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• -contig - Request a contiguous set of COW nodes
• -np 8 - Request 8 COW nodes
• -time 10m - Request use of our COW partition for up to 10 minutes

Here we’re asking to run script “lam_srvr_script” on a COW server which is con-
nected to a contiguous set of 8 COW nodes, and we’re specifying that our job must
complete within 10 minutes.

lam_srvr_script #! /bin/csh -f
crsh -lam all lam_node_script

• crsh - run a remote shell on our COW nodes
• -lam - set up to use active messages
• all - run lam_node_script on each node in our COW partition
• lam_node_script - shell script to be run by the remote shell

Here we ask the COW server to run the script “lam_node_script” on all the nodes
in our partition. We specify that we want the network setup for the “lam” protocol
(active messages).

lam_node_script #! /bin/csh -f
wwt2 -smp 2 -n 16 -ns 1 -ncpu 1 -hwstache mm

•  wwt2 - binary to run on the COW nodes (the simulator)
• -smp 2 - number of host CPU’s to use on each host node
• -n 16 - number of target CPU’s to model
• -ns 1 - number of target nodes to model on each host CPU
• -ncpu 1 - number of target CPU’s to model on each target node
• -hwstache - simulate a stache protocol running in hardware
• mm - the name of our target binary

This says to simulate 16 target machines, one on each of two host CPU’s on 8
COW nodes. The other arguments to the simulator are the same as in the previous
examples.

2. Usecsub to submit a batch job on the COW.
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  Appendix A: Execution on the Wisconsin COW

The Wisconsin COW is a cluster of dual CPU sparcstations connected by a very low latency system
area network (themyrinet). When running on the COW, you can choose to use it as a cluster of SMPs
(using both CPUs) or a network of single CPU workstations (using only one CPU per sparcstation). The
COW is controlled by the Distributed Job Manager (DJM), so to run jobs on it, you must issue DJM com-
mands1. To run on the COW, the machine you launch the job from needs to be on the approved list. In
addition the scripts described below are located in/p/cow/bin .

Note that these instructions apply only to the Wisconsin COW, which has a very specific hardware
and software environment. Getting WWT-II to run on another cluster system would require some changes
to the lower layers of the communication and synchronization package (SAM). Likewise, these instruc-
tions would need to be adapted to whatever scheduler is running on the cluster.

If you have access to the COW, you could use the following scripts and commands to run the matrix
multiplication example:

Shell Command crun lam_srvr_script -contig -np 8 -time 10m

•  crun - Command to run an interactive job on the COW2

•  lam_srvr_script - Command to run on the COW server node

1. For details on submitting jobs to the COW, see the COW web page athttp://www.cs.wisc.edu/~cow/djm.html
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Note that the simulator and the target program are a single process from the point of view of the oper-
ating system. If your target program crashes, the simulator crashes with it, and a singlecore file will be
produced. If that happens, you may want to examine target program’s stack or data areas. You can do this
easily by specifying the target executable rather than the simulator executable on the gdb command line.
Your invocation would be something like

gdb target_program core

Unfortunately, current versions of gdb can not properly switch between the simulator and target pro-
gram’s symbol tables, so you cannot put breakpoints in the target code and run it with the simulator under
the debugger.

8.2  Getting Repeatable Results

WWT-II schedules all target events (including communication events) at specific points in virtual
time. The WWT-II host programs synchronize frequently enough to ensure that all target events occur in
the correct order, and that causality is maintained at the target level. As a result, you can run the same
benchmark many times, (including in different host execution environments), and always getexactly the
same results. However, one must be aware of a few caveats regarding how target programs interact with
their environment to obtain such consistent results. First, you should be aware that a program’s command
line arguments (including its pathname in argv[0]) are pushed onto the execution stack before the stack
frame for the routine “main” is pushed onto the stack. This means that the size of the command line argu-
ments and pathname will affect the alignment of every stack based variable which is used by the program.
For example, if you have two identical copies of a program, one located at “/foo/bar/pgm”, and the other
located at “/tmp/pgm”, their execution times would most likely vary somewhat due to the different align-
ment of stack variables, and the resulting cache effects. Similarly the program’s environment variables are
pushed onto the stack, and any minor difference here could cause perturbations in virtual running time.
Note that these effects are not artifacts of the simulator; they reflect real differences in cache conflicts
which occur in the target system being modeled.

8.3  Dependence on the myrinet

Themyrinet is the only system area network supported by the current version of WWT-II, but since all
the communication and synchronization is done in the SAM layer, it should not be difficult to get the sim-
ulator running on another network. The SAM layer as currently implemented uses the LAM package
(Lanai version of Active Messages) from theNOW group at Berkeley. Other implementations on top of an
active message layer would be especially easy to do. While it is not supported now, previous versions of
SAM ran on top of an MPI layer, and an MPI implementation would also be pretty straightforward.
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Breakpoint 1 at 0x931c0: file ../../../host_node.common.C, line
254.
(gdb) run -n 4 -ns 4 -hwstache mm.16
Wisconsin Wind Tunnel II
wwt2: Cluster of SMP version
Copyright (c) 1995-1996 Mark D. Hill, James R. Larus, and David A.
Wood. All rights reserved.
Authors: Babak Falsafi, Michael J. Litzkow, Shubhendu S. Mukher-
jee, and Steven K. Reinhardt

Breakpoint 1, HostNodeCommon::simulate (this=0x11dff0)
    at ../../../host_node.common.C:254
254    hostSimStartTime = hostTimer();

The simulator has run until it hit the breakpoint in the main processing loop. Now we can schedule
our special event, set a breakpoint in the code that handles the event, and continue execution until we hit
that breakpoint. The arguments toschedDebugEvent arehost_id andVT.

