it can be used by other cloud workloads.

6 RELATED WORK

There has been substantial work in the research community to
examine the cost effectiveness of cloud database systems, bench-
marking cloud services and database engines, and considering new
service models that focus on customer-oriented cost-optimization.
Select cloud-born, high efficiency database services include: Tau-
rus [21], Aurora [57], and Socrates [8]. Starling [46] and Lam-
bada [39] discuss low latency/cost using cloud functions, and cus-
tomer oriented, cost effective performance. Other customer-oriented,
cloud cost management, performance trade-off analysis include [16,
61]. The temporal patterns of customer actions and unplanned
events is also critical to managing efficiency [36, 47, 48].
Additional work on Azure-related efficiency and reliability from
the service back-end perspective include cost management [28],
performance isolation [35, 41], demand forecasting [10, 17, 34],
telemetry [33]. Considering the scale of the data issues in public
cloud environments is also a major problem [11, 45]. In production,

2554

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

when things go wrong, measuring KPIs, and performing root cause
analysis is crucial [20].

Recent work that considers cloud benchmarking for reproducibil-
ity and repeatability is similar to our work, but they consider
running SQL queries in their benchmarking, and are also highly
customer-oriented, rather than provider-side focus [22, 25].

To imitate resource usage patterns of databases in production,
ML and other statistical learning approaches [14, 15, 18, 19, 24, 29,
31, 37, 40, 43, 49, 51, 58, 60] have been widely used. These studies
suggest that database service providers can use utilization telemetry
to effectively allocate resources or help the database learn how to
perform faster. However, as previously discussed in Section 4, ML
approaches usually require dependencies on external libraries and
would have been difficult to be integrated into a critical production
component such as RgManager. Furthermore, they may not be
scalable for a large live service such as Azure SQL DB. Finally, non-
ML approaches can achieve comparable or even better results than
ML approaches for certain scenarios [27, 42, 50, 58].

7 CONCLUSION

A tremendously complex cloud service like Azure SQL DB faces nu-
merous challenges when trying to innovate on efficiency. Microsoft
cannot always determine what the impact of a system change may
be prior to being deployed out into production, or even after the
change has been deployed due to the inability to do any reliable or
repeatable “A/B” testing. Through experience, we have found that
attempts to reason about the outcomes of a system change from
key performance indicators are largely unreliable or inconclusive.
We present Toto, a framework to benchmark the efficiency of the
service, as our solution. Toto effectively hijacks the communication
of customer applications (i.e., SQL databases via RgManager) to
a cluster orchestrator such as Kubernetes, or in our case, Service
Fabric (SF). Toto leverages models of individual database behavior,
sub-population behavior, and behaviors of higher-level subsystems
in the service stack, such as request routing and sends the relevant
inputs to the cluster orchestrator. Toto is not limited in its relevance
to a cloud database service, but applies to any cloud service that lever-
ages cluster orchestration using a system like Kubernetes or SF. With
Toto, we are able to reliably and repeatably create benchmarking
scenarios in which we can change the service variables to measure
the impact. After expanding on an existing mechanism within the
RgManager stack of SQL DB, we implemented Toto into RgManager
and it was subsequently deployed in staging clusters worldwide.

We presented a study on the potential benefits and effects of
increasing database density in SQL DB clusters. Using statistical
modeling to imitate the disk usage of a database, we then tuned
the target density level within a single Azure SQL DB stage cluster.
The study helped quantify the degree that increasing the density of
the cluster has on negative customer experience. Internally, Toto is
being used for: configuration change evaluations, justification eval-
uations of efficiency feature proposals, and reproducing production
problem scenarios. We plan to further enhance Toto with more de-
tailed models, as well as introducing new models for resources such
as memory and models of SQL engine’s performance-efficiency
mechanisms.

Industrial Track Paper

REFERENCES

(1]

[2

—

(3]

=

[10]

(11

[12]
[13

[14

(15

[16

[17]

[18]

[19]

[20]

[21]

[25]
[26]

[27]

K-S test Python Package. https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats kstest.html.

