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ABSTRACT
Statistical data analysis plays a major role in discovering
structural and functional imaging phenotypes for mental dis-
orders such as Alzheimer’s disease (AD). The goal here is
to identify, ideally early on, which regions in the brain show
abnormal variations with a disorder. To make the method
more sensitive, we rely on a multi-resolutional perspective of
the given data. Since the underlying imaging data (such as
cortical surfaces and connectomes) are naturally represented
in the form of weighted graphs which lie in a non-Euclidean
space, we introduce recent work from the harmonics literature
to derive an effective multi-scale descriptor using wavelets on
graphs that characterize the local context at each data point.
Using this descriptor, we demonstrate experiments where we
identify significant differences between AD and control pop-
ulations using cortical surface data and tractography derived
graphs/networks.

Index Terms— wavelets, wavelets on graphs, cortical
thickness, brain network, Alzheimer’s disease

1. INTRODUCTION

The representation of an image at multiple resolutions is fun-
damental to a broad spectrum of approaches in computer vi-
sion and image processing [1]. Ideas based on the Laplacian
of Gaussians and Wavelets drive various applications like in-
terest point detection, matching/registration, texture analysis,
compression and denoising. Interestingly, while such multi-
resolution concepts are central to image registration in Neu-
roimaging, their use in (the downstream) statistical analysis of
brain imaging data (except perhaps spherical harmonics [2])
has been limited. The defacto analysis is performed at a single
(given) resolution and based on the univariate intensity mea-
surement at each voxel. For example, we may perform sta-
tistical hypothesis testing at a specific voxel across a cohort
of images of disparate groups (diseased/healthy) and check
if it is statistically different across groups; by repeating the
test at every voxel we obtain disease affected ‘regions’. Such
techniques broadly fall under “Voxel based analysis” (VBA).
Frequently, VBA is adapted with little modification to statisti-
cal analysis tasks which involve brain meshes as well as brain
connectivity graphs/networks. This work investigates new

models which may offer improvements in this graph struc-
tured data regime.

Our paper is inspired from the observation that statistical
inference on signals/functions may be more meaningful us-
ing multivariate descriptors that characterize the local context
around each measurement location rather than a single uni-
variate measurement, as in VBA. This intuition is very similar
to Scale Space theory [3] — what we investigate and present
here are analogous ideas when the underlying data are not
images, instead graphs structured data like meshes and con-
nectivity. Specifically, if the domain of the image can be rep-
resented as a regular grid lattice, for multi-resolution analysis,
we can easily write the wavelet expansion and proceed with
the analysis of the data. Instead, many recent brain imaging
datasets contain data that live in a non-Euclidean space, for
example cortical thickness on brain surfaces from Freesurfer
[4] or tractography derived connectivity measures from diffu-
sion tensor imaging (DTI) [5]. In such settings, it is problem-
atic to perform Wavelet analysis since the domain has arbi-
trary structure. The main contribution of this work is to show
using three interesting applications, how one can adapt recent
results from the harmonic analysis literature [6] to derive rep-
resentations and improve statistical power for common brain
image analysis pipelines involving graph-structured data.

2. METHOD

We will derive a multi-variate descriptor at each measurement
location using a suitable Wavelet parameterization of the ob-
served function. We first describe the Wavelet formulation
and then the scheme for deriving a descriptor on graph nodes.

2.1. Preliminaries: Continuous Wavelets Transform
The Wavelet transform is conceptually similar to the Fourier
transform [7]. While the Fourier bases is localized in fre-
quency only, wavelets can be localized in both time and fre-
quency. The traditional construction of wavelet transform re-
quires a mother wavelet function ψs,a(x) = 1

sψ(
x−a
s ) de-

fined by two parameters, the scale s and translation a. The
mother wavelet ψs,a(x) is a localized oscillating function at
a with finite duration acting as a local support controlled by
s. The terms ψs,a(x) at multiple scales are used to approxi-
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mate a signal using a wavelet expansion, moreover, they form
band-pass filters in the frequency domain.

Using ψ, the wavelet transform of a signal f(x) is defined
as a projection of f onto the wavelet bases as

Wf (s, a) = 〈f, ψ〉 =
1

s

∫
f(x)ψ∗(

x− a
s

)dx (1)

yielding wavelet coefficient Wf (s, a) at scale s and at lo-
cation a, where ψ∗ is the complex conjugate of ψ. Such a
transform is invertible, that is

f(x) =
1

Cψ

∫∫
Wf (s, a)ψs,a(x)dads (2)

where Cψ is the so-called admissibility condition constant.
Unlike the single set of sin() basis in the Fourier transform,
wavelet transforms have many possible basis functions de-
pending on their shapes and use. The wavelet transform above
is not directly applicable when the domain is arbitrarily struc-
tured, such as graphs. Next, we review how an analogue of
the wavelet transform can be defined on graphs [6].