(gdb) call schedDebugEvent( 0, 1000 );
schedDebugEvent: event scheduled...
   don’t forget to set a breakpoint at DebugEvent::process()
(gdb) break DebugEvent::process
Breakpoint 2 at 0x4f264: file ../../../node.C, line 79.
(gdb) continue

Breakpoint 2, DebugEvent::process (this=0xd13d30) at ../../../
node.C:79
79    cout << “Debug event” << endl;

The simulator has now stopped in the processing of our special event. We are stopped in the execution
of simulator code, and can examine the simulator’s state directly. For example we can look at the simula-
tor’s stack. Notice that the low part of the stack shows functions at addresses above 0x90000000. These
are target program routines (they have been relocated byelsie). The debugger cannot give much informa-
tion about them because it only knows about the symbol table for the simulator. When the target program
encounters an instruction that cannot be executed directly, such as a memory reference, it calls the simu-
lator, hence you see target text addresses in the lower part of the stack, and simulator text addresses in the
higher part. Simulator routines are called from target code via a jump table, which looks like a function
call to the debugger.

(gdb) where
#0  DebugEvent::process (this=0xd13d30) at ../../../node.C:79
#1  0x8cc40 in Processor_counterExpiration (vt_ctr=0xd13d30)
    at ../../../node.H:198
#2  0x11f1b4 in jump_table ()
#3  0x91007064 in ?? ()
#4  0x9100783c in ?? ()
#5  0x91008500 in ?? ()
#6  0x9100edf4 in ?? ()
#7  0x91009f44 in ?? ()
#8  0x91002eec in ?? ()
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8.1.1  Using WWT-II’s built in tracing facility

WWT-II has an extensive built in tracing facility. Many types of events such as target program loads
and stores or TLB misses can be traced. The tracing facility is controlled by three command line argu-
ments to the simulator.

• -pt — Print trace information to standard out. Unless this flag is specified, trace records are stored in a
buffer. If the simulator exits abnormally (via thedie function), the buffer is dumped to standard out.
Note that the buffer is of a fixed size, and space gets re-used if the buffer overflows, hence the trace
buffer may only contain a small number of the most recent events.

• -ts n — Specifies the size of the trace buffer asn records.

• -tr m — Specifies the trace mask. Each type of event which can be traced is signified by a bit in the
mask. If the bit is set inm, then events of that type will be traced. The bit values are specified in the file
“trace.H”.

The file “trace.H” contains the following two definitions

#define Trace_LdSt      TRACE_MASK(1)   /* 0x00002 */
#define Trace_Tlb       TRACE_MASK(3)   /* 0x00008 */

You can trace multiple types of events by or’ing their respective bit masks together. Hence the simula-
tor invocation

 wwt2 -n 4 -ns 4 -hwstache -tr 0xa -pt mm

 specifies that all target loads and stores to memory as well as TLB misses should be traced, and those
traces are to be printed directly to stdout, (rather than being saved in a buffer).

8.1.2  Running WWT-II under a general purpose debugger

Since WWT-II is a discrete event simulator, its major functions are the scheduling and processing of
events. Each event is scheduled to occur at a given point in virtual time (VT). You can schedule a special
event called adebug event for whatever VT you like. For instance, you might want to schedule such an
event at a time just before your target program attempts an invalid memory reference. You could then
examine the state of the simulator or target memory just prior to this calamitous event. To do this, you
would need to get control of the simulator at a point when the event list has been initialized, but before
event processing begins. You would then schedule a debug event for the VT of interest. Next, you would
set a breakpoint in the code that will be executed when this event is processed. Finally, you would con-
tinue execution of the simulator, and wait for the breakpoint to be hit. The following annotated dialog
shows how you could do this with the debuggergdb.

First we start up the debugger, set a breakpoint which will happen before any events are processed,
but at a point where we can schedule an event, and start the simulator running. The simulator arguments
shown will cause it to simulate an S-COMA system with 4 target nodes, where each target node has one
CPU. The target program is called “mm.16”.

padauk(mike) gdb chicago
(gdb) break HostNodeCommon::simulate
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• Typhoon — Each target node is an SMP with a Typhoon accelerator board. The typhoon board
has its own CPU, so general purpose CPUs are not used for protocol processing. Hence the
fixed andfloating policies don’t apply.

• hwstache — S-COMA machine with fine grain access control provided in hardware. The gen-
eral purpose CPUs are not used for protocol processing, sofixedandfloating policies don’t
apply.

7.4  Selecting a target system at run time

When you run the simulator you must specify the target system you want to run on the command line.
It is imperative that the target system you specify matches the target system for which you build your tar-
get program.

t0 — Specify-asic on the command line.

t1 — Specify-t1 on the command line.

typhoon — Specify-maskarb -typhoon on the command line

hwstache — Specify-hwstache on the command line

For t0 andt1 systems you also need to decide whether you wantfixed or floating protocol processing.
This is done by linking in the appropriate library with your target program, as discussed in the last sec-
tion. Fortyphoon andhwstache systems the general purpose processors are never used for protocol pro-
cessing, so this consideration does not apply. You must also specify-maskarb for typhoon systems to
mask bus arbitration.