Managing resource consumption and load in service fabric with met-
rics. https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
cluster—resource—manager-metrics, 2017.

Azure sql database and azure sql managed instance service tiers.
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-
general-purpose-business-critical, 2020.

Custom resources. https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/, 2020.

Elastic pools help you manage and scale multiple databases in azure sql data-
base. https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-
overview, 2020.

Recover using automated database backups - azure sql database & sql managed
instance. https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-
using-backups, 2020.

A. Abanda, U. Mori, and J. A. Lozano. A review on distance based time series
classification. Data Mining and Knowledge Discovery, 33(2):378-412, 2019.

P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez Saenz, J. Hu, H. Ko-
davalla, D. Kossmann, S. Lingam, U. F. Minhas, N. Prakash, V. Purohit, H. Qu,
C. S. Ravella, K. Reisteter, S. Shrotri, D. Tang, and V. Wakade. Socrates: The new
sql server in the cloud. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, pages 1743-1756, New York, NY, USA, 2019.
Association for Computing Machinery.

Microsoft corporation. http://azure.microsoft.com/en-us/pricing/details/sql-
database, 2016.

J.-H. Bose, V. Flunkert, J. Gasthaus, T. Januschowski, D. Lange, D. Salinas, S. Schel-
ter, M. Seeger, and Y. Wang. Probabilistic demand forecasting at scale. In VLDB,
pages 1694-1705, 2017.

E. Boutin, P. Brett, X. Chen, J. Ekanayake, T. Guan, A. Korsun, Z. Yin, N. Zhang,
and J. Zhou. Jetscope: Reliable and interactive analytics at cloud scale. In VLDB,
pages 1680-1691, 2015.

L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg, omega, and
kubernetes. Queue, 14(1):70-93, 2016.

R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. Workload prediction using
arima model and its impact on cloud applicationsAAZ QoS. IEEE Transactions on
Cloud Computing, 3(4):449-458, 2014.

E. Caron, F. Desprez, and A. Muresan. Forecasting for grid and cloud computing
on-demand resources based on pattern matching. In 2010 IEEE Second Interna-
tional Conference on Cloud Computing Technology and Science, pages 456-463.
IEEE, 2010.

S. Chawla, S. Deep, P. Koutrisw, and Y. Teng. Revenue maximization for query
pricing. Proc. VLDB Endow., 13(1):1-14, Sept. 2019.

S.Das, F. Li, V.R. Narasayya, and A. C. Kénig. Automated demand-driven resource
scaling in relational database-as-a-service. In SIGMOD, pages 1923-1934, 2016.
S. Das, V. Narasayya, F. Li, and M. Syamala. CPU Sharing Techniques for Per-
formance Isolation in Multi-tenant Relational Database-as-a-Service. In PVLDB,
2013.

V. Debusschere and S. Bacha. Hourly server workload forecasting up to 168
hours ahead using seasonal arima model. In 2012 IEEE international conference
on industrial technology, pages 1127-1131. IEEE, 2012.

M. B. Demarne, J. Gramling, T. Verona, and M. Cilimdzic. Reliability analytics
for cloud based distributed databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD *20, page 14794A51492,
New York, NY, USA, 2020. Association for Computing Machinery.

A. Depoutovitch, C. Chen,]J. Chen, P. Larson, S. Lin, J. Ng, W. Cui, Q. Liu,
W. Huang, Y. Xiao, and Y. He. Taurus database: How to be fast, available, and
frugal in the cloud. In Proceedings of the 2020 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 20, page 14634A$1478, New York, NY,
USA, 2020. Association for Computing Machinery.

D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. Oltp-bench: An
extensible testbed for benchmarking relational databases. Proc. VLDB Endow.,
7(4):277-288, Dec. 2013.