2.2. Wavelets in Arbitrary Structured Domain

The basic idea in defining a Wavelet transform on graph is to
obtain a wavelet basis using spectral graph theory concepts.
We describe this construction below. A graph G = {V,E, ω}
is defined by vertex set V , edge set E and edge weights ω,
which may be given as a N ×N adjacency matrix A = {aij}
when |V | = N . Here, aij gives the connection weight be-
tween the ith and jth vertices, i.e., the edge weight ωij . A
(diagonal) degree matrix D has at the ith diagonal, the sum
of all the edges connected to the ith vertex. From these two
matrices, a graph Laplacian L is defined as L = D − A.
The matrix L is positive semi-definite, therefore, has ordered
eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 and correspond-
ing eigenvector χ. Using the {λl, χl} pairs, the forward and
inverse graph Fourier transformation is defined as

f̂(l) = 〈χl, f〉 =
N∑
n=1

χ∗l (n)f(n), and f(n) =
N−1∑
l=0

f̂(l)χl(n) (3)

Then, the spectrum of the Laplacian corresponds to the fre-
quency domain, where scales are defined over band-pass fil-
ters g() which are dual representation of wavelets. From the
scaling property of the Fourier transform, scales can be de-
fined with g() in the frequency domain. Using (3), we con-
struct spectral graph wavelets by applying band-pass filters at
multiple scales and localizing it with an impulse function as,

ψs,n(m) =

N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (4)

where m and n are vertex indices on the graph. Now, the
wavelet coefficients of a function f(n) can be easily obtained
by the inner product of the wavelets and the given function,

Wf (s, n) = 〈ψs,n, f〉 =
N−1∑
l=0

g(sλl)f̂(l)χl(n), (5)

which finally defines spectral graph wavelet transform
(SGWT) [6]. The coefficients obtained from the transfor-
mation yield the Wavelet Multiscale Descriptor (WMD) as a
set of wavelet coefficients at each vertex n for each scale s as

WMDf (n) = {Wf (s, n)|s ∈ S} (6)

which is a multi resolution descriptor defining local context
at each vertex n on the graph [8, 9]. Our statistical analysis
will operate on this descriptor in the next section.

3. RESULT

In this section, we demonstrate various applications of
multi-resolutional representation of functions given in non-
Euclidean space. First, we show results of cortical surface
and signal smoothing, then exhibit results from group anal-
ysis on cortical thickness and DTI tractography which show
significant improvements in statistical power.

3.1. Smoothing via Wavelets
Existing methods for smoothing cortical surfaces and the
function defined on it, such as spherical harmonics, suf-
fer from loss of information due to the ballooning process
which maps the convoluted brain surface to a sphere. If we
can define bases directly on the brain surface, obtaining its
smoothed approximation will be much easier. Using SGWT,
we can define wavelet transform on the arbitrarily structured
surfaces, and inverse wavelet transformation provides the
smoothed estimate of the cortical surface at various scales.
Let us rewrite (2) in terms of the graph Fourier basis,

1

Cg

∑
l

(∫ ∞
0

g2(sλl)

s
ds

)
f̂(l)χl(m) (7)

where the set of scales controls the spatial smoothness of
the surface. Coarser spectral scales overlap less and smooth
higher frequencies, and at finer scales, the complete spectrum
is used and recovers the original surface to high definition.
Smoothing at multiple resolutions is shown in Fig. 1 where
we can see the reconstruction of a brain mesh surface (and
the cortical thickness signal) from coarse to finer scales.

Fig. 1. Smoothing of cortical surface and the cortical thickness values on
the cortical surface, demonstrated from coarse to fine scales.

3.2. Cortical Thickness Analysis on Brain Surfaces
Cortical thickness is a distinctive biomarker implicated in
brain disorders such as Alzheimer’s disease (AD). Given that
brain function manifests strongly as changes in the cortical
thickness, the statistical analysis of such data to find clinically
meaningful group level differences is critical in structural
brain imaging studies. Typical analysis in clinical studies



Fig. 2. Cortical thickness group difference analysis (Top row: cortical thickness, Middle row: SPHARM, Bottom row: WMD). Resultant p values in
− log10 scale after FDR correction at α = 0.001 are mapped on a template brain, identifying brain regions that are affected by AD.

use cortical thickness values obtained from the segmentation
directly for a vertex-wise t−test, or smooth the signal first
using spherical harmonic (SPHARM) or spherical wavelet
approach. Employing multiple comparisons correction on
the p-values obtained from the tests and mapping them to the
original brain surface reveals disease specific regions.

Our multi-scale descriptor from the Wavelet coefficients
characterizes the shape (and the signal) on the native graph
domain itself. Since WMD is a multivariate descriptor, we
will use Hotelling’s T 2 test for hypothesis testing, which is a
generalization of the student’s t test. Using the raw cortical
thickness and SPHARM representation as the baseline, we
next describe our experimental design and results.