By default each node in your target system will contain only one general purpose cpu. You can spec-
ify more cpus with the-ncpu X command line parameter. The number of cpus fort0 andt1 systems with
fixed protocol processingincludes the protocol processor. This is also true of target systems utilizing the
typhoon processor, but does not apply tohwstache systems. For example, if you wanted two run 2 target
program threads with a fixed protocol processing policy on at0, t1, or typhoon system, you would specify
-ncpu 3 on the simulator command line. However, if you wanted to run 2 target program threads on a
hwstache system, you should specify-ncpu 2 on the command line. Finally, you must also specify the
number of threads in the target program’s portion of the command line with the-nt X argument. For this
example you would specify-nt 2 after the name of the target binary.

8  Bugs and Limitations

This version of the simulator is known to have a bug in simulating thetyphoon systems. A livelock
condition is sometimes encountered when running multi-threaded applications ontyphoon.

8.1  Debugging the Simulator

If you need to debug the simulator (or if you just want to use debugging techniques to become more
familiar with its operation), there are several ways to proceed. WWT-II has a built in tracing facility, spe-
cial functions to assist in debugging with a general purpose debugger, and a mechanism for examining the
target program’s memory.
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7  Building Your Own Target Programs

Theparmacs directives used by WWT-II adhere quite closely to the standard described in [2].
Because of this, many of the standard benchmarks available from various sources in the parallel architec-
ture community can be easily made to run on WWT-II. We suggest you start with theMakefile from the
matrix multiplication example, if you want to develop your own target programs.

7.1  Structuring Your Target Program

You need to create your program as a set of.U (corresponding to.c) and.H (corresponding to.h)
files in the C language. The following actions will be taken by theMakefile. The.U and.H files will be
preprocessed by them4 macro processor and converted to the corresponding.c and.h files. A C com-
piler will convert these into object files, which will be linked by the linkerld. Finally,elsie will instru-
ment the target binary to keep track of virtual time on the target machine. This process is illustrated in
figure 2. The commandmake produces an executable ready to run on WWT-II.

7.2  Modifying the Example Makefile

Modifying theMakefile to build your own target programs is straightforward.

1. SetWWT_ROOT to the root of the WWT-II distribution at your site, (either by changing the
Makefile or setting an environment variable).

2. SetTARGET to the name of the target binary you want to generate.

3. SetSRC to the list of.U files (corresponding to.c files) from which your target program is con-
structed.

4. SetINC_SRC to the list of.H files (corresponding to.h files) which are to be included in your
.U files.

5. Use aninclude  statement to pick the target machine for which you want to build your pro-
gram. Target machine choices are discussed in the next section.

7.3  Choosing a Target System

You can use aninclude  statement in yourMakefile to pick the target machine for which you want
to build your program. Target machine choices are:

• t0_fix — Each target node is an SMP with aT0 accelerator board and one of the processors is
dedicated to protocol processing.

• t0_float — Each target node is an SMP with aT0 accelerator board and protocol processing is
shared among the CPUs.

• t1_fix — Each target node is an SMP with aT1 accelerator board and one of the processors is
dedicated to protocol processing.

• t1_float — Each target node is an SMP with aT1 accelerator board and protocol processing is
shared among the CPUs.
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COW. T1 and Typhoon exist as specifications for more complex and expensive accelerators which could
be added to networks of workstations to aid in the implementation of a DSM system. All three boards can
be simulated by WWT-II.

• T0 — provides a custom access control module per target node to aid in DSM operations.

• T1 — provides both a custom access control module and an integrated network interface.

• Typhoon — provides access control, an integrated network interface, and a custom protocol processor.

5.3  Hwstache

Hwstache is a simulation of an S-COMA machine, as proposed by Hagersten et al. The S-COMA tar-
get system utilizes a Stache-like allocation policy (i.e., pages in main memory) but provides hardware
support for maintaining coherence on finer grain cache blocks.

5.4  Allocation of Protocol Processor

When simulating a target system that has multi-CPU nodes and does not have a dedicated protocol
processor, e.g.T0 or T1 systems, you have a policy decision to make. You could dedicate one of the gen-
eral purpose CPUs to protocol processing. We refer to this policy as thefixed protocol processing policy.
Alternatively, you can use all the CPUs for target program execution, and allocate CPUs for protocol pro-
cessing on the fly via an interrupt. We refer to this policy as thefloating protocol processing policy. In the
fixed case, you give up use of the CPU for target execution in exchange for low latency in protocol pro-
cessing. In thefloating case, you can use all the CPUs for target execution, but you pay a higher price for
arbitration whenever a protocol event occurs[4].

6  Ready-To-Make Target Programs

 To help you become familiar with the simulator, several benchmarks are provided with the WWT-II
source distribution. Each of these benchmarks has its own directory under$(TOP)/benchmarks/ .
Those benchmarks which require input data files have sample files in their subdirectories. Each bench-
mark has a subdirectory calledsrc.mt, which contains multi-threaded source code for the application.
Eachsrc.mt directory contains aMakefile which is set up to build a copy of the benchmark that will run
on ahwstache (S-COMA) target system. You can also switch theMakefiles to build a target program for
a different target system. See section 7.2 and section 7.3 for instructions on how to do this.