N. R. Draper and H. Smith. Applied regression analysis, volume 326. John Wiley
& Sons, 1998.

A.].Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi, and X. Yan. Characteriz-
ing Tenant Behavior for Placement and Crisis Mitigation in Multitenant DBMSs.
In SIGMOD, pages 517-528, 2013.

P. K. Erdelt. A framework for supporting repetition and evaluation in the process
of cloud-based dbms performance benchmarking. In TPCTC, 2020.

J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189-1232, 2001.

Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling for cloud
systems. In 2010 International Conference on Network and Service Management,
pages 9-16. Ieee, 2010.

2555

[28

[29

(30]

=
)

[43

[44

[45]

[46

[47

(48]

[49

(50]

[53

[54]

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research
problems in data center networks. SIGCOMM, 39(1):68-73, 2008.

S. Islam, J. Keung, K. Lee, and A. Liu. Empirical prediction models for adap-
tive resource provisioning in the cloud. Future Generation Computer Systems,
28(1):155-162, 2012.

G. Kakivaya, L. Xun, R. Hasha, S. B. Ahsan, T. Pfleiger, R. Sinha, A. Gupta,
M. Tarta, M. Fussell, V. Modi, M. Mohsin, R. Kong, A. Ahuja, O. Platon, A. Wun,
M. Snider, C. Daniel, D. Mastrian, Y. Li, A. Rao, V. Kidambi, R. Wang, A. Ram,
S. Shivaprakash, R. Nair, A. Warwick, B. S. Narasimman, M. Lin, J. Chen, A. B.
Mhatre, P. Subbarayalu, M. Coskun, and I. Gupta. Service fabric: A distributed
platform for building microservices in the cloud. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys "18, New York, NY, USA, 2018. Association for
Computing Machinery.

A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload characterization and
prediction in the cloud: A multiple time series approach. In 2012 IEEE Network
Operations and Management Symposium, pages 1287-1294. IEEE, 2012.

D. Lambert. Zero-inflated poisson regression, with an application to defects in
manufacturing. Technometrics, 34(1):1-14, 1992.

W. Lang, F. Bertsch, D. J. DeWitt, and N. Ellis. Microsoft Azure SQL Database
Telemetry. SoCC, pages 189-194, 2015.

W. Lang, K. Ramachandra, D. J. DeWitt, S. Xu, Q. Guo, A. Kalhan, and P. Carlin.
Not for the Timid: On the Impact of Aggressive Over-booking in the Cloud.
PVLDB, 2016.

W. Lang, S. Shankar, J. Patel, and A. Kalhan. Towards Multi-Tenant Performance
SLOs. In ICDE, pages 702-713, 2012.

Y. Li, E. L. Miller, and D. D. E. Long. Understanding data survivability in archival
storage systems. In SYSTOR, 2012.

R. Marcus and O. Papaemmanouil. Wisedb: A learning-based workload manage-
ment advisor for cloud databases. In VLDB, pages 780-791, 2016.

P. McCullagh. Generalized linear models. Routledge, 2018.

I. Miiller, R. Marroquin, and G. Alonso. Lambada: Interactive data analytics on
cold data using serverless cloud infrastructure. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, pages
115-130, New York, NY, USA, 2020. Association for Computing Machinery.

V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala, and S. Chaudhuri. Sharing
Buffer Pool Memory in Multi-tenant Relational Database-as-a-service. PVLDB,
pages 726-737, 2015.

V. R. Narasayya, S. Das, M. Syamala, B. Chandramouli, and S. Chaudhuri. Sqlvm:
Performance isolation in multi-tenant relational database-as-a-service. In CIDR,
2013.

S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and S. Dawson.
Markovian workload characterization for QoS prediction in the cloud. In 2011
IEEE 4th International Conference on Cloud Computing, pages 147-154. IEEE, 2011.
Y. Park, A. S. Tajik, M. Cafarella, and B. Mozafari. Database learning: Toward
a database that becomes smarter every time. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 587-602, 2017.

E. Parzen. On estimation of a probability density function and mode. The annals
of mathematical statistics, 33(3):1065-1076, 1962.

