- Shopping Bag ( 0 items )
Other sellers (Hardcover)
-
All (4) from $98.00
-
New (3) from $126.04
-
Used (1) from $98.0
More About This Textbook
Overview
In Knowledge Discovery and Measures of Interest, we study two closely related steps in any knowledge discovery system: the generation of discovered knowledge; and the interpretation and evaluation of discovered knowledge. In the generation step, we study data summarization, where a single dataset can be generalized in many different ways and to many different levels of granularity according to domain generalization graphs. In the interpretation and evaluation step, we study diversity measures as heuristics for ranking the interestingness of the summaries generated.
The objective of this work is to introduce and evaluate a technique for ranking the interestingness of discovered patterns in data. It consists of four primary goals:
- To introduce domain generalization graphs for describing and guiding the generation of summaries from databases.
- To introduce and evaluate serial and parallel algorithms that traverse the domain generalization space described by the domain generalization graphs.
- To introduce and evaluate diversity measures as heuristic measures of interestingness for ranking summaries generated from databases.
- To develop the preliminary foundation for a theory of interestingness within the context of ranking summaries generated from databases.
Knowledge Discovery and Measures of Interest is suitable as a secondary text in a graduate level course and as a reference for researchers and practitioners in industry.Product Details
Related Subjects
Table of Contents