The benchmarks provided with the distribution are:

• FFT — A benchmark “kernel” which does fast Fourier transforms

• LU — A Blocked LU Decomposition

• RADIX — An Integer Radix Sort

• WATER-SP — A Hydrodynamics Simulation

• TOMCATV — A Program that generates a vectorized mesh

Fft, lu, radix, and water-sp are from the SPLASH-2 benchmarks.
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item    max             min             ave
Fill    4.791660e+05    4.791580e+05    4.791628e+05
MM      1.185092e+07    1.106721e+07    1.169294e+07
Check   4.076710e+05    3.656770e+05    3.873071e+05

matrix multiply answer correct, max error = 0.000000e+00

Execution time for parallel section in cycles/1000 = 12767896

Note thatmax, min, ave, andexecution time arevirtual cycles on the target machine. You can examine
the matrix multiplication source code to see how to generate timing statistics for your target program.

4.4.2  Output From WWT-II When Running the Matrix Multiplication Program

The statistics file,WWT.stat.N, contains a wealth of information about the execution of your program
on the target machine. You should examine the sample WWT.stat.2429 file in$(TOP)/example/
parallel . The following information is in theWWT.stat.N file:

• WWT-II execution parameters.

• Virtual time statistics and breakdown for computation, TLB misses, cache misses etc.

• Protocol dependent statistics

• Message counts and protocol transitions

• Cache statistics, like number of shared and private misses etc.

5  Description of Simulated Target Systems

WWT-II can simulate a wide range of target systems. To run on a particular target system you must
first link your target binary with the correct target library, i.e. you must build a target program to run on
the machine you want to simulate. When you run the simulator, you must also supply command line
switches to tell the simulator what kind of target system you want to use. Note that the system you build
your target binary for and the target system you specify on the simulator command line must match, oth-
erwise your target program will probably crash.

5.1  Network Simulation

The network is assumed to transmit messages in 100 cycles. The simulator does have some capabili-
ties to model contention for injecting and draining messages from the network. However, these capabili-
ties are not complete and have been used differently in the different models. Those interested in the
details should contact us.

5.2  Typhoon “family”

The typhoon family of accelerator boards provide various levels of hardware assistance in the imple-
mentation of Distributed Shared Memory (DSM) systems[11,12]. These boards are intended to be added
to “off the shelf” workstations and networks. The T0 board exists as a real implementation which was
done by two members of the WWT group. These boards are installed and working in the Wisconsin
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• mm — the name of our target executable.

If your target executable requires any command line arguments, these can be typed after the name of
the target executable.

4.3.3  Execution on a SMP

To run on an SMP, such as a SUN Enterprise server, you might type

wwt2 -smp 8 -n 16 -ns 2 -hwstache mm

• -smp 8 —run on 8 host processors.

• -n 16 —simulate a 16 processor target system.

• -ns 2 —simulate 2 target processors on each host processor.

• -hwstache —simulate a target machine which runs astache protocol in hardware (S-COMA).

• mm —the name of our target executable.

Note the-smp 8 argument, by default WWT-II will query the system for the number of processors it
has, and use them all.

4.4  Output From the Simulator and Target Programs

Note that in each of the above examples we have run the same simulator binary, the same target
binary, and simulated the same target system. A feature of WWT-II is that we get the same output from
both the simulator and target programs,regardless of which host system we run on. This allows us to uti-
lize multiple host platforms to speed up the running of experiments, and simplifies debugging when port-
ing the simulator to new platforms.

4.4.1  Output From the Matrix Multiplication Program

Following is the output you should get from the Matrix Multiplication program running on a target
system of 16 single-CPU nodes using the hwstache coherence mechanism.

Wisconsin Wind Tunnel II
wwt2: Cluster of SMP version
Copyright (c) 1995-1996 Mark D. Hill, James R. Larus, and David A.
Wood.
              All rights reserved.

Authors: Babak Falsafi, Michael J. Litzkow,
         Shubhendu S. Mukherjee, and Steven K. Reinhardt

performing matrix multiplication on a matrix of order 128

Using stats.12837 for stats output.
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commented out. These choices are discussed in section 5. Before attempting to build the executable, you
need to set a couple of environment variables which the suppliedMakefiles depend on. Set the environ-
ment variableWWT_ROOT  to point to the root of the WWT-II source tree at your site. Also, set the
environment variableGNU_M4 to the pathname of theGNU version of them4 macro interpreter at your
site (other versions ofm4 will not work properly). We suggest you do this in your login script, but you
could also do it by editing your own copies of theMakefiles if you prefer.

The exampleMakefile in $(TOP)/example/parallel  is set up to build the matrix multiplica-
tion program for running on a target system with a hardware stache. You should now build the example
program by typing in

.../make 1

4.3  Execution

How you will get WWT-II to execute (and run your target binary) will depend on the kind of host sys-
tem you want to execute on. The WWT-II binary will run on an SMP-Cluster (a group of SMPs connected
by a system area network). The only system area network supported at this time is themyrinet, but that
does not mean you must have amyrinet to run the simulator. Both an SMP and a single-CPU workstation
are degenerate cases of an SMP-Cluster. A single WWT-II binary supports all of these configurations.
The normal location of thewwt2  program is in$(TOP)/tzero/mbussim/parallel/cow/
build.  In what follows, when we refer towwt2  we are referring to this executable.

4.3.1  Command line options

WWT-II supports a large number of command line options. Only a few are illustrated in the examples
which follow. To see a listing of all the options, you can run

wwt2 -help

4.3.2  Execution on a single CPU workstation

If your host is a single CPU workstation, you can run the sample matrix multiplication program by
typing:

wwt2 -n 4 -ns 4 -hwstache mm

• wwt2 — the name of the WWT-II binary.

• -n 4 — simulate a 4 processor target system.

• -ns 4 — simulate 4 target processors on each host processor.