T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veer-
araghavan. Gorilla: A fast, scalable, in-memory time series database. In VLDB,
pages 1816-1827, 2015.

M. Perron, R. Castro Fernandez, D. DeWitt, and S. Madden. Starling: A scalable
query engine on cloud functions. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, page 131aA5141,
New York, NY, USA, 2020. Association for Computing Machinery.

J. Picado, W. Lang, and E. C. Thayer. Survivability of cloud databases - factors and
prediction. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD ’18, page 8114A$823, New York, NY, USA, 2018. Association for
Computing Machinery.

E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large disk drive
population. In FAST, 2007.

N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. Data management challenges
in production machine learning. In SIGMOD, pages 1723-1726, 2017.

O. Poppe, T. Amuneke, D. Banda, A. De, A. Green, M. Knoertzer, E. Nosakhare,
K. Rajendran, D. Shankargouda, M. Wang, et al. Seagull: An infrastructure for load
prediction and optimized resource allocation. arXiv preprint arXiv:2009.12922,
2020.

N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using predic-
tive models for workload forecasting. In 2011 IEEE 4th International Conference
on Cloud Computing, pages 500-507. IEEE, 2011.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing,
26(1):43-49, 1978.

S. Salvador and P. Chan. Toward accurate dynamic time warping in linear time
and space. Intelligent Data Analysis, 11(5):561-580, 2007.

R. H. Shumway and D. S. Stoffer. Time series analysis and its applications: with R
examples. Springer, 2017.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-metrics
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-metrics
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups
http://azure.microsoft.com/en-us/pricing/details/sql-database
http://azure.microsoft.com/en-us/pricing/details/sql-database

Industrial Track Paper

[55]

[56]

[57]

[58]

SLA for Azure SQL Database. https://azure.microsoft.com/en-us/support/legal/
sla/sql-database/v1_4/, 2019.

R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker, and D. J. DeWitt. STeP:
Scalable Tenant Placement for Managing Database-as-a-Service Deployments.
SoCC, 2016.

A. Verbitski, A. Gupta, D. Saha, J. Corey, K. Gupta, M. Brahmadesam, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvilli, and X. Bao. Amazon aurora: On
avoiding distributed consensus for i/os, commits, and membership changes. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
’18, page 7894A$796, New York, NY, USA, 2018. Association for Computing
Machinery.

L. Viswanathan, B. Chandra, W. Lang, K. Ramachandra, J. Patel, A. Kalhan,
D. J. Dewitt, and A. Halverson. Predictive provisioning: Efficiently anticipating

2556

[59

]

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

usage in azure sql database. In IEEE ICDE, pages 1111-1116, 2017.
C. Walck. Hand-book on statistical distributions for experimentalists. University
of Stockholm, 10, 2007.

[60] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang, T. Cheng,

[61

]

L. Liu, et al. An end-to-end automatic cloud database tuning system using deep
reinforcement learning. In Proceedings of the 2019 International Conference on
Management of Data, pages 415-432, 2019.

J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang, T. Cheng, L. Liu,
M. Ran, and Z. Li. An end-to-end automatic cloud database tuning system using
deep reinforcement learning. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD ’19, page 415aA8432, New York, NY, USA, 2019.
Association for Computing Machinery.

https://azure.microsoft.com/en-us/support/legal/sla/sql-database/v1_4/
https://azure.microsoft.com/en-us/support/legal/sla/sql-database/v1_4/

	Abstract
	1 Introduction
	2 Background
	3 Building into SQL DB Infrastructure
	3.1 Service Fabric
	3.2 RgManager
	3.3 Toto

	4 Building Models of Behavior
	4.1 Create DB and Drop DB Model
	4.2 Disk Usage Model

	5 Experimental Results and Discussion
	5.1 Modeled Adjusted Revenue Calculation
	5.2 Experimental Setup
	5.3 Experimental Results
	5.4 Discussion
	5.5 Future Work

	6 Related Work
	7 Conclusion
	References