Dataset. We used Magnetic Resonance (MR) images data
acquired from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI). Our data consists of 356 participants: 160 AD
(86 male and 74 female; age: 75.53 ± 7.41) and 196 healthy
controls (101 male and 95 female; age: 76.09 ± 5.13). The
dataset was pre-processed using a standard pipeline. The
Freesurfer algorithm [10] was used to segment the cortical
surfaces, calculate the cortical thickness values, and provide
vertex to vertex correspondences across brain surfaces.

Analysis. Our analysis is summarized in Fig. 2. The
first row corresponds to group analysis using the original
cortical thickness values (CT), which reveals small regions.
The second row shows results using SPHARM which of-
fers an improvement over the baseline. Finally, the bottom
row shows that performing the statistical tests using our
multi-scale descriptor identifies much larger regions with
significantly smaller p-values. The number of vertices show-
ing significant group differences is substantially larger using
WMD compared to CT and SPHARM. At FDR 10−4 level,
there are a total of 6943 (CT), 28789 (SPHARM) and 40548
(WMD) vertices out of 131076 vertices.

We checked whether the regions identified by the methods
are expected to be atrophic in AD. All three methods identi-
fied the anterior entorhinal cortex in the mesial temporal lobe,
but at the prespecified threshold, the WMD method was more
sensitive to changes in this location as well as in the posterior
cingulate, precuneus, lateral parietal lobe, and dorsolateral
frontal lobe. These are regions that are commonly implicated
in AD, and strongly tie to known results from neuroscience.

3.3. Brain Connectome Analysis
Recent developments in deriving tractography results from
diffusion weighted imaging (DWI) have enabled the analysis
of connectivity data for a better understanding of how disease
and aging impacts brain connectivity. The tractography solu-
tion represents connectivity as a weighted graph, where each
vertex corresponds to the anatomically segmented region of
interests (ROI) in the brain and the edges denote the relation
between the ROIs by clinically meaningful measures such as
the strength of the tracks or the mean Fractional Anisotropy
(FA) along the fiber bundle. Again, as such studies may in-
volve small sample sizes, the goal is to maximize statistical
power of detecting disease specific group differences in the
brain connectivity. It is problematic to apply the WMD frame-
work directly to this connectivity setting, since the signal that
we want to detect is defined on the connection, not on the ver-
tices. Therefore, we adopt the line graph transform [11, 12]
which changes the role of vertices and edges in a graph to ob-
tain a dual representation of the brain network: the measure-
ment at each edge is considered as a function at each vertex.
We then proceed with the analysis as described in section 3.2,
and the resultant connectivity of significant group differences
in fractional anisotropy (FA) between AD and healthy control
groups controlled for age and sex are presented.

Dataset. The Wisconsin Alzheimer’s Disease Research



Fig. 3. Significant group differences (controlled for age and sex) from AD vs. control connection analysis using WMD on FA. Those connections with
p-values that survive Bonferroni thresholding at 0.001 are exhibited in top, left and right view. The thickness of each connection represents the p-values in
− log10 scale (thicker connection corresponds to lower p-value), and the color of each connection represents the direction of the difference (red: stronger in
controls group, blue: stronger in AD group). See IIT3 atlas document on NITRC for the region labels.

Center (WADRC) dataset included 102 subjects, which com-
prised 44 AD (31 male and 13 female; age: 77.05 ± 9.35)
and 58 CN (33 male and 25 female; age: 74.05± 6.82). Par-
ticipants were diagnostically characterized in the WADRC’s
multidisciplinary consensus conferences using standard pro-
cedures for the diagnosis of AD [13, 14]. For tractography,
a total of 164 regions were defined [15], and two regions la-
beled unknown were excluded in the analysis giving us 162
× 162 symmetric matrices per subject with mean FA values
as elements. A full index of the ROIs can be found in IIT3
atlas documentation on NITRC.

Analysis. We first note that we could not identify any sig-
nificant connections using the raw FA values when controlled
for age and sex. However, using our framework, we discover
22 significant connections, after controlling for age and sex,
even after Bonferroni correction at 0.001. As demonstrated
in in Fig. 3, these connections involve representative brain re-
gions discovered in many AD studies such as left and right
Hippocampus, left parietal superior, right precuneus, left and
right temporal regions and others, matching our previous re-
sult in section 3.2. Among the 22 connections, 17 connections
showed stronger FA in the CN group, and 5 connections show
stronger FA in the AD group.

4. CONCLUSION

In this paper, we demonstrated how a multi-resolutional
framework based on Wavelets can help facilitate statistical
analysis of (brain image-derived) graph structured represen-
tations. We show via various experiments on surface and
signal smoothing on brain surfaces, statistical analysis on
cortical thickness on surfaces and brain connectivity, that
statistical power can be improved with only minor changes in
the analysis design (i.e., involves substituting univariate tests
with their multivariate versions). Our results strongly sug-
gests that higher sensitivity can be obtained in many of these
applications with only a small additional computational load.
Code/other details available on the first author’s homepage.
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