• -hwstache — simulate a target machine which runs astache protocol in hardware
(S-COMA).The target architecture specified here must match the target library for which
your program is linked.

1. Be sure to use whatever pathname leads to the GNU version ofmake on your system.
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4  Compiling and Running the Matrix Multiplication Program

There are a number of steps involved in preparing and executing your WWT-II target program (bench-
mark). This section explains the procedure using the matrix multiplication program as an example.

4.1  Overview

Your source code files will containparmacs macros which must be expanded bym4 in conjunction
with the pre-defined set ofparmacs macros provided in this software package. Next, your expanded
source code is compiled and linked with the WWT-II user libraries. This target binary is theninstru-
mented with instructions to keep track of virtual time and simulate memory references by a tool called
elsie (also supplied with WWT-II). The process of preparing a target binary is illustrated in figure 2.

Once you have prepared your instrumented binary, you can execute it on the simulator. Your instru-
mented binary and any required command line arguments, environment variables, and input data files all
become input to the simulator. The output of the simulator is whatever output your target program pro-
duces, and a file containing statistics pertaining to your run. The contents of the statistics file are
described in section 4.4.2. The process of executing your target binary is summarized in figure 3.

4.2  Compilation

As explained above, preparing a WWT-II target program involves several steps. However, we have
provided a set ofMakefiles which automate this process for you. We use theGNU makeinclude  facil-
ity as well as otherGNU specific features, so we assume you are familiar withGNU make, and can use it
to build your WWT-II target programs. You should now examine the file$(TOP)/example/paral-
lel/Makefile . You should use this file as a template for compiling your code for WWT-II.

We have filled in theMakefile for the matrix multiplication program inparallel. ThisMakefile builds
ahwstache version of the matrix multiplication program. Other choices are listed in theMakefile, but are
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FIGURE 2. Target Program Preparation
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TPPI_shm_spin(bool (*func(int)), int arg)

These calls perform a semaphore. The first version periodically callsfunc  and only returns when the
func  returnstrue . The second version must be used iffunc  accesses shared memory. Theint  pro-
vided in the call is passed tofunc  on each call.

3.5.4  createThread(void(*func()))

This call is similar toCREATE(func)  except that it spawns the function onto a single thread on the
calling node. SinceCREATE_ALL(func)  only spawns one process per node, the function called is the
one that typically spawns the other threads. Typical code would be:

CREATE_ALL(start);
start();
.....

void start()
{
   int thread;
   for (thread = 1; thread < TPPI_num_threads; thread++) {
       creatThread(driver_threaded);
   }
   driver_threaded();
}

3.5.5  void mark_pages_for_migration()

This function is declared inhwstache.h . It may be called once in the parallel section of the code.
Once it is called a page will migrate to the first node that touches a value on that page.

3.5.6  void dumpStats(char *)

Causes the current statistics about the simulator to be dumped. The string passed is used as a label in
the output produced.

3.6  Discussion of the Example Code

There are many ways to parallelize matrix multiplication. We have chosen to decompose the problem
into computations of complete rows of the result matrix. Most of the code is straightforward. However, a
couple of things require some explanation. The work scheduler allows dynamic load balancing by distrib-
uting work where there is demand. Tasks compute a row of the result matrix at a time, picking a row in
order, starting at the row with the smallest index. A shared variable,I , records the lowest row number
that still requires computation. An idle task readsI ’s value and increments it. A lock ensures correctness
by guaranteeing that these operations occur atomically. At the beginning of execution the matrices are
filled with a set of known values which are unique, and non-zero. At the end of execution the answer is
checked for correctness, based on the properties of the known values generated at the beginning. Both the
initialization of the matrices and the check for correctness are done in parallel.
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unsigned start_cycles, end_cycles, total_cycles;
...

main()
{

INITENV();
...
CLOCK(start_cycles);
CREATE_ALL(...);
...
WAIT_FOR_END();
CLOCK(end_cycles);
/* total_time = total number of cycles to execute the parallel
section */
total_cycles = (end_cycles - start_cycles) * 1000;

}

3.5  Multithreaded Applications and Other Issues

Although the example matrix multiplication code is not multithreaded, most of the benchmarks are
programmed this way. Furthermore, several additional features are used. These are described in this sec-
tion. Several of the calls are contained in the TPPI (Tempest Parallel Programming Interface) package.
Codes using these routines need to include thetppi_thread.h  header file. Having the word thread in
the name can be somewhat confusing. The header file does contain some thread calls but also includes
some calls used in unthreaded code. Codes using routines dealing with multithreading that are not in the
TPPI package need to include thecyklos/interface.h  header file.

3.5.1  IDs and Number of Threads

The external variableTPPI_num_threads  holds the number of threads available on a node. The
external variableTPPI_num_nodes  holds the number of processors in the application. Using
XX_NUM_NODES yields the same result. The external variableTPPI_self_address  holds the pro-
cessor number of the calling processor in the application. UsingXX_NODE_NUM yields the same result.

The functions

int threadGlobalId()
int ThreadId()

return the thread id of the calling process. The first returns the id of the thread which is unique for all
threads in an applications (across allTPPI_num_nodes  processors). The second returns a thread id that
is unique only for the node of the calling process.

3.5.2  void threadGlobalBarrier()
void threadBarrier()

threadGlobalBarrier()  performs a barrier across all threads in the program.threadBar-
rier() , on the other hand, only performs a barrier across the threads on the node making the call.

3.5.3  TPPI_spin(bool (*func(int)), int arg)



8

Wisconsin Wind Tunnel II: User’s Guide

test_function()
{

LOCK(g->lock);
g->I++;
UNLOCK(g->lock);
...

