Data Mining and Analysis: Fundamental Concepts and Algorithms [NOOK Book]

Overview

The fundamental algorithms in data mining and analysis form the basis for the emerging field of data science, which includes automated methods to analyze patterns and models for all kinds of data, with applications ranging from scientific discovery to business intelligence and analytics. This textbook for senior undergraduate and graduate data mining courses provides a broad yet in-depth overview of data mining, integrating related concepts from machine learning and statistics. The main parts of the book include ...
See more details below
Data Mining and Analysis: Fundamental Concepts and Algorithms

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$29.99
BN.com price
(Save 42%)$52.00 List Price

Overview

The fundamental algorithms in data mining and analysis form the basis for the emerging field of data science, which includes automated methods to analyze patterns and models for all kinds of data, with applications ranging from scientific discovery to business intelligence and analytics. This textbook for senior undergraduate and graduate data mining courses provides a broad yet in-depth overview of data mining, integrating related concepts from machine learning and statistics. The main parts of the book include exploratory data analysis, pattern mining, clustering, and classification. The book lays the basic foundations of these tasks, and also covers cutting-edge topics such as kernel methods, high-dimensional data analysis, and complex graphs and networks. With its comprehensive coverage, algorithmic perspective, and wealth of examples, this book offers solid guidance in data mining for students, researchers, and practitioners alike. Key features: • Covers both core methods and cutting-edge research • Algorithmic approach with open-source implementations • Minimal prerequisites: all key mathematical concepts are presented, as is the intuition behind the formulas • Short, self-contained chapters with class-tested examples and exercises allow for flexibility in designing a course and for easy reference • Supplementary website with lecture slides, videos, project ideas, and more.
Read More Show Less

Editorial Reviews

From the Publisher
"This book by Mohammed Zaki and Wagner Meira Jr is a great option for teaching a course in data mining or data science. It covers both fundamental and advanced data mining topics, explains the mathematical foundations and the algorithms of data science, includes exercises for each chapter, and provides data, slides and other supplementary material on the companion website."
Gregory Piatetsky-Shapiro, Founder, ACM SIGKDD, the leading professional organization for Knowledge Discovery and Data Mining

"World-class experts, providing an encyclopedic coverage of all datamining topics, from basic statistics to fundamental methods (clustering, classification, frequent itemsets), to advanced methods (SVD, SVM, kernels, spectral graph theory). For each concept, the book thoughtfully balances the intuition, the arithmetic examples, as well the rigorous math details. It can serve both as a textbook, as well as a reference book."
Professor Christos Faloutsos, Carnegie Mellon University and winner of the ACM SIGKDD Innovation Award

Read More Show Less

Product Details

  • ISBN-13: 9781107779105
  • Publisher: Cambridge University Press
  • Publication date: 4/30/2014
  • Sold by: Barnes & Noble
  • Format: eBook
  • Sales rank: 1073756
  • File size: 37 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Mohammed J. Zaki is a Professor of Computer Science at Rensselaer Polytechnic Institute, USA.

Wagner Meira, Jr is a Professor of Computer Science at the Universidade Federal de Minas Gerais, Brazil.

Read More Show Less

Table of Contents

1. Data mining and analysis; Part I. Data Analysis Foundations: 2. Numeric attributes; 3. Categorical attributes; 4. Graph data; 5. Kernel methods; 6. High-dimensional data; 7. Dimensionality reduction; Part II. Frequent Pattern Mining: 8. Itemset mining; 9. Summarizing itemsets; 10. Sequence mining; 11. Graph pattern mining; 12. Pattern and rule assessment; Part III. Clustering: 13. Representative-based clustering; 14. Hierarchical clustering; 15. Density-based clustering; 16. Spectral and graph clustering; 17. Clustering validation; Part IV. Classification: 18. Probabilistic classification; 19. Decision tree classifier; 20. Linear discriminant analysis; 21. Support vector machines; 22. Classification assessment.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)