}

3.4.8 void BARRIER(dummy, num_procs)

The directiveBARRIER(dummy, num_procs) sets up a barrier, which holds back processors until
num_procs - 1 other processors reach anyBARRIER directive. There is, however, a caveat here.
num_procs must be equal toXX_NUM_NODES. Or, in other words, you cannot have a partial barrier.
dummy is a dummy argument for our purpose. Youdo not have to declare it as any variable. The original
Parmacs specification requires the name of a barrier variable in its place. For example, you can synchro-
nize all processors at a point in the following way:

ENV
...
main()
{

INITENV();
CREATE_ALL(test_function);
test_function();
WAIT_FOR_END();
...

}

test_function()
{

...
BARRIER(dummy, XX_NUM_NODES);
...

}

BARDEC(dummy) andBARINIT( dummy)  are provided for compatibility with other versions of
Parmacs. In this version they are provided but are noops due to the above definition of a barrier.

3.4.9  Timing

void CLOCK ( unsigned cycles )

A call to the macroCLOCK(cycles) returns thevirtual time1 in thousands of cycles incycles. This
macro can be used to find the virtual time at any point during execution. For example, you can measure
the virtual time for the parallel section of your code in the following way:

ENV

1. The virtual time is the number of simulated target machine cycles since the beginning of execution. It is unaffected by how
fast WWT-II is running on its host.
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{
INITENV();
A = (int *)G_MALLOC(sizeof(int) * XX_NUM_NODES);
set_fork_semantics( &A,sizeof(A) );
...
CREATE_ALL(Update);
Update();
...
WAIT_FOR_END(XX_NUM_NODES - 1);
...

}
Update()
{

A[XX_NODE_NUMBER] = 0;
...

}

3.4.7 Locks

• void LOCKDEC( lock)

• void LOCKINIT( lock)

• void LOCK( lock)

• void UNLOCK( lock)

• void ALOCKDEC( lock, number)

WWT-II implements bothMCS locks[7] and message locks. Declare a shared lock variablelock, using
LOCKDEC(lock). Initialize it usingLOCKINIT (lock). Use the directivesLOCK(lock) andUNLOCK(lock)
to lock and unlock, respectively, the variablelock. ALOCKINIT( lock, number)  is similar toLOCK-
DEC(lock) except it creates an array of locks of lengthnumber. For example, you can atomically incre-
ment a shared variable,I , in the following way:

ENV
struct GlobalSpace
{

int I;
LOCKDEC(lock);

} *g;

main()
{

INITENV();
g = (struct GlobalSpace *)G_MALLOC(sizeof(struct GlobalSpace));
g->I = 0;
LOCKINIT(g->lock);
set_fork_semantics( &g, sizeof(g) );
CREATE_ALL(test_function);
test_function();
WAIT_FOR_END();
...

}
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shared_var = (int *)G_MALLOC(sizeof(int))
set_fork_semantics(&shared_var,sizeof(shared_var));

Note the use of set_fork_semantics , which provides each slave process with a copy of the
pointer to the allocated space. G_MALLOC guarantees that the address it delivers is aligned on a cache
block boundary.Parmacs does not define a directive to free up shared space.

3.4.5 void CREATE_ALL( void (*func()) )
void WAIT_FOR_END(int N)

In theParmacs world, only one task is active (on processor zero) when the parallel program starts. We
will call this task themaster. The directiveCREATE_ALL1activates the other tasks (one on each of the
other processors), which we call theslaves. This directive is passed the name of a function,func, that will
be executed in parallel by theslaves. The call toCREATE_ALL returns immediately.

Often a program requires a post-processing phase, which cannot operate in parallel and cannot pro-
ceed until all parallel tasks complete. The directiveWAIT_FOR_ENDsynchronizesNslaves and deacti-
vates them as soon as they return fromfunc. WhenWAIT_FOR_END returns, only themaster is active.
This directive should only be invoked by themaster.

Here is an example fromparallel/mm.U , where themaster creates a process to execute the func-
tion Driver  on each of the other processors.CREATE_ALL(Driver)  returns immediately and the
master does its share of the work by callingDriver . At the end, themaster synchronizes theslaves by
callingWAIT_FOR_END and then prints the output.

CREATE_ALL(Driver);
Driver();
WAIT_FOR_END(XX_NUM_NODES - 1);
printf(...);
...

3.4.6 const int XX_NUM_NODES
const int XX_NODE_NUMBER

The constantXX_NUM_NODES denotes the number of processors available to the parallel program.
The constantXX_NODE_NUMBER denotes the processor id on which a process is running, where

A process created by the macroCREATE_ALL can read the processor id fromXX_NODE_NUMBER
and decide to do its own share of work. For example, parallel update of a linear arrayA of size
XX_NUM_NODES can be done by the following code:

ENV
int *A;
main()

1. TheParmacs model supports a different macro,CREATE, that creates one process on one processor. Hence, multiple calls
to CREATE are necessary to fork multiple tasks, one on each processor. Although this macro is supported on WWT-II, you
should useCREATE_ALL instead ofCREATE because forking one task at a time is inefficient.

0 XX_NODE_NUMBERXX_NUM_NODES<≤
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rect usage of the shared memory. Also a timing function is provided (see section 3.4.9). In many
programs the master task will have some work to do which can be completedonly after all the slave tasks
have exited (for example, printing out an answer). Once the master task has finished executing the parallel
function, it should use theWAIT_FOR_ENDparmacs directive (described in section 3.4.5). The call to
WAIT_FOR_END will not return until all the slave tasks have terminated.

3.4   Parmacs directives supported by WWT-II

TheParmacs directives supported by WWT-II are described in detail below. Note that the syntax of
some of these directives are slightly different from the standardParmacs specification.

3.4.1 ENV: declaration

ENV declares various data structures required by the WWT-II to support theParmacs model. These
data structuresmust be visible to all the non-header files. For example, at the beginning of theparal-
lel/mm.U  file you will find the following statements:

/* mm.U - matrix multiply */
/* Setup environment for WWT-II */
ENV

3.4.2 void INITENV()

INITENV  initializes the data structures declared by theENV statement, and must execute before any
other non-declarativeParmacs directives. See section 3.4.6 for an example of its usage.

3.4.3 void set_fork_semantics(void *addr, unsigned len)

Set_fork_semantics  causes the contents of memory at the specified addresses to be broadcast
from the master process to all the slave processes when they are created byCREATE_ALL (explained in
section 3.4.5). Note that this doesnot cause the memory to become shared memory, it only initializes the
memory in the slave processes with the current values from the master process. This is similar to the
semantics of theUNIX1 fork  system call. This routinecannot be used to broadcast values stored in
memory, which the master process has allocated on the heap; it can only be used for memory in theini-
tialized data andBSS sections. Also note that all calls toset_fork_semantics must be done before
CREATE_ALL is called.

3.4.4 void *G_MALLOC(sh_mem)

Unless otherwise specified, all data are allocated in memory private to the allocating task created by
CREATE_ALL (explained later), and inaccessible to all other tasks. If some data needs to be shared, the
only option is to allocate shared memory using the directiveG_MALLOC. TheG_MALLOC directive has
the same interface as the standard Unix library callmalloc . For example, you can allocate shared space
for an integer variableshared_var  as

1. UNIX® is a trademark of UNIX System Laboratories, Inc.
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3.1  A Sequential Version

You will find a simple program in the$(TOP)/example/sequential  directory that implements
multiplication of two square matrices. You should examine, compile, and execute it. AMakefile is pro-
vided for this purpose.

3.2  A Parallel Version

When preparing a target program to run on WWT-II, you must parallelize your code by hand. The
Parmacs directives allow you to do this. TheParmacs directives are a set of macros that provides con-
structs for writing parallel programs. We have provided a parallel version of the matrix multiplication
program in$(TOP)/example/parallel . The rest of this section explains the Parmacs program-
ming model and how the matrix multiplication program has been parallelized using that model. Section 4
describes how to compile and run it.

3.3  The Parmacs programming model

Currently, WWT-II supports only theSingle Program Mul-
tiple Data (SPMD) paradigm. Loosely speaking, in this
paradigm all tasks execute the same code on different por-
tions of the data. This model is illustrated in figure 1. Dur-
ing theInitialization phase only one task, (the master task),
is active on one node (node zero) of the target machine.
This task is responsible for any initialization which must
be done before the parallel section begins. Typically this
task will allocate memory which will be shared with the
slave processes during the parallel section. The allocation
of shared memory is done with theG_MALLOCparmacs
directive (described in section section 3.4.4). Once the ini-
tialization has been completed, the master task can create
the slaves. This is done by theCREATE_ALLparmacs
directive (described in section section 3.4.5). The slave
tasks are given a pointer to a function which they will exe-
cute in parallel. When an instance of that function returns,
the slave which was executing it terminates. Usually the
master task will call the same function, so that all tasks
execute the same code during theParallel phase. (The
master task can execute different code from the slaves dur-
ing theParallel phase, if your algorithm is structured that
way.) Both the master and slave tasks can use the

XX_NUM_NODES andXX_NODE_NUMBER directives to determine the number of parallel tasks and their
own task number (see section 3.4.6). The slave tasks get private copies of the initialized data and BSS
sections and shared copies of any memory allocated by the master task during theInitialization phase.
Note that, by default, the copies of the initialized data and BSS sections passed to the slave tasks are as
they were at process startup time. Changes made to those sections by the master task will be copied to the
slave tasks’ data areasonly if those areas are specified with theset_fork_semantics  directive (see
section 3.4.3). Note that this is different from the standardparmacs model. During execution of the paral-
lel phase the tasks can use locks (section 3.4.7) and barriers(section 3.4.8) to synchronize and ensure cor-
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FIGURE 1. Parmacs Processing Model
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2  General Description of the Simulator

WWT-II is a discrete event, parallel architecture simulator, which uses both direct execution and par-
allel computation to speed up its operation. Because of these two mechanisms, it is practical to simulate
large target systems running realistic workloads.

In direct execution [10], a program from the system under study (thetarget) runs on an existing sys-
tem (thehost). For example, a target’s floating-point multiplication executes as a floating-point multipli-
cation instruction on the host. The host calculates the target’s execution time and only simulates
operations unavailable on the host.

Parallel simulation of a parallel computer further speeds simulation by exploiting the parallelism
inherent in the target parallel computer and the parallel host’s large memory to hold the simulator’s work-
ing set and reduce paging. The advent of low-cost parallel computers, such as symmetric multiprocessors
(SMPs) and clusters of workstations (COWs), make parallel simulation very attractive[3].

2.1  Supported Host Environments

WWT-II runs in a variety of environments, all members of SUN’s family of SPARC based machines.
These machines differ widely in the communication and synchronization mechanisms which are available
for processors needing to communicate. We deal with this variation in communication and synchroniza-
tion in a layer called Synchronized Active Messages (SAM). SAM isolates higher levels of the simulator
code from various implementations of the messaging and synchronization layer, and provides a uniform
interface to these services.SAM implementations exist for clusters of workstations on a local area net-
work, processors in an SMP which can share memory, and combinations of the two (SMP clusters).

2.2  Supported Target Environments

WWT-II can model systems comprised of SPARC-like CPUs with various bus and network models.
Three different hardware accelerators based on the Typhoon model are also available. Target programs
are written in a dialect of PARMACS[2], which is used in the SPLASH and SPLASH-II benchmarks.
Supported target environments include:

• A S-COMA [5] like system with fine grain access control implemented in hardware

• Hardware assisted shared memory based on the Typhoon family of accelerators (T0, T1, and Typhoon)

• The Tempest interface, which includes active messages.

2.3  Supported Target Interfaces

• PARMACS - This interface is described in section 3.

• Tempest Interface[9] - please see the referenced paper for details on this interface.

3  An Example Target Program - Matrix Multiplication

This section describes the features of a parallel target program using matrix multiplication as an
example. To simplify the discussion, we will assume that the WWT-II distribution tree has been installed
in its entirety at your site. We refer to the top level directory of this tree as$(TOP) . Please see theWWT-
II Installation Guide for details on the directory layout.
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tion. Please see the WARTS WEB page athttp://www.cs.wisc.edu/~larus/warts.html, or send email to
warts@cs.wisc.edu for more details.

1.2  Finding Other Documents

WWT-II and its precursor the Wisconsin Wind Tunnel [10] (WWT) have been described in various
research papers and reports. Similarly the authors of the accompanying benchmarks have described their
work in well known publications.   This report doesn’t attempt to duplicate that information, but only to
fill in the gaps for beginning users of the simulator. This section tells how to get hold of other relevant
documents.

1.2.1  WWT Project WEB Pages

The Wisconsin Wind Tunnel home page is athttp://www.cs.wisc.edu/~wwt/.   There you will find an
annotated bibliography containing brief descriptions of all the papers produced by our group. All of the
papers are available on-line by following the link calledWWT Technical Papers.

• Wisconsin Wind Tunnel - papers on both WWT and WWT-II.

• Tools - papers onEEL, an executable editing library used to prepare benchmarks for use with the sim-
ulator.

• Tempest, Typhoon, Blizzard - Descriptions of the Tempest substrate and Typhoon family of hardware
accelerators.

1.2.2  SPLASH and SPLASH-2 Documents

Several of the accompanying user programs are from the SPLASH-2 [13] benchmarks. The SPLASH
home page is athttp://www-flash.stanford.edu/apps/SPLASH/.Here you will find information on the
accompanying benchmarks, fft, lu, radix,and barnes.

1.2.3  Berkeley Active Messages

One of the systems WWT-II can run on is a network of Sun workstations connected by a Myricom[1]
system area network. Our implementation is built on top of the Berkeley Active Message [14] layer for
this network.

• http://now.cs.berkeley.edu/AM- Description of the Active Message Layer

• http://www.myri.com/ - Home site of Myricom, makers of the Myrinet1

1.3  Contacting WWT Personnel

To request help with installation and use of WWT-II or to report bugs, send email to
wwt@cs.wisc.edu.

1. Myrinet® is a trade name of Myricom Inc.
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1  Introduction

The Wisconsin Wind Tunnel II [8], (WWT-II) is a parallel, discrete-event driven, direct execution
simulator for parallel architectures. WWT-II runs across a family of SPARC1-based machines, including
single- and multi-CPU workstations, clusters of workstations connected by a system area network, and
Sun SMPs. Supported target architectures include software- and hardware-based distributed shared mem-
ory (DSM) systems, and a family of hardware accelerators collectively known as “Typhoon”. WWT-II
also supports the Tempest Interface [6,9]which includes message passing via Active Messages[14].

WWT-II was written in the Computer Sciences Department at the University of Wisconsin - Madison.
Its principal authors are Steven K. Reinhardt, Babak Falsafi, Shubhendu S. Mukherjee, and Michael Litz-
kow. Rob Pfile developed code for the memory bus modules.

This document describes WWT-II from the viewpoint of a simulator user. Topics covered include
choosing a target architecture for modeling, building and running the accompanying benchmarks, and
running the simulator in various environments. A separate document,Wisconsin Wind Tunnel II: Installa-
tion Guide, covers building and installing this software. This document, theInstallation Guide, and
instructions on getting the WWT-II distribution are available athttp://www.cs.wisc.edu/~wwt/wwt2.

The remainder of this section explains the WWT-II licensing requirements, tells how to find related
documents, and how to contact us if necessary. Section 2 gives a general description of the simulator. Sec-
tion 3 introduces an example program (matrix multiplication), and describes the target programming
model supported by the simulator. Section 4 explains how to compile and run the example program. Sec-
tion 5 gives details about the target systems you can simulate. Section 6 describes some benchmark pro-
grams which are packaged with the simulator, and section 7 gives some tips on preparing your own target
programs. Section 8 explains how to debug the simulator, and lists some of its limitations. Appendix A
gives details on how to run the simulator on the Wisconsin COW.

1.1  Copyright and Licensing

WWT-II is part of the Wisconsin Architectural Research Tool Set (WARTS). WARTS is available
without charge for university researchers and is available to other researchers for a modest research dona-

1. SPARC® is a registered trademark of SPARC International, Inc